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1 Introduction

There have been efforts to describe the magnetized plasmas in tokamaks for
almost 50 years. In doing so, two mainly different formulisms to describe vis-
cosities in the two-fluid equations of magnetized plasmas appeared. The short
mean free path(i.e., collisional or Pfisch-Schluter) description of magnetized
plasma as originally formulated by Braginskii1, and Robinson and Bernstein
assumes an ordering in which the ion mean flow is on the order of the ion ther-
mal speed, |V⊥| << |V‖| ∼ Vthi

. By short-mean free path, we’re considering
the collisional effects in tokamak plasmas. Mikhailovskii and Tsypin realized
that this ordering is not the one of most interest in many practical situations in
which the flow is weaker and on the order of the ion diamagnetic heat flux di-
vided by the pressure. In their drift ordering the ion flow velocity is assumed
to be on the order of the diamagnetic drift velocity, |V⊥| ∼ |V‖| ∼ Vthi

, the
case of interest for most magnetic confinement and fusion devices in general,
and the edge of many tokamaks in particular.[1] As a consequence, the basic
difference in two different approaches appears in whether or not retaining the
heat transfer terms in the viscosity formulism.

Independent from the viscosity formulism, another important aspect in de-
scribing the tokamak plasma is in the application of flux surface geometry
models. For the earlier works, the difficulty in representing the complex shape
of flux surfaces was greatly simplified with the elliptical model to decrease the
amount of analytical and computational efforts. The actual flux surface shape,
however, is far different from the simple elliptical model. Therefore it is also
of great interest to solve the two-fluid equations with more realistic flux sur-
face model. A decade ago, Miller et al. developed a flux surface model with
more detailed desciption of the actual D-shaped tokamak plasmas, which we
call ”The Miller Equilibrium Model(or Miller Model)” in this paper.
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This paper discusses the two different approaches in deriving the viscosity
formulism and presents the final forms of each viscosity formulism and their
relations to each other. Also presented are two flux surface models, the Ellipti-
cal Model and the Miller Model.

2 Two-fluid Plasma Equations

[6][4]

Before we begin, it is helpful to revisit the two-fluid equations that are used
in describing magnetized plasmas, shown below.

Continuity Equation:

∂nj
∂t

+
−→
∇ · (nj

−→
V j) = S0

j (1)

Momentum Balance Equation:

mj
∂

∂t
(nj
−→
V j) +

−→
∇ ·
←→
M = njej(

−→
E +

−→
V j ×

−→
B ) +

−→
R 1

j +
−→
S 1

j (2)

and Energy Balance Equation:

∂

∂t

(

1

2
TrMj

)

+∇·
−→
Q j = njej

−→
V j ·
−→
E+R2

j+S
2

j = Wj+
−→
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−→
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j+njej
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where,
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M = njmj

−→
V j
−→
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←→
P j = njmj

−→
V j
−→
V j +

1

3
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∏
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1
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3
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Pj +

1

2
njmj

−→
V 2

j =
3

2
njTj +

1

2
njmj

−→
V 2
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−→
Q j =

(

5

2
njTj +

1

2
njmjV

2

j

)

−→
V j +

←→
∏

j ·
−→
V j +−→q j (7)

R2

j = Wj +
−→
V j ·

−→
R ′
j . (8)

Wj for ions and electrons are given as follows:[4]

Wi =
3meneνe
mi

(Te − Ti) (9)
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We = −Wi −
−→
R e · (

−→
V e −

−→
V i). (10)

The two-fluid equations above are most commonly presented form in lit-
eratures due to their simplist expressions for each terms. The viscosity terms
appear in the momentum balance equation, Eq. (2), and the energy balance
equation, Eq. (3). To show the viscosity terms in the two-fluid equations, we
can use equations (4) and (7) to rewrite the two-fluid equations as follows:

Momentum Balance Equation:

mj
∂

∂t
(nj
−→
V j)+njmj(

−→
V j ·∇)

−→
V j+

−→
∇Pj+

−→
∇·
←→
∏
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−→
E+
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−→
B )−

−→
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(11)

and Energy Balance Equation:

∂

∂t

(

3

2
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1

2
njmj

−→
V 2

j

)

+∇·

[(

5

2
njTj +

1

2
njmjV

2

j

)

−→
V j +

←→
∏

j ·
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V j +−→q j

]

= ne
−→
V j ·
−→
E+R2

j+S
2

j

(12)

The momentum balance equation above can be rewritten for each components
of the typical plasma coordinates as follows:

mj
∂

∂t
(njVr)+njmj [(

−→
V j ·∇)

−→
V j ]r+

1

hr

∂Pj
∂r

+[∇·
←→
∏

]r = njej(Er+VθBφ−VφBθ)−Rr+S
1

r

(13)

mj
∂

∂t
(njVθ)+njmj [(

−→
V j ·∇)

−→
V j ]θ+

1

hθ

∂Pj
∂θ

+[∇·
←→
∏

]θ = njej(Eθ+VrBφ)−Rθ+S
1

θ

(14)

mj
∂

∂t
(njVφ)+njmj [(

−→
V j ·∇)

−→
V j ]φ+[∇·

←→
∏

]φ = njej(Eφ+VrBθ)−Rφ+S1

φ (15)

The momentum exchange between electron and ion fluids which connects the

equations of two species is represented by either
−→
F or

−→
R . Note that

−→
F and

−→
R

are related by
−→
F = −

−→
R , if

−→
F is to be used in the two-fluid equations.

