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Abstract 

 A complex variety of interacting phenomena determine the properties of the plasma in 
the scrape-off layer (SOL) and divertor of a tokamak1.  These phenomena have been modeled in, 
two-dimensional plasma edge codes2,3, which provide important insights into the physics of the 
SOL and divertor regions, but which are computationally intensive.  In order to provide the 
means for routine analyses of SOL and divertor plasma properties, a computationally tractable 
model for the calculation of ion and impurity densities, temperature, currents, particle flows and 
electric fields along the separatrix in the divertor and scrape-off layer of tokamak plasmas has 
been developed.  This model is described and applied to calculate the effects of particle drifts 
and the direction of the toroidal magnetic field on these calculated quantities.  Several recently 
observed experimental phenomena—double reversal of the parallel ion velocity in the SOL4, 
enhanced core penetration of argon injected into the divertor when the grad-B ion drift is into 
rather than away from the divertor5—and other interesting phenomena, such as the structure of 
the parallel current flowing in the SOL and the reversal of the sign of the electrostatic potential 
in the SOL when the toroidal field direction is reversed, are predicted.  
 

A. Calculation Model 

 

Geometrical model 

 

 The plasma outside the separatrix is modeled as “stack” of  2D strips, or “ribbons”, that 
spiral about the core plasma (q times between X-points) following the magnetic field lines from 
the inner  to the outer divertor target plate.  A poloidal projection of this geometry is shown in 
Fig. 1.  Non-uniformities in the magnetic geometry are represented by particle “drifts” to account 
for the effects of field gradients and curvature while retaining a simple computational geometry.  

The parameter ξ designates the distance along the field lines from the inner (
in

ξ ξ= ) to the outer 

(
out

ξ ξ= ) divertor targets. 

 
Radial transport 

 The 2D transport problem in this strip is reduced to 1D by writing the divergence of the 

particle and heat fluxes as, e.g. for the particle flux d d d drξ∇ Γ = Γ + Γg  and approximating the 

radial term by following experiment observation to assume that the density (and temperature) 

exponentially attenuate radially outward from the separatrix, ( )expsep nn n r= − ∆  in the SOL.  

Requiring continuity across the separatrix of the ion particle flux sep

⊥Γ  from the core into the SOL 

with a diffusive radial particle flux in the SOL 
r

D dn dr⊥Γ = −  identifies sep

n sepn D⊥ ⊥∆ = Γ .  At 

the outer edge of the SOL, which is taken as a distance 
n

ε∆ outside the separatrix, the radially 

outward ion flux lost from the SOL plasma is 1sol

n sepD n e
ε− −

⊥ ⊥Γ = ∆ .  This leads to an 
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approximation ( ) ( )( )1sol sep sep

n n n
d dr e ε−

⊥ ⊥ ⊥ ⊥Γ ≈ Γ − Γ ∆ = − Γ ∆ − ≡ −Γ ∆  for the radial 

contribution to the divergence of the particle flux.  In this work, 1ε = is used in the SOL 

(between X-points) and 3ε =  is used in the divertor channels to reflect the expansion of field 
line separation.   

 
Figure 1 Geometric Model  Figure 2 GradB Drifts 

 

Figure 3 Radial ExB Drifts  Figure 4 Parallel ExB Drifts 
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 A similar argument can be used to approximate the radial component of the divergence of 
the heat flux, Q.  When it is further assumed that parallel heat flux is dominated by electron heat 

conduction, 
5

2
0Q dT d T dT dκ ξ κ ξ≈ =P , the resulting approximation of radial transport  is 

( )( )1sep

E E
dQ dr Q e Qε

⊥ ⊥≈ − ∆ − ≡ − ∆ , where 2 7 sep

E sep sepn T Qχ⊥ ⊥∆ = , with sep
Q⊥ representing 

the heat flux from the core flowing across the separatrix into the SOL.  In the divertor channel 

only the transport loss term 2

E
nT χ⊥− ∆ is present. 

 
Temperature, density and flow distributions   

 

The parallel energy balance equation solved for the heat flux Q  in the SOL and divertor 

in a strip running from the inner divertor target plate around the plasma in a clockwise positive 
direction to the outer diver plate, as shown in Fig. 1, is 
 

3

2

c

z e z ion e o ion ion i e rec i o cxel

E

rad at

E

QdQ
n n L E n n fI n n n n

d

Q
j P P P

συ συ συ
ξ

⊥

⊥
Ω

= − − < > + < > − < >
∆

     + Ε  ≡ − − +
∆

P P

 (1) 

where Q⊥ is the perpendicular heat flux across the separatrix into the SOL (reduced by the radial 

transport heat loss), the second term represents impurity radiation (and bremsstrahlung) cooling, 
and the last three atomic physics terms represent ionization cooling, recombination heating, and 
charge-exchange plus elastic scattering cooling of the plasma.  The sheath boundary conditions 
specify a heat flux into the inner and outer divertor plates 
 

, ,,
in in s in in in out out s out out out

Q n c T Q n c Tγ γ= −    =       (2) 

 
where 
 

( )
( )

12 2 1
ln

1 2 2 1

i ei

e i e

m mT

T T T

δ
γ

δ π

 −
= + +   − + 

      (3) 

 
is the sheath coefficient and δ  is the secondary electron emission coefficient. 
 The parallel particle balance equation is 
 

( ) ( )e o ion i rec e ion rec

n n

d
n n n n

d
συ συ ν ν

ξ
⊥ ⊥Γ ΓΓ

= + < > − < > ≡ + −
∆ ∆

   (4)  

 

where ⊥Γ is the perpendicular particle flux from the core across the separatrix into the SOL  

(reduced by the radial particle loss) and “ion” and “rec” refer to ionization and recombination.  
The sheath boundary conditions specify that the particle fluxes into the target plates are 
 

, ,,
in in s in out out s out

n c n cΓ = −   Γ =         (5) 
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where cs is the sound speed.  In both Eqs. (2) and (5), the minus sign indicates that the flux is 
into the plate at the inner divertor target in the negative sense of the parallel coordinate ξ .  These 

incident ions are recycled as neutral atoms and molecules, with the latter being dissociated 
immediately and transported as low energy atoms until they have a charge-exchange or elastic 
scattering collision, upon which they are combined with the higher energy reflected neutrals and 
transported throughout the divertor and SOL and inward across the separatrix.   
 Since both the particle and heat fluxes have inward flowing boundary conditions at both 
the inner and outer target plates, there must be stagnation points (not necessarily the same) in the 
particle and heat flows somewhere in the SOL (or divertor).  Integrating Eq. (1) from the 

stagnation heat flux point ( 0
stag

Q = ) to either target plate and using the boundary condition of 

Eq. (2) and integrating Eq. (4) from the particle flux stagnation point ( 0Γ = ) to either target 
plate and using the boundary condition of Eq. (5) then yields, for each target, a pair of equations 
which can be solved for the temperature just in front of the target plate 
 

( ) ( )

( ) ( )

,

( ) ( )

out in

stagQ stagQ

out in

stag stag

rad at rad at

E E

out in

out e ion rec in e ion rec

n n

Q Q
P P d P P d

T T

n d n d

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

γ ν ν ξ γ ν ν ξ
Γ Γ

⊥ ⊥

⊥ ⊥

− − − −
∆ ∆

=   =
Γ Γ

+ − + −
∆ ∆

∫ ∫

∫ ∫
   (6) 

 
and for the density just in front of the target plates 
 

( ) ( )( ) ( )

,
2 2

out in

stag stag

e ion rec e ion rec

n n

out in

out in

n d n d

n n
T T

m m

ξ ξ

ξ ξ

ν ν ξ ν ν ξ
Γ Γ

⊥ ⊥Γ Γ
+ − + −

∆ ∆
=   =

∫ ∫
  (7) 

 
These conditions are used in converging the iterative solution.  
 Solving Eqs. (1) and (2) for  
 

,( ) '

in

in s in in in rad at

E

Q
Q n c T P P d

ξ

ξ

ξ γ ξ⊥
 

= − + − − 
∆ 

∫       (8) 

 
and assuming that parallel heat transport is dominated by classical electron heat conduction 

( ) ( )
5 7

2 2
0 0

2

7
Q q T dT d dT dξ ξ κ ξ κ ξ≈ = − = −  leads to a solution for the temperature 

distribution in terms of the heat flux calculated from Eq. (8) 
 

( ) ( )
'

7 7 7
2 2 2

,

0 0

7 7
' ' " '

2 2
in in in

in in in s in in in rad at

E

Q
T T Q d T n c T P P d d

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ γ ξ ξ
κ κ

⊥
  

= − = − − + − −  
∆   

∫ ∫ ∫ (9) 
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   The parallel momentum balance equation can be written, neglecting viscosity, as 
 

( )22 ( )
cxel ion mom

dM d
p nm m m

d d
υ ν ν ν

ξ ξ
≡ + = − + Γ ≡ − Γ     (10) 

 
and integrated to solve for  
 

( ) ( ) ( ) ( ) ( ) ( )' ' ' 4 ' ' '

in in

in mom in in mom
M M m d n T m d

ξ ξ

ξ ξ

ξ ξ ν ξ ξ ξ ν ξ ξ ξ= − Γ = − Γ∫ ∫   (11) 

 

( )M ξ  can then be equated to ( )22 p nmυ+  to obtain a quadratic equation in ( )n ξ  

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )2 22 2p n m n T m n Mξ ξ υ ξ ξ ξ ξ ξ ξ+ ≡ + Γ =  (12) 

 
which yields a solution for the plasma ion density 
 

( )
( )
( )

( ) ( ) ( )2 21 1 8
4

M
n mT M

T

ξ
ξ ξ ξ ξ

ξ
 = ± − Γ
 

 (13) 

 
that can be used in the definition of  Γ  to obtain the plasma flow velocity 
 

( ) ( ) ( )nυ ξ ξ ξ= Γ   (14) 

 
The sheath boundary condition on the parallel flow velocity is 
 

( ) ( ), ,

2 2
,in out

in s in out s out

T T
c c

m m
υ ξ υ ξ= − ≡ −   = ≡  (15) 

 
            In all calculations to date, the larger value obtained using the + sign in Eq. (13) has been 
of the magnitude observed in experiment, but the smaller value has not been physically 
unreasonable, perhaps implying the existence of a lower density divertor regime. 
            Equation (10) can be integrated from the inner divertor target plate to the outer divertor 
target plate to obtain 
 

( ) ( )4 4
out

in

out out in in mom
n T n T m d

ξ

ξ

ξ ν ξ ξ− = − Γ∫  (16) 

 
demonstrating that a difference in pressure at the two divertor plates requires momentum 
dissipation (by atomic physics processes in this development) in the plasma flow between the 
two target plates.  Equation (10) can also be integrated from the flow stagnation point to either 
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divertor plate to obtain a relation between for the pressure at the stagnation point and the 
pressure in front of the divertor target plate 
 

( ) ( ) ( ) ( ) ( )
1 1

2 2
2 2

in out

stag stag

in in mom out out momstag
nT n T m d n T m d

ξ ξ

ξ ξ

ξ ν ξ ξ ξ ν ξ ξ
Γ Γ

Γ
= + Γ = + Γ∫ ∫  (17) 

 
 The well-known “2-point” SOL-divertor model consists of the set of Eqs. (6) and (7) for 
the temperature and the density at the divertor target plus Eqs. (9) evaluated at the flow 
stagnation point and Eq.(17) for the temperature and density at the flow stagnation point.   
  
Electrostatic potential 

 

 The electrostatic potential satisfies the electron parallel momentum balance equation 
 

0.71 1 jd dT dp

d e d ne d

φ

ξ ξ ξ σ
= + − P

P

        (18) 

 
which can be integrated to obtain 
 

( ) ( )
( )
( )

( ) ( )
( )

'' '1.71
' '

' ' '
in in

in in

jT dn
T T d d

e en d

ξ ξ

ξ ξ

ξξ ξ
φ ξ φ ξ ξ ξ

ξ ξ σ ξ
= + − + −   ∫ ∫

P

P

   (19) 

 
where the potential just in front of the target plate is given by the current-potential sheath relation 

between the potential just in front of the plate ( ),in out
φ  and the current ( ),in out

pl
j  into the plate  

 

( ) ( )

, ,

1 1
ln , ln

1 1

i e i ein out
in outin out

pl in si in pl out si out

m m m mT T

e j n ec e j n ec

π δ π δ
φ φ

   − −
= −   = −   

− −      
   (20) 

where  
3

2 422 , 3 4 2 lne e e e e en e m m T n eσ τ τ π=  = ΛP . 

 
Parallel current 

 

 The net current density into the target plates is given by the sum of the ion current 

density
si

nec and the electron current density, ( )
1

4

e
T

en e c e
φ

− for a Maxwellian distribution,  

1

4
e

e
Tin

epl si
j ne c c e

φ 
= − 

 
        (21) 

where ( )
1

28e e ec T mπ= is the average electron speed for a Maxwellian distribution. 

The current density must be divergence-free 
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0r
dj dj dj

d d drξ
⊥

⊥

∇ ≡ + + =j
P

g
l

        (22) 

 
which may be solved for  
 

( ) '

in

in r
pl

dj dj
j j d

d dr

ξ

ξ

ξ ξ⊥

⊥

 
= − − + 

 
∫P

l
                   (23)  

The minus sign in front of the first term on the right results from the fact that Eq.(21) specifies 
the current into the inner divertor plate, while the positive sense of the current in this model is 

out of the inner divertor plate (but into the outer divertor plate); i.e. ( ) in

in plj jξ = −P . 

These cross-field currents are driven by gradB and curvature drifts, as discussed in the 
following section.  They are not driven by ExB drifts, which are the same for ions and electrons 
and hence do not produce currents, nor by diamagnetic currents which are almost divergence-
free.  Cross-field currents also may be driven by cross-field transport, viscosity and other 
mechanisms that have different effects on ions and electrons, but these mechanisms have been 
found9,10 to be smaller and are not considered at present. 
 

Grad-B and curvature drifts 

 

 The grad-B and curvature drifts are 
 

2 2

3 2 2
, ,

3

B z c z

B B c z

m mT B T

e B eRB e B R eRB

T

eRB

υ υ
υ υ

υ υ υ

∇

∇

×∇ ×
= ≈   = − ≈   

≡ + ≈

B B R
n n

n

P P

    (24) 

 

where 
z

n is a unit vector in the vertical direction, up or down depending on the direction of B, 

and
th

υ υ≈P . The drifts are in opposite directions for ions and electrons because of the charge sign 

difference, producing a current 
 

6
2

B B z

nT
ne

BR
= ≈j υ n          (25) 

 
 At this point, a specific current and magnetic field configuration is adopted, as shown in 

Figs. 1-4.  For this configuration, the vertical unit vector 
z

n is directed downward.  Thus, the 

radial drift currents are radially inward from the SOL into the core in the upper hemisphere 

( )0 θ π≤ ≤  and radially outward from the core into the SOL in the lower hemisphere 

( )2π θ π≤ ≤ , as indicated in Fig. 2. 

 The ion grad-B and curvature drifts also produce a parallel particle drift 
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( ) 3
cosz

B z B

B nT

B eBR

θ θ∇ ∇

 
Γ = Γ =  

 
n n

P

Pg         (26) 

 
which is downward in both the inner and outer SOLs and divertors, as indicated in Fig. 2.  Here, 

the angle θ  is with respect to the outboard mid-plane.  In the divertor, cosθ  is replaced by 

sinα , where α  is the angle of incidence with respect to the horizontal of the separatrix, as 
illustrated in Fig. 2. 

