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A TRANSMISSION/ESCAPE PROBABILITIES MODEL 
FOR NEUTRAL PARTICLE TRANSPORT 
IN THE OUTER REGIONS OF A DIVERTED TOKAMAK 

W.M. STACEY, Jr., J.  MANDREKAS 
Eusion Research Center, 
Nuclear Engineering €?rog"e, 
Georgia Inaitute 'of Technology, 
Atlanta, Georgia, 
Umhd States of America 

ABSTRACT. A new computational model for neutral particle transport in the outer regions of a diverted tokamak 
plasma chamber is presented. The model is based on the calculation of transmission and escape probabilities using first-flight 
integral transport theory and the balancing of fluxes across the surfaces bounding the various regions. Both long and short 
mean free path regions can be handled. The complex geometry of the outer regions of a diverted tokamak can be represented 
accurately and economically using precomputed probabilities which depend only on the mean free path of the region. 
Benchmark comparisons with Monte Carlo illustrate that quite accurate results may be expected with the method. 

1. INTRODUCTION 

The transport of neutral atoms and molecules of fuel 
and impurity species in the 'outer regions' - the edge 
plasma, the scrape-off layer (SOL), the divertor channels 
and the plasma chamber and divertor plenums - of a 
diverted tokamak is a computational problem the practical 
significance of which is being increasingly recognized. 
There are indications that conditions in the plasma edge 
may control the energy confinement of the bulk plasma, 
and such conditions in turn may be influenced by the 
neutral population in the outer regions. More directly, the 
interaction among neutrals and plasma ions and electrons 
in the outer regions is being relied on to 'radiatively cool' 
the latter and thereby reduce the heat load on the divertor 
collection plate, which is presently predicted to be 
excessive in next-generation devices such as ITER. 

The importance of neutral particle transport in the 
outer regions of plasmas has long been recognized by 
specialists, and a variety of computational models have 
been used, as reviewed in Ref. [ 11. Thus, it is incumbent 
upon anyone who would introduce a new computational 
model, which is the purpose of this paper, to comment 
upon the existing models and to indicate why a new model 
is needed, which we do in Appendix A. 

The method which is proposed in this paper utilizes the 
integral transport method to do what it does best, calcu- 
late the uncollided neutral flux that is transmitted from 
one surface to another. The secondary source in the inter- 
vening region is then found by subtraction, and the 
collided neutral flux through surrounding surfaces is then 

calculated from an escape probability formulated from 
integral transport theory. The concept is to break the 
outer regions of a diverted tokamak plasma up into a rela- 
tively small number of complex geometrical regions and 
to do a balance on the fluxes crossing the surfaces 
bounding these regions, using surface-to-surface trans- 
mission probabilities calculated with integral transport 
theory and region-to-surface escape probabilities based 
on the repeated application of first-flight transport calcu- 
lations of escape probabilities. The treatment of the trans- 
mitted fluxes is similar to that in the collision probability 
methods of neutron transport theory, but the calculation 
of intraregion transport via multiple flight escape proba- 
bilities to enable the use of large regions is novel. With 
a few plausible assumptions, the transmission and escape 
probabilities depend only upon the geometry and the 
mean free path of the region, so that complex geometries 
can be represented in precomputed transmission and 
escape probabilities which can be stored as a function of 
the mean free path and looked up at run time, thereby 
eliminating the computational penalty of complex 
geometry. With another plausible assumption, the region- 
to-surface escape probabilities can be written as simple 
expressions involving the surface area, volume and mean 
free path of the region. The most limiting assumption on 
the method is that of uniform properties (or at least known 
property variation) within a region, which places a lower 
limit on the number of regions required for a given 
accuracy. 

This paper is organized as follows. Definitions of 
quantities involved in neutral transport are given in 
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Section 2, and a representative geometrical model for the 
outer regions of a diverted tokamak is given in Section 3. 
The fluxes across surfaces are constructed from 
uncollided fluxes across other surfaces and from collided 
fluxes emerging from adjacent regions in Section 4. The 
solution of the resulting flux equations and the use of that 
solution in a particle balance are indicated in Section 5. 
The methodology for calculating transmission probabili- 
ties, escape probabilities and the plasma albedo are given 
in Sections 6-8, respectively. Modifications needed to 
treat neutral impurity atoms are given in Section 9. Some 
benchmarking calculations are reported in Section 10. 
A discussion of assumptions and applications in 
Section 11 concludes the paper. Explicit expressions for 
the calculation of transmission probabilities in the model 
problem geometry are given in Appendices B and C. 

2. DEFINITIONS 

r a - b  is the neutral flux from region a - region b; 
is the transmission coefficient expressing the proba- 
bility that neutral particles incident into region b 
from region a emerge from region b into region c 
without a collision event; 
is the escape probability that a neutral particle 
‘born’ in region b (external source, charge 
exchange event, electron recombination) or its 
neutral progeny will escape from region b without 
being ionized; 
is the probability that a neutral particle ‘born’ in 

P b  

and escaping from region b escapes into adjacent 
region c; 
is the albedo of region b,  i.e. the probability that a 
neutral particle entering region b from region a (or 
its neutral progeny) re-emerges from region b into 
region a;  
is the reflection coefficient for wall bounding 
region b, i.e. the probability that a neutral (or 
charged) particle incident upon the wall is reflected 
as a neutral particle; 
is the fraction of neutrals striking the ‘wall’ bound- 
ing region b that are removed by pumping. 