There are two different approaches in presenting the viscosities in the euqa-
tions above, one by Braginskii and another by Mikhilovskii. As a consequence
of different ordering approaches by Braginskii and Mikhailovskii, only these
viscosity terms have different forms in solving the two-fluid equations. We
will now discuss the differences in these two different viscosity formulisms
and presents the results in the following section.
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3 Two Approaches to Viscosity Formulism

3.1 Braginskii vs. Mikhilovskii Formulism: History of Order-
ing Viewpoints

The differences in viscosity formulism can be best understood from the or-
dering point of view. The earliest work by Braginskii adopted an ordering in
which the flow velocity is assumed to be comparable to the ion thermal speed,
|V⊥| << |V‖| ∼ Vthi

.[1] As a consequence, the high flow ordering of Bragin-
skii ignores heat flow corrections to the pressure anisotropy, the gyroviscosity,
and the collisional perpendicular viscosity.[2] Later, Mikhailovskii and Tsypin
have developed their formulism for the case of non-negligible poloidal veloc-
ity, i.e., thermal velocity on the same order as of rotational and poloidal ve-
locity, |V‖| ∼ |V⊥| ∼ Vthi

. They realized the shortcomings of the Braginskii’s
treatment and employed a more appropriate drift ordering in an attempt to
retain the important heat flow modifications to the pressure tensor. [2]

Therefore, the short mean-free path two-fluid equations of Braginskii do
not retain heat flux terms in the viscosity. This is a consequence of his ordering
the plasma flow velocity comparable to the sound speed and considering only
the lowest order correction (in the small gyroradius, δ = ρ/L⊥, and mean-
free path, △ = λ/L‖, expansion parameters) to the leading order Maxwellian
distribution function. Here, ρ = vthi

/Ω is the ion gyroradius, λ = vthi
/ν is the

Coulomb mean-free path, and L⊥ and L‖ are characteristic perpendicular and
parallel length scales, respectively.[4] Also for this reason, most short mean free
path treatments of turbulence in magnetized plasmas must use some version of
the Mikhailovskii and Tsypin results to properly treat the temperature gradient
terms in the viscous stress tensor. [1]

Earlier attempts of Mikhailovskii and Tsypin to retain heat flux terms in
viscosity did not resolve the problem entirely since their Sonine polynomial
expansion of the correction to the Maxwellian was truncated too soon, the
non-linear contributions from the ion-ion collision operator were neglected,
and electrons were not considered.[4] Attempts to upgrade Mikhailovskii’s for-
mulism was first made by Hazeltine but his work was also imcomplete due to
improper truncation of the polynomials. Catto and Simakov recently revis-
ited the problem, addressed these shortcomings in poynomial truncation, and
derived complete drift-ordered short mean-free path equations for ions and
electrons.[4]

Catto and Simakov showed that the truncated polynomial technique Mikhailovskii
and Tsypin used together with their neglect of modifications to the pressure
anisotropy due to the nonlinear nature of the ion-ion collision operator re-
sulted in an erroneous expression for the collisional perpendicular viscosity
because the ion distribution function was not retained to second order in the
ion gyroradius and mean-free path expansions. Therefore, we cas assume that
Catto and Simakov’s recent results include the most accurate orderings to ren-
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der viscosity formulism that can be generally applied to magnetized plasmas.
The more general ordering may also be required to more fully treat neoclas-
sical effects at the edge of a tokamak when the radial scale lengths are small
enough that δ ∼ △, as first noted by Rogister. Catto and Simakov’s ordering,
however, allows turbulent fluctuations to be as large as the unperturbed back-
ground plasma quantities. For the background variations, their ordering is
consistent with, but more general than, the usual Pfirsch-Schluter ordering.[1]
We, therefore, treat Catto and Simakov’s orderings and their findings as the
most generally developed formulism based on Mikhailovskii and Tsypin’s ap-
proaches in this paper.

3.2 Evolution of Mikahilovskii’s approach: Catto and Simakov’s
orderings

When Catto and Simakov failed to recover improved equations from the
widely-used drift kinetic equation of Hazeltine, they realized that his kinetic
equation is only exact through first order in δ. They noticed that, in addition to
Hazeltine’s ordering accuracy to δ, second order accuracy in δ2 is also required
to account for the effects of the Reynolds and gyroviscous stress tensors.[4]
So they performed a systematic expansion of the ion kinetic equation in the
small parameters δ and △ to determine the ion distribution function to order
δ2 ∼ δ△ ∼ △2 in terms of the ion flow velocity and the parallel and diamag-
netic heat fluxes(q‖ and −→q ⊥).[1] With more accurate ion distribution function,
they have corrected the drift kinetic equation to account for δ2 effects and used
the improved formalism to derive expressions for gyroviscosity and (ion) per-
pendicular viscosity for plasmas of arbitrary collisionality in terms of a few
velocity integrals of the δ correction to the leading order distribution function,
which is assumed isotropic in the velocity space. [4]