Using Eq. (25) to evaluate the radial drift current in Eq. (23) and adding the poloidal drift 
current from Eq. (26) provides an equation for the resulting parallel current in the SOL as a result 
of the divergence of the radial grad-B and curvature drift currents plus the parallel drift current 
 

( ) ( )
( ) ( )

( ) ( ) ( )
1 16 ' '

' 2

in

n T

in r z B in B

n T
j j d e j j

RB

ξ

ξ

ξ ξ
ξ ξ ξ ξ ξ

− −

∇ ∇

  ∆ + ∆  = + + Γ ≡ + ∆
  
∫ n n

P

P P Pg  (27) 

 
The radial gradient scale lengths of temperature and density are defined in terms of the radial 

transport coefficients in the SOL ,sep sep

n sep T sep sepn D n T Qχ⊥ ⊥ ⊥ ⊥∆ = Γ   ∆ = , or they may be taken 

from experiment. 
 
Solution for currents and potentials at target plates 

 
 Once the densities and temperatures are determined at the inner and outer divertor target 
plates (by solving Eqs. (1)-(17) in an iterative loop), Eqs.(19)-(27) can be solved for the 
electrostatic potentials and currents at the target plates.  The current at the outer target can be 
evaluated from Eq. (27).  Note that the integral of all the radial currents flowing from the core 
into the SOL plus all the radial currents flowing from the SOL into the core must vanish to 
maintain a neutral core plasma.  The radial currents due to grad-B and curvature drifts are 
represented by the second term in Eq. (27), which will not vanish in general; i.e. other radial 
currents are needed.  It is intended to include other radial currents in a future version of this 
model, but for now an ‘ambipolarity’ condition is imposed by adding or subtracting a constant to 
the term in square brackets in Eq. (27) that will cause the integral to vanish, in order to represent 
these other radial currents (which in effect represents the other radial currents as being 
distributed uniformly over the SOL).  This ‘ambipolarity-constrained’ current integral is 

represented by $ ( )B
j ξ∇∆ .  With this representation, Eq. (27) yields a relation between the 

currents into the plates at the inner and outer divertor targets 
 

( ) ( ) ( ) ( )2 2out in

pl out in B out pl B outj j j ne j neξ ξ ξ ξ∇ ∇≡ = + Γ = − + ΓP P

P P     (28) 

 
 Equation (19) yields a relation between the potential just in front of the inner and outer 
plates 
 

[ ]
( )
( )

( ) ( ) $ ( )

( )

'' '1.71
' '

' ' '

out out

in in

in B

out in out in

j jT dn
T T d d

e en d

ξ ξ

ξ ξ

ξ ξξ ξ
φ φ ξ ξ

ξ ξ σ ξ

∇
 + ∆
 = + − + −∫ ∫

P

P

      (29) 
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Using Eqs. (20) with ( )in

pl inj j ξ= − P and out

plj given by Eq. (28) in Eq. (29) yields an equation that 

determines  ( )inj ξP .  Note that although the integral of the radial currents over the SOL must 

vanish, the current integral in Eq. (29) is weighted by 
3

21 1 TσP : and extends also over the 

divertor plasmas.  This equation displays the well known result that the current in the SOL is 
driven by differences in potentials and temperatures at the target plates and by drifts due to the 
non-uniformity and curvature of the magnetic field (and other causes).  
 The above development has implicitly assumed that the target plates are at zero potential.  

If the plates are biased with respect to ground, then , , ,

bias

in out in out in outφ φ φ⇒ + in the above equations. 

 

ExB drifts 

 

 Although ExB drifts do not produce currents, they do produce particle flows.  The 
parallel variation of the electrostatic potential produces a parallel electric field and a 
corresponding radial ExB drift.   
 

2
, r

E xB

d

d d
E

d B B

φ

φ ξ
υ

ξ

−
× 

= −   = = 
 

E B

P

P

P        (30) 

   
 
directed as illustrated in Fig. 3 for the case in which the potential is negative in front of both 
target plates and increases to a maximum positive value at some point towards the top of the 
plasma in this model.   
 The “radial”  ExB flows from the outboard divertor channel into the private flux region 
and from the private flux region into the inboard divertor channel will transfer ions from the 
outboard divertor channel across the private flux region beneath the plasma to the inboard 
divertor channel13 .   

The “radial drift” loss or gain of ions from both  the SOL and the divertor channels can 
be represented by an ExB loss frequency 
 

( )
( )r

E xB

E xB

n

υ ξ
ν ξ

ε
=

∆
P

P
  (31) 

 

where 
n

∆ is an estimate of the “radial width” of the SOL calculated as discussed for Eq. (6) and 

3ε ≈  is a flux surface expansion factor taking into account the widening of the SOL into the 

divertor channel.  Assuming that some fraction 
ExB

f  of the ions lost into the private flux region 

from the outboard divertor channel flow into the inboard divertor channel, the source density of 
ions to the inboard divertor channel may be represented 
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( ) ( )
Xout

out

Xin

in

ExB E xB

in

E xB

f n d

S

d

ξ

ξ

ξ

ξ

ν ξ ξ ξ

ξ

=

∫

∫

P

P
       (32) 

 

 where  ,Xout in
ξ denotes the location of the X-point in the outer SOL-divertor. 

  
The particle balance Eq. (4) in the divertor channels now becomes 

 

( ) ( ) in

e ion rec i E xB B E xB

n

d
n n S

d
ν ν ν ν

ξ
⊥ΓΓ

= + − + + +
∆ P P

     (33) 

 

where the source term in

E xB
S

P
 is only present in the inboard divertor channel, for the field 

configuration shown in Figs. 1-4.  The quantity  
B

ν  is a radial transport frequency defined by an 

expression like Eq. (29) but using the radial curvature and grad-B drifts given by Eq. (24).  
Positive radial drifts correspond to outward ion flow from the core into the SOL and constitute a 
source of ions to the SOL, while negative radial flows correspond to inward flows of ions from 
the SOL into the core and constitute a loss of ions in the SOL.  In the divertor channels radial 
drifts in either direction constitute a loss of ions, and the radial drift frequencies in Eq. (33) are 
negative. 
 There is a radially outward directed electric field in the SOL produced by the radial 
temperature gradient in the SOL 
 

( ) 11 1
r T

d d dT
E

dr dr T dr

φ φ
ξ φ φ φ

φ
− −  

= = − − ≡ ∆  
  

;      (34) 

 
which produces poloidal clockwise ExB drifts and particle fluxes in the SOL 
 

( )
( )

( )
( ) ( )1 1

,
r r

T T

E xB E xB

n

B B

θ θφ ξ ξ φ ξ
υ ξ ξ

− −∆ ∆
=   Γ =      (35)   

  
as illustrated in Fig. 4.   

The component of this poloidal particle flux parallel to the field in the SOL constitutes a 
parallel drift particle flux 

( ) ( )
( ) ( ) 1

2r r

T

E xB E xB

n BB

B B

θθθ
ξ φ ξ

ξ ξ
−∆

Γ = Γ =P       (36)   

 
which circulates clockwise around the SOL, as illustrated in Fig. 4.  
 The temperature distribution at the divertor target plate has been observed to peak 
somewhat outside the separatrix (i.e. to the right/left of the separatrix in the outer/inner divertor), 
causing the direction of the radial electric field along the separatrix to change from outward in 
the SOL to inward into the private flux region in the divertor channer.  This produces a parallel 
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drift particle flux downward in the inner divertor and upward in the outer divertor, as illustrated 
in Fig. 4. 
 Both the parallel particle drift fluxes [Eqs. (27) and (34)] are additive to the particle flux 
due to particle sources calculated from Eq. (.31). 
 
Diamagnetic drifts 

 
 The leading order local force balance on the plasma balances the pressure gradient with a 
VxB force, with the result that pressure gradients drive drift velocities orthogonal both to the field 
and the pressure gradient.  In particular, a radial diamagnetic flow is driven by the pressure 
gradient in the direction perpendicular to the 2D strip in which the transport calculation of this 
paper is being carried out 
 

1 1 1r

dia

p p B p

neB neB neB Bθ θ

υ
ξ⊥

− ∂ − ∂ − ∂
=

∂ ∂ ∂
; ;

l l
      (37) 

 
The radial pressure gradient also drives a diamagnetic drift velocity in the direction 
perpendicular to the 2D strip along the field lines of this calculation, but this drift is not 
considered in this calculation. 
 The radial diamagnetic drift of particles out of the core is treated as a particle source, and 
the inward drift is treated as a particle sink, in the continuity equation, in the same manner as 
discussed for the gradB and ExB drifts.  However, the diamagnetic drift contribution to the 
plasma current is divergence-free except for small terms associated with the field non-
uniformity, which effect has been represented by the gradB current contribution, so the 
diagmagnetic drift does not contribute to the parallel current in this calculation. 
 

Total parallel ion flux 

 

 The total parallel ion flux is calculated by integrating the particle balance Eq. (33), 
including the radial transport and radial drift losses and sources, and adding the parallel grad-B 
and ExB drift fluxes of Eqs. (26) and (36) 
 

( ) ( )

( ) ( )

2
( ) '

in

r

sep
in

in e ion rec i E xB B dia E xB

n n

B E B

D n
n n S d

ξ

ξ

ξ ν ν ν ν ν ξ

ξ ξ

⊥ ⊥

∇ ×

 Γ
Γ = Γ + − + − + + + + 

∆ ∆ 

         + Γ + Γ

∫ P P

P P

   (38)   

with 
in

Γ given by the sheath boundary condition of Eq. (5) at the inner divertor target. 

  The integral balance Eqs. (7) are replaced by the following expressions for the densities 
just in front of the target plates 
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( )

( )

2

2

( )

,
2

( )

2

out

stag

in

stag

sep
in

e ion rec i E xB B dia E xB

n n

out

out

sep
in

e ion rec i E xB B dia E xB

n n

in

in

D n
n n S d

n
T

m

D n
n n S d

n
T

m

ξ

ξ

ξ

ξ

ν ν ν ν ν ξ

ν ν ν ν ν ξ

Γ

Γ

⊥ ⊥

⊥ ⊥

 Γ
− + − + + + + ∆ ∆ 

=   

 Γ
− + − + + + + 

∆ ∆ 
=

∫

∫

P P

P P

    (39) 

where, as before, the source term in

E xB
S

P
 only obtains in the inner divertor for the magnetic field 

geometry of Figs 1-4. 
 
Impurities

6
   

 
 The momentum balance equation (neglecting viscosity) for each individual impurity ion 
species, k, in a multispecies plasma can be written 
 

( )2

k k k k k k ke ki

d
p n m z en E R R

d
υ

ξ
+ = + +P       (40) 

 
where “e” refers to electrons and “i” refers to the main plasma ion species.  A similar equation 
obtains for the main ion species, with “k” and “i” interchanged and the atomic physics 

momentum loss term  ( ), ,i i el i cx i i
n m ν ν υ− + added to the right side.  The momentum balance 

equation for the electrons (neglecting inertia and viscosity) is 
 

 ( )e e ei ek

k

d
p en E R R

dξ
= − + +∑P        (41) 

 
 The collisional friction terms which appear in these equations are 

 

( )
2 2

2ik k k k i
ke ie e

i i eff eff

n en z n z n dT
R R j c

n n z z d

η

ξ

 −
= = + 

  

P

P      (42) 

where 
 

( )210.457 0.6934
0.29 2 , 1.5 1

1.077 1.3167 eff
eff e z

eff

z c
z

η σ −
   

= +   = −   
+    

P P          (43) 

and 
 

( ) ( ) ( )1 2 i
ki i i i ik i k i

eff

n dT
R c n m c

z d
ν υ υ

ξ
= − +        (44) 

where  
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( ) ( ) ( )
( ) ( )

( ) ( )( )

( )( ) ( )

2

4 2 2
1 0 0

03
2

0 0

0 02
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1 0.24 1 0.934 2 ln
, ,

1 2.65 1 0.2853

1.56 1 2 1 0.52 1

1 2.65 1 0.285 1 2

k k

i k k i k k
ik i

k i
i

i

i k

n z
z zm m e z z n

c z
m z z nm T

z z
c

z z z m m

π
ν

+ ++ Λ
=   =   =

+ +

+ +
=

+ + + +

∑

 (45) 

 
 A particle continuity equation obtains for each ion species 
 

, , , ,2
( ) ink k k

k k E xB k B k dia k E xB k

n

d D n
S n S

d
ν ν ν

ξ
⊥Γ

= − + + + +
∆ P P

     (46) 

where the second term on the right represents transport loss perpendicular to the field lines and 
the first term represents the source of impurity particles, and the last two terms on the right 

represent the radial drifts of ions between the SOL and the core and the E B×P  drifting of 

impurities from the outer to the inner divertor channel (in the geometry of this paper)..  For 
injected impurities, this source is just the local injection rate. For intrinsic impurities (e.g. 

carbon) this source density is , /
k div i ik k

S Y L= Γ , where ,div i
Γ  is the incident main ion flux on the 

divertor target plate, 
ik

Y is the sputtering yield for target material “k” for ions of species “i”, and 

k
L is the distance along the field lines in front of the target plate over which the sputtered atoms 

become ionized (a few cm). 
 The boundary conditions for the impurity ions are the sheath boundary condition on 

impurity ion velocity into the target plate at the sound velocity, 2k sk kc T mυ = = , and the 

integral particle balance condition of the particle flux incident on the divertor targets 
 

( ) ( )

( ) ( )

, , , , , , ,2

, , , , , , ,2

1 1 ( ) ,

1 1 ( )

stag

in

stag

out

in in ink k
in k k k in k in k k k E xB k B k dia k E xB k

n

out out ink k
out k k k out k out k k k E xB k B k dia k E xB k

n

D n
R n R S n S d

D n
R n R S n S d

ξ

ξ

ξ

ξ

υ ν ν ν ξ

υ ν ν ν ξ

Γ

Γ

⊥

⊥

 
Γ = − − = − − − + + + +    

∆ 

 
Γ = − = − − + + + + 

∆ 

∫

∫

P P

P P

(47) 

The incident impurity ions are assumed to be recycled with reflection coefficient 
k

R as a return 

flux of impurity ions (i.e. ionization is assumed to take place immediately). 
 The total parallel impurity particle flux is obtained by integrating Eq. (43) and adding the 

grad-B and E B×P  drift particle fluxes calculated as discussed above for the main ions but taking 

into account the difference in mass and charge. 
 

( ) ( ) ( ), , , , , , ,2
( )

r

in

ink k
k k in k k E xB k B k dia k E xB k B k E B k

n

D n
S n S d

ξ

ξ

ξ ν ν ν ξ ξ ξ⊥
∇ ×

 
Γ = Γ + − + + + + + Γ + Γ 

∆ 
∫ P P

P P (48) 

 
 The momentum balance Eq. (40) can be integrated to obtain an equation for the impurity 
density distribution 
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( ) ( ) ( ) ( )

( )
( )

( ) ( )
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2 12' '

in
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eff eff i k

n T m n T m

z ecd dT
n z e z c j c m d

d z d z n n

ξ

ξ

ξ ξ υ ξ ξ υ

ηφ
ξ ν ξ

ξ ξ

+ Γ = + Γ +

    Γ Γ
− + + − + −         

∫
P

P

  (49) 

  
Integrating the electron momentum balance of Eq. (41) yields an expression for the 

electrostatic potential that now explicitly accounts for impurities 
  

( )
( )

( )
( )
( )

( )
( )

2
1 ' '

' ' '
' '

in in

e eff

in in

eff

c z T dn
T T d j d

e en d z

ξ ξ

ξ ξ

β βηξ ξ
φ ξ φ ξ ξ ξ ξ

ξ ξ

 + = + − + −   ∫ ∫
P

P  (50)  

where 21 1
k k i k k i

k k

n z n n z nβ = + +∑ ∑ , and 
in

φ  is given by the sheath relation of Eq. (20)..  

 

B. Effects of drifts on the divertor-SOL plasma distributions 

As discussed above and as illustrated previously in a conglomerate way by calculations 
with the 2D fluid edge codes UEDGE2,7 and SOLIPS3, particle drifts due to magnetic field 
gradients and curvature, electric fields, and pressure gradients have a major impact on 
determining the distribution of ion densities, temperature, ion flows, currents, electric fields, etc. 
in the divertor and scrape-off layer of tokamaks.  The calculation of the previous section 
provides an excellent means for isolating and elucidating these effects, to which purpose a series 
of model problem calculations have been performed. 

