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they are swept downward along magnetic field lines to
impinge with sonic speed on “divertor plates.” These
Neutral atom transport in the edge region of fusionions are reflected as neutral atoms or reemitted as neutral
plasmas is characterized by extreme geometrical commolecules, which dissociate immediately to form neutral
plexity, mean-free-paths that vary from millimetres toatoms. Most of these neutral atoms interact with the rel-
metres over short distances, and many orders of magnatively high-density plasma just in front of the divertor
tude variation in atom density. We have proposed anglates as they diffuse upstream against the sonic plasma
are developing an interface current integral transportstream flowing to the plate®.g., in regions 43, 42, 40,
method as a more practical alternative to the Monte Carlo38, etc). However, some of the neutral atoms escape the
method, which is currently used for such calculationsdense plasma stream into the very low plasma density
This particular formulation of interface current method- regions(e.g., 41, 39, 44, 45, ef¢c.where they travel rel-
ology is described, the accuracy of the several approxiatively unimpeded to the other plasma stream flowing to
mations that are made in implementing the methodologthe other divertor plate, to the wall, or to the central core
are evaluated by comparison with Monte Carlo, and corplasma regioriindicated by the large unnumbered cen-
rection factors and extensions of the methodology, whictral region in Fig. }.
improve accuracy, are presented. The results are formu-  The interactions of the neutral atoms with the plasma
lated so as to be generally applicable to any neutralare quite important just in front of the divertor plate,
particle transport application. where the neutral atom density may be quite la0@#°
to 10°?m~3), and also in the edge of the confined central
plasma region near the midplane, where the neutral atom
density may be attenuated four to five orders of magni-
tude. The neutral atom density is also of some interest at
the top of the plasma chamber, where the attenuation
may be ten orders of magnitude or so, relative to the
neutral atom density in the recycling region in front of
The neutral atom transport problem in the edge rethe divertor plate.

gion of a fusion plasma is characterized by geometri- As a further complication, the neutral atom trans-
cally complex regions varying in mean-free-pafimp’s)  port problem in the edge of a fusion plasma is nonlinear
from millimetres to metres and by the importance ofbecause of the importance of neutral-neuttaiom-
having accurate results over many orders of magnitudatom) scattering and because the “background” plasma
attenuation in neutral atom density. A two-dimensionaimedium in which the neutral transport is taking place
model of a representative experimental configuration islepends on the neutral solution through atom-ion and
shown in Fig. 1. Plasma ions escape the central plasn&om-electron collisions. This nonlinearity is usually
confinement region into a thin “scrape-off layer,” wheretreated iteratively, which means that the neutral trans-
port calculation must be made many times in converging
*E-mail: weston.stacey@me.gatech.edu the combined neutral-plasma solution.

I. INTRODUCTION
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Fig. 1. Neutral atom transport model for the DIII-D plasma.

Neutral atom transport calculations in the edge of We have now undertaken to isolate and check the
fusion plasmas are conventionally performed with Monteaccuracy of the various assumptions of our transport meth-
Carlo codes, in order to represent the geometrical conedology by comparison with Monte Carlo and to con-
plexity. However, when it is necessary to treat a largestruct correction factors or extend the methodology to
fraction of the edge plasma and to obtain accurate solumprove the accuracy of the calculation when needed.
tions throughout, Monte Carlo calculations can be quitéThe purpose of this paper is to report this work. Our
time consuminge.g.,~1 h to calculate the problem of basic interface current transport methodology is summa-
Fig. 1). Moreover, because of its statistical nature, theized in Secs. Il and Ill. Then, the evaluation of the ac-
Monte Carlo code is not well suited for an iterative curacy of various assumptions by comparison with Monte
plasma-neutrals solution. Carlo is discussed in Secs. 1V through VIII.