3. MODEL GEOMETRY 

A representative geometry of the plasma, SOL, diver- 
tor and plenum regions within the plasma and divertor 
chambers is illustrated for a axisymmetric tokamak with 
a single null divertor configuration in Fig. 1. 

1386 

PUMP 

FIG. 1. Single null divertor geometry (not to scale). 

FIG. 2. Geometrical model for outer region neutral calculation. 
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A simple geometrical model which should represent 
the actual geometry of Fig. 1 reasonably well is illustrated 
in Fig. 2. The divertor channel has been divided into a 
presheath region (1 and 2) which extends a few mean free 
paths in front of the collector plate, in which intense 
neutral charged particle interactions take place, and a 
channel (3 and 4) extending up to the throat (5). All of 
these regions can be represented by trapezoids. The 
divertor plenum (6-8) can be represented rather exactly 
by regions bounded by straight lines. The SOL (9-12) and 
the plasma chamber (13- 16) can be represented approxi- 
mately by concentric annular segments to allow for 
treating poloidal asymmetries. The model of Fig. 2 is for 
the purpose of illustration - the actual geometrical model 
that would be used in any given calculation would depend 
on the configuration and the geometrical accuracy 
required (see Section 10). 

4. FLUXES ACROSS SURFACES 

The formalism is developed for a neutral hydrogenic 
atomic species. Modifications to allow treatment of a 
neutral impurity species are discussed in a subsequent 
section. 

With respect to Fig. 2, the neutral flux emerging from 
region i into adjacent regionj consists of: (1) the sum of 
the neutral fluxes that entered region i from all adjacent 
regions times the probabilities that these fluxes emerge 
without collision into region j 

k 

where f: is the sum over all regions k that are contiguous 
to regiin i ;  plus (2) the sum of all neutral fluxes that 
entered region i from all adjacent regions and that had a 
collision in region i 

i i 

k r k - i ( 1  - I TL-!) 

times the probability 

( C J U ) t X  Ah, E -___-- 
( 4 f x  + ( C J 4 i O "  

that the collision was a charge exchange event, times the 
probability (Pi) that the charge exchange neutral or its 
progeny eventually escapes from region i, times the 
probability (A i - j )  that a neutral particle escaping from 
region i enters region j ;  plus (3) the probability that a 
neutral particle introduced into region i externally (SL,) 
escapes into region j (PiAi-j) 

+ s & P I A I - J  (1) 
The flux from a region i in the plasma edge into the 

adjacent SOL region j is 

r l - J  = aJ t r ] - I  (2) 
Thus it is not necessary to explicitly treat the plasma 
inside the separatrix in the neutral calculation; rather it is 
treated as an albedo boundary condition on the inner 
surface of the SOL. 

The neutral flux into region i from a bounding wall 
region iw is the sum of (1) the neutral flux from 
region i to the wall, given by Eq. ( l ) ,  times the proba- 
bility (1 - f,,) that this incident flux is not pumped out, 
times the probability (RWJ that this incident flux is 
reflected from the wall; plus (2) the ion flux (@;Et,) inci- 
dent upon the divertor plate - for the presheath regions 
only - times the reflection coefficient (RWJ 

/ I  

(3) 

where 6 = 1 for the presheath and 0 otherwise. 
The transmission probabilities (Ti..j) involve mean 

free paths X 1= uo/n(au), which should be evaluated using 
the neutral speed (U;) that is characteristic of the 
region k from which the neutral has emerged (unless 
region k is a vacuum region across which the neutral has 
streamed from region k', in which case (U!') should be 
used) and using ni(au)i for the region i. 

The reflected neutral flux consists of two components: 
(1) a fraction x of neutrals that are reflected with a 
fraction g of the speed of the incident neutral/ion; and 
(2) a fraction 1 - x that thermalize in the wall, are re- 
emitted as molecules, then dissociate to produce neutrals 
with the Franck-Condon speed u f c  

When calculating the transmission probabilities for these 
reflected neutrals across the presheath region i, a neutral 
speed guh should be used to evaluate the mean free path 
for the first component, and a neutral speed u f c  should 
be used to evaluate the mean free path for the second 
component. 

The total ionization rate in region i consists of the ioni- 
zation of external source neutrals and of neutrals flowing 
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into region i from adjacent regions, after zero, one, two, 
three, ... charge exchange events 

W 

X Ai,, [ALx(l - Pi)]. 
n = O  

(5) 
L k \ - - 

1 - AiX(1 - P,) 
where Aion = 1 - ALx. 

The presence of impurities is taken into account by 
defining an effective ionization rate in terms of the plasma 
ion concentration ni 

n 
(UU)ion = (au);o" + 2 + 11 !!d (au)fx 

ni i ni 

where CY = n,Z21ni and x z j  = nzj/n, ,  with n, and nZj 
being the total and j th  charge state impurity densities, and 
((TU)!, is the charge exchange rate between the neutral 
hydrogenic species and the j t h  impurity charge state. 

5. SOLUTIONS STEPS 

With the assumptions: (1) the plasma properties are 
uniform (or at least vary in a known way) within a region; 
( 2 )  the incident neutral flux is isotropic over the inward 
hemisphere'; and (3) the incident neutral flux is uni- 
formly distributed over the surface, the transmission and 
escape probabilities depend only on the mean free path 
and geometry of the region. Since the geometry is fixed 
the transmission and escape probabilities can be precom- 
puted as a function of X and looked up from a table at run 
time. Fixed, but non-uniform plasma properties and inci- 
dent neutral flux distribution, and a prespecified 
anisotropic angular distribution, could be accommodated 
within a precomputed table, but it is unlikely that the 
knowledge of these non-uniformities and anisotropies 
would be good enough to make this worthwhile. 