In order to insure a realistic plasma edge regime, the model problem had machine and 
plasma core parameters of a DIII-D H-mode discharge, with two exceptions.  The two divertor 
legs were symmetrized (i.e. made more like the figures above than the more asymmetric divertor 
configuration actually found in DIII-D) in order to avoid geometrical asymmetries that would 
otherwise additionally complicate the interpretation of the results of the calculations.  In such a 
model problem, the solution in the absence of drifts should be symmetric. Secondly, the D-shape 
of the plasma was not retained in modeling the essentially vertical grad-B and curvature drifts, 
with the effect of making the radial and poloidal (parallel) components of these drifts of 
symmetric magnitude in the inner and outer SOL. 

The model (R = 1.7 m, a = 0.6 m, κ = 1.8, B =  2.0 T, I = 1.2 MA, q95 = 4) represented a 
lower single null divertor plasma with the toroidal field such that the grad-B ion drift was down 
into the divertor; i.e. the configuration illustrated in Figures 1-4. Another calculation was made 
in which the toroidal magnetic field direction was reversed. The power and particle fluxes into 
the SOL from the core plasma were calculated to match experimental conditions for an H-mode 
discharge.   

The equations of the previous section were numerically integrated over a grid structure 
along the field lines from the inner to the outer divertor plates.  A small (5 cm in the parallel 
dimension, about 1 cm in the poloidal dimension normal to the target plates) recycling region in 
front of each divertor plate, a pre-recyling region of twice that length, and 8 other regions 
represented each divertor channel up to and including the X-point region (total length of each 
2.95 m along field lines).  The SOL plasma from inner to outer X-points (parallel distance 53.02 
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m) was divided into 30 equal regions. With reference to Fig. 1, the recycling regions are 1 and 
50, the inner and outer X-points are in regions 10 and 41, the inner and outer mid-planes are in 
regions 18 and 33, and the “crown” at the top is regions 25 and 26.  The symmetry point is 
between regions 25 and 26. All results will be plotted against region number.  With the 
numerical integration scheme employed in this paper, the densities, temperature and quantities 
constructed from them, such as the grad-B drift velocities, were calculated as average values 
over each region (e.g. the density shown in the following figures for location “1” is an average 
density over the first, recycling region in front of the inner divertor, and the density shown for 
location “33” is an average over the region containing the outer SOL mid-plane).  However, 
quantities such as the parallel particle fluxes and particle velocities, parallel currents, 
electrostatic potential and associated electric fields and ExB drift velocities were calculated at the 
interfaces between regions (e.g. the currents and velocities shown for location “1” are the values 
at the inner divertor target plate, the currents and velocities shown for location “26” are the 
values at the symmetry point between regions 25 and 26, and the currents and velocities shown 
for location “51” are the values at the outer divertor plate. 

Particle sources were treated as follows. The gas fueling source for the deuterium 
(1.5x1020 #/s into the upper outboard plasma chamber) was represented explicitly, and the 
resulting neutral atoms were transported through the edge region across the separatrix to fuel the 

core plasma.  An average ion flux of  ⊥Γ =  1.6x1020 #/m2s from the core plasma into the SOL 

was calculated, taking into account this neutral influx into this core, but consisting mostly of ions 
produced by the neutral beam particle source.  The deuterium ions striking the target plates 
(consisting both of ions crossing the separatrix from the core and ions produced by ionization of 
neutral atoms in the SOL and divertor) were reflected as neutral atoms at about one-half their 
incident energy or re-emitted as molecules which were dissociated into 2 eV atoms in the 
recycling regions 1 and 50 and were then transported throughout the edge region until ionized in 
the divertor, SOL or plasma edge inside the separatrix.  

Two impurity ion species were modeled, carbon which is an intrinsic impurity, and argon 
which is sometimes used to enhance radiation.  The carbon source was the calculated sputtering 
of the deuterium ions incident on the divertor target plates and was distributed over the first two 
regions (i.e. 1 and 2, 49 and 50) in front of the target.  Carbon was transported as a single ion 
species with an average charge state that varied with local electron temperature along the field 
lines.  Carbon ions returning to the target plates were reflected with a coefficient R = 0.99, which 
included in an approximate manner also the effects of carbon self-sputtering.  An argon source of 
2x1019#/s injected in the private flux region was assumed to be pumped by the divertor plasma 
and was represented as a uniformly distributed particle source in the two divertor plasmas 
(regions 1-9 and 42-50).  The argon ions incident on the divertor targets were reflected with 
coefficient R=0.99. 

An average heat flux of Q⊥ = 8. 8x104 W/m2 into the SOL from the core plasma was 

calculated from a core power balance, taking into account the 4.9 MW neutral beam heating, the 
small ohmic heating and the radiation from inside the separatrix.  Both this heat flux and the 
above ion flux into the SOL from the core were uniformly distributed over the SOL regions 11-
40. 

Radial transport was represented by a gradient scale length of 2 cm for density and 
temperature. 
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Drifts 

 
 The total parallel particle flux, taking into account the gradB, ExB and diamagnetic drifts 
as well as the ion flux into the SOL from the core, was calculated.  The diamagnetic drifts are 
very large just in front of the divertor plates where the parallel pressure gradients are large, but 
otherwise the gradB drifts are the most important.  
 Three different situations were calculated for the sake of comparison: i) with the grad-B, 
ExB and diagmagnetic drifts turned off, ii) with these drifts turned on and the toroidal magnetic 
field in the direction opposite to the plasma current shown in Figs. 1-4, denoted B(-), and iii) 
with the drifts turned on and the toroidal magnetic field reversed and aligned with the current 
opposite to the direction shown in Figs. 1-4, denoted B(+).  The drifts for case ii) are shown in 
Figs. 5 and 6, and the drifts for case iii) are just the negative of these. For the B(-) field direction 
the grad-B and curvature drifts were downward into the divertor, while for the B(+) field 
direction these drifts were upward away from the divertor. 
 

Density and temperature distributions 
 

The calculated densities and temperatures are shown in Figs. 5 and 6, respectively.  The 
drifts do not have much effect on the deuterium density and temperature distributions, except in 
the  recycling regions 1 and 50, where the diamagnetic and ExB drifts are large. The ExB drifts of 
Eq. (30) are largest near the divertor target plates because the electrostatic potential increases 
most rapidly there, and the diagmagnetic drifts are also largest near the divertor target plates, but 
because the parallel pressure gradients are largest there.  The effect of drifts on the carbon and 
argon density profiles is greater than on the deuterium density profile.   
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Figure 5  Ion Densities in SOL and  Figure 6  Temperatures in SOL and 
Divertor (regions1-9 & 42-50)  Divertor (regions1-9 & 42-50) 
 
With respect to Eqs. (12) and (13), the density profile is determined by the force balance 

requirement that the pressure plus inertial forces are constant over the SOL and divertor except 
for the momentum dissipation, which takes place for the deuterium ions primarily via atomic 
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physics collisions with neutrals in the divertor.  For the parameters of this calculation, for which 
the pressure in the SOL is almost 1000 Pa, the pressure term dominates the force balance, and 
the drift effects, which enter the density calculation via the inertial term in the force balance, 
have minimal effect except in the divertor, particularly in the recycling regions.  The effect of 
drifts on the temperature profile is via the density profile and is correspondingly small in this 
problem, again except in the recycling regions.  A greater sensitivity to drifts was found in a 
similar comparison10 for which the pressure was an order of magnitude lower in the SOL; such a 
sensitivity would result in this calculation also if the pressure contribution to the M term in Eq. 
(13) was decreased by an order of magnitude.  

  

Electrical current  density, potential, and fields 

 The grad-B and curvature drifts produce radial currents proportional to the grad-B and 
curvature drifts given by Eqs. (24) and indicated in Fig. 2.  Without drifts, the temperature 
distribution was symmetric and there was no thermoelectric current. With the B(-) drifts, there 
was a temperature asymmetry that drove a thermoelectric current and large radial gradB drift 
currents that drove parallel currents in order to maintain a divergence-free total current density. 
These radial grad-B currents and the compensating parallel currents were in opposite directions 
for the B(-) and B(+) field directions.  Note that the grad-B currents integrated to zero over the 
SOL to maintain ambipolarity, as discussed in connection with Eq. (27).  Scrape-off layer 
currents of comparable magnitude have been measured in DIII-D H-mode discharges, but we are 
unaware of any measurements of current profiles in the SOL. 

With the drifts turned off, the symmetric temperature and density distributions shown in 
Figs. 6 and 5 produced the symmetric electrostatic potential distribution shown in Fig. 7, as 
calculated from Eq. (19) using Eqs. (20), (28) and (29).  Turning on the grad-B drift and 
changing the direction of the toroidal magnetic field both produce a dramatic change in the 
parallel distribution of the electrostatic potential, primarily because to the differences in the 
parallel currents shown in Fig. 8.  

0 10 20 30 40 50
-200

-100

0

100

200

300

E
L
E

C
T

R
O

S
T

A
T

IC
 P

O
T

E
N

T
IA

L
 (

V
)

PARALLEL LOCATION

 w/o drifts

 w/drifts, B(-)

 w/drifts, B(+)

fig 10

0 10 20 30 40 50

-400

-300

-200

-100

0

100

200

300

400

C
U

R
R

E
N

T
 D

E
N

S
IT

Y
 (

k
A

/m
2
)

PARALLEL LOCATION

 w/o drifts

 w/drifts, B(-)

 w/drifts, B(+)

fig 9

 

Figure 7  Electrostatic potential distribution in  Figure 8  Parallel plasma current density in 
divertor (regions 1-9 and 42-50) and SOL.  divertor (regions 1-9 and 42-50) and SOL. 
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Differentiation of the electrostatic potential profiles of Fig.10 produces the parallel 
electric fields of Eq. (30), which are shown in Fig. 11.  These fields are generally small in the 
SOL but become quite large in the divertors, particularly in the vicinity of the target plates.   

As discussed in connection with Eq. (34), the implication of Eq. (19) is that the radial 
gradient of the electrostatic potential (the radial electric field) should be approximately 
proportional to the radial temperature gradient, which is characterized by the parameter 

1

T
dT Tdr

−∆ = − .  Using 
T

∆ = 2 cm and the temperature profiles of Fig. 8, Eq. (34) yields radial 

electric fields which are quite different with and without drifts and for the B(-) and B(+) toroidal 
field directions, primarily because of the difference caused in the electrostatic potentials of Fig. 7 
by the differences in parallel current distributions shown in Fig. 8.  For the B(-/+) field direction, 
the positive/negative radial electric field in the SOL corresponds to the temperature decreasing 
radially outward from the separatrix.  In the divertor, the experimental evidence is that the peak 
in the temperature profile just in front of the target is somewhat outside the separatrix, so that at 
the separatrix there is a transition from a ‘negative’ temperature gradient in the SOL to a positive 
temperature gradient at the target plate, leading to an oppositely directed radial electric field into 
the private flux region. 

 
Parallel flows 

 In the absence of drifts, because of the symmetry of the geometry and of the particle 
source from the core plasma into the SOL, the particle flows go symmetrically to the inner and 
outer divertor targets, as shown for D in Fig. 9.  The sputtered particle sources in front of the 
divertor targets for C are also symmetric, and the resulting C particle fluxes are symmetric in the 
absence of drifts, as shown in Fig. 10.  For D, the principle source of ions is the particle flux 

sep

⊥Γ from the core, although there is a smaller source due to ionization of neutrals (primarily in 

the divertor).  Without drifts, flow stagnation is at the symmetry point (between regions 25 and 
26) at the crown of the SOL, as shown for in Fig. 9.  For C the source is the sputtered carbon 
from the divertor plates deposited uniformly in the first two regions (1 and 2, 50 and 49), which 
is basically entrained in the high deuterium flow towards the plates in these regions. 
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Figure 9  Parallel deuterium ion velocity in  Figure 10  Parallel carbon ion velocity in 
divertor (regions 1-9 and 42-50) and SOL.  divertor (regions 1-9 and 42-50) and SOL. 
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Turning the drifts on produces two types of effects.  First, the parallel ExB and grad-B 
drifts of Eqs. (36) and (26) produce a local increase or decrease in particle parallel flow velocity.  
Second, the outward and inward radial particle drifts of Eqs. (24), (30) and (37) produce sources 
and sinks of particles in the SOL and divertor, which affect the parallel particle flux as indicated 
by Eqs. (38) and (50).  The parallel deuterium ion flux must increase or decrease in response to 
this variation in ion sources and sinks to satisfy the continuity equation.  The momentum balance 
equation is dominated by the pressure term in the SOL, which produces the relatively flat ion 
distribution over the SOL, so the variation in ion flux requires the variation in deuterium parallel 
velocity shown in Fig. 9. 

With reference to Fig.5 for the B(-) field direction, both the grad-B and ExB radial drifts 
are out of the core, providing a particle source in the SOL between the X-point (region 10) and 
the mid-plane (region18) of the inner SOL.  Between the mid-plane (region 18) and the crown 
(region (25) the grad-B drift is inward and the ExB drift is outward, providing a sink and a source 
of particles to the SOL.  Between the crown (region 26) and the mid-plane (region 33) of the 
outer divertor both drifts are inward from the SOL into the core, providing a particle sink in the 
SOL.  From the mid-plane (region 33) to the X-point (region 41) the grad-B drift is outward and 
the ExB drift is inward, proving a source and a sink, respectively, of particles to the SOL.  The 
diagmagnetic drift is relatively smaller in the SOL. The particle flux variation in the SOL for 
deuterium for the B(-) field direction shown in Fig 13 reflects this variation in particle source and 
sink distributions.  Note that there are three stagnation points in the deuterium parallel flow in 
the SOL for the B(-) drifts. Recent probe measurements of deuterium flow in a DIII-D L-mode 
discharge with the same B(-) field direction found a similar magnitude of deuterium flow in the 
crown region and also two flow stagnation points.  When the field direction is changed from B(-) 
to B(+) all of the radial drift directions are reversed, reversing the particle source and sink 
distributions in the SOL and resulting in the deuterium velocity shown in Fig. 9 

The calculated carbon parallel flow distributions are shown in Fig. 10.  The same type of 
variation in particle sources and sinks because of the radial drifts also is present for carbon, but 
obviously other factors are dominant in the carbon force balance because the carbon parallel 
flows are of the opposite sign from the deuterium parallel flows in many locations. 

 
Penetration of injected argon into the core plasma 

 It has been observed experimentally in DIII-D H-mode discharges that the  penetration of 
the core plasma by argon injected into the private flux region of the divertor is significantly 
greater when the ion grad-B drift is towards the divertor [B(-)] than away from the divertor 
[B(+)].  In the model of this paper, the net penetration of argon from the SOL into the core can 

be characterized by the parameter  ( ), , , 0
Xout

Xin

r r r

Ar E xB Ar B Ar dia Ar
n d

ξ

ξ

υ υ υ ξ+ + <∫ P
, indicating a net radially 

inward (-) drift.  This parameter is calculated to be < 0 for the B (-) field direction shown in the 
Figs. 1-4, with the ion grad-B drift direction into the divertor, and to be > 0 for the reversed B(+) 
field direction with the ion grad-B drift direction out of the divertor, in qualitative agreement 
with the experimental observation. The significantly lower argon density shown in the divertor 
and SOL in Fig. 7 for the B(-) than the B(+) magnetic field configurations is also indicative of 
this same trend; since both calculations were performed with the same argon source and 
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recycling coefficient, the lower argon concentration in the SOL for B(-) than for B(+) indicates a 
larger argon concentration in the core (by a factor 2-3).  
 