In an effort to provide a practical neutral transport
calculation that will enable the routine analysis of plasma-
atomic reactions in the edge of fusion plasmas, we hav
proposed? what is essentially an interface current in—ﬁ' INTERFACE CURRENT METHOD IN SLAB GEOMETRY
tegral transport method. A number of approximations
have been invoked in an effort to achieve computa- Subject to the assumption of angular fluxes at both
tional efficiency: The collided component of the exiting boundaries, which are isotropic over the incident direc-
current is calculated with escape probabilities using dional hemispheréi.e., theDP, approximation, the as-
rational approximation, and the fraction escaping acrossumption of a uniform spatial distribution of scattering
each surface is taken as proportional to the area of thapurces within each mesh interval, and the assumption
surface; the transmission probabilities are calculated witthat neutrals emerge from scattering and charge-exchange
a DP, angular distribution at every interfadee., the events with an isotropic directional distribution, the in-
angular distributions within both the forward and back-terface current balance on a mesh intergalcan be
ward half-spaces are assumed to be isotippie spa- Wwritten*
tially distributed intraregion plasma temperature and
density distribution is replaced by a uniform distribu- IO @ (-T'R) 1
tion with the same average mfp; etc. We have found J RTYH (T-RTIR)||J

that we can obtain acceptable accuracy-d®o of the T

computational time of a Monte Carlo calculation, which 1 Tt
makes the routine calculation of neutral-plasma reac- + -sP N (1)
tions in the edge of fusion plasma experiments feasible. 2 1-RT,
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where the total transmission probabilifycan be written
as the sum of the first-flight transmission probabillty
and the total reflection probabiliti;:

T = Toi + R = 2B3(Ai24) + 56 P (1 - 2E5(Ai 3y))
2

with E3 being the exponential integral function akrd

being the total escape probability, which can be con-

structed from the first-flight escape probabilRy; for an
isotropic collision rate distribution within the slab:

CALCULATION OF NEUTRAL ATOM TRANSPORT

formly and isotropically in regiom escapes from
regioni into regionj after zero or more sub-
sequent collisions

the external source of neutrals introduced into
regioni times the probability that these source
neutrals escape into regign The total escape
probability P; is constructed from the first-flight
escape probability; by making use of Eq(3).

With reference to Fig. 2, the first-flight partial cur-
rent transmission coefficient across regidnom region
1 to region 3 can be calculated for an angular flux dis-
tribution that is isotropic over the incident hemisphere of
directions by considering the following:

1. the solid angle subtended by the exiting surface

P = Py Zo[q(l_ Poi)]" = ﬁ )
The first-flight escape probabilities are
1 1
Poi = A, {5 - E3(Ai2ti):| ) (4) 2.

and the number of secondary neutrals per collision is

(TV)scar T (T V)ex

- (T V)ion T (T V)scar T (T V)ex ’

©)

G

where the subscripisn, scat andcxrefer to ionization,
elastic scattering, and charge exchange, respectively, and
the (ov) are reaction rates averaged over the distribu-
tions of both species. The quantiyrepresents any ex-
ternal source of neutrals.

at a location¢; on the incident surface

the average attenuation in an isotropiwer 6)
distribution of path lengths between the incident
and exit surfaces exp2R(¢)) = exp(—2I1(p)/
cosh), wherew/2 = 0§ = —ar/2 is the angle that
the path length between incident and exiting sur-
faces makes with respect to the horizontal plane
illustrated in Fig. 2

3. the definition of incident and exiting partial cur-

rents as integrals over the nornttd the surfacg
components of théassumei DP, angular flux
distributions.

For boundary intervals adjacent to an isotropic plan€rhe resulting first-flight transmission probability from
source of neutrals, the inward first-flight transmissionsurface 1 to surface 3 is

probability is
Toi = Ex(AiZy) . (6)
Toli3 =
I1l. INTERFACE CURRENT METHOD IN
TWO-DIMENSIONAL GEOMETRY

The interface current model in two dimensions can
be written as follows:

i i i
Jj = DTl dit 2 (1_ ETOW) JiCAj P+ s AP
k k m

(7)

Equation(7) states that the partial current from region
into regionj, J;, is the sum of three contributions:

1. the fractionT,! of the partial currents incident on
regioni from regionk, which are transmitted
across region without collision, summed over
all regionsk that are contiguous to

. the fraction of the incident partial currents that
collided in regioni times the probabilityc; that
the collision resulted in a secondary neutral timesrig. 2.
the probabilityA;; P; that a neutral introduced uni-
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F3 bmax(£1)
Zf _ dflf dop sinou Ki, (1 (h(£1)))
& bmin(§1)