We obtain 2N equations, where N is the number of 
interfaces, of the type of Eqs (1)-(3). These equations 

' This is equivalent to a double-Po representation [2]. 

1388 

have the general form 

MI' = s e x  + *plate (7) 

and the general solution 

r = M-I [ S e x  + *'plate] (8) 

The neutral particle balance equation in each region is 

k 

which has the steady state solution 

six - r k - j )  

The numerical solution steps are: 

( 1 )  Evaluate the transmission and escape probabilities 
from precomputed tables, using the plasma densities 
and temperatures to calculate X; 

( 2 )  Solve Eq. (7) for I' by inverting M; 
(3) Use I' in Eq. (10) to obtain the steady state neutral 

content or in Eq. (9) to advance the dynamic 
solution. 

6. TRANSMISSION PROBABILITY 

With reference to Fig. 3, we are interested in calcu- 
lating the probability that a flux of neutrals incident upon 
side 1 of the region emerges uncollided through side 3 ,  
for example, We call this probability the transmission 
probability 

The uncollided neutral flux is given by 

p(l) = p(O)e-"' (1 1) 
where 

and 1 is the path length from the point of entry into the 
region. 

If the distribution of the incident flux along side 1 is 
rl(tl, 4), then the transmission probability is 

The angles and &,ax([1) are the minimum and 
maximum angles 4 subtended at by the side 3. Now, 
l(4) represents the path length from point E l  on side 1 to 
point t2  on side 2 ,  as shown in Fig. 3. 
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2 

FIG. 3. Surface to surface transmission. 

If the incident particle distribution is isotropic over the 
inward hemisphere, then r l ( t 1 ,  4) - rl(tl)/a and 
Eq. (13) reduces to 

4msx(C1) 

4ml"(El )  

d+e-'($)/X 

(14) 
s"' dtIrl(t1) ; s 

CY 
pel""" 

TI-3 = - 

We further define the local transmission probability that 
an isotropically distributed neutral incident at point E l  on 
side 1 emerges uncollided through side 3 

l l - 3 ( 5 1 )  E - d&-'($)/X (15) 
a s4m""" $*>. (El )  

Ti-3 = s d51tl-3(E1)/(5f"ax - ti"'") 

If the incident flux is uniformly distributed along 
side 1, then the transmission probability reduces to 

Ei""" 

E Yn 
(16) 

For a fixed geometry, this quantity depends only on X. 
Transmission piobabilities are calculated in the appen- 
dices for the geometry of Fig. 2. 

7. ESCAPE PROBABILITY 

We first follow Ref. [3] to develop a first flight escape 
probability, then use this result to construct a total escape 
probability. 

A neutral particle created by charge exchange at point 
r,, with an isotropic distribution, has a probability 

of escaping across the surface bounding the region before 
having an interaction. With reference to Fig. 4,  A, and Ai 
are the outward and inward normal vectors to the surface 
of the region, l(ro, 0) is the distance from ro to the 
surface in direction h, and I,@) is the chord length from 
a point on the surface across the region to the exit surface 
in the direction h. The solid angle subtended at ro by a 
differential surface area ds in the direction h is 

dQ = (B * A,)ds/12(ro, Q) 

The average first flight escape probability for neutral 
particles created uniformly over the region is 

If we take the volume of the region to be made up of 
tubular elements oriented in the h direction, with cross- 
section area ds(h+Ai), then dV = (fi.Ai)dsdl and 
Eq. (18) can be integrated over 1 to obtain 

The concept of chord length (I,) distribution is now 
introduced to reduce Eq. (19) to a form that can more 
readily be approximated. We define the probability that a 
chord is of length between 1, and 1, + dl, 

j [ s ,~ = 1, (h hi),,] ds 
$(l,)dls - , (&Ai) > 0 (20) 

(h *Ai)dQds s s  
s s  s: 
where the integral over 0 in the numerator is limited to 
those values of Q for which = 1,. The denominator 
is readily evaluated 

(h*Ai)dQds = 2aS  pdp = aS 

where S is the surface area bounding the region. 

FIG. 4. Escape probability geometry. 

NUCLEAR FUSION, Vo1.34, No.10 (1994) 1389 



STACEY and MANDWKAS 

The volume of the region is 

V = j' 1(6.vii)ds, @.vii) > 0 

and the mean chord length is 

1, j' ls~( ls)dl ,  = s 1, [ 1 l (fi.iii)dClds dl, 1 - 
SS I'  = 1, 

Hence, 

Using Eq. (22) in Eq. (19) leads to 

(23) 

When the dimensions of the region are small compared 
to the mean free path, 1, << A, Eq. (23) reduces to 

and when 1, >> h 

h hS po 2 = = 
1, 4 v  

This suggests the rational approximation 

1 Po = ___ 
4 v  1 + -- 
hS 

The particle may escape from the region uncollided, 
with probability Po; its progeny may escape after one 
collision, with probability ( 1  - Po)A,,Po; etc. The total 
escape probability for a neutral particle or its neutral 
progeny is 

P = Po + (1 - Po)P(jAc, + (1  - Po)2(Acx)2Po + ... 
a .. 