II. Summary  

A computationally tractable model has been developed for the calculation of density, 
temperature, flow, current, and electrostatic potential and fields along the separatrix in tokamak 
scrape-off layers and divertors.  The calculation is carried out in a 2D strip following the 
magnetic field lines around the tokamak from the inner to the outer divertor targets.  Cross-field 
transport and  magnetic geometry effects are treated analytically, reducing the calculation to a 
coupled set of nonlinear equations along the field lines, which are integrated numerically. 

  The calculation model was applied to calculate the effects of drifts and toroidal 
magnetic field direction on flows, currents, electric fields, density and temperature distributions 
in a model problem with parameters characteristic of a DIII-D H-mode discharge.  A number of 
interesting phenomena—multiple reversal of parallel flows and currents in the SOL, reversal of 
the sign of the electrostatic potential and electric fields with the reversal of the toroidal magnetic 
field direction, larger penetration of the core plasma by argon injected in the divertor when the 
ion gradB drift was towards than away from the divertor, etc.—were predicted, some of which 
have been experimentally observed.  
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2. COMPARISON OF THEORETICAL AND EXPERIMENTAL HEAT 

DIFFUSIVITIES IN THE DIII-D EDGE PLASMA 

W. M. Stacey,  Georgia Tech 
 
Abstract 

 Predictions of theoretical models for ion and electron heat diffusivity have been 
compared against experimentally inferred values of the heat diffusivity profile in the edge 
plasma of two H-mode and one L-mode discharge in DIII-D [J. Luxon, Nucl. Fusion, 42, 
614 (2002)].  Various widely used theoretical models based on neoclassical, ion 
temperature gradient modes, drift Alfven modes and radiative thermal instability modes 
for ion transport, and based on paleoclassical, electron temperature gradient modes, 
trapped electron modes, and drift resistive ballooning modes for electron transport were 
investigated. 
 
A. Introduction 

 

 The structure of the density and temperature profiles in the edge of tokamak 
plasmas has long been an area of intense research, at least in part because of the apparent 
correlation of this structure to global plasma performance.  Essential to an understanding 
of the structure in the edge density and temperature profiles, in the absence or in between 
edge-localized-modes (ELMs), is an understanding of the underlying transport 
mechanisms.  

A methodology for inferring the underlying heat diffusivities from measurements 
of temperature and density profiles in the plasma edge, which takes into account 
convection, atomic physics and radiation cooling, ion-electron energy exchange and other 
edge phenomena, has recently been developed and applied to several different types of 
DIII-D1 discharges2-5.  While some comparisons with theoretical formulas have been 
included in this previous work, the emphasis was on the development of accurate fits of 
the measured data for use in the inference of experimental heat diffusivity profiles and 
the accurate calculation of heat and particle fluxes to be used in these inferences.  The 
purpose of this paper is to report a comparison of several theoretical predictions of heat 
diffusivities with the experimentally inferred heat diffusivities, primarily to gain insight 
as to the more likely transport mechanisms in the plasma edge, and secondarily to 
compare some currently used transport models with experiment.  To this end, a number 
of computationally tractable theoretical heat diffusivity models which are widely used for 
transport modeling have been evaluated using the same experimental data from which the 
experimental heat diffusivities were inferred.  

We note the significant ongoing effort to model transport processes with large-
scale gyro-kinetic or gyro-fluid computer simulations of turbulent transport (e.g. Ref. 6).  
Such calculations will in the future be able to provide a rigorous test of turbulent 
transport mechanisms against experiment. However, such calculations for the plasma 
edge (including the various atomic physics, radiation and other edge phenomena) are not 
yet widely available. Thus, we were motivated to undertake a comparison of 
experimentally inferred heat diffusivities in the edge of DIII-D with the predictions of 
computationally tractable theoretical models evaluated also using that experimental data, 
with the intent of obtaining qualitative and semi-quantitative physical insights that can 
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provide guidance for future work. Even so, some of the models that we use are state-of-
the-art for the particular transport mechanism (e.g. the neoclassical and paleoclassical 
formulas) and all of them are representative of forms used today by transport modelers to 
represent heat diffusivities in transport simulations.    

The various theoretical models for heat diffusivities are set forth in Section II, and 
the procedure used to infer experimental profiles of heat diffusivity in the edge plasma is 
briefly summarized in section III.  The DIII-D shots used for the comparison are 
discussed in section IV, where the various experimental data important to the comparison 
are given.  The comparison of the predictions of the theoretical models with the 
experimentally inferred heat diffusivity profiles is summarized in section V, and the 
details of the comparison are presented in an appendix.  Finally, the work is summarized 
in section VI.   
 

B. Theoretical thermal energy transport models 

 

 Ion transport 

 

1. Neoclassical 
The neoclassical Chang-Hinton (neo_ch) expression for the ion thermal 

conductivity is7,8 
1

22
1 1 2 1 2(

i

neoch

i ii
a g a g g

θ
χ ε ρ ν  = + −        (1) 

where the a’s account for impurity, collisional and finite inverse aspect ratio effects and 
the g’s account for the effect of the Shafranov shift 
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where α = nIZI
2
/niZi

2, µi* = νiIqR/ε3/2υthi and ∆’ = d∆/dr, where ∆ is the Shafranov shift.   
The impurity thermal conductivity is obtained by interchanging the i and I subscripts in 
the above expressions. 

 The Shafranov shift parameter may be evaluated from9 
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3

2 2

2 2

1 1 r

a
o

d r
B B r dr

dr RB a r

' ' '

θ θ θ

θ

β
 ∆

∆ ≡ = − + 
 

∫                                                   (3) 

where βθ = p/(Bθ
2
/2µ0 ) and Bθa denotes the poloidal magnetic field evaluated at r = a.  

Since we need this quantity at r ≈ a, we can take advantage of the definition of the 
internal inductance 

 

2

2 2

2
a

o

i

a

B r dr
l

a B

' '

θ

θ

=
∫

                                                                                              (4) 

where βθa denotes the quantity evaluated using the average pressure over the plasma and 
Bθa is the poloidal magnetic field evaluated at the last closed flux surface (LCFS).  Using 
a parabola-to-a-power current profile j(r) = j0(1 – (r2

/a
2))ν, for which the ratio of the 

values of the safety factor at the edge to the center is qa/q0 = ν + 1 , and a fit9 

li = ln(1.65 + 0.89ν) leads to the simple expression  

 

1

2

1
1 65 0 89 1

2

a i

a
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o

a
l

R

qa
ln

R q

θ

θ

β

β

 
∆ = − + 

 

   
= − + + −        

'

. .

                                                 (5) 

In the presence of a strong shear in the radial electric field, the particle banana 
orbits are squeezed, resulting in a reduction in the ion thermal conductivity by a factor of 
SE

-3/2, where10 

ln
1 r r

E i

thi

d E E
S

dr B
θ

θ

ρ
υ

  
= −   

  
      (6) 

Here 
iθρ is the ion poloidal gyroradius. 

 The neoclassical transport phenomena are always present and are believed to 
constitute an irreducible minimum for transport. 
 
2. Ion temperature gradient (itg) modes 
 The itg modes are believed to be among the most likely of several drift wave 
instabilities which could be responsible for anomalous thermal transport.  For a 

sufficiently large ion temperature gradient ( )( ) crit

Ti i i Ti
L T dT dr L≡ − < the toroidal ion 

temperature gradient (itg) modes become unstable.  In the large aspect ratio, low beta 
limit, the critical temperature gradient for the destabilization of itg modes can be written11 

( )crit
2

0.8 ,

=max
11 1.33 1.91 1 1.15

ne

Ti

R or
L

R

r dqL

q dr
ετ

 
  
        + + −      

            (7) 

where 
eff e i

Z T Tτ ≡ .  For ( )Ti Ti crit
R L R L< ,  the toroidal etg modes are linearly stable, 

but for ( )Ti Ti crit
R L R L>  these modes are unstable and produce thermal ion transport. 
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Several early gyro-Bohm expressions (e.g. Ref. 12) for the heat diffusivity of the 
itg modes take the form 

1
25 1

4

itg i e
i

Ti Ti critTi i

T R RH
L LRL e B

ρ
χ

      = −            
    (8) 

where H is the Heaviside function, 
i

ρ  is the ion gyroradius in the toroidal magnetic field 

B, and 2
i

k ρ⊥ =  has been used.  

 More recently, Horton, et al.13,14 combined semi-quantitative knowledge of 
microturbulence  with information from experiments to develop an expression for the ion 
thermal diffusivity due to the itg modes.  They argued that transport over a scale much 

larger than the radial correlation length 
c

λ  of the turbulence but much less than the minor 

radius of the plasma must be governed by diffusive processes with a local thermal 
diffusivity that depends on the local features of the turbulence, i.e. 

( ) ( )2 /
i c c ExB c c

fχ λ τ υ τ λ= , where 
c

τ is a characteristic time.  They then combined the 

condition for marginal stability of the itg modes  ( )( )e Ti sT eB k L c qRθ ≈  with the 

fact that the propagation time for ion acoustic waves over the effective parallel distance 

qR of the system is 
s

qR c to estimate the cutoff wavenumber ( )cut

s Tik qR Lρ⊥ ≈ . [The 

symbol 
s

ρ is widely used for the ion gyroradius, and we will use both this symbol and 

i
ρ .]   Assuming that the radial and poloidal correlation lengths are the same, they then 

estimated the radial correlation length ( )c s TiqR Lλ ρ≈ .  The maximum value of the 

growth rate ( ) /thi s Tik RLγ υ ρ⊥≈  occurs for ( ) 1 2sk ρ⊥ ≈ .  Estimating the characteristic 

time as the inverse of the maximum growth rate then yields13  

 

3/ 2

2itg e s
i i

Ti Ti

T R
C q

eB L L

ρ
χ

   
=    

   
      (9a) 

where Ci was interpreted to be a measure of the fraction to which the turbulence reached 

the full mixing length level 
T

L e Tφl ;  and was determined Ci = 0.014 by fitting the 

above formula to experimental data from Tore Supra14.  We will use this value of Ci.  
Equation (9a) predicts a stronger dependence on the ion temperature gradient than does 
Eq. (8). If instead the characteristic time was estimated as the inverse of the linear growth 

rate with 1 2
s

k ρ⊥ ≈ the estimate of the ion thermal diffusivity is instead13 

 

1/ 2

itg e s
i i

Ti Ti

T R
C q

eB L L

ρ
χ

   
=    

   
      (9b) 

A more complete treatment of the transport due to toroidal itg modes was developed 
by Weiland15.  The model was developed from a linear stability analysis of the continuity, 
momentum and energy balance equations, resulting in a dispersion relation that must be 
calculated numerically. In this paper we will use the wave number at which the maximum 

transport for itg modes occurs, 0.3 /
s

k ρ⊥ = , rather than solving the dispersion relation. 

The resulting ion transport is derived from the quasilinear approximation and can be 
considered a version of itg, and the electron transport can be considered a version of tem.   

The onset (instability) condition for this toroidal itg mode is   
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 (10) 

where  

,

,

2
, ,

eff en n
i e n

Ti e i

Z TL L

L T R
η τ ε≡   ≡   ≡   (11) 

 The quasi-linear estimates for the thermal diffusivities in the Weiland model were 
constructed by estimating the turbulent heat fluxes and then assuming they satisfied a 
Fick’s law (i.e. were conductive).  We will distinguish such effective thermal diffusivities 
which also indirectly account for any convective heat fluxes by referring to them as 
effective heat diffusivities.  The effective ion heat diffusivity obtained in this way is 

 ( )

3

2

2

2

1 2 10

3 9 5

3

itg n
i i

eff
i

r Di

k
γ

ε
χ η

η τ
ω ω γ

 
= − −    

− + 
 

    (12a) 

if parallel ion motion and trapped particle effects are neglected, and is

 ( ) ( )

3

2

2

2

1 2 10 2
1

3 9 3 5

3

itg n
i i tr tr i

eff
i

r Di

kf f

γ
ε

χ η
η τ

ω ω γ

 
= − − − − ∆    

− + 
 

             (12b) 

when they are taken into account.  The drift frequencies are calculated from the curvature 
and grad-B drifts 

 
3 3

,i e
Di De

kT kT

eB R eB Rφ φ

ω ω=   = −        (13)  

 
and from the density gradients 
 

* *,i e
i e

n n

kT kT

eB L eB Lφ φ

ω ω= −   =        (14) 

 
the growth rate of the mode is 
 

 *

2 21

e n

i ith

s
k

ω ε τ
γ η η

ρ
= −   

+
       (15) 

the oscillatory frequency of the mode is 
 

 2 2

*

1 51 10
1 1 1

2 3 3
i n

r e n s n
k

η ε
ω ω ε ρ ε

τ τ τ

 +   
= − + − + − −    

    
   (16) 

and the quantity 
i

∆ is 
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where 
 

µ $ µ µ $
2 2 2

* *

, ,r
r r

e e

ω γ
ω γ ω ω γ

ω ω
=   =   = +       (18) 

and 
 

µ $ µ $ µ
2 2

2 2 2
210 5 5

4
3 3 3

r r rn n n
N ω γ ω ε ε γ ω ε

   
= − − + + −   
   

    (19) 

 
A simplification of the Weiland formalism (in which the form for the particle 

diffusion coefficient is used also for the ion heat diffusivity) is given by the Kalupin et 
al.16 estimate  

( )
( )

( )
1/ 22

21 1 1

2 2

2 1 1 2 20 1
1

0.3 3 1 8 9

itg i e
i Ti n n tr

eff
tr

T
L L L f

eB R f R Rφ

ρ
χ

τ τ

−− − −
    

= − − − − −    
−     

(20) 

used in transport simulations by the Julich group16 , where 0.3 /
itg i

k ρ; has been used to 

represent the itg modes causing the largest transport in an improved mixing length 
approximation.  

 When ( )Ti Ti crit
R L R L> , or 

i ith
η η> , the itg modes are unstable and produce 

transport.  However, the transport predicted by Eqs. (8), (9), (12) and (20) does not take 
into account the predicted17 damping of the growth rates of these modes by ExB shear. 
The itg modes are predicted to be substantially suppressed by ExB flow shear when the 
ExB shearing rate for turbulent eddies  

r
ExB

RB E

B r RB

θ

φ θ

ω
 ∂

≡  
∂  

       (21) 

is comparable to or greater than the maximum linear growth rate max

itgγ  of the mode 

spectrum18.  For the itg mode with the greatest transport the wave number is13 

0.3 /
s

k ρ; , and the maximum growth rate is13 
( )

1/ 2max

0.3itg s

Ti

c

L R
γ ;  ( )s e i

c T m= .  This ExB 

suppression can be represented by the multiplicative shear suppression factor19,20 

( )
max2

1
, /

1

itg itg itg

s s EXB
itg

s

F Y
Y

ω γ=         =
+

                                                           (22) 

so that the transport rates of Eqs. (8), (9), (12) and (20) are reduced to 
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             µ ( )
itg

itg itg

i s ExB iFχ ω χ=                                                                                        (23)  

by ExB flow shear  

             An additional magnetic shear [ ( )( )mS r q dq dr≡ ] suppression factor ( )mG S has 

been introduced empirically into transport simulations to obtain better agreement with 
experiment19-22.  Such magnetic shear stabilization could be related to the dependence of 
the itg thermal diffusivity on magnetic field23 and/or to the predicted45 reduction in the 
heat diffusivity of high radial itg modes with increasing magnetic shear.  Thus, the ExB 
flow and magnetic shear-suppressed ion thermal diffusivity due to itg modes can be 
represented as19 

° ( ) µ ( ) ( )
itgitg

itg itg

i im m s ExB iG S G S Fχ χ ω χ= =      (24) 

In this work, we follow Ref. 21 in using ( ) 1.8

m mG S S
−=  to represent the additional 

magnetic shear-suppression. 
 