(67— &™)

g™

Nomenclature for calculation of first-flight transmis-

sion probability.
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Fig. 4. Atom-electron ionization rate, ion-electron recombina-
tion rate, and atom-ion charge exchange and elastic-
whereKij; is the Bickley function of orden = 3. Ana- scattering rates.
lytical prescriptions have been develogddr the eval-
uation of this expression for regions of arbitrary shape
bounded by straight-line segments or by arcs of circles. _ _
Similar considerations for the attenuation of neu-the length of the particular flight pathand an “aver-
trals introduced isotropically at a point within region age” mfp for the region(A). SinceA™* =3 = No'(T),
in producing a current of uncollided neutrals into re-using a linear average @N) = 0.5(N; + N,) is exact
gion 3, when averaged over a uniform collision or ex-when the plasma density is linearly varying across a
ternal source distribution in regionlead to an expression region, and it may be expected to be a reasonable ap-
for the first-flight escape probability from regidninto proximation for other density variations. However, the

region 3: variation in the ionization cross-sectian,,(T) does
. not vary linearly with temperature, although this is a
AaPe = EJ dxdy deb sing Kis(21(¢(x, y)) more suitable approximation for the elastic scattering
BT A A 5o out 20 ' and charge-exchange rates, as illustrated in Fig. 4. Nev-

ertheless, we try the simple approximatigny=! =
9 N(o (Ta)v)/vay, With T, = 0.5(T; + T,) and va, =

whereA is the planar cross section of reginrThe limit ~ [2M/Ta,]¥2. Shown in Table | are the first-flight trans-
¢ D S; on the integral overp indicates the range af ~ Mission probabilities for a slab in which the tempera-
subtended by the interface with region 3 at the pointure varied linearly between the values at each boundary.
(X, y) within regioni’ as illustrated in F|g 3. For the smaller Optlcal th|CkneSS, for which69% of

the neutrals were transmitted without collision, the max-

imum error is 1.4%, resulting in an error 6f1% in the

IV. FIRST-FLIGHT TRANSMISSION PROBABILITY calculation. For the larger optical thickness, for which

The calculation of transmission probabilities across
uniform regions of various shapes using E&) have TABLE |
been compared with Monte Carlo calculatiéfisand o o
found to be in essentially exact agreement, confirmingTo = 2Es(1/{A)) for Slab with Linear Temperature Variation
the reduction of the methodology to the computatlonj T, —Tp (eV)
I

algorithms and the coding.

The transmission probability depends on the optic
thickness along the path followed from the entering t
the exiting surfaces. If this optical thickness is calcu{ optical thicknesg  2.130 2.252 2244 2.144
lated for all flight paths, then the first flight transmis- | T, exact 0.0513 0.0441] 0.0446 0.04D2
sion probabilities can be calculated exactly. However|, To = 2E3(1/{A)) 0.0517 0.0429( 0.0410 0.0543
in the interest of computational efficiency, we do not Optical thicknes$ ~ 0.213 0.925 0224 0216
want to calculate optical thickness along flight paths in T, Exact 1 0689 0.676 0.677| 068
nonuniform regions, but we would like to calculate an| 1, = 2e,(1(A)) | 0.690 0673 | 0.669!| 0.694
approximate optical thickneg$/(1)) as the quotient of

100 to 50| 100 to 1&) 100to(1 10 to|l
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only ~4 to 5% of the neutrals are transmitted withoutand volume-to-surface ratios, again by comparison with
collision, the largest error of 10% occurs for the tem-Monte Carlo calculation of the first-flight escape proba-
perature range 10 to 1 eV over which the ionization ratéility for a uniform and isotropic neutral source distribu-
varies dramatically with temperature; a 10% error in aion and uniform temperature and density. As is well
5% quantity is roughly a 0.5% error in the calculation.known, Wigner’'s approximatiotin = 1) underpredicts
This level of accuracy is probably well within the the escape probability for intermediate valuex.obau-
uncertainty in the transmission coefficient associate@r’s theoretically motivated valua = 4.58 was con-
with the estimatedt25% uncertainty in cross-section firmed as the best choice for circl@sfinite cylinders.
data. A 25% error in the cross section produces a 25%he best overall fit for all shapes was obtained with
error in the optical thicknesk,,, which translates into 2.09. A comparison of the rational approximation with
an ~[E5(1.29,p)/E5(lp) — 1] error in transmission co- n=1, 2.09, and 4.58 is shown for a trapezoidal region in
efficient. Forl,, ~ 1, this error is~28%. Furthermore, Fig. 6, the results were similar for other geometries, ex-
it has been fountithat a 25% error in the cross section cept the circlgcylinden, for whichn = 4.58 was supe-
produces order unity uncertainties in the predicted neudior. The fit of Eq.(10) with n = 2.09 is compared with
tral distributions and ionization rate distributions in neu-Monte Carlo results for various geometries in Fig. 7;
tral atom transport calculations in typical edge plasmaxcept for the circle, the maximum error is 5% or less.
models. The fractional error in the total escape probability,
e = AP/P, is less than the fractional error in the first-
flight escape probabilityeg = APy/Py, as can be seen