(27) YO 
1 - A C X ( 1  - Po> 

= Po (&(l - Po))" = 
f l = O  

The distribution of escaping neutral particles among 
contiguous regions can be estimated from considerations 
of surface area (length in a 2-D model) and the motion of 
the progenitor ion in the case of a charge exchange 
neutral. An ion moves along a field line with its thermal 
speed; if there is a net ion flow, Ell, then 

0 

null = s f ( ~ l l ~ ~ l l d ~ l l  + ~ a f ~ u l l ) u l l d u l l  
-a 0 

(28) 
where nt and n- are the number of ions moving parallel 
and antiparallel, respectively, to the field direction. Ion 
motion perpendicular to the field line has no preferential 
direction. Thus, the relative probability that a charge 
exchange neutral will escape from i into regionj depends 
on the relative length (L,) of the interface between 
regions i and j and on the orientation of that interface 
with respect .to the magnetic field 

(29) 

where All is the unit vector along the field line and A, is 
the normal unit vector to Lij pointing from region i to 
regionj. The constant is determined from the requirement 

- = - n - U t h  + n + u t h  

Ai-j = const. L ,  ( I  Al l  X A, I + (All 'Ajj)cl&,) 

Ai-j = 1 
i 

8. PLASMA ALBEDO 

Neutrals crossing the separatrix from the SOL into the 
plasma edge region will either be ionized immediately or 
will undergo a sequence of charge exchange events 
terminating in ionization, with the result that a negligible 
number of neutrals penetrate beyond the plasma edge 
region. However, some of the charge exchange neutrals 
will re-emerge from the plasma edge back into the SOL. 

Treating the plasma as an infinite half space for 
neutrals entering from the SOL and making use of the 
diffusion theory approximation, the plasma albedo is, by 
analogy to the neutron diffusion theory result [4], 

where A,, is the charge exchange probability in the 
plasma edge region. 

9. MODIFICATIONS TO TREAT 
A NEUTRAL IMPURITY SPECIES 

The principal modification of the above formalism that 
is required in order to treat the transport of neutral 
impurity atoms is the replacement of the expression for 
the neutral flux from the wall into region i given by 
Eq. (3) with 

1390 NUCLEAR FUSION, Vo1.34, No.10 (1994) 



A TRANSMISSION/ESCAPE PROBABILITIES MODEL 

The sums over a and b are over all neutral and ionic 
species, respectively. The quantities Y;r2 and Y,”yZ are 
the sputtering yields of impurity neutrals of species z per 
neutral of species a or ion of species b, respectively, 
striking the wall of region i. Equation (25) can be 
generalized to have a different sputtering yield for each 
component of the neutral flux to the wall, evaluated for 
the energy corresponding to the region of origin of the 
neutral flux component. The other quantities have been 
defined previously without the species dependent super- 
scripts a and b. 

10. BENCHMARK AND 
MODEL PROBLEM CALCULATIONS 

The transmission and escape probability model for 
neutral transport, as described in the previous sections, 
has been implemented in a computational code 
(GT-NEUT) and applied to two plasma edge neutral 
transport problems. 

Core Plasma 

’/ Y Vacuum 

FIG. 5. Geometry of the benchmark problem with DEGAS 2. The 
numbered regions shown correspond to the GT-NEUT regions. The 
horizontal extent of the problem is 1.6 m, and the vertical extent is 2 m. 

First, in order to establish the accuracy of the model, 
a benchmark calculation with the recently upgraded 
neutral transport Monte Carlo code DEGAS 2 [5, 61 was 
performed. The benchmark problem corresponds to the 
geometry shown in Fig. 5. The solution region contains 
the outboard SOL plasma, including part of the private 
flux area, a small part of the edge plasma (just inside the 
separatrix) and the associated vacuum regions. The calcu- 
lation is carried out over a fixed plasma background with 
parameters covering a wide range of values: in the SOL 
region, the plasma density varies from 0.6 X 10’’ m-3 in 
region 24 near the midplane to 1.14 X 10’’ m-3 in 
region 2 near the divertor plate, while the electron 
temperature ranges from 170 eV in region 24 to 15 eV 
near the divertor plate. The DEGAS 2 run used 1152 
(24 x 48) cells, while the GT-NEUT run had 25 SOL 
/divertor and 7 vacuum regions which are shown in 
Fig. 5. In both codes, charge exchange and ionization 
were the only atomic processes included. A unit source of 
neutral hydrogen atoms with energy Eo = 10 eV was 
assumed and the source neutrals were launched uniformly 
into region 6 from the divertor plate. Since each 
GT-NEUT region contains a large number of DEGAS 2 
cells, the plasma parameters were taken to be the 
corresponding volume averages (density weighted for the 
plasma temperatures) from the DEGAS 2 input data. 
The DEGAS 2 calculations required 7.5 min on the 
SPAKC 10, and the GT-NEUT calculations required 5 s 
on the same machine. 

The results from this comparison are shown in Fig. 6, 
where the total ionization rate per region is plotted for the 
two cases (the region number corresponds to Fig. 5). The 
DEGAS 2 rates are the sum of the total ionization rates 
in all DEGAS cells contained within each of the 
GT-NEUT regions. Regions 26-32 are vacuum regions 
which GT-NEUT treats as very low density and tempera- 
ture plasma, resulting in a small but finite ionization rate. 
In DEGAS 2, vacuum regions are assigned zero ioniza- 
tion rate. 