Catto and Simakov assumed that the collision frequency is small compared
to the cyclotron frequency as in all drift orderings. Additionally, they allowed
the perpendicular scale lengths(L⊥) to be much less than (as well as compa-
rable to) the parallel ones(L‖) so that ρ/L⊥ can be comparable to λ/L‖, as is
the case in many magnetic confinement applications. Their drift ordering also
assumes the mean ion flow velocity V to be on the order of the diamagnetic
drift velocity, which is on the order of the ion diamagnetic and collisional par-
allel heat fluxes q divided by the ion pressure pi = nTi, with n the ion density.
In short, Catto and Simakov’s orderings can be summarized in the following
form:

|V |

vthi

∼
|q|

pivthi

∼ δ ∼ △,

with |V | ∼ V‖ ∼ |V⊥|.

By allowing for this possibility Catto and Simakov obtained a formulation
that can safely be used to study turbulent transport in collisional plasmas, and

5



permits stronger poloidal density, temperature, and electrostatic potential vari-
ation in tokamaks than the normal Pfirsch-Schluter ordering. [1] [2]

3.3 Braginskii’s Viscosity Formulism

To be consistent with the history of the viscosity formulism development,
presented here is the summary of Braginskii’s formulism, which is well sum-
marized in Stacey’s book.[6]

The viscous stress tensor is in the form:

←→
∏

=





∏

rr

∏

rθ

∏

rφ
∏

θr

∏

θθ

∏

θφ
∏

φr

∏

φθ

∏

φφ





.

Each elements of viscous stress tensor for a magnetized plasma can be de-
composed into the corresponding rate-of-stress tensor elements in each coor-
dinates(parallel, perpendicular, and gyroviscous terms) as follows:

∏

αβ
=

∏0

αβ
+

∏12

αβ
+

∏34

αβ
. (17)

Each of the rate-of-stress tensor elements are again related to the elements of
the traceless rate-of-strain tensor in the flux surface coordinates as follows:

∏

0

αβ = −η0W
0

αβ
∏

12

αβ = −(η1W
1

αβ + η2W
2

αβ)
∏

34

αβ = η3W
3

αβ + η4W
4

αβ

where the elements of the traceless rate-of-strain tensor are given as follows:

W0

αβ ≡
3

2

(

fαfβ −
1

3
δαβ

)(

fµfν −
1

3
δµν

)

Wµν

W 1

αβ ≡

(

δ⊥αµδ
⊥
βν +

1

2
δ⊥αβfµfν

)

Wµν

W 2

αβ ≡ (δ⊥αµfβfν + δ⊥βνfαfµ)Wµν

W 3

αβ ≡
1

2
(δ⊥αµǫβγν + δ⊥βνǫαγµ)fγWµν

W 4

αβ ≡ (fαfµǫβγν + fβfνǫαγµ)fγWµν .
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δ⊥αβ is defined as δ⊥αβ ≡ δαβ − fαfβ . The Einstein summation convention is
employed in the above formulae. The Kronecker delta function (δαβ) and the
antisymmetric unit tensor (ǫαβγ) are defined as follows:

δαβ =

{

1 if α = β
0 if α 6= β

ǫαβγ =

{

1 if in right permutation
0 if in negative permutation or if α = β, β = γ, α = γ

Stacey worked out the derivation of all these elements with assumptions
that reflects the physics in tokamak plasmas and presents the results in Chap-
ter 10 of his book.[6] He assumes the followings.

fψ = |Bψ|/|B| ≈ 0
fp = |Bp|/|B| ≪ 1
fφ = |Bφ|/|B| ≈ 1

He also neglects vr since vr ≪ vθ < vφ and axisymmetry (i.e., ∂/∂lφ = 0). With
the definition of A0 as follows:

A0 ≡ −
1

3
(Wψψ +Wpp) +

2

3
Wφφ + 2fpWpφ,

all the elements of the viscous stress tensors are as presented below. Please
note that these results are the updated version of Table 10.1 in Stacey’s book
since a few minor errors are corrected and agreed with Stacey.

∏

0

ψψ =
1

2
η0A0

∏

12

ψψ = η1

[

(RBp)
−1
∂(RBpvp)

∂lp
− fpR

∂(vφR
−1)

∂lp

]

∏

34

ψψ = −η3

[

hp
∂(vph

−1

p )

∂lψ
− fpR

∂(vφR
−1)

∂lψ

]

∏

0

ψp =
∏

0

pψ = 0

∏

12

ψp =
∏

12

pψ = −η1hp
∂(vph

−1

p )

∂lψ
+ (η1 − η2)fpR

∂(vφR
−1)

∂lψ
∏

34

ψp =
∏

34

pψ = −η3(RBp)
−1
∂(RBpvp)

∂lp
− (η4 − η3)fpR

∂(vφR
−1)