V. ESCAPE PROBABILITY from using Eq.(3) to obtain

cP,
V.A. Test of Rational Approximation in Uniform Regions €= eoll— 1 OP ] . (12
In the interest of computational efficiency, we use a _ _
rational approximation for the first-flight escape proba-Thus, use of Eq(10) with n=2.09(n = 4.58 for circleg

bility of the form predicts the escape probability to within a few percent,
1 \=n which.is sufficient accuracy given the25% uncer-
P = - (1 _ <1 n _> ) , (10) tainty in the cross-section data.
X n

suggested by Wignér(n = 1) and refined for cylinders V-B. Nonuniform Source Distribution

by Sauef (n = 4.58), where the parameter The escape probability formalism was developed ini-
X = AV/s\ (11) tially from considerations of the escape of neutfalsu-
trons actually from a region over which a source was
is defined in terms of the surface ar8athe volumeV,  uniformly distributed. However, in front of the divertor
and the mfp, instead of the more complex expression dflate, where a strong source of recycling neutrals is rap-
Eqg.(9). We note that Eq(9) provides for the calculation idly attenuated, the first collision source will be strongly
of the particles escaping over each of the several segeaked toward the source of recycling neutrals—the di-
ments of the surface bounding a region, whereas the raertor plate. The first-flight and multiple-collision es-
tional approximation of Eq(10) only provides for the cape probabilities were calculated by Monte Cé&Pfor
calculation of the escape over the total bounding surthe source distribution shown in Fig. 8 by setting the
face. In using this rational approximation, we must fur-number of secondary neutrals per collisiorcte 0 and
ther define the probability\;; that a neutral escaping ¢ = 0.8, respectively. The calculation was repeated for
from region 1" will escape over that segment of the different values of the plasma density to obtain different
surface taking it into contiguous regiop™We estimate values for the mfp. The results shown in Table Il clearly
the Aj; as the fraction of the bounding arégircumfer-  demonstrate that the rational approximation yields quite
ence of region ‘i” that interfaces with region;j.” accurate values for the escape probabilégyror <2%)

Our first test of the rational approximation was aexcept for the total escape probability in the situation
series of Monte Carlo calculatiofs of the first-flight ~ when the dimension of the region is large compared to
escape probability for a uniform distribution of neutralsthe mfp, for which the error i5~5%.
in several uniform medium two-dimensional geometries
with varying volume-to-surface ratios to determin@gf
can be well characterized by the single paramatef
Eqg.(11). As shown in Fig. 5, the first-flight escape prob- Next, we consider the situation in which the source
ability is indeed well characterized by the parameter is uniform over the region, but the plasma density or

We next investigated the accuracy of E§0) as a temperature varies across the region. We consider very
function of the parametanr, for a variety of geometries large variations in order to place an upper bound on the

V.C. Nonuniform Medium
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4 TABLE I
Escape Probabilities for a Uniforf.5- < 0.5-m)
1 Square Medium with a Nonuniform Source Distribution
mfp (m
0.8 p(m)
0.5m 0.11 0.53 5.3
0.5
Py (c = 0.0) 1st flight
Monte Carlo 0.194 0.587 0.938
0.3 Equation(10) 0.203 0.573 0.934
P (c = 0.98) total
0.1 Monte Carlo 0.512 0.869 0.987
v Equationg10) and(3) 0.548 0.865 0.985
0.5m