It can be seen that the agreement between the two 
codes is very good. The largest discrepancies occurred 
in the private flux region (1) and in the SOL regions 
towards the midplane (regions 18-25). Comparison with 
another DEGAS 2 case, where the neutrals were launched 
with a cosine velocity distribution, resulted in equally 
good agreement with the GT-NEUT code, indicating little 
sensitivity of the results to the isotropic incident flux 
model used in GT-NEUT. This is probably due to the 
strong charge exchange in front of the divertor plate, 
which diminishes the effect of the initial distribution of 
the launched neutrals [7]. 
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FIG. 6. Total ionization rate per region comparison between the transmission/escape 
probability neutral transport code GT-NEUT and the DEGAS 2 Monte Carlo code. 

FIG. 7, Geometry for the ITER model problem. 

The GT-NEUT calculations also illustrate the impor- 
tance of including the vacuum regions when calculating 
the transport of neutrals at the plasma edge. Running the 
same problem but without the vacuum regions 26-32, the 
resulting ionization rate was found to be orders of 
magnitude smaller in the upper part of the SOL plasma 
(regions 18-25) compared to the DEGAS 2 prediction 
and to the GT-NEUT solution with the vacuum regions 

included. Without these vacuum regions, neutrals near 
the divertor regions cannot free-stream up towards the 
midplane. This ability to treat transport in complex 
geometries and across low and high mean free path 
regions is one of the most attractive features of the 
transmission/escape probabilities method, compared to 
other approximate methods of neutral transport, which 
generally lack this capability. 

We have not compared the transmission/escape proba- 
bilities method with methods based on the diffusion 
theory approximation, since diffusion theory would not 
be appropriate for the complicated geometry and vacuum 
regions of the benchmark problem. However, compari- 
sons between DEGAS and neutral diffusion theory calcu- 
lations in an idealized geometry have been published 
recently [8]. 

Next, the method was applied to analyse the transport 
of neutrals in the edge of a plasma characteristic of 
a single-null ITER configuration. The (simplified) 
geometry of our model problem is shown in Fig. 7. The 
background plasma densities and temperatures vary from 
1.2 x 1020 m-3 and 25 eV in region 1 in front of the 
divertor plate to 0.2 x lo2' m-3 and 230 eV at the 
symmetry point on top of the SOL region. Hydrogen 
neutrals of 100 eV energy were assumed for the evalua- 
tion of mean free paths. The total ion flux incident upon 
the two divertor plates in regions 1 and 10 was taken to 
be equal to 2.2 X s-', consistent with reference 
ITER particle confinement assumptions. This ion flux is 
reflected from the divertor plates as a neutral flux into 
regions 1 and 10 (see Eq. (7)). 
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1 2  3 4 5 6 7 8 9 10 
Region Number 

FIG. 8, Ionization rate for the ITER model problem, for three different divisions of the 
geometry. 
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ezzZa From region 1 
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Total Collided U n c o 1 1 id e d 

FIG. 9. Normalized jlux distribution entering region 2. Only the contributions from 
regions 12, 13 and 1 are shown since those from adjacent regions 3 and 9 are negligible. 

We first examined the sensitivity to the number of 
regions used to represent the SOL and divertor. The same 
problem was run with 14 regions and then with twice that 
number of regions, by subdividing further some of the 
14 regions in the original case shown in Fig. 7. Two 
different divisions were performed, one emphasizing 
the top part of the SOL region (regions 3-8), and the 
other emphasizing the region near the divertor 
(regions 1-2, 9-10). 

The results of the simulations are shown in Fig. 8, 
where the total ionization rate is plotted for each region 

of Fig. 7. It can be seen that the results are not very 
sensitive to the number of regions used to represent the 
SOL and divertor, particularly in areas of high ionization 
rates. 

To illustrate the relative magnitudes of the different 
fluxes that enter the calculation, the total, collided and 
uncollided fluxes (Eq. (1)) for the problem of Fig. 7 are 
plotted for region 2 in Fig. 9. It can be seen that most of 
the flux to region 2 originates from region 1, which is 
bounded by the inboard divertor plate. Most of this flux 
emerges from region 1 as collided flux, since the electron 
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density in region 1 is rather high. The uncollided flux 
entering region 2, about 30% of the total flux, comes 
mostly from the two adjacent vacuum regions 12 and 13, 
where the ionization mean free paths are very long. 

11. DISCUSSION 

The appeal of the proposed model is its ability to 
accurately and economically calculate neutral transport in 
a complex 2-D geometry with regions of widely varying 
mean free path. The geometrical complexity enters via 
transmission and escape probabilities which can be 
precomputed as a function of the mean free path and 
obtained from tables at run time. The geometrical models 
of Fig. 2 or Fig. 7 serve to quantify the number of equa- 
tions that might be involved in a typical application. 
There are 2 flux equations for each ‘internal’ surface and 
1 flux equation for each ‘external’ surface bounded by 
either the plasma or the wall, for a total of 64 equations 
in the case of Fig. 2. The coupling among surface fluxes 
is nearest-neighbour, so the matrix M of Eq. (7) is rela- 
tively sparse. 

While the geometrical models of Figs 2 and 7 are com- 
posed of regions that are bounded by straight lines and 
arcs of circles, and the transmission probabilities given in 
the appendices are for such a geometry, this is not a limi- 
tation on the model. Once the geometry is specified, no 
matter how complex, the transmission and escape proba- 
bilities can be precomputed numerically and only a table 
lookup is needed at run time. 

The transmission probabilities are exact, subject 
to three assumptions: (1) uniform mean free path; 
(2) isotropic angular distribution of the incident flux over 
the inward hemisphere; and (3) uniform distribution of 
the incident flux over the surface. All of these assump- 
tions can be removed by generalizing to known flux varia- 
tions. The first assumption is not so limiting as it appears 
to be, since the. transmission calculated with an exponen- 
tially varying density between two surfaces is the same as 
that which would be calculated using the average density. 
The second assumption should be valid except near 
corners joining regions of very different mean free paths. 
The consequences of the third assumption could be 
ameliorated by subdividing surfaces, if necessary. 