3. Drift Alfven modes 

 Drift Alfven (da) instabilities are driven by collisions and hence become important 
in the more collisional edge plasma.  Numerical modeling25 indicates that ExB shear 
alone can not stabilize these modes (low collisionality and a steep pressure gradient are 
also needed). An analytical model26 which takes these effects into account yields the 
expression 

( ), /da gb

i i n
χ χ χ β ν µ⊥= P   (25) 

where the ion gyro-Bohm thermal conductivity is 2gb

i s s pic Lχ ρ= , with ( )pi i iL p dp dr≡ − , 

pii e i e
pi

e i e i

Lm T m T
k L

m T m TqR
µ = − −P ;           (26) 

for 1k qRP ; , and 

( )
1/ 2

3
2 2

2 4 3

1

1

n n

n n

β ν
χ

β ν

−

⊥

 + +
 =
 + +
 

  (27) 

where 

( )
1 21 1

2 4

2

0

, ,

2

pii e e i
n n

e pi e e

qRLm n T mqR

Bm L m
β β β ν

λ
µ

   
≡    =   ≡   
   

 (28)  

with /
e the ei

λ υ ν= being the electron mean free path. 

 
4. Thermal instabilities   
 In the weak ion-electron equilibration limit, local radial thermal instabilities in the 
edge ion and electron energy balances are decoupled, and the linear growth rates may be 
written in the general form27 

 ( )2 2 1
0

2 5
      

3 2
T r TL k L

n
γ χ ν ν α− −⊥Γ 

= − + + − 
 

                                               (29) 
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where the first two terms represent the generally stabilizing effect of heat conduction and 

convection, respectively, with LT
-1 = (-dT/dr)/T for the species in question, Γ⊥ being the  

ion or electron particle flux, and ν characterizing the temperature dependence of the 

underlying thermal conductivity for that species, χ0 ~ Tν.  We use ν = 2.5, but the results 
are relatively insensitive to this value. (There is a similar result in the strong equilibration 

limi27.) The α-terms represent the generally destabilizing atomic physics and impurity 
cooling terms in the respective growth rates for the ions 

( )
5 3 1

  1   1      
2 2

c
c i at i i

i ion at c
i iat

T H H

T n T T

ν
α ν ν ν ν ν

ν

    ∂ ∂
= − + − + − −     ∂ ∂   

 (30a) 

and for the electrons 

 

( )
5 3

     1       
2 2

1
                                                              

ion ion e ionz z
e z ion

e e e e ion e

e e

e e

E E TL L
n

T T T T T

H H

n T T

νν
α ν ν ν

ν

ν

     ∂∂  
= − + − + − +    

∂ ∂     

 ∂
− − 

∂ 

 (30b)  

The terms νion and νat are the neutral ionization frequency in the pedestal region and the 
frequency of charge-exchange plus elastic scattering events involving ‘cold’ neutrals that 
have not previously undergone such an event in the pedestal region.  Eion is the ionization 
energy, and nz and Lz are the density and radiative emissivity of impurities in the edge 
pedestal region.  H represents any additional heating or cooling in the pedestal. 
 A mixing length estimate of the transport associated with such thermal 
instabilities (ti) is  

 2

, ,

ti

i e i e rkχ γ −;                                                                                                       (31)   

In the numerical evaluation, we use the neoclassical and paleoclassical values of the ion 

and electron thermal diffusivities to evaluate the “background” 0χ  in Eq. (29).  When the 

calculated growth rate is negative, the thermal instabilities are not present. 
 

Electron transport 

 

1. Paleoclassical  

Callen’s model28 based on classical electron heat conduction along field lines and 
magnetic field diffusion in which the electron temperature equilibrates within a distance 
L along the field lines and in which radially diffusing field lines carry this equilibrated 

temperature with them and thus induce a radial electron heat transport 10M L qRπ; :  

times larger than the resistive magnetic field diffusion rate leads to the following 
paleoclassical (paleo) expression for the electron heat diffusivity 

2

0

1.5(1 )
nc

paleo

e e e
M

η
χ ν δ

η
= + P        (32) 

Taking L as the minimum of the electron collision mean free path or the maximum half 
length of the helical field results in  

max

1/

1 1
e

Rq
M

π

λ
=

+l
        (33) 
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where 

( )

3

2

3
2

1.4 10 ln
, / ,

17

eff

e e e pe

e

x Z
c

T eV
δ ν δ ω

Λ 
  =    =   

 
, 

*
max 1 1

2 2

,

1e
e

R qRq

dq dq

d a q d

ππ

δ
πδ

ρ ρ

≡ =   
    
    
    

l  

 

( )
( )

1
20

* *

2 2 ln(1 2) 1

2 13 / 4 1

nc

eff eff c

ceff
eff e e

Z Z f

fZ Z

η

η ν ν

 
 + + − + − 

= +   +  + +   
 

P , 

( ) ( )
1/ 2 22

1/ 2

1 1

1 1.46 0.2
c

f
ε ε

ε ε

−

− −

+ +
;  

( )16 2
3

2
*

1.2 10 17
/ ,

ln

e

e e e

e eff

x T eV
Rq

n Z
ν ε λ λ

 
=   =  

Λ 
    (34) 

The quantity 
c

f  is the fraction of circulating particles, and 1
tr c

f f= −  is the trapped 

fraction. The paleoclassical transport phenomena are always present and are believed to 
constitute an irreducible minimum level of electron transport28. 

 The paleoclassical heat transport is not in the conventional form 
e e e e

q n Tχ= − ∇  of 

conductive heat transfer that is used to infer exp

e
χ .  An alternative form29 of the effective 

paleoclassical thermal diffusivity can be constructed using the paleoclassical heat 

transport operator in analogy to the procedure used to construct exp

e
χ   

( )
( )

( )
1

2

'

paleo

epaleo

ePB
eff

e e Te

P

V
n T aL

a

ρ
χ

−

=         (35) 

where ( )2 22 1a a κ κ= + , 

( ) ( )
( )

( ) ¶
2 2

0 022 2 1/ 2

3
1 ' 1

2
i ipc

e i

D n
P d M V nT d M D

Ta

ρ ρη

ηρ ρ ρ ρ
ρ ρ

 
∂ ∂   = − + ≡ − +∫ ∫   ∂ ∂   

 

 (36) 

is the radial paleoclassical heat flow through the flux surface at r aρ = ,   

 
3/ 2

0

1400 ln

17

eff

e

Z
D

T
η

η

η

Λ 
=  

 

P         (37)  

is the magnetic field diffusivity, and  2 1 ln
' (2 ) 1

2
V a R

κ
π κ ρ ρ

ρ

 ∂
= + 

∂ 
. 
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2. Electron temperature gradient modes 

 The electron temperature gradient (etg) modes are electrostatic drift waves with 

s pe
k c ω⊥ ≤ .  The threshold electron temperature gradient for the linear destabilization of 

etg modes has been established from linear toroidal gyrokinetic simulations11 

( ) ( )crit
2

0.8 ,

=max
1 1.33 1.91 1 1.15

ne

Te

R or
L

R

r dqL

q dr
τ ε

 
  
       + + − 
   

       (38) 

For ( )Te Te crit
R L R L< ,  the toroidal etg modes are linearly stable, but for 

( )Te Te crit
R L R L> the modes would be expected to exist and produce transport.  

A simple expression for the thermal conductivity due to the etg modes is given 
by9 

         ( )
2

0.13 1etg s the m
e e e

pe

c S

qR

υ
χ η η

ω

 
= +  

 
     (39) 

where ( )( )mS r q dq dr≡  is the magnetic shear and 
pe

ω is the electron plasma frequency. 

 The short-wavelength etg modes are not thought to be strongly affected by ExB 
flow shear19.  However, shear also produces a shift of the drift wave eigenmodes off the 
rational surface and a twisting of mode structure, which suppresses the turbulent transport 
due to etg modes30. This suppression can be represented by the multiplicative suppression 
factor19,30 

( )
2

1

1

etg

s
etg

s

F
Y

=
+

,       
1

r

i
s

e

ER

r RBm
Y

qT

q r

θ

 ∂
 

∂  =
∂

∂

     (40) 

and the shear-suppressed etg mode thermal diffusivity can be represented as 

 µetg
etg etg

e s e
Fχ χ=          (41) 

A recent development by Horton et al.13 includes the magnetic shear suppression 
directly in the derivation 

3/ 2
2

2

,

2

,2

1.88 1 ,

,

m eetg es ese the e
e e e eff c e e

Te e i

es esthe
e c e e

pe Te

S T TR
C q T Z

L T qR T

c
C

RL

ρ υ
χ δ

υ
δ

ω

       
= −∇ − +     ≥       

        

  
       =      <    

  

l

l

(42) 

where es

e
C is a parameter, interpreted as the fraction to which the turbulence reaches the 

unsuppressed level, which must be fitted to match experimental data  (Horton, et al.13 

found 0.03es

e
C ≈  for Tore Supra, and Bateman, et al31. use 0.06es

e
C ≈  in their Multimode 

transport model), , /es

c e e Teq R Lρ=l , and
e

δ  is the collisionless skin depth.   
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3. Trapped Electron Modes  

 The principal electron drift instabilities with 
s i

k c⊥ ≤ Ω arise from trapped 

particle effects when  ( )
3

* 2/ 1e e the qRν ν υ ε≡ < .  In more collisional plasmas the mode 

becomes a collisional drift wave destabilized by passing particles.  A simple expression 
for the electron heat diffusivity associated with electron trapping was given by 
Kadomtsev and Pogutse32 based on the improved mixing length estimate 

( ) ( )3 2 2 2

tem r
kχ γ γ ω≈ +  

( )

2 2

*

22

*

( / )tem tr e i e e
e

e e

f η ρ ω ν ε
χ

ω ν ε
=

+
                                                                                (43)   

where  1/
tem i

k ρ≈  , the value of the tem k-value for which the maximum growth rate 

occurs, has been used.    
 Weiland15 considers a reactive trapped electron mode which is almost symmetric 
to the itg mode leading to the transport given by Eqs. (12).  The improved mixing length 
quasilinear estimate of the effective electron heat diffusivity of this coupled tem is 
 

 ( )

3

2

2

2

2 2

3 3 5

3

tem tr
e e e

eff
e

r De

f k
γ

χ η
η

ω ω γ

 
= − − ∆    

− + 
 

         (44) 

where 
 

µ

µ ( ) µ

µ ( )

2

2

2

3

14 10
1 2

3 3

1 5 8 2
3

3 3 3

50 25 7 5
1

9 9 3 3

rn n e n

e n e n

r n n e n

N

ω ε ω ε η ε

ω

ε η ε

ω ε ε η ε

   
− + − − +   

   
   

∆ = − + +   
   

  
− − + − −  

  

    (45) 

 
and the other quantities are defined above in the section on itg modes. 
 The tem’s are longer wavelength modes coupled to the itg modes and should be 
suppressed by ExB flow shear in the same way as the itg modes, so that the ExB shear-
suppressed thermal diffusivity due to tem’s can be represented as19 

 µtem
itg tem

e s e
Fχ χ=           (46) 

and the further magnetic suppression is represented as for the itg modes 

 ° ( ) µ ( ) ( )
temtem

itg tem

e em m s ExB eG S G S Fχ χ ω χ= =           (47)  

 
4. Drift Resistive Ballooning Mode  

The drift-resistive ballooning (drb) mode is destabilized by unfavorable curvature 
on the outboard side of the torus in a collisional edge plasma.  Linear stability analysis33 

indicates that the transport associated with these modes can be characterized by a particle 
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diffusion coefficient scaling ( ) ( )
2 22

e ie n
D q R Lπ ρ ν:  with a proportionality constant 

equal to the flux surface average of the normalized fluctuating radial particle flux <nVr> . 
Subsequent calculations34 found robust growth rates of drb modes for the edge 
parameters of DIII-D and predicted the normalized fluctuating radial particle fluxes for 
models representative of  DIII-D core parameters <nVr> ≈ 0.01-0.05.  We adopt the form 

( )
2

4drb

e e e

n

R
q

L
χ ρ ν=              (48) 

with the normalization factor equal to 4 to characterize the transport of electron energy 
due to drift-resistive ballooning modes, with the caveat that there could well be an 
additional normalization constant needed.  We note that one group of transport 
modelers36 calibrated this formula to L-mode data and found a factor of 94κ-4 (instead of 
4) should multiply this expression (κ is the elongation), while another group16 used this 
expression with the factor of 4. 
 The ExB flow shear suppression for drb modes is represented19 by the 
multiplicative factor 

         
( )

22

2

21
, , 2

21

idrb drb drb
s s ExB drb ExB drbdrb

drb
e e e ns

neL
F Y L q

m RLY

η ρ
ω τ ω π

χ

  
=      = =     =   

Ω +    

P (49) 

where the expression for the correlation length (turbulence characteristic scale length) 

drb
L  is taken from Ref. (36).  The ExB shear-suppressed thermal diffusivity is then 

represented as 

 µdrb
drb drb

e s e
Fχ χ= .                      (50) 

and the additional magnetic shear suppression is represented by 

° ( ) µ ( )
drbdrb

drb drb

e em m s eG S G S Fχ χ χ= =                  (51) 

 
5. Resonant Magnetic Perturbation Diffusion 

When the I-coil is turned on (in DIII-D) there is a resonant magnetic perturbation in 
the plasma edge in DIII-D.  A magnetic field line integration code37 is used to 
numerically calculate the magnetic diffusivity Dm  across the outer region of the plasma 

where resonant magnetic perturbations from the DIII-D I-coil are expected to produce a 
significant level of stochasticity. The magnetic diffusivity of a field line is defined as: 

Dm = δ r
2 /2L           (52) 

where δ r  is the total radial displacement, calculated at the outboard midplane, between 
the starting point of the field line calculation and its end point. Here, L  is the total 
parallel field line length from the starting point to the end point. Since the DIII-D version 

of the field line integration code calculates trajectories in poloidal flux space (ψ ), an 

average Dm

ψ  taken over an ensemble of N  starting points on a single flux surface is 

determined on each flux surface based on the diffusion field lines in flux space using: 

Dm

ψ =
1

N
δψ j

2 2Lj

j=1

N

∑  (53) 
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where δψ j  is the total displacement of a single field line in poloidal flux and L j  is its 

total parallel length. As discussed in Ref. [38], Dm

ψ  is converted to real space variables 

Dm

r  with units of meters using a geometric factor that accounts for the shape of the flux 

surface. Then, an average stochastic magnetic electron thermal diffusivity χe−m

r  in units 

of m
2

s is calculated using: 

vr r

e m the m
Dχ − =     (54) 

where v
the

 is the electron thermal speed on the starting flux surface. The code is typically 

set to calculate N =180 poloidally distributed, equally spaced, field line trajectories on 
each flux surface and follows each field line until it either hits a solid surface or makes 

200 toroidal revolutions. A field line escape fraction 
esc

f , the ratio of field lines hitting a 

solid surface to the number of field lines started on each flux surface N , is calculated on 

each flux surface and a weighted χ e−m

r

w
 is calculated using: 

r r

e m esc mw
f Dχ − =  (55) 

 
C. Evaluation of experimental heat diffusivities 

 

Since the total ion and electron heat fluxes, ,i e
Q , consist of a conductive 

component 1

, , , , , ,i e i e i e i e i e Ti eq n T nT Lχ χ −= − ∇ =  plus a convective component , ,5 2
i e i e

TΓ , 

values for the radial thermal diffusivities can be inferred from the experimental density 

and temperature profiles using2-5  

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

( )
( )

, , ,exp

, , ,

, , , , ,

5

2

i e i e i e

i e Ti e Ti e

i e i e i e i e i e

q r Q r r
r L r L r

n r T r n r T r n r
χ

 Γ
= ≡ − 

  
 (56) 

where  ( )1

, , ,/
Ti e i e i e

L T r T− ≡ − ∂ ∂ , ,i e
Q  are the total heat fluxes, which satisfy 

( ) ( ) exp3 3
,

2 2

c ci
i i nbi i o i o ie i sep sepicx el

Q
n T q T T n n q Q r Q

r t
συ

+

∂ ∂  
= − + − − −    = 

∂ ∂  
 (57) 

and 

 ( ) exp3
,

2
e

e e nbe ie e o ion e z z e sep sepeion

Q
n T q q n n E n n L Q r Q

r t
συ

∂ ∂  
= − + + − −    = 

∂ ∂  
 (58) 

and , , ,i e i e ri e
n υΓ ≡ is the radial particle flux, which satisfies 

 ( ) exp,i i
e o nb i sep sepiion

n
n n S r

r t
συ

∂Γ ∂
= − + +     Γ = Γ

∂ ∂
    (59) 

In these equations, 
o

n  is the recycling or gas fueling neutral density in the edge pedestal 

(the superscript “c” denotes uncollided “cold” neutrals), ,nbi e
q  is the neutral beam heating,  

nb
S  is the neutral beam particle source, 

ie
q  is the collisional energy transfer from ions to 

electrons,  
x

συ is an atomic physics reaction rate (x=cx+el denotes charge-exchange 
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plus elastic scattering, x=ion denotes ionization), 
z

n  and 
z

L  are the impurity density and 

radiation emissivity, and 
ion

E  is the ionization potential.  The atomic physics data are 

taken from Ref. 39, and the radiation emissivity is calculated from a fit to coronal 
equilibrium calculations (taking into account the effect of charge-exchange and 
recombination in the presence of recycling neutrals) based on the data given in Ref. 40. 