Fig. 8. Nonuniform source distribution for escape probability
calculation. ] ) ]
the temperature was uniform, but the density varied

across the region from» 10° m~2 on the left boundary

to 5 108 and 5x 10" m~3 on the right boundary.
effect. The effect of nonuniform density and temperature  The escape probabilities were calculated exactly by
distributions within a region was investigated for a squarélonte Carlo?® taking into account the variation in den-
region 0.5 m on a side. In the first set of calculationssity or temperature. The escape probabilities were also
(shown in the first two columns of Table }lithe density evaluated using Eq$10) and(3) and linear averages of
was uniform, but the temperature varied across théhe density and temperature within the region to evaluate
region from 100 eV on the left boundary to 10 or 1 eV(A). The calculations were made with the elastic scatter-
on the right boundary. In the second set of calculaing and charge-exchange cross sections set to zero to
tions (shown in the last two columns of Table )JJI evaluate first-flight escape probabilities and again with
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TABLE 11l

Escape Probabilities for Nonuniform Media
T (eV) 100 to 10 10to 1 10 10
n(m=3) 5x 108 5x 108 1X10%to 5% 108 1X10*to 5x 10%
Optical thickness 0.903 0.174 0.706 0.494
Po (0cx = 0e1 = 0)
Monte Carlo 0.596 0.894 0.659 0.743
Eq. (10 0.567 0.904 0.645 0.725
Optical thickness 2.25 2.16 3.35 2.35
P
Monte Carlo 0.567 0.875 0.602 0.712
Eqgs.(10) and(3) 0.553 0.895 0.623 0.708

the scattering and charge exchange cross sections non-
zero to evaluate total escape probabilities. The results
are shown in Table Ill. Using average values of plasma
density and temperature to evaludte for use in the

TABLE IV
Directional Escape Fractions with Nonuniform Source

rational approximation of Eq10) provides estimates of mfp (m)
P and P, that are accurate to within5% even when 011 053 53
rather substantial plasma density and temperature varig=
tions occur over the region. This accuracy is adequate, First flight (c = 0.0)
given the uncertainty in the cross-section data. Aright 0.073 0.154 0.195
Alett 0.431 0.348 0.307
. . . . . Aup 0.247 0.250 0.249
V.D. Directional Escape Fractions with Nonuniform Adown 0.250 0.249 0.250
Source or Nonuniform Medium
Total (c = 0.8
We have established that Eq40) and (3) provide Avight 0.109 0.168 0.196
an adequate prediction of the total escape probability ﬁleft 8'222 8'3% 8'223
across all surfaces from a region with a nonuniform sourcg ,'U? ' ' '
. . L Adown 0.250 0.250 0.250
or nonuniform plasma temperature or density distribu

tion. Now, we consider the effect of a nonuniform source
or nonuniform plasma density or temperature on the frac-
tion of escaping neutrals that escape across each surface;

i:e., on theA!j guantities. For a qniform source distribu- ymns of Table V), the temperature was uniform, but the
tion and uniform plasma density and temperature, th@ensity varied across the region fromx110'® m—3 on

fraction escaping across each surface is 0.25 for a squagtge left boundary to to &% 108 and 5x 107 m~3 on the
region. The results of the Monte Carlo calculatirof right boundary.

the directional escape fractions for the nonuniform source  The directional escape effect of a nonuniform tem-

distribution illustrated in Fig. 8 are shown in Table IV. perature distribution is rather small. The directional es-
The nonuniform source causes a significant preferentialape effect of a factor of 20 density variation is significant,

escape across the surface nearest the peak in the souggfi we might be guided by the foregoing results to avoid
(the left surface in this cageThe magnitude of this di- creating calculational regions across which the plasma
rectional escape effect is inversely proportional to thejensity would be expected to vary by more than about a

mfp. . _ factor of 5 to 10.
The effect of nonuniform density and temperature

d'sm_bu“on_s within a region on the escape pl’Ob"’?b'l'tyV.E. First-Flight Source Distribution Correction

was investigated for a square region 0.5 m on a side. In

the first set of calculationsshown in the first two col- A series of Monte Carlo calculatioh8 were run for
umns of Table V, the density was uniform, but the tem- isotropic and cosine distributed sources incident on the
perature varied across the region from 100 eV on the lefeft surface of a square region of dimensiarn, for a
boundary to 10 or 1 eV on the right boundary. In therange of values of bothx and mfpA. The ratio of the
second set of calculationshown in the last two col- number of neutrals escaping across the oppdsigt)
FUSION SCIENCE AND TECHNOLOGY
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TABLE V