∂lp
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∏

0

ψφ =
∏

0

φψ = 0

∏

12

ψφ =
∏

12

φψ = −η2R
∂(vφR

−1)

∂lψ
∏

34

ψφ =
∏

34

φψ = −η4R
∂(vφR

−1)

∂lp

∏

0

pp =
1

2
η0A0

∏

12

pp = −η1(RBp)
−1
∂(RBpvp)

∂lp
+ (η1 − 2η2)fpR

∂(vφR
−1)

∂lp
∏

34

pp = η3hp
∂(vph

−1

p )

∂lψ
+ (2η4 − η3)fpR

∂(vφR
−1)

∂lψ

∏

0

pφ =
∏

0

φp = −
3

2
η0fpA0

∏

12

pφ =
∏

12

ψp = −η2R
∂(vφR

−1)

∂lp
∏

34

pφ =
∏

34

φp = η4R
∂(vφR

−1)

∂lψ

∏

0

φφ = −η0A0

∏

12

φφ = 2η2fpR
∂(vφR

−1)

∂lp
∏

34

φφ = −2η4fpR
∂(vφR

−1)

∂lψ

3.4 Catto’s Viscosity Formulism

Recalling the standard ion expressions for the parallel heat flux (q‖) and
diamagnetic heat flux (−→q ⊥),

q‖ = −(125p/32Mν)n̂ · ∇T and

−→q ⊥ = (5p/2MΩ)n̂×∇T

where ν = 4π1/2ne4lnΛ/3M1/2T 3/2 with lnΛ being the Coulomb logarithm,
Catto and Simakov performed a systematic expansion of the ion kinetic equa-
tion in the small parameters δ and △ to determine the ion distribution func-
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tion to order δ2 ∼ δ△ ∼ △2 in terms of the ion flow velocity and q‖ and −→q ⊥

above.[1] Catto and Simakov have worked out these derivations and presented
here is the formulism by Catto. Simakov’s formulae are essentially the same as
Catto’s except that they are presented in a little different forms. [4]

With a given distribution function for species j, fj , the viscosity tensor can
be found by the following formula:

←→∏
j = mj

∫

d3wj(
−→w j
−→w j −

1

3
w2

j

←→
I )fj .

With Catto and Simakov’s ordering for fj , they worked the derivation for each
coordinates (parallel, perpendicular, and gyroviscous) of the tensor, which are
again decomposed as we did in Braginskii’s formulism:

←→∏
j =
←→∏

‖j +
←→∏

⊥j +
←→∏

gj =
←→∏

‖j +
←→∏

⊥j1 +
←→∏

⊥j2 +
←→∏

gj .

For the expansion of
←→∏

⊥j as in
←→∏

⊥j =
←→∏

⊥j1 +
←→∏

⊥j2 , the subsrcipt ”1”
denotes terms from the linearized collision operator, while the ”2” subscript
denotes the new terms that are quadratic in the heat fluxes−→q and−→q ‖ from the

nonlinear collision operator. Note that
←→∏

⊥j0 = 0.[1]

In his paper, Catto writes fj = f0 +f1 +f +2 · ·· as a sum of a gyroaveraged

f j and gyrophase dependent f̃j pieces by letting fj = f j + f̃j and presents his
formulism for non-zero viscosity components.[1][2]

←→∏
‖j = m3

jw(−→w−→w − 1

3
w2
←→
I )f

=
0.960

ν
(
←→
I −3n̂n̂) :

[(

Pj∇
−→
V +

2

5
∇−→q + 0.246(∇−→q −−→q ∇lnPj +

4

15
∇q‖)

)] (

n̂n̂−
1

3

−→
I

)

+
mj

PjTj

[

0.412q2‖ − 0.064q2
]

(

n̂n̂−
1

3

←→
I

)

=

(

n̂n̂−
1

3

←→
I

)

{
1025

1068ν

(

P∇ ·
−→
V + (2/5)∇ · −→q − 3Pn̂ · ∇

−→
V · n̂− (6/5)n̂ · ∇−→q · n̂

)

+
319417mjq

2

‖

890000TP
−

21

89ν

(−→q · ∇lnP −∇ · −→q + 3n̂ · ∇−→q · n̂− 3−→q ‖ · ∇lnP
)

+
28

445ν

(

∇ · −→q ‖ − 3n̂ · ∇−→q ‖ · n̂
)

−
1137mjq

2

⊥

17800TP
}

←→∏
gj = m3

jwj(
−→w j
−→w j −

1

3
w2

j I)f̃2 = mj

∫

d3wj
−→w j
−→w j f̃2

=
1

4Ω
{n̂×

[

(Pj∇
−→
V + 2

5
∇−→q ) + (Pj∇

−→
V j + 2

5
∇−→q )T

]

· (
←→
I + 3n̂n̂)

− (
←→
I + 3n̂n̂) ·

[

(Pj∇
−→
V j + 2

5
∇−→q ) + (Pj∇

−→
V j + 2

5
∇−→q )T

]