The experimental heat diffusivity of Eq. (56) is the proper quantity to compare 
with theoretical predictions of the actual conductive heat diffusivity, such as the 
neoclassical prediction of Eq. (1).  However, many of the expressions for the heat 
diffusivities due to turbulence were constructed by dividing the theoretical expression for 
the total ion or electron heat flux due to turbulence by the corresponding temperature 
gradient and density (i.e. the total heat flux was effectively assumed to be conductive, 
and any convective heat flux was neglected).  Such theoretical expressions should 
probably be compared with an effective experimental heat diffusivity constructed in a 
similar fashion  

 ( ) ( )
( )

( ) ( )
,exp

, ,

, ,

i e

i e Ti eeff
i e i e

Q r
L r

n r T r
χ =       (60) 

This effective quantity should be interpreted as just what it is, a ratio of total heat flux to 
the product of the density and the temperature gradient, and not attributed any physical 
significance as a “heat diffusivity”. 
 An integrated modeling code41 was used to i) calculate particle and power 
balances on the core plasma in order to determine the net particle and heat outfluxes from 
the core into the scrape-off layer (SOL), which are input to ii) an extended 2-point 
divertor plasma model (with radiation and atomic physics) that calculated densities and 
temperatures in the SOL and divertor and the ion flux incident on the divertor plate, 
which iii) was recycled as neutral atoms and molecules that were transported through the 
2D divertor region across the separatrix to fuel the core plasma.   
 Equations (57)-(59) were integrated over the edge region to calculate the heat and 
particle flux profiles, using the experimental density and temperature profiles.  The 
separatrix boundary conditions on the particle and heat fluxes were the “steady-state” 
experimental values determined from the integrated modeling code. The time derivative 
terms were evaluated from experimental data to account for plasma heating, etc.  The 
heat and particle fluxes calculated from Eqs. (57)-(59) were then used, together with the 
experimental density and temperature profiles, to infer the experimental thermal 
diffusivities from Eq. (56).  The details of this procedure and the uncertainties in the 
resulting experimental thermal diffusivities are described  in previous papers2-5.   
 
D. DIII-D Shots 119436 and 118897 

 

Two DIII-D shots for which detailed data analysis had been previously 
performed4,5 were selected for comparison of theoretically predicted and experimentally 
inferred heat diffusivities.  In both shots the experimental data were analyzed over about 
the outer 15% of the plasma radius, including both the steep-gradient edge pedestal 
region and the relatively flat density and temperature “flattop” region just inside the edge 
pedestal. Both shots were lower single null divertor configuration with neutral beam 
heating.  
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Shot 119436 was an ELMing H-mode shot with a global steady state phase, which 
was analyzed.  To reduce the influence of any random measurement errors, the time 
interval between ELMs was divided into 5 time bins, and data was collected from a 
sequence of inter-ELM time intervals and averaged, as indicated in Figs. 1 and described 
in detail in Ref. 5.  The data in the time bin just before an ELM crash was chosen for the 
analyses of this paper.  The main parameters were B = -1.64 T, I = 0.99 MA, R = 1.77 m, 
a = .58 m, κ = 1.83.  The time 3250 ms was chosen for analysis.  At this time the neutral 
beam power was 4.3 MW, the gas fueling rate was 0 atoms/s, the line average density 

was n = 4.2x1019/m3, and the safety factor was q95 = 4.2.  The parameters at the top of the 

edge pedestal were 19 31.8 10 / , 731 , 900i e

ped ped pedn x m V T eV=  Τ =  = .   

Shot 118897 had an ELM-free L-mode and H-mode phase, both of which were 
analyzed for this paper. The edge density and temperature measurements for three times 
in the ELM-free phase of this shot are shown in Figs. 2. The main parameters were B = -
1.98 T, I = 1.39 MA, R = 1.71 m, a = .60 m, κ = 1.82.  The L-H transition occurred 
shortly after the time, 1525ms, chosen for analysis of the L-mode.  At this time the 
neutral beam power was 4.45 MW, the gas fueling rate was 6.2x1019 atoms/s, the line 

average density was n = 3.2x1019/m3, and the safety factor was q95 = 3.52.  The 
parameters at the top of the edge pedestal were 

19 31.16 10 / , 200 , 50i e

ped ped pedn x m eV T eV=  Τ =  = .  The time chosen for the H-mode 

analysis, 2140 ms, was well after the L-H transition and before the first ELM occurred.  
At this time the neutral beam power was 2.33 MW, the gas fueling rate was 2.5x1019 

atoms/s, the line average density was n = 7.7x1019/m3, and the safety factor was q95 = 
3.70.  The parameters at the top of the edge pedestal were 

19 38.03 10 / , 694 , 524i e

ped ped pedn x m eV T eV=  Τ =  = .   

The data analysis procedure is described in Refs. 4 and 5.  The details of the data 
interpretation procedure described in the previous section for these shots are also 
described in Refs. 4 and 5, where uncertainties in the evaluation of thermal diffusivities 
from the measure density and temperature profiles and the treatment of transisient 
conditions are also discussed in detail. 
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Fig. 1  Density, temperatures and pressure in edge region of DIII-D shot 119436 
(squares=data 10-20% after ELM crash, +=data 80-99% after ELM crashes used in the 
analyses of this paper, dashed line=fit 10-20% after ELM crash, solid line=fit 80-99% 
after ELM crashes) ρ= normalized radius5.  
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Figure 2. Measured and fitted densities and temperatures in the edge of DIII-

D shot 118897 during the ELM-free phase4.  (L-H transition took place just before 1640 
ms). 

 
Comparison of theoretical and experimental heat diffusivities  
 
1. Transport parameters 

Various parameters which affect the theoretical transport predictions are shown in 
Figs. 3. Shot 119436 was the least collisional, with the collisionality parameter 

*

ei
ν varying monotocally from about 0.1 in the inner flattop region (at 0.86ρ ; ) to about 

3.0 just inside the separatrix (at 1ρ = ).  For the H-mode phase of shot 118897 the 

corresponding variation in *

ei
ν  was from about 0.8 to about 20, and for the L-mode phase 

of shot 118897 the corresponding variation in *

ei
ν was from about 1.1 to about 25.  

The parameter ( ) ( ), , , ,i e n Ti e i e i e
L L dn ndr dT T drη ≡ ≡ − −  is everywhere greater 

than unity for electrons in both the L- and H-mode phases of shot 118897 and greater 

than unity for 0.94ρ >  in shot 119436, which is sometimes taken as an indication of the 

instability of etg modes and the presence of etg transport.  This parameter for ions is 
larger than unity (taken as an indication of the existence of itg transport) for the flattop 
region but smaller than unity for the steep-gradient pedestal region for both the L- and H-
mode phases of shot 118897.  The behavior of this parameter in shot 119436 is 

interesting in that the density profile was actually slightly hollow, inside of 0.94ρ ≈ , 

leading to ( ) 0nL n dn dr≡ − < over the flattop region.  This in turn led 
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to , , 0
i e n Ti e

L Lη ≡ <  over the flattop region, which in turn led to negative heat diffusivities 

or other unphysical behavior being predicted by some of the theoretical formulas. 
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Figure 3  Transport parameters ( ) ( )*

, , , ,, , / ,
ei i e n Ti e i ith Ti e Ti e crit

L L R L R Lν η η η ≡  / in edge of 

a) ELMing H-mode shot 119436, b) ELM-free H-mode shot 118897 at 2140ms, c)L-
mode shot 118897 at 1525 ms. 

 
The temperature gradient conditions for the onset of etg instabilities (hence the 

existence of etg transport) given by Eq. (38), ( )( )Te Te crit
R L R L>  was satisfied over the 

entire domain 0.86 < ρ < 1.0 for all three shots.  The corresponding condition for the 
onset of itg instabilities (hence for the existence of itg transport) given by Eq. (7), 

( )( )Ti Ti crit
R L R L> , was generally satisfied in the flattop region for all shots and just 

inside the separatrix for shot 119436, but was not satisfied in general in the steep-gradient 
edge pedestal region.   
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The evaluation of the instability threshold condition for itg-tem modes in the 
Weiland model, Eq. (10), yielded essentially the same results as the 

( )( ), ,Ti e Ti e crit
R L R L>  criteria for the L- and H-mode phases of shot 118897.  However, 

the evaluation of Eq. (10) for shot 119436 led to negative values for 0.96ρ ≥  and for 

0.94ρ ≤ .  The negative values of Eq. (10) for 0.96ρ ≥  can be interpreted as itg 

instability for any 0
i

η > , which then makes the prediction of itg instability and transport 

for 0.94ρ ≥  consistent with the ( )( )Ti Ti crit
R L R L>  prediction for shot 119436.  

However, for 0.94ρ ≤ , the hollow density profile leads also to 0
i

η < , making the 

evaluation of itg instability and the existence of itg and tem transport from Eq. (10) 
indeterminate for this model in this region. 

The profiles of the safety factor and of the radial electrical field are important for 
the evaluation of theoretical expressions for the magnetic and ExB shear, for the 
evaluation of the orbit squeezing and loss fraction corrections, and for the evaluation of 
transport coefficients depending on q.  Experimental profiles for these quantities are 
shown in Figs. 4 and 5.  The discontinuous fits to the discrete Er data points introduces 
spurious structure into the evaluation of dEr/dr from the experimental data needed for the 
ExB shear correction factor. 
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Figure 4  Safety factor in edge plasmas Figure 5  Radial electric field. 

 
 
 2. Calculation of heat fluxes and inference of heat diffusivities 
 The experimental data were used to evaluate the heating and cooling rates and the 
particle sources in Eqs. (57)-(59) and these equations were integrated inward from 
experimental separatrix boundary conditions to obtain the total and convective heat 
fluxes shown in Figs. 6.  Details of this procedure are discussed in Refs. 2-5.  These heat 
fluxes were then used, together with the experimental density and temperature data, to 
evaluate Eqs. (56) and (60) in order to infer the experimental heat diffusivities.  We note 
that a more accurate determination of the experimental time derivatives of density and 
energy has become available for shot 118897 since Ref. 4 was published, so that the heat 
fluxes and consequently the inferred experimental heat diffusivities of this paper differ 
somewhat from those in Ref. 4.  
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 c) 
Figure 6  Heat fluxes in DIII-D a) ELMing H-mode shot 119436, b) ELM-free H-mode 
shot 118897 at 2140ms, c)L-mode shot 118897 at 1525 ms. 
 

As discussed previously, the heat diffusivity is understood as being associated 
with the conductive heat flux, and Eq. (56) is the consistent relationship for its 
evaluation.  However, since many theoretical expressions for the heat diffusivity are 
derived by dividing the theoretical prediction for the total heat flux by the temperature 
gradient (and density), Eq. (60) provides a better quantity for comparison with theory in 
those cases.  In shot 118897 the convective heat flux is relatively small except just inside 
the separatrix in the H-mode phase, and there is no practical difference between Eqs. (56) 
and (60), but for H-mode shot 119436, the convective heat flux is substantial over the 
entire edge region and there is a significant difference between the heat diffusivities 
inferred from the two equations.    

 
3. Comparison of theoretical and experimental heat diffusivities 

A detailed comparison of the predictions of all of the heat diffusivity models of 
section II with the experimentally inferred heat diffusivities is described in the appendix.  
This comparison, as it pertains to providing insight as to which heat transport 
mechanisms are the more promising for explaining the inferred experimental heat 
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diffusivities, is summarized in this section.  When a prediction is shown only over part of 
the edge region this is because either the existence condition (e.g. Eqs. 7, 10 or 38) is not 
satisfied, the formula gave unphysical results (e.g. the hollow density profile in the flattop 

of shot 119436 led to 0
n

L < and hence , 0
i e

η < , causing predictions of negative heat 

diffusivities by formulas such as Eq. 39 for etg, Eq. 43 for tem and Eq. 48 for drb), or the 
evaluation of involved expressions (e.g.. Eqs. 12-19 for itg) simply broke down for the 
parameters of the plasma edge.  These problems are discussed in the appendix.  

 
4. Summary of ion heat diffusivity comparison 
 A comparison of the ion heat diffusivities predicted by the neoclassical (neo_ch) 
model, by two of the ion temperature gradient (itg) mode models, and by the drift Alfven 
(da) model are collected in Figs. 7, where the experimentally inferred heat diffusivities 
are also shown.  Also included is the thermal instability (ti) model prediction for the L-
mode phase of shot 118897; the prediction for the H-mode shots was no thermal 
instability.  For shot 119436, two itg mode calculations, Eqs. (8) and (20), are shown, 
both with ExB and magnetic shear suppression.  No ExB shear suppression is included in 
the drift Alfven mode calculation (because numerical modeling25 indicates that it is 
ineffective) nor, of course, in the neoclassical calculation. It is apparent from Figs. 7a and 
7b that some combination of the neoclassical, drift Alfven and the itg heat  diffusivities 
could provide a reasonably good match to the experimental ion heat diffusivity for the 
two H-mode shots, which suggests that these three ion heat transport mechanisms should 
receive attention in future investigations.  All of the theories substantially underpredict 
the experimental heat diffusivities in the L-mode shot, except the thermal instability (ti) 
theory just inside the separatrix where the radiative instability growth rates are the 
largest.  
 
 
 
5. Summary of electron heat diffusivity comparison 

A comparison of the electron heat diffusivities predicted by the paleoclassical 
(paleo) model, by the electron temperature gradient (etg) mode model, by the trapped 
electron mode (tem) model, and by the drift resistive ballooning mode (drb) model are 
collected in Figs. 8, where the experimentally inferred heat diffusivities are also shown.  
The tem and drb heat diffusivities shown for the H-mode shots are ExB and magnetic 
shear suppressed.  The paleoclassical prediction is in reasonable agreement with 
experiment in the flattop region, but overpredicts it in the steep-gradient region, for the 
H-mode shots (Figs. 8a and 8b).  However, the paleoclassical prediction is in excellent 
agreement with experiment for the L-mode phase of shot 118897 (Fig. 8c). The etg 
prediction is in  reasonable agreement with experiment in both H-mode shots and in the 
L-mode shot. The tem predictions agree reasonably well in radial profile and magnitude 
with experiment for the H-mode shots (Figs. 8a and 8b), but substantially underpredict 
experiment in the L-mode phase of shot 118897 (Fig. 8c). The drb prediction agrees with 
experiment reasonably well in magnitude but not in radial profile in the steep-gradient 
edge pedestal region of ELMing H-mode shot 119436 (Fig. 8a), but substantially 
overpredicts experiment in the same location for the more collisional H-mode phase of 
shot 118897 (Fig. 8b), and substantially underpredicts experiment in the L-mode phase of 
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shot 118897 (Fig. 8c).  Clearly, the etg, paleoclassical and tem mechanisms should be 
further investigated for electron transport in the plasma edge.   
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Figure 7  Summary of ion heat diffusivity comparison of theory with experiment for DIII-
D a) ELMing H-mode shot 119436, b) ELM-free H-mode shot 118897 at 2140ms, c)L-
mode shot 118897 at 1525 ms. 
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 c) 
Figure 8  Comparison of theoretical and experimental electron heat diffusivities for DIII-
D a) ELMing H-mode shot 119436, b) ELM-free H-mode shot 118897 at 2140ms, c)L-
mode shot 118897 at 1525 ms. 
 
