Special Topics: Wireless Without Batteries ECE 8813 – Spring 2017 ## **Class Description:** | Course | Title | Cr Hrs | Instructor | Days | Time | Location | |----------|---|--------|-------------|------|------|----------| | ECE-8813 | Special Topics: Wireless
Without Batteries | 3 | Greg Durgin | MW | 1 pm | Shenzhen | #### ECE 8813 Wireless Without Batteries This class provides a comprehensive overview of "Wireless Without Batteries" – the emerging field of low-powered, energy-harvesting radio communications for telemetry, location, and identification. The course presents a multi-disciplinary treatment that involves antennas, propagation, communication theory, RF engineering, analog devices, and nanotechnology. Case studies in cutting-edge remote sensing, RFID, telemetry, and other fields are explored to illuminate concepts. **Instructor:** Gregory D. Durgin 507 Van Leer E-mail: durgin@gatech.edu Office Phone: (404) 894-2951 Class Web Page: T-square **Textbook:** Course notes and relevant papers will be posted online. **Prerequisites:** No formal prerequisites. Suggested prerequisites are graduate standing and some background in undergraduate electromagnetics and communications theory. ## **Grading:** 20% Homework – Expect approximately 4-5 homework assignments over the course of the semester. 40% Midterm Quizzes (2) – There will be 2 quizzes during the semester. 40% Final Project – A final project will be assigned and collected towards the end of the course. The last week of the course will be reserved for student project presentations. **Computer Usage:** The web will be used extensively in this class to disseminate homework assignments, lecture materials, and class announcements. Some assignments may involve the use of MatlabTM or equivalent computational software. Most students should have access to this software through a university computer lab or their own personal computing packages. If not, please inform the instructor. # **Tentative Lecture Topics:** I. **Basic Radiation Theory** – review of antenna theory and wave propagation; basic circuit modeling of antennas in transmit, receive, backscatter modes; - wire and aperture antennas; antennas on dielectric objects and metal; piezeoelectric materials; surface acoustic wave (SAW) devices. Case Study: SAW temperature sensor. - II. Propagation Theory Backscatter link budgets; small-scale fading; double fading distributions; multi-antenna systems for backscatter radio. Case Study: UHF EPC Global RFID tags. - III. **RF Energy Harvesting** Survey of energy-harvesting; battery fundamentals; review of time-harmonic transmission line theory; rectenna theory and design; charge pump theory and design; power optimized waveforms and multisine; RF scavenging; energy-banking systems; super-capacitors. Case Study: Intel WISP platform. - IV. **Communications Theory** Rules for unlicensed spectrum operation; review of AWGN detection; orange noise model for RF readers; matched filter detection in colored noise; binary offset carrier modulation; spread-spectrum systems. Computational platforms for low-energy communications. Case Study: Power Line Sensor. - V. **Magnetic and Inductive Systems** Biot-Savart modeling of cols and loops; circuit modeling of inductively-coupled systems; flux circuit model; classical magnetic materials (diamagnetism, paramagnetism); quantum effect magnetic materials (ferrimagnetism, ferromagnetism, super-paramagnetism); inductive RFID systems; Case Study: magnetostrictive electronic article surveillance (EAS). Case Study: MIT inductive resonant transfer. - VI. **Wireless Power Transfer** Power exchange between large apertures; high-powered microwave sources; Case Study: Space Solar Power. **Honor Code:** The Honor Code applies to every aspect of this class, with only one noteworthy exception: student discussion of concepts and techniques for solving homework problems is permitted and even encouraged outside the classroom. However, *all submitted work must be original*.