× n̂}
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←→∏
⊥1

= −
3ν

10Ω2
{Pj∇

−→
V j +

2

5
∇−→q +

(

Pj∇
−→
V j +

2

5
∇−→q

)T

−
3

10Pj
[Pj∇

−→q − −→q ∇Pj +

(Pj∇
−→q −−→q ∇Pj)

T ]−
1

100Pj
[3Pj∇

−→q ‖+5−→q ‖+(3P∇−→q ‖+5−→q ‖∇P )T ]−
1

400T
[(90−→q −

13−→q ‖)∇T + (∇T )(90−→q − 13−→q ‖)] + 3n̂[n̂ · (P∇
−→
V + 1/10∇−→q − 3/100∇−→q ‖) +

(P∇
−→
V + 1/10∇−→q − 3/100∇−→q ‖) · n̂] + 3[n̂ · (P∇

−→
V + 1/10∇−→q − 3/100∇−→q ‖) +

(P∇
−→
V +1/10∇−→q − 3/100∇−→q ‖) · n̂]n̂+

3q‖

4P
[n̂∇P +(∇P )n̂]+

9

10P
[n̂−→q +−→q n̂−

1

3
q‖n̂n̂]n̂ ·∇P −

231q‖

400T
[n̂∇T +(∇T )n̂]−

27

40T
[n̂∇T +(∇T )n̂]−

27

40T
[n̂−→q +−→q n̂−

13

45
q‖n̂n̂]n̂ · ∇T}

←→∏
⊥2 =

9mjν

200PTΩ
[n̂×−→q (−→q + 31

15

−→q ‖)− (−→q + 31

15

−→q ‖)
−→q × n̂]

To complete the closure of the energy conservation equation along with
←→∏

presented above, Catto presents the following froms for −→q and
−→
F :

−→q = (5P/2MΩ)n̂×∇T − (2Pν/MΩ2)∇⊥T − (125P/32Mν)n̂n̂ · ∇T

−→
F = mnνei[(

−→
V ⊥−

−→
V ⊥e

)+0.51(
−→
V ‖−

−→
V ‖e

)]−(3nei/2Ω)n̂×∇Te−0.71nn̂n̂ ·∇Te.

In Catto’s −→q above, the collisional contribution to the perpendicular ion heat
flux(the first term), which is formally smaller by ν/Ω than the order△ parallel
collisional heat flux and the order δ diamagnetic heat flux, is also added. So
each terms in −→q above are collisional perpendicular, diamagnetic, and parallel

ion heat fluxes, respectively. Catto finds
−→
F above to be the same as in Bragin-

skii’s formulism and states that higher order corrections are not required for
−→
F .

Catto also presents the viscosity formulism for electron species in his paper. [1]

Compared to Mikhailovskii’s formulism, Catto’s paralleland perpendicular
viscosities given above contain additional terms to those originally presented
by Mikhailovskii and Tsypin due to the need to retain the full nonlinear ion-
ion collision operator. As stated earlier, some of these corrections occur be-
cause they used a truncated polynomial approximation rather than the exact
gyrophase dependent portion of the ion distribution function, while the oth-
ers come from the need to retain the nonlinear collision terms they neglected.

The temperature gradient terms(∇T ) in the perpedicular viscosity(
←→∏

⊥1) arise
from the gyrophase dependent and independent portions of the ion distribu-
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tion function. [1]

The truncated Sonine polynomial expansion solution technique of Mikhailovskii
and Tsypin makes two assumptions which Catto and Simakov removed to ob-
tain completely general results. First, Mikhailovskii and Tsypin neglect contri-
butions to the viscosity that arise from the full nonlinear form of the collision
operator. This modification gives rise to heat flux squared terms(q2‖ , q2, q2⊥, n̂×

−→q (−→q + 31

15

−→q ‖), (
−→q + 31

15

−→q ‖)
−→q ×n̂) in the parallel(

←→∏
‖j) and perpendicular(

←→∏
⊥2)

viscosities that are the same size as terms found by Mikhailovskii and Tsypin.
Second, because of their truncation only an approximation to the gyrophase
dependent portion of the ion distribution function is retained. This approxi-
mate form is not accurate enough to completely and properly evaluate some
of the terms in the perpendicular collisional viscosity. Therefore, it is possible
that the modifcations to the parallel and perpendicular viscosities that Catto
and Simakov present here may alter collisional and turbulent transport in some
situations. [1]

3.4.1 From Catto to Braginskii

Because the viscosity formulism by Catto represents the general form, we
should be able to extract Braginskii’s formulim by neglecting all the tempera-
ture gradient terms (including all the heat transfer terms because heat transfer
terms are functions of temperature gradients) in Catt’s formulism. If we do
that, we get the following simplified viscosity formulism from Catto’s formu-
lae.