The first-flight escape probabilities are exact, subject 
to three assumptions: (1) uniform mean free path; 
(2) isotropic angular distribution of ‘secondary’ charge 
exchange and external source neutrals; and (3) uniform 
spatial distribution of charge exchange and external 
source neutrals, Again, the first assumption is not as 
limiting as it seems. The second assumption is quite 

plausible. The third assumption is perhaps questionable 
for virgin source neutrals and first-collision charge 
exchange neutrals in some regions, but is quite plausible 
for those neutrals escaping after two or more charge 
exchange events. It should be noted, however, that the 
simple expression Po = SM4V is subject to the further 
assumption that the region is large compared to a mean 
free path. 

The methodology proposed in this paper lends itself to 
taking into account differences in the speeds of neutrals 
that originate in different regions and thus using the cor- 
rect mean free paths in determining transmission and 
attenuation. This is an intrinsic advantage of an integral 
transport based method over a differential transport based 
method, which would require an additional modelling of 
energy transfer (e.g. a multigroup model). However, a 
multigroup method can be used with the transmission 
/escape probabilities method. 

It is felt that the methodology proposed in this paper 
can lead both to relatively simple neutral transport models 
that can be used with simple ‘2-point’ plasma models of 
the SOL and divertor for scoping and parameter studies 
and to detailed neutral transport models that can be used 
with 1-D and 2-D plasma models of the SOL and divertor 
for detailed analysis of experiment and divertor design. 
Such models should be able to produce greater accuracy 
for a given computational time than other models 
presently available for the calculation of neutral transport 
in the outer regions of a diverted tokamak. The bench- 
mark comparisons with DEGAS 2 and the ITER model 
calculations reported in Section 10 support these 
contentions. 

Appendix A 

DISCUSSION OF NEUTRAL PARTICLE 
COMPUTATIONAL METHODS 

There are three general categories of neutral computa- 
tional models, based on: (1) approximation to the integral 
form of the transport equation; (2) approximation to the 
differential form of the transport equation; or (3) simula- 
tion of particle transport by following a large number of 
randomly generated particle histories and statistically 
averaging the results (Monte Carlo). 

The integral transport equation [3] states that, for a 
given source of particles, those particles going in a given 
direction are exponentially attenuated as the integral of 
the inverse mean free path along the direction of flight. 
For a fixed solution is a straightforward matter of 
geometry. However, when one of the processes that 
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attenuates the neutrals results in other neutrals with 
different energy and direction, this process constitutes a 
secondary neutral source which is distributed in space, 
and so on for tertiary, quartiary, etc. neutral sources. 
Charge exchange is one such process for neutrals in the 
outer regions of a plasma. Thus, the solution of the 
integral transport equation must proceed iteratively, with 
an approximate evaluation of the distributed source and 
an exact solution of the particle transport from the 
approximate source constituting the iteration step. 
Because of the coupling among all spatial points that is 
inherent to the integral transport formulation, this itera- 
tive solution can become very computationally intensive 
for any but the simplest situations. In practice (see for 
example, Ref. [9]) the integral transport solution is 
obtained for the attenuation of particles coming from a 
fixed source, such as reflection from the wall, and secon- 
dary distributed sources are neglected. Such a treatment 
is satisfactory when the ionization rate is much greater 
than the charge exchange rate, but is poor when the two 
rates are comparable, which is the case in many parts of 
the outer regions of a plasma. 

Approximations based on the differential formulation 
of the transport equation have been highly developed for 
neutron transport in connection with nuclear reactor 
calculations, where they proved to be more practically 
useful than approximations based on the integral formula- 
tion, in general. Two general classes of approximation 
were developed, distinguished by the treatment of the 
angular dependence. In the spherical harmonics, or P,, 
method (see, for example, Ref. [2]), the angular depen- 
dence of the neutral distribution is expanded in spherical 
harmonics, and moments equations are generated by 
integrating over angle and making use of orthogonality 
relations. In principle, any degree of angular anisotropy 
can be treated by taking enough moments. In practice, 
these methods found their greatest application in one 
dimensional problems where a few Legendre polynomials 
sufficed to represent the angular distribution. In the 
discrete ordinates, or S,,, method (see, for example, 
Ref. [IO]), the transport equation is only solved at a few 
angular directions (ordinates), with the integrals over 
angle that enter these equations being approximated by a 
quadrature involving values at these ordinates and a 
quadrature weight, the choice of which is quite important. 
When the angular distribution can be represented by a 
linearly anisotropic spherical harmonics approximation or 
by a two-ordinate discrete ordinates approximation, the 
lowest order approximation that results is diffusion theory 
(see, for example, Ref. [ l l]) .  These approximations to 
the differential transport equation also must be solved 
iteratively but, because the coupling among spatial points 

is nearest-neighbour , the iterative procedure is more trac- 
table than for the integral formulation. The diffusion 
approximation is widely used in neutron transport for 
1-D, 2-D and 3-D calculations in which the linear 
anisotropy assumption is valid, and higher order discrete 
ordinates approximations are the method commonly 
employed in 1-D and 2-D problems when higher order 
anisotropy in the angular distribution must be included. 