Directional Escape Fractions with Nonuniform Medium
T (eV) 100 to 10 10to 1 10 10
n(m=3) 5x 108 5x 108 1X10*to 5x 108 1X10*to 5x 10%
Optical thickness 0.903 0.174 0.706 0.494
(0ex =061 = 0)
Avight 0.254 0.266 0.266 0.280
Aeft 0.252 0.231 0.235 0.221
Aup 0.249 0.251 0.248 0.248
Adown 0.245 0.252 0.251 0.251
Optical thickness 2.25 2.16 3.35 2.35
(oex # 0, 061 #0)
Avight 0.247 0.263 0.280 0.313
Aett 0.256 0.234 0.223 0.195
Ayp 0.248 0.251 0.248 0.244
Adown 0.249 0.252 0.249 0.248

forward (f) surface to the number escaping badk  of ¢;. This ratio may be used to compute directional es-
across the incident left surfack; /Ay, was fitted and is cape probabilities.

plotted as a function ocEAx = Ax/A (the quantityx = We note that the investigations of this and the pre-
4V/AS= Ax/A for a squargin Fig. 9, for several values vious three sections have been based on only a single
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Fig. 9. Directional escape probability factor.
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geometry—the square—and hence the results must @ mfp scale lengitor by applying a correction factor as

considered as indicative, rather than conclusive. discussed in Sec. VII. It is also possible, of course, to
formulate the calculation with a higher ordeP, expan-
sion of the angular flux distribution and calculate di-

V1. ISOTROPIZATION OF THE ANGULAR DISTRIBUTION rectly the increasing anisotropy, but we are interested in
OF THE UNCOLLIDED FLUX AT INTERFACES obtaining a computationally economical model.

As presently formulated, the uncollided and col-
lided neutral currents exiting a region are combined/Il. PENETRATION PROBLEMS
to obtain the neutral current entering the next region.

The same angular flux distributiofsotropic in the in- The foregoing discussion suggests that there might
cident hemisphere-BP,) is assumed at each succes-pe difficulty in calculating penetration problems because
sive interface, for the purpose of calculating first-flight of the isotropization assumption and because of the fail-
transmission probabilities. Since the angular distribuyre to account for the directionality of the escape prob-
tion of those neutrals that penetrate several regions withxbility. The presence of charge exchange and elastic
out collision will become progressively more forward scattering, which combined have a reaction rate typi-
directed, this isotropization approximation should breakally about four times the ionization rate, should substan-
down for problems in which there is a large componentially reduce the error caused by the isotropization

of uncollided neutrals that penetrate several regionsassumption. The error caused by the escape probability
This point is made clear by considering the limiting directionality problem can be fixed by using the direc-

caseocx = ge = 0 (i.e., ¢ = 0) in which neutrals are tional escape probability correction factor from Fig. 9.

only ionized (removed. In this case, the transmitted Defining forwardf and backward reflection coefficients
current at a distancé from a plane with an incident
Gi Poi [1— 2E3(A; 24)]

isotropic angular distribution of neutrals constituting a

/b _ i
currentJy is exactlyJ(L) = Jo2E3z(L/A). If the interval R™ = A 1-¢(1—Py) ' (14
L is subdivided intoN equally spaced subintervals, the ' o
current atL that would be calculated by the interface where
current method is
1
N N/ L Ny=—""—— | Ny=———— (15
J'(L)/o = [T 2Es(L/NA) # 2E3< > <N>/)\> 1+ (A /Ap)it "1+ (Af /Ap)i (13
n=1 n=1
= 2E4(L/A) . (13) incorporates the directionality correctidn;/Ap) plot-

ted in Fig. 9; the transmission and reflection coefficients

To evaluate the magnitude of this effect, we con-n Eq. (1) are replaced bf; - To + R/ andR; — RP.