←→
∏

‖j =
0.960

ν
(
←→
I −3n̂n̂) :

[

(

Pj∇
−→
V

]

(

n̂n̂−
1

3

−→
I

)

=

(

n̂n̂−
1

3

←→
I

)[

1025

1068ν
[P∇ ·

−→
V − 3Pn̂ · ∇

−→
V · n̂]

]

(18)

←→
∏

gj =
1

4Ω
{n̂×

[

Pj∇
−→
V + (Pj∇

−→
V j)

T
]

·(
←→
I +3n̂n̂)−(

←→
I +3n̂n̂)·

[

Pj∇
−→
V j + (Pj∇

−→
V j)

T
]

×n̂}

(19)

←→
∏

⊥1 = −
3ν

10Ω2
{Pj∇

−→
V j+

(

Pj∇
−→
V j

)T

+3n̂
[

n̂ ·
(

P∇
−→
V

)

+
(

P∇
−→
V

)

· n̂
]

+3
[

n̂ ·
(

P∇
−→
V

)

+
(

P∇
−→
V

)

· n̂
]

n̂}

(20)

←→
∏

⊥2 = 0 (21)

If we rewrite these equations above, we should be able to prove that these
are actually the same as the Braginskii viscosities. To do so, we can use the fol-
lowing relations to verify that Braginskii’s results can be obtained from Catto’s
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formulism.

←→∏
‖ =







∏

0

rr

∏

0

rθ

∏

0

rφ
∏

0

θr

∏

0

θθ

∏

0

θφ
∏

0

φr

∏

0

φθ

∏

0

φφ







←→∏
⊥ =







∏

12

rr

∏

12

rθ

∏

12

rφ
∏

12

θr

∏

12

θθ

∏

12

θφ
∏

12

φr

∏

12

φθ

∏

12

φφ







←→∏
g =







∏

34

rr

∏

34

rθ

∏

34

rφ
∏

34

θr

∏

34

θθ

∏

34

θφ
∏

34

φr

∏

34

φθ

∏

34

φφ







Taking
←→∏

‖ for example, the Braginskii’s formulism gives the following par-
allel viscosity, with the superscript denoting Braginskii’s formulism.

←→∏Braginskii
‖ = −ηA0





1/2 0 0
0 1/2 −3/2fp
0 −3/2fp −1





By neglecting the heat transfer terms from Catto’s parallel viscosity above, we
get a very similar viscosity form as given below, with the superscript denoting
the reduction from Catto to Braginskii.

←→∏Catto−>Braginskii
‖ = −η

(

2

3

∂Vr
∂lr

+
2

3

∂Vθ
∂lθ
− 2fp

∂Vφ
∂lθ

)





1/2 0 0
0 1/2 −3/2fp
0 −3/2fp −1





Additional work remains to verify that the coefficients of two expressions agree
with each other when same assumptions are applied. But we can clearly see
that Catto’s parallel viscosity reduces to Braginskii’s when the heat transfer
terms are neglected. The same type of verification is also required for the other
viscosities, which remains as a future work.

3.5 From Braginskii to Catto

It will also be of interest to evaluate the relative importance of each heat
transfer contributions to plasma parameters. For that purpose, presented be-
low are the collection of the heat transfer terms(and temperature gradient terms)
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from Catto’s formulism, which we designate them with ’heat’ in superscript.
Therefore, these are the additional heat transfer effects being added to Bragin-
skii formulism.

←→∏
‖
heat
j

=
0.960

ν
(
←→
I −3n̂n̂) :

[(

2

5
∇−→q + 0.246(∇−→q −−→q ∇lnPj +

4

15
∇q‖)

)] (

n̂n̂−
1

3

−→
I

)

+
mj

PjTj

[

0.412q2‖ − 0.064q2
]

(

n̂n̂−
1

3

←→
I

)

=

(

n̂n̂−
1

3

←→
I

)

{
1025

1068ν
((2/5)∇ · −→q − (6/5)n̂ · ∇−→q · n̂) +

319417mjq
2

‖

890000TP

−
21

89ν

(−→q · ∇lnP −∇ · −→q + 3n̂ · ∇−→q · n̂− 3−→q ‖ · ∇lnP
)

+
28

445ν

(

∇ · −→q ‖ − 3n̂ · ∇−→q ‖ · n̂
)

−
1137mjq

2

⊥

17800TP
}

←→∏
g
heat
j =

1

4Ω
{n̂×

[

2

5
∇−→q + (2

5
∇−→q )T

]

·(
←→
I +3n̂n̂)−(

←→
I +3n̂n̂)·

[

2

5
∇−→q + (2

5
∇−→q )T

]

×

n̂}

←→∏
heat
⊥ 1

= −
3ν

10Ω2
{
2

5
∇−→q +

(

2

5
∇−→q

)T

−
3

10Pj
[Pj∇

−→q −−→q ∇Pj + (Pj∇
−→q −−→q ∇Pj)

T ]−

1

100Pj
[3Pj∇

−→q ‖ + 5−→q ‖ + (3P∇−→q ‖ + 5−→q ‖∇P )T ]−
1

400T
[(90−→q − 13−→q ‖)∇T +

(∇T )(90−→q −13−→q ‖)]+3n̂

[

n̂ ·

(

1

10
∇−→q −

3

100
∇−→q ‖

)

+

(

1

10
∇−→q −

3

100
∇−→q ‖

)

· n̂

]

+

3

[

n̂ ·

(

1

10
∇−→q −

3

100
∇−→q ‖

)