Discrete ordinates codes that had been developed for 
neutron transport were applied to calculate neutral trans. 
port in the edge of simple plasma models represented by 
slab or cylindrical geometry several years ago (see, for 
example Refs [12-14]), but this method does not seem to 
have been applied recently or extended to the more 
complex geometry of the outer regions of a diverted 
tokamak plasma. The diffusion approximation has been 
applied to plasma outer region calculations recently (see, 
for example, Ref. [15]), but the diffusion theory assump- 
tion of linear anisotropy in the angular distribution would 
seem to be invalid in many cases of interest (e.g. the 
reflection of ions from a wall as neutrals, the interface 
between a divertor channel in which there is ionization 
and charge exchange and a plenum region in which there 
is free streaming). We are not aware of an application of 
P, or double P, methods. Double PI methods, in which 
the angular distribution is assumed isotropic within each 
of two hemispheres, would seem to offer significant 
advances in accuracy over diffusion theory in 1-D situa- 
tions. Because of the inherent 2-D geometry and angular 
anisotropy, the discrete ordinates methods would seem to 
be the best suited of the approximations based on the 
differential transport formulation for application to 
neutral transport in the plasma outer regions. 

Monte Carlo calculations simulate the fates of many 
randomly generated particles to obtain an averaged solu- 
tion for the transport of a population of neutral particles. 
This methodology (see, for example, Ref. [16]) is highly 
developed, and, because of previous emphasis upon 
applications to complex geometries, has good capability 
to represent the geometrical complexity of the plasma and 
divertor chambers. Monte Carlo has been extensively 
applied to the computation of neutral particle transport in 
the outer regions of diverted tokamaks (see, for example, 
Refs [5, 171). Extreme high accuracy can be obtained 
with Monte Carlo, provided that the basic reaction rate 
parameters are well known and that a sufficient number 
of histories are simulated for the statistical uncertainty in 
the averaged solution to be acceptably small. This latter 
condition can lead to particularly demanding computa- 
tional requirements when the Monte Carlo solution is part 
of a neutral-charged particle iterative solution procedure, 
since convergence of the outer neutral-charged particle 
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iteration can be destroyed by statistical fluctuations in the 
Monte Carlo solutions on successive iterates. Monte 
Carlo will probably remain as the ultimate method for 
neutral particle transport in diverted tokamak plasmas in 
cases where high accuracy in a complex geometry is 
required and computational time is a secondary 
consideration. However, for routine calculations, the dis- 
crete ordinates method and the method presented in this 
paper would seem to have certain computational 
advantages. 

Appendix B 

TRANSMISSION PROBABILITIES FOR 
STRAIGHTLINE GEOMETRIES 

For a region bounded by straight line segments, two 
situations can be distinguished: (1) transmission between 
adjacent, intersecting sides; and (2) transmission between 
non-adjacent, non-intersecting sides. The transmission 
probabilities are calculated under the assumption that the 
incident flux is isotropic over the incident hemisphere and 
uniform over the incident surface. 

l-Li + 
FIG. I O .  Adjacent side. 

B.l.  Adjacent, intersecting sides 
with included angle Oij (Fig. 10) 

The local transmission probability for a point (ti) on 
side i to s ide j ,  as defined by Eq. (15), is given by 

where 

(33) 

and 

(34) 

where (ti) is the distance along side i measured from the 
intersection. 

/ 
/ 
/ 

/y i 
/ 

-Lj - 
FIG. 11. Non-adjacent sides 

B.2. Non-adjacent, non-intersecting sides (Fig. 11) 

The local transmission probability, given by Eq. (15), 
from a point ( t i )  on side i to side j is given by 

where 

(36) 
ti sin aj + I,(cos aj - sin czj cot e i )  

(I, + 4, sin aj)' 
X 

and 

and 4; is measured along side j from left to right. 

given by 
The total transmission probability of Eq. (16) is 

T - j  = lL' dtiti-j([i)lLi (38) 
0 

for both cases. 
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Appendix C 

TRANSMISSION PROBABILITIES 
FOR ANNULAR SEGMENTS 

The geometry of an annular segment can be 
characterized by the angle (A@ subtended by the segment 
and by the inner (Rin) and outer (Rout) radii of the 
segment. The calculation of transmission probabilities 
must take into account the facts that some points on each 
surface cannot be 'seen' by a straight line of sight from 
some points 011 another surface and that there is trans- 
mission from an inwardly concave outer surface to itself. 
The transmission probabilities are calculated under the 
assumptions that the angular distribution of the incident 
flux is isotropic over the inward hemisphere and that the 
spatial distribution of the incident flux is uniform over 
the surface. Figure 12 illustrates the annular segment 
geometry. - R."+- 

4 

where 

and 

e;i,(e) = max 0 ,  8 - 2cos-' I 
The local transmission probability from a point 

(Rout, 8) on the outer surface 1 to the radial surface 4 is 
given by 

where 

The local transmission probability to the other radial 
surface 2 is obtained from Eqs (41) and (42) by replacing 
8 - A8 - 8 a n d 4  - 2. 

The local transmission probability from a point 
(Rout,@ on the outer surface 1 to the inner surface 3 is 
given by 

(43) 
where 

(44) 

2 

FIG. 12. Annular segment geometry. 