sider a slab withr., = g = 0 (i.e., ¢ = 0) and optical As a test case, a uniform slab model of thickness
thickness 5 with a plane isotropic source incident on thd 0 mfp was calculated. The Monte Carlo result is shown
left boundary.(Note that with a plane isotropic source, as the solid line in Fig. 11, and the interface current
the exact solution at a distantés J(L) = E,(L/A)J(0),  results without any correction factor are shown as solid
but the same problem persist¥he Monte Carlo calcu- Symbols. Four different interface current calculations were
lation*® and several interface current calculations, eaciinade, breaking the slab into regions of 0.45, 0.98, 2.2,
corresponding to dividing the slab into different compu-and 4.45 mfp thickness. The uncorrected interface cur-
tational subdivisions, are shown in Fig. 1{0The param- rent results have two compensating errors, as discussed
eterx in Figs. 10 and 11 is the linear dimensipiVhen  earlier:

the subdivisions are less than about one-half mfp, the

present calculation procedure of isotropizing the angular L Equa‘lj;‘\orv_va[{d)andhk_)ahckward esfcape %robabltlltles
flux distribution at interfaces, for the purpose of calcu-2r¢ @SSumedis = Ap), Which causes forward penetra-

lating transmission probabilities, introduces a substant©n to be overpredicted.

tial error in the calculation of the penetration of the 2 The anisotropic uncollided component of the cur-

uncollided flux component. rent is isotropized at every region interface, which causes
_Itis possible, in principle, to make a separate calcUsgrward penetration to be underpredicted.
lation of the collided and uncollided components of the

neutral flux in order to avoid this problem. However, it Note that the escape directionality error 1 is dominant
seems that the problem can also be avoided by choosirigr subdivision into regions of thickness greater than
calculational regions that are at least one-half mfp thickl mfp, the isotropization error 2 is dominant for subdivi-
(which could cause a problem if the method was used tsion into regions of thickness1 mfp, and the two errors
calculate detailed neutral distributions on a fraction ofalmost exactly compensate for regions of thickness
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Transmission Probability: T, = 2E;(Zx)
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Fig. 10. Effect of isotropizing uncollided flux at interfaces.
Transmission Probability: Ty = 2E3(Zx)
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Fig. 11. Penetration of an incident curréntosed symbols uncorrected, open symbols corrected

Zx
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TABLE VI
Effective Transmission and Reflection Probabilities*
AX N ~
7 =n Ti Rib
1 lCi Pi 2 1/2 lCi Pi
2 T(1- 2 2
1+ T, 1+ T,
Ti? T?
2 I — WePh|1l+ ———
(1-(GaP)?) Q- (3aP)?)
3 T3 . 1+T2Q - (36P)) + T4
_C. .
11— (3¢ P)?)? — (3¢, P)%T2 o Q- (36 P2~ (3¢ P)?T2

*For regions withA/A =n=...3,3,1,2,3. (T =T(Ax/A=1) = T°(Ax/A =1) + 3¢ P(1-T°),R =P (1—T°) — R, Te =
T~ R, P = P11~ T°Q)).

~1 mfp; this result is approximately independent of thesymbols in Fig. 1}, all underpredicting the corre@lonte

value ofg;. Carlo) penetration because of the secdqimderface iso-
When the directional escape probability factdrg  tropization error.

are used, the first error is corrected, and the four differ-  The fact that the isotropization and escape direction-

ent interface current calculationi8, 5, and 20 regions ality errors almost exactly cancel farx/Ax = 1 allows

yield essentially the same res(hdicated by the empty effective transmission and reflection probabilities to be

Transmission Probability: Ty = 2E3(2x)
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A
*
[ ]
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Fig. 12. Penetration of an incident current with effective transmission and reflection probalditiesd symbols uncorrected,
open symbols with effective probabilities
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constructed for regions withx/A =n= 3, 3, 1,2,3,... 2. directional “first-flight” corrections for escape
by solving probabilities
AX AX n 3. improved transmission and escape probability
K<_ = n) = [K<T = 1)] , definitions.

Having validated the basic transmissjescape prob-
wherex is the matrix on the right side of E¢1). The  ability (TEP) transport methodology and evaluated the
resulting transmission and reflection probabilities areaccuracylimitations imposed by a number of assump-
shown in Table VI for the first few values am “Non-  tions made in its practical implementation, we are now
integral” values ofn or I/n would be treated by inter- undertaking a series of TEMonte Carlo comparison
polation between integral values to obtain effectivecalculations for several realistic experimental models,
transmission and reflection coefficients. including a set of experiments in which the neutral den-

These effective transmission and reflection probasity was measured in the plasma edge. These calcula-
bilities were used to solve the same penetration probions will provide a practical evaluation of the TEP method

lem as discussed earlier for Fig. 10. As can be seefyr realistic models and will be published in future papers.
from Fig. 12, use of the effective probabilities of Table VI
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