+

(

1

10
∇−→q −

3

100
∇−→q ‖

)

· n̂

]

n̂+
3q‖

4P
[n̂∇P+(∇P )n̂]+

9

10P
[n̂−→q +−→q n̂− 1

3
q‖n̂n̂]n̂ ·∇P −

231q‖

400T
[n̂∇T +(∇T )n̂]−

27

40T
[n̂∇T +(∇T )n̂]−

27

40T
[n̂−→q +−→q n̂− 13

45
q‖n̂n̂]n̂ · ∇T}

←→∏
⊥
heat
2

=
←→∏

⊥2 =
9mjν

200PTΩ
[n̂×−→q (−→q + 31

15

−→q ‖)− (−→q + 31

15

−→q ‖)
−→q × n̂]

Here we notice that
←→∏

⊥
heat
2

=
←→∏

⊥2, meaning that
←→∏

⊥2 only has non-zero
value when we derive it with Catto’s ordering assumptions.
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4 The Flux Surface Geometry Models in solving Two-

Fluid Equations for Tokamak Plasmas

4.1 The Elliptical Model and the Miller Equilibrium Model

With either form of the viscosity tensors presented in the previous section,
we can solve the two-fluid euqations for plasma parameters such as the rota-
tional velocity of tokamak plasmas. Apart from the issue of which viscosity for-
mulism we employ, we must also consider what flux surface model we apply in
numerically solving the two-fluid equations. In general, these flux surface co-
ordinates must be determined by a numerical solution of the Grad-Shafranov
equation.[5] The complexity of the equation formulism, however, does not al-
low simple numerical computation, especially with the complex form of the
plasma flux surface shape.

Traditionally, the most popular approach was to solve it with the simple
elliptical model. With this simple model, the numerical computation may be
simpler but the result is not realistic due to its aggressive simplifying assump-
tions. A decade ago, an analytical solution of the Grad-Shafranov equation for
the equilibrium magnetic flux surface geometry in tokamaks has been devel-
oped by Miller et al. in which the flux surface is completely described by the
aspect ratio, elongation, triangularity and safety factor. By representing the
equations of plasma physics directly within this analytical flux surface geome-
try, the numerical solution of the Grad-Shafranov equation step can be omitted
from the calculation procedure.[5]

We can therefore describe tokamak plasmas with either of these models, the
Elliptical or the Miller model. Since it is the next step for the research commu-
nity to apply Braginskii formulism with the Miller model, discussions in this
section will exclusively refer to Braginskii’s formulism.

4.2 The Flux Surface Coordinate System

The natural coordinate system for tokamak plasma physics computations
is the set of nested magnetic flux surfaces because of the striking differences in
particle, momentum, and energy flows within and across these flux surfaces.
In most literatures concering tokamak plasmas, the flux surface coordinate sys-
tem is defined by the orthogonal coordinate directions (r, θ, φ) with length ele-
ments

dlr = hrdr,
dlθ = hθdθ,
and dlφ = hφdφ.

The coordinates θ and φ lie in the flux surface and represent a poloidal angle-
like variable θ and the toroidal angle φ, respectively. The r coordinate is normal
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to the flux surface and can be any flux surface label. [5] In this paper, we will
employ this same coordinate system in our formulism.

4.3 The Elliptical Model with Braginskii formulism

The elliptical model assumes that the plasma shape is elliptical. For this
model, the R and Z coordinates of the plasma are determined by the following
relations:

R = R0 + rcosθ
z = rsinθ.

For this model, we can use the following metric coefficients

hψ = (RBp)
−1

hp = hp
hφ = R = R0 + rcosθ = R0(1 + ǫcosθ)

where ǫ = r/R0.

WithR = R0(1+ǫcosθ) andBθ = B0

θ/(1+ǫcosθ), the numerical application
of the elliptical model becomes really simplified since RBθ = R0B

0

θ = constant.
Also, in the large aspect ratio, low-β, circular flux surface approximation, we
can set:

hθ ≈ r
ǫ = r/R0 << 1.

These approximations make the numerical computation much simpler and
was applied by many researches due to its simplicity and/or its minimal nu-
merical computational load. Application of Braginskii’s formulism with the
elliptical model is well discussed in Stacey’s text. [6]

4.4 The Miller Equilibrium Model with Braginskii formulism

A decade ago, Miller, et al. derived analytical expressions for an equilib-
rium flux surface in a plasma, which we call ’The Miller Model’ in this paper.
Figure 1 illustrates the Miller model which describes the flux surface with nine
parameters: s (global magnetic shear), α (pressure gradient), A (aspect ratio),
κ (elongation), δ (triangularity), q (safety factor), and the variation of κ, δ, and
the major radius with flux surface. The positive direction of the angle θ shown
in Fig. 1 corresponds to the direction of B produced by a plasma current out
of the page in Fig. 1, i.e. a clockwise plasma current looking down of the
tokamak.[3] [5] In the Miller model, the r coordinate is also normal to the flux
and chosen such that the ’radial’ displacement is dlr = dr/|△r|.[3]
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Figure 1: Miller Equilibrium Model

With the Miller model, theR and Z coordinates of the plasma are described
by

R(r) = R0(r) + rcos[θ + xsinθ] = R0(r) + rcosξ
Z(r) = κrsinθ

where x ≡ sin−1δ and ξ ≡ θ + xsinθ. The Miller Model assumes R0 = R0(r),
δ = δ(r), and κ = κ(r). With this model, the metric coefficients are given as
follows:

hr = hr(r, θ) = (RBθ)
−1 =

1

|∇(r, θ)|

hθ = hθ(r, θ) = r
√

cos2(θ + xsinθ) + κ2sin2θ

hφ = hφ(r, θ) = R(r, θ) = R0(r) + rcos(θ + xsinθ).