C.l .  Transmission from an outer, 
concave-inward surface (i.e. side 1) 

The local self-transmission probability, defined by 
Eq. (12), for a point (Rout,@ on the outer surface 1 to 
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and 

t92a,3,,(t9) = min Ae, 8 + cos-' I where 

The total transmission probabilities, given by Eq. (16), 
for transmission from the outer surface to surface j are 
evaluated from 

(47) 

The total transmission probability for transmission from 
the inner surface 3 to surface j is given by 

C.2. Transmission from an inner, 
convex-inward surface (i.e. side 3) 

(54) The local transmission probability from a point (R,,, 19) 
on the inner surface 3 to the radial surface 4 is given by 

C.3. Transmission from 8 radial surface (e.g. side 2) 

The local transmission probability for a point 
(Rout - 2, AO) on the radial surface 2 to the inner sur- 
face 3 is given by 

where 

where 
It can be seen that if 

then t3-,(e) = 0. 
The local transmission probability from a point on the 

inner surface to the other radial surface 2 is given by 
Eqs (48) and (49) with the replacements 0 - A0 - 6 and 
4 - 2. 

The local transmission probability from a point (Rin, e) 
on the inner surface 3 to the outer surface 1 is given by 

and 

ddZ3 Rinsin2(A0 - e) 

(57) 

The local transmission probability for a point 
(Rout - t2, A6) on the radial surface 2 to the outer sur- 
face 1 is given by 

where 

1 cot(l0 - e ' ( )  - -- 
sin(l0 - 8'1) No,,  

(51) 

and where 
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The various total transmission coefficients are given by 

d52 t z - J ( 5 2 )  (68) 

921(52,8) = cot-' (-- Rout - " - cot(A8 - 8) 
Routsin(A0 - 8) 

(60) 
and 

Rin 0, A8 - cos-' ___- 
Rou, - 5 2  ACKNOWLEDGEMENTS 

- cos-I- 
%Ut Rin 1 

COt(A8 - 8) Rout - 5 2  d8 ' 
(Rout sin (A8 - 8) 

(62) 

The local transmission probability from a point 
(Rout - E2, A8) on the radial surface 2 to the opposite 
radial surface 4 is given by 

where 

Rout - 5 2  

(R,,, - t4)* sin ~i x -- 

[Y(t2) = min (Rout - 

where 

The authors would like to thank C.F.F. Karney for 
his help in setting up the benchmark problem with 
DEGAS 2 and for useful discussions. The help of 
R. Rubilar in the preparation of the input for the 
GT-NEUT code is also appreciated. 

REFERENCES 

TENDLER, M., HEIFETZ, D. ,  Fusion Techno]. 11 (1987) 
289. 
GELBARD, E.M., "Spherical harmonics methods: P, and 
double-P,~ approximations", Computing Methods in Reactor 
Physics (GREENSPAN, H., KELBER, C.N., OKRENT, D. ,  
Eds), Gordon and Breach, New York (1968) 271-364. 
CASE, K.M., et al., Introduction to the Theory of Neutron 
Diffusion, Vol. 1 ,  Report, Los Alamos Scientific Lab., CA 
(1953), 
MEGHREBLIAN, R.V., HOLMES, D.K., Reactor Analysis, 
McGraw-Hill, New York (1960) 193-195. 
HEIFETZ, U,, et al . ,  J. Comput. Phys. 46 (1982) 309. 
KARNEY, C.F.F., STQTLER, D.P., Bull. Am. Phys. Soc. 38 
(1993) 1919. 
KARNEY, C.F.F., Princeton Plasma Physics Lab., NJ, 
personal communication, 1994. 
VOLD, E.L., et al., Fusion Technol. 22 (1992) 208. 
BRAAMS, B.J., in Controlled Fusion and Plasma Physics 
(Proc. 11th Eur. Conf. Aachen, 1983), Vol. 7D, Part 11, 
European Physical Society, Geneva (1984) 431; ibid., Vol. 9F, 
Part 11, p. 480. 

[lo] CARLSON, B.G.. LATHROP, K.D., Transport Theory: The 
Method of Discrete Ordinates, ibid., pp. 171-270. 

[ I I ]  HASSITT, A. ,  Diffusion Theory in Two and Three Dimen- 
sions, ibid., pp. 91-170. 

[12] GREENSPAN, E. ,  Nucl. Fusion 14 (1974) 771. 
1131 MAKABLE, J.H., OBLOW, E.M.,  Nucl. Sci. Eng. 61 (1976) 

(65) 

(66) 

D 90. 

If 8* = cos-' (RJRout) z A812, then the radial surface 2 
does not 'see' radial surface 4, and the transmission 
probability /2-4 is identically equal to zero. 

The local transmission probability for a point 
(R,,, -- E4, 6 =I 0) QII the radial surface 4 to the opposite 
radial surface 2 is given by Eqs (64)-(68) with the 
replacement A0 - 6 - 8 and the: interchange of the sub- 
scripts 2 and 4 on 4 .  

. .. 

1141 GILLIGAN, J.G., et al., Nucl. Fusion 18 (1978) 63. 
[IS] VBLD, E.L., et al.. J .  Nucl. Mater. 176-177 (1990) 570. 
[16] KALOS: M.H., et al., "Monte Carlo methods in reactor 

computations", Computing Methods in Reactor Physics 
(GREENSPAN, H., KELBER, C.N. ,  OKRENT, D. ,  Eds), 
Gordon and Breach, New York (1968) 365-443. 

1171 CUPINI, E., et al., NIMBUS-Monte Carlo Simulation of 
Neutral Particle Transport in Fusion Devices, NET Rep. 
EVR Xll-32419, NET Group, IPP, Garching (1984). 

(Manuscript received 28 December 1992 
Final manuscript received 22 April 1994) 

NUCLEAR FUSION. Vol 34. No 10 (1994) 1399 