E. Summary and conclusions 

 

The predictions of a number of models for the ion and electron heat diffusivity 
found in the literature and used today in transport codes have been compared with 
experimentally inferred values of the heat diffusivity for the edge plasma of two H-mode 
and one L-mode discharges in DIII-D.  Models of ion heat diffusivity based on 
neoclassical, ion temperature gradient, drift Alfven and radiative thermal instability 
theories, and models of electron heat diffusivity based on paleoclassical, electron 
temperature gradient, trapped electron, and drift resistive ballooning theories were 
investigated.   

For the L-mode shot, the paleoclassical prediction was in very good agreement 
with the experimental electron heat diffusivity and the etg prediction was also reasonably 
good.  None of the theoretical predictions for ion heat diffusivity were in agreement with 
measurements over the entire edge region, althour the radiative thermal instability 
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prediction just inside the separatrix was in reasonable agreement with the experimental 
ion heat diffusivity.   

For the H-mode shots, the best overall agreement with experiment was found with 
the itg predictions of ion heat diffusivity.   For electron heat diffusivity, the tem 
prediction was in reasonable agreement for one shot, and the etg predictions was in 
reasonable agreement for the other. 
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Abstract 

 The Georgia Tech Neutral Transport (GTNEUT) code
1,2

 is being implemented to 

provide a tool for routine analysis of  the effects of neutral atoms on edge phenomena in 

DIII-D. GTNEUT can use an arbitrarily complex two-dimensional grid to represent the 

plasma edge geometry
1
. The grid generation capability built into the UEDGE code

3
, 

which utilizes equilibrium fitting data taken from experiment, is being adapted to produce 

geometric grids for the complex 2D geometries in the DIII-D plasma edge.  The process 

for using experimental measurements supplemented by plasma edge calculations to 

provide the required background plasma parameters for the GTNEUT calculation will be 

systematized once the geometric grid generation is complete. 

 

A. Introduction 

 

In the past, most plasma physicists concentrated their research efforts on the 

exploration of core plasma, with little attention given to the edge region including the 

SOL, divertor and pedestal regions. This is now changing because many experiments 

have indicated that phenomena taking place in the plasma edge are very important for the 

overall performance characteristics of the confined plasma. Additionally, it has been  

shown that some of these edge phenomena are greatly influenced by neutral particles. It 

is for this reason we seek to better understand how neutral particles affect phenomena in 

the plasma edge.  

In order to analyze the affects of neutral atoms on edge phenomena, an accurate 

but computationally efficient calculation of neutral particle transport in edge plasma is 

needed.  For this purpose, the two-dimensional Georgia Tech Neutral Transport 

(GTNEUT) code
1
 will be used. GTNEUT is a two-dimensional neutral particle transport 

code based on the Transmission and Escape Probabilities (TEP) method
2
, which has been 

extensively benchmarked against both experiment and Monte Carlo calculations
4-7

.  

GTNEUT is computationally efficient compared with some of the standard Monte Carlo 

codes used today. 

 

B. GTNEUT Geometric Input 

 

While the GTNEUT code has many advantages over some of the Monte Carlo 

based codes, it does have one very big drawback. GTNEUT utilizes a coordinate-free 

geometry input file called “toneut”. “Coordinate-free” means that the two dimensional 

mesh needed to represent a cross section of a Tokamak plasma only requires geometrical 

data from each cell such as lengths and angles, as well as relative positions of the sides of 

neighboring cells. The GTNEUT calculation consists of the calculation of the 

transmission of uncollided fluxes from an incident interface across a region through an 

exiting interface and the calculation of fluxes of collided particles exiting a region across 
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a bounding interface as illustrated in the figure below.  The interface balances on these 

various fluxes must be simultaneously solved to determine the fluxes, from which the 

densities within the region can be computed. 

 

 

 

 
Figure 1: Schematic diagram showing region i and its adjacent regions and the partial 

currents at the interfaces. 
1
 

 

Actual (R,Z) coordinates are not needed and cannot be utilized by GTNEUT itself. 

Therefore, it can become quite tedious and error prone to manually input such 

information. 

The GTNEUT package does include an automatic grid generator; however, this 

generator can only create very simple rectangular geometries which are often only used 

for test cases. For much more complicated geometries, such as a tokamak plasma edge, 

GTNEUT becomes dependent on the GRID generating capabilities of other codes. In 

fact, simply obtaining the GTNEUT geometric information for a tokamak plasma 

becomes a three step process. The first step is obtaining information about the plasma 

geometry from diagnostics, the second step is generating a mesh from the plasma 

geometry, and the third step is converting the mesh into a format that GTNEUT can 

utilize.     

 

C. EFIT 

Utilization of the DIII-D EFIT (Equilibrium Fitting) code is the first step in our 

process. The EFIT code was developed to translate measurements from plasma 

diagnostics into useful information like plasma geometry by solving the Grad-Shafranov 

equation. Such measurements are provided from diagnostics such as external magnetic 

probes, external poloidal flux loops, and the Motional Stark Effect (MSE)
8
. Running the 

EFIT code is a fairly simple procedure. One simply specifies the experiment number, the 

initial time slice to be studied, and the number of times to be studied as well as the time 

interval between each step. Additionally, one must specify which of the different SNAP 

versions are used.  
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Table 1:List of different SNAP versions, and their uses
9
. 

SNAP Version Use 

def defaulted SNAP file, no edge gradients. For L-mode discharges, break-

down error field analysis. Polynomial representation. No edge current. 

j finite edge gradients included in the current representation. 

jt Edge gradients constrained to vanish weakly. For H-mode discharges. 

Polynomial representation. Edge current is constrained to vanish 

weakly. 

scrape force-free scrape-off layer and vessel currents included in the fitting. 

mses For L- and H- mode discharges with MSE. Spline representation. 

Finite edge current allowed. 

mse2_j1 MSE plus constrainted edge J. 

mses_er MSE with ER correction for shots later than 91000. 

 

The code takes seconds to run and stores information about the plasma geometry in 

a number of files called “EQDSK” files. There are several types of EQDSK files, but the 

ones utilized most often are the AEQDSK and GEQDSK files. The AEQDSK file 

contains mostly scalar values as well as the global plasma parameters. The GEQDSK file 

holds most of the information about the flux surfaces and the R and Z positions
10

. Below 

is the output from a code designed to view the EQDSK files.  

 
Figure 2: EFIT Data from shot 119437 
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There are several methods used run the EFIT code and some methods use different 

locations from where experimental data was obtained. Some methods use the diagnostic 

data on the MDSplus servers while others uses the data that has been reduced by 

experimentalist. For example, the diagram below shows two different EFITs for the same 

shot at the same time. The only difference is how the EFIT was generated. The EFIT 

equilibrium can be improved by adding extra measurements to the analysis.  As the 

equilibrium is refined by the addition of data, the location of strike points and other 

divertor geometry may change in small but important ways, from the point of view of 

edge analysis.  It is not clear if there is a “best” strategy for generating equilibria for edge 

analysis. Ascertaining which EFIT is correct requires collaboration with experimentalist.  

 
Figure 3 : Overlap of different EFITs for Shot 119437. 

 

D. UEDGE Mesh Generation 

Once we have generated the EFIT, the second step in the process is generating the 

mesh. Manually doing this can take several months. For example, the mesh depicted 

below was created by hand using a CAD program to calculate the lengths and angles of 

each cell.  
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Figure 4: Manually Generated Mesh 

While the manual method of grid generation may actually have some advantages 

such as being able to specify geometries at certain locations in more detail, the process is 

inherently cumbersome, prone to error, and very tedious. Instead of manually generating 

the mesh, we have opted to use the UEDGE code’s mesh generating capabilities. UEDGE 

is a very powerful two-dimensional (2D) fluid transport code for collisional edge 

plasmas. UEDGE can perform a large number of calculations and even be coupled to 

several Monte Carlo based neutrals codes
3
. However, for now, we are primarily 

interested in UEDGE’s grid generating capabilities. 

UEDGE generates meshes using the EQDSK files specified in a previous section. 

Also, an input file is required to specify how coarse the mesh will be. Of most use to us 

are the inputs below. 

 

Table 2: Inputs to specify UEDGE grid
3
.  

Input Name Purpose 

nxleg(1,1) Number of Poloidal mesh pts from inner plate to x-point 

nxcore(1,1) Number of Poloidal . mesh pts from x-point to top on inside 

nxcore(1,2)  Number of Poloidal  mesh pts from top to x-point on outside 

nxleg(1,2)  Number of Poloidal mesh pts from x-point to outer plate 

nysol(1) Number of Radial mesh pts in SOL 

nycore(1) Number of Radial mesh pts in core 



 6 

By default, the mesh generator produces orthogonal meshes; however, it can be very 

useful to generate non-orthogonal meshes. This is especially true if one wants to fit the 

mesh to the divertor. By altering an input option called “ismmon” and specifying the 

divertor plate locations in the UEDGE input file, the grid generator will extend the mesh 

to the divertor producing a nice fit. An example of this can be seen below
3
.  

 
Figure 5: Comparison of Orthogonal and Non-Orthogonal Meshes 

 

Additionally, a full UEDGE run is not required in order to generate the meshes. 

Typing the following at the UEDGE command prompt will generate a mesh file called 

gridue
3
. 

 

call flxrun 

 call grdrun 

 

The mesh produced by the UEDGE grid generator can be very useful for GTNEUT 

calculations; however, as seen in the examples above, the grid does not extend to the 

walls of the confinement vessel. In between the SOL and Wall (which we call the Gap 

region), it is necessary to extend the UEDGE grid to the wall for the GTNEUT grid.  
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E. Adaptation of UEDGE Mesh for GTNEUT Input 

 

For simplicity, the most efficient way to do this is simply extending the last layer 

of cells in the SOL perpendicularly to the wall. Below is an example of what we have 

done.  

 
Figure 6: Comparison of UEDGE grid extended to wall. 

 

By, examining what we have done here, we can also see how the UEDGE input 

file works. Notice there are six SOL regions on the right hand figure (SOL regions are the 

regions that lie outside of the seperatrix. This was accomplished by setting nysol(1) equal 

to 6. The left hand figure only has five, plus the Gap region. We have simply redefined 

the last region of cells. Most of the cells in our grid have four sides. The two main 

exceptions are the private flux region show in lime green on the left side. It is defined as 

a function of the UEDGE input file and gridue file. Also, the cells shown in magenta at 

the very top of the vessel may have more than 4 sides. Lastly, the outermost corners of 

the divertor regions may contain only 3 sides depending on their location with respect to 

the wall. As of now, this is not a purely automatic grid generating system. One must first 

plot the grid to make sure errors have not arisen before proceeding.  

 

F. Summary and Conclusions and Present Work 

 

The present version of the UEDGE to GTNEUT grid adaptor is much more 

efficient and accurate than the manual method. It has been successfully used on 

discharges 119437 and 119436. It still needs to be tested on other discharges using 

different EFIT versions. Also, the present version of the adaptor only works for single 
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lower null discharges. Modifications to work on a single upper null or double null 

discharge should not be too difficult.  

Presently, routines are being added to the adaptor to actually write the GTNEUT 

input file. This currently exists for the plasma regions between the core and the gap 

regions. However, proper tracking of the cells is of the utmost importance. We are 

breaking the grid down into regions as illustrated by various colors in the diagram on the 

left in Fig. 5 to facilitate this tracking more easily. Additionally, the cells are being 

numbered in a way that will make assigning temperatures and densities from diagnostics 

much easier.  
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IV. EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the 

absence of or in between ELMs) 

 

W. M. Stacey (Georgia Tech) and R. J. Groebner (General Atomics) 

 
Abstract 

 
• A constraint on the ion pressure gradient is imposed by momentum balance.  The 

constraint involves ,, , r rV V E Vθ φ    , etc. and momentum transfer rates, all of which can be 

obtained from experiment. 

 

• Integration of 

exp

1 1 1i i i

i imom

n p T

n r p r T r

   ∂ ∂ ∂
= −   

∂ ∂ ∂   
 using the experimental ,, , r rV V E Vθ φ    , 

etc.,  yields density profiles that agree well with the directly measured density profiles. 

 

 

• This pressure gradient constraint can be rearranged to obtain a “pinch-diffusion” 

expression for the ion flux, which can be used in the continuity equation to obtain a 

generalized diffusion theory that conserves momentum. 

 

• A methodology for inferring exp

,i eχ from measured T and n profiles has been developed 

and applied to DIII-D, with comparison with theory. 

 

• A methodology for inferring radial transfer rates for toroidal angular momentum from 

measured Vφ  profiles has been developed and applied to DIII-D, with comparison with 

theory. 

 

• A methodology for calculating Vθ has been developed and compared with experimental 

data from DIII-D. 

 



A. Momentum Balance Constraint on Ion Pressure Gradient 

 
Combining the radial and toroidal components of the momentum balance leads to  
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Figure 1  Contribution of the various terms on RHS of Eq. 2 to the pinch velocity (1a and 1b), 

and contribution of the pinch velocities and radial particle velocity peaking due to ionization of 

recycling neutrals for two DIII-D H-mode discharges. (PoP, 13, 012513, 2006) 

 

 



 

Figure 2  Integration of ( ),i i ri i i ipinch i
dn n dr D dT T drυ υ 

  
− = − −  (solid line) compared 

with directly measured (Thomson scattering) electron densities in three DIII-D H-mode shots. 