Here we can see that these metric coefficients are of much more complicated
functions of r and θ than those of the elliptical model.[3] [5]

Miller presents in his paper the detailed form of the metric coefficient as
follows:

RBθ = R|∇φ×∇ψ| = |∇(r, θ)| =
∂ψ

∂r
|∇r| = ∂rψ|∇r| =

∂ψ

∂r
κ−1

∧

(r, θ)

=
∂rψ κ−1

√

sin2(θ + xsinθ)(1 + xcosθ)2 + κ2cos2θ

cos(xsinθ) + ∂rR0 cosθ + [sκ − sδcosθ + (1 + sκ)xcosθ]sinθsin(θ + xsinθ)
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where

|∇r| = κ−1
∧

(r, θ) =
κ−1

√

sin2(θ + xsinθ)(1 + xcosθ)2 + κ2cos2θ

cos(xsinθ) + ∂rR0 cosθ + [sκ − sδcosθ + (1 + sκ)xcosθ]sinθsin(θ + xsinθ)

∧

(r, θ) =

√

sin2(θ + xsinθ)(1 + xcosθ)2 + κ2cos2θ

cos(xsinθ) + ∂rR0 cosθ + [sκ − sδcosθ + (1 + sκ)xcosθ]sinθsin(θ + xsinθ)
.

sκ and sδ account for the change in elongation and triangularity, respectively,
with radial location.

sκ =
r

κ

∂κ

∂r
,

sδ = r
∂δ

∂r
/
√

(1− δ2).

Note that ∂rR0 =
∂R0

∂r
and ∂rψ =

∂ψ

∂r
. The formula of

∂R0

∂r
is given by two

different models. The shifted circle model (which leads to the Sahfranov shift)
yields

∂R0

∂
≡ △′ = −

r

R0

(

βθ +
1

2

)

and a shifted ellipse model by Lao, et al. yields

∂R0

∂r
= −

r

R0

[

2(κ2 + 1)

(3κ2 + 1)

(

βθ +
1

2
li

)

+
1

2

(κ2 − 1)

(3κ2 + 1)

]

.

Here βθ =
nT

B2

θ/2µ0

and li is the internal inductance. The definition of the

safety factor q(r) =
|Bφ0|

2π

∫ dlθ
RBθ

and RBθ equation can be used to evaluate

∂ψ(r)

∂r
=
|Bφo|κ(r)

2πq(r)

∫ dlθ

[1 +
r

R0(r)
cos(θ + xsinθ)]Λ(r, θ)

. [3] [5]

Though this new model by Miller was available for a decade, it has not been
employeed in solving the two-fluid equations to compute tokamak plasma pa-
rameters such as the plasma rotation velocities. This was due to its increased
numerical computation loads to computers in the past and/or its complexity
in application. It will, however, be interesting to apply this Miller model in our
calculation of plasma parameters of modern tokamaks.
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5 Conclusion

In solving the two-fluid equations of magnetized plasmas, either Bragin-
skii’s or Mikhilovskii’s viscosity formulism can be employeed. The decision
on which formulism fits best for our research will depend on the physics of
the magnetized plasma. For example, if the ion flow velocity is weaker than
the ion thermal speed and on the order of the ion diamagnetic heat flux di-
vided by the pressure, the Mikhailovskii’s viscosity approach must be used.
In other words, Catto and Simakov’s formulism will provide the best compu-
tational result since they have evolved out of Mikhailovskii’s approach with
more terms in truncating the Sonine polinomials. If, however, the flow ve-
locity is almost equal to the ion thermal speed, Braginskii’s formulism will be
adequate enough because using Catto and Simakov’s formulism will increase
the amount of numerical computational work dramatically.

Another important aspect in solving the two-fluid equation is in which flux
surface geotmetry model to employ. Among many models available in the
research community, the most popular one up to date has been the Elliptical
Model due to its minimal computational load and/or its simplicity, but lacking
the detailed flux surface parameters for more accurate computational results.
Therefore it will be interesting to apply the new model, the Miller Equilib-
rium Model, in solving the two-fluid equations since it describes the realistic
D-shaped tokamak flux surfaces with more parameters.

With two types of viscosity formulisms and two types of flux surface mod-
els, we may choose any combination to numerically describe tokamak plasmas.
Braginskii’s formulism in the elliptical model was worked out by Stacey and
well presented in his book. [6] It will be next logical step to apply Braginskii’s
formulism with the Miller model.
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