B.        GENERALIZED DIFFUSION THEORY  

Rewriting the pressure gradient constraint as a pinch-diffusion relation for the particle 

flux and substituting into the continuity equation results in a generalized diffusion equation 

based on momentum and particle balance. 
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Figure 3  Generalized diffusion coefficients in the edge of DIII-D H-mode shot 92976  

(CPP, 48, 94, 2008)          

 
 



 

C. INFERRENCE OF EXPERIMENTAL HEAT DIFFUSIVITY 

(PoP, 13, 072510, 2006) 

 
FROM DEFINITION OF HEAT CONDUCTION 

 

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

( )
( )

, , ,exp
, , ,

, , , , ,

5
2

i e i e i e
i e Ti e Ti e

i e i e i e i e i e

q r Q r r
r L r L r

n r T r n r T r n r
χ

 
 
 
 

Γ
= ≡ −   

where  ( )1
, ,, /i e i eTi eL T r T− ≡ − ∂ ∂ ,  

SOLVE FOR HEAT AND PARTICLE FLUXES, USING EXP n & T DATA 

( ) ( ) exp3 3
,

2 2
c ci

o o sepi i i i ie i sepinbi cx el

Q
nT q T T n n q Q r Q

r t
συ

+

 
 
 
 

∂ ∂= − + − − −    =
∂ ∂

  

( ) exp3
,

2
e

e e e o e z z e sep sepeie ionnbe ion

Q
n T q q n n E n n L Q r Q

r t
συ

 
 
 
 

∂ ∂= − + + − −    =
∂ ∂

  

( ) exp,i i
e o sepi sepinbion

n
n n S r

r t
συ

∂Γ ∂
= − + +     Γ = Γ

∂ ∂
     

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02
5.0x10

3

1.0x10
4

1.5x10
4

2.0x10
4

2.5x10
4

3.0x10
4

3.5x10
4

4.0x10
4

4.5x10
4

5.0x10
4

H
e
a
t 

F
lu

x
 (

W
/m

2
)

Normalized Radius, rho

 total Q
i

 total Q
e

 2.5T
i
Γ

i

 2.5T
e
Γ

e

119436

 
 



INFERRENCE OF EXPERIMENTAL HEAT DIFFUSIVITY 

(PoP, 13, 072510, 2006) 

 
FROM DEFINITION OF HEAT CONDUCTION 

 

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

( )
( )

, , ,exp
, , ,

, , , , ,

5
2

i e i e i e
i e Ti e Ti e

i e i e i e i e i e

q r Q r r
r L r L r

n r T r n r T r n r
χ

 
 
 
 

Γ
= ≡ −   

where  ( )1
, ,, /i e i eTi eL T r T− ≡ − ∂ ∂ ,  

SOLVE FOR HEAT AND PARTICLE FLUXES, USING EXP n & T DATA 

( ) ( ) exp3 3
,

2 2
c ci

o o sepi i i i ie i sepinbi cx el

Q
nT q T T n n q Q r Q

r t
συ

+

 
 
 
 

∂ ∂= − + − − −    =
∂ ∂

  

( ) exp3
,

2
e

e e e o e z z e sep sepeie ionnbe ion

Q
n T q q n n E n n L Q r Q

r t
συ

 
 
 
 

∂ ∂= − + + − −    =
∂ ∂

  

( ) exp,i i
e o sepi sepinbion

n
n n S r

r t
συ

∂Γ ∂
= − + +     Γ = Γ

∂ ∂
     

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02
5.0x10

3

1.0x10
4

1.5x10
4

2.0x10
4

2.5x10
4

3.0x10
4

3.5x10
4

4.0x10
4

4.5x10
4

5.0x10
4

H
e
a
t 
F

lu
x
 (

W
/m

2
)

Normalized Radius, rho

 total Q
i

 total Q
e

 2.5T
i
Γ

i

 2.5T
e
Γ

e

119436

 
Figure 6a  Heat fluxes in DIII-D ELMing H-mode shot 119436 
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Figure 4  Heat fluxes in L-mode phase @ 1525ms (4a) in the ELM-free H-mode @ 2140ms (4b) 

of DIII-D shot 118897. 
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Figure 5  Comparison of theory and experiment for electron heat diffusivity in L-mode (4a) and 

ELM-free H-mode (4b) phases of DIII-D shot 118897.(Eq. numbers refer to PoP, 15, July 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



D. Inferrence of Experimental Toroidal Angular Momentum Transfer Frequencies 

from Meassured Toroidal Rotation Velocities (PoP, 15, 012503, 2008) 

 

If both the deuterium and carbon rotation velocities could be measured, then their respective 

toroidal momentum balance equations could be solved “backwards” for their momentum transfer 

frequencies 
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but since they are not, a perturbation approach is needed. 
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4) which can be used in carbon tor. mom. equation to solve for 
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Inferred Toroidal Momentum Transfer Frequencies 
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Figure 6   Experimentally inferred toroidal angular momentum transfer frequency 

averaged over ELMs in H-mode shots 98889 (6a) and in ELM-free H-mode shot 

118897 in DIII-D compared with transfer frequencies calculated for neoclassical 

gyroviscosity and atomic physics effect of recycling neutrals. (Eq. numbers refer to 

PoP, 15, 012503,2008). 
 

 



 

E. POLOIDAL ROTATION 

 

POLOIDAL ROTATION VELOCITIES ARE CALCULATED FROM THE POLOIDAL 

MOMENTUM BALANCE EQATIONS (PoP, 15, 012501, 2008) 
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Using a neoclassical parallel viscosity model 
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Figure 7   Comparison of calculated and measured carbon velocities in DIII-D shot H-mode 

119436.  (Eq. numbers refer to PoP, 15, 012501,2008.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



F. CONCLUSIONS 

 

• Momentum balance consistently relates the measured ion pressure gradient with the 

measured , , rV V Eφ θ  , etc. and the calculated rV , implying that if we could calculate the 

, , rV V Eφ θ  , rV and knew the thermal transport coefficients we would be able to predict the 

density and temperature profiles in the edge pedestal. 

 

• A generalized diffusion theory which preserves this consistency between pressure gradients 

and  , , rV V Eφ θ  , rV etc. has been developed and should be used for calculating ion particle 

profiles in the edge pedestal. 

 

• The simple analytical expressions for thermal diffusivities that are widely used in transport 

codes do not reliably predict ,i eχ that agree with experimentally inferred values in the edge 

pedestal, although some of the itg and etg comparisons are promising. 

 

• The radial transfer rate of toroidal angular momentum is much larger than transfer rates 

calculated from neoclassical gyroviscous theory and from atomic physics, except just inside 

the separatrix, implying the need to identify other momentum transfer mechanisms in the 

edge pedestal. 

 

• An extended neoclassical theory predicts Vθ profiles reasonably near to measured profiles, 

and there is a possibility that a better calculation of the poloidal and radial electric field in the 

edge pedestal could resolve the present disagreement. 

 

 

 

 

 

 

 
 

 

 

 

 



V. HEP BENCHMARKING ACTIVITY 

(W. M. Stacey, Georgia Tech)  
 
Abstract 

 A group of  people are collaborating in the comparison experimental thermal diffusivities 
inferred from experimental data measured in the edge pedestal of DIII-D H-mode discharges 
using different codes.  I am providing calculations based on a 1D edge transport code (as 
described in section II and Ref. 1), Rich Groebner (General Atomics) is providing calculations 
based on the 1.5D transport/MHD code ONE-TWO2, Tarig Rafiq (Lehigh) is providing 
calculations based on the Multimode transport model in the 1.5D transport/MHD code ASTRA3, 
Tom Rognlien (Lawrence Livermore National Laboratory) is providing calculations based on the 
2D transport code UEDGE4, and Larry Owen and John Canick (Oak Ridge National Laboratory) 
are providing calculations based on the 2D transport code SOLPS5.  Jim Callen (Wisconsin) is 
coordinating the activity. 
 
A. 1D Transport Calculations 

My calculations for the two shots initially being considered by the group are shown in 
Figs 1 and 2.  The edge pedestal plasma density in shot 98889 is about 1/2 of the edge density in 
shot 118897, as a consequence of which the neutral penetration is much greater for 98889, 
resulting in charge exchange being the dominant heating/cooling mechanism in the very edge for 
98889 and resulting in very different heat flux profiles for the two shots.  The inferred 
experimental chi profiles in the edge are also quite different for the two cases.  The calculation 
procedure is described fairly succinctly in Ref. 1. 
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 Fig. 1a Neutral Density   Fig. 1b  Heating & Cooling Rates 
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 Fig. 1e  Electron χ Shot 98889@4500  Fig.1f  Ion χ Shot 98889@4500 
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Fig. 2a  Neutral Density Shot 118897@2140. Fig. 2b  Heating & Cooling Rates 
       Shot 118897@2140. 
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 Fig. 2c  Total & Convective Heat   Fig. 2d.  χe & χi Experimental 
  Fluxes Shot 118897@2140.   Shot 118897@2140. 
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 Fig. 2e  Electron χ Shot 118897@2140. Fig. 2f  Ion χ Shot 118897@2140. 
 

 

 

B. Applications of the Miller Equilibrium to the Poloidal Variation of Temperature 

Gradients and Conductive Heat Fluxes  

    
 Stimulated by the relatively good agreement between the approximate formulas for the 
poloidal variation of the conductive heat flux that Callen derived6 from the Miller equilibrium7 
with the calculations by the 2D codes, this formalism has been developed further, essentially 
retaining the dependence on triangularity and retaining an arbitrary poloidal location for 
measured temperature gradient in the Miller equilibrium.  The result is an expression for the 

quantity ( ) ( ) ( ) ( ) ( ), , ,
T T

G r q r q r L r L rθ θ θ≡ ≡  which relates the local and flux surface 

averaged conductive heat fluxes or temperature gradient scale lengths. 
 
Miller equilibrium 

 

 Miller, et al.7 derived analytical expressions for an equilibrium flux surface in a plasma as 
shown in Figure 3 with elongation κ , triangularity δ , and displaced centers ( )0R r , where r  is 
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the half-diameter of the plasma along the midplane with center located at distance ( )0R r  from 

the toroidal centerline.   
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Figure 3 Miller equilibrium parameters 
 
 
The R and Z coordinates of this plasma are described by7 
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 The poloidal magnetic field in such flux surface geometry is7 
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triangularity, respectively, with radial location. 
 The shifted circle model (which leads to the Shafranov shift) yields 
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and a shifted ellipse model by Lao, et al.8 yields 
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Flux surface average 
  

The flux surface average (FSA) of a quantity ( ),A r θ  in this flux surface geometry is 
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cos sin

R
x s s s x x

rz r

x x

R r r x

κ δ κθ θ θ θ θ θ θ
θ

θ θ θ κ θ

θ θ

∂
+ + − + + +

∂≡
 + + +
 

 + + 

  (5) 

 
and the differential poloidal length is (see Fig. 3) 
 

( )2 2 2cos sin sin
p

d r x dθ θ κ θ θ = + +
 

l        (6) 

 

 

Equivalent toroidal models  

 

 Simple toroidal models are widely used for transport calculations and experimental data 
interpretation (e.g Ref. 1).  The usual flux surface model implicitly assumed in such codes, 
which will be referred to as the “elliptical” model” is (e.g. Ref. 1) 0 cos , sin ,R R r Z rθ κ θ= +  =  

0
0

1 cosp p

r
B B

R
θ

 
= + 

 
.  The usual approach is to construct an effective toroidal or cylindrical 

model that preserves the area of flux surface, which for this model leads to a relation between the 

effective radius variable r of the equivalent torus and the actual radial variable in the horizontal 

midplane r given in the elliptical model by  ( )21
1

2
r r κ= + . 
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Such equivalent models should be improved by using instead the Miller equilibrium.  The 
area of the flux surface ψ  passing through the midplane radius r  is 

 

( )

( )
( )

( ) ( )

2

0

2 1
2 2 2 2

0
0 0

2

2 1 cos sin cos sin sin

p p
A d h d Rd

r
rR r x x d

R r

π

φ
ψ ψ

π

ψ φ π

π θ θ θ θ κ θ θ

= =∫ ∫ ∫

 
           = + + + +∫    

 

l lÑ Ñ

 (7) 

The area of a cylinder with radial variable r  is ( ) ( )02 2
c

A r R a rπ π= .  Equating the two areas 

and solving for 
 

( )
( ) ( )

( ) ( )
2 1

0 2 2 2 2

00 0

1 cos sin cos sin sin
2

R r r
r r x x d

R a R r

π

θ θ θ θ κ θ θ
π

 
 = + + + +∫    

 
  (8) 

 
defines the radial variable of an equivalent cylinder that preserves the surface area of the Miller 
equilibrium flux surface. 
 A comparison calculation was made for a plasma representative of shot 98889 with minor 
horizontal radius a = 0.583 m, varying triangularity, elongation 1.75,κ =  and major radius 

( )0 1.77R a m= .  The elliptical model predicts for these parameters an effective circular plasma 

radius 0.830a = m.  Evaluation of Eq. (8) with 1sinx δ−= yields almost the same value of  

0.817a m=  for 0δ = , as shown in Table 1.  For non-zero values of the triangularity, the Miller 
model predicts increasingly smaller equivalent cylindrical  radii than the elliptical model to 
preserve surface area. 
 

Table 1 Effect of triangularity on effective cylindrical radius and ( ), 0G a θ =  

 
 δ  
triangularity 

 ( )a m  
Miller equil. 

 ( )a m  

elliptic equil 

 ( ), 0G a θ =  

Miller equil. 

( ), 0G a θ =  

elliptic equil 
0.0 0.817 0.830 1.73 1.43 
0.1 0.800 “ 1.73 “ 
0.2 0.784 “ 1.73 “ 
0.3 0.769 “ 1.73 “ 
0.4 0.753 “ 1.72 “ 
0.5 0.739 “ 1.71 “ 
0.6 0.725 “ 1.69 “ 
0.7 0.710 “ 1.66 “ 
0.8 0.696 “ 1.62 “ 
0.9 0.680 “ 1.55 “ 
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Interpretation of thermal conductivities from measured temperature gradients 

 

 Another application of the Miller equilibrium that immediately comes to mind is in the 
inference of experimental thermal diffusivities from measured temperature gradients in 
tokamaks.  The measured temperature gradient exp( )dT dr pertains of course to the location  

( )exp,r θ  at which the measurement is made (although sometimes it is mapped along flux surfaces 

to another location such as the outboard midplane at ( ), 0r θ = ).  On the other hand, one-

dimensional radial transport codes calculate an average conductive heat flux ( )q r< > .  In order 

to use the calculated average heat flux and the local (inθ ) measured temperature gradient in the 

heat conduction relation to infer a measured thermal diffusivity ( )/ / /Tq n dT dr qL nTχ = − ≡ ,  

the local temperature gradient scale length must be mapped into an average value over the flux 
surface 
  

( ) ( )( )
( ) ( )( ) ( ) ( )( )

exp exp expexp

exp expexp exp

( ) ( ) /

/ /

T T

T T

L T dr dT L T dr dT dr dr

L dr dr L r r

θ

θ θ

≡ − ⇒< >= − < >

           ≡ < > = ∇ < ∇ >
 (9) 

 

 From Eq. (2), the local r∇  may be written 

 

( )
( )( )

( ) [ ] ( )

1
2 21 2 2 2

0

sin sin 1 cos cos
,

cos sin cos cos (1 ) cos sin sin sin

x x
r r

R
x s s s x x

r
κ δ κ

κ θ θ θ κ θ
θ

θ θ θ θ θ θ θ

−  + + +
 ∇ =

∂
+ + − + + +

∂

  (10) 

 
Using this in Eq. (4) yields an expression for the FSA value 
 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 1
2 2 2 2

0
0

2 1
2 2 2 2

0
0

cos sin cos sin sin

, cos sin cos sin sin

R r r x x d

r r

F r R r r x x d

π

π

θ θ θ θ κ θ θ

θ θ θ θ θ κ θ θ

 + + + + ∫    
∇ =

 + + + + ∫    

 (11) 

where 
 

( )
( ) [ ] ( )

( )( )

0

1
2 21 2 2 2

cos sin cos cos (1 ) cos sin sin sin
,

sin sin 1 cos cos

R
x s s s x x

rF r

x x

κ δ κθ θ θ θ θ θ θ
θ

κ θ θ θ κ θ−

∂
+ + − + + +

∂=
 + + +
 

 (12) 

 

 The FSA value of the temperature gradient scale length, ( )/
T

L T dT dr= − , which is 

the quantity needed for the inference of experimental thermal diffusivity using the average heat 
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flux calculated by 1D transport codes, is related to the local value of the temperature gradient 

scale length, ( ) ( ) ( )/TL T dT dr
θ

θ θ= − , which is the quantity measured, by 

 

( )
( )

( )

( )
( )

,
,

,
T

T

L r r r
G r

L r r r

θ
θ

θ

∇
= ≡

∇
        (13) 

 
For the case 0θ = , corresponding to the outboard midplane location of the measured gradient 
scale lengths, Eq. (10) reduces to the Shafranov shift correction 
 

( )
0

1
, 0

1
r

R
r

θ∇ = =
∂ + ∂ 

         (14) 

 
 A series of calculations was performed for the same plasma model (representative of shot 
98889) with minor horizontal radius a = 0.583 m, varying triangularity, elongation 1.75,κ =  and 

major radius ( )0 1.77R a m= , using Eqs. (10)-(13) with 0, 0s sκ δ= =  and using the elliptical 

model discussed in the previous section, for which ( ) ( )21
, 0 1

2
G r θ κ= = + .  The results are 

shown in Table 1.  The Miller model predicts values of ( ), 0G a θ =  that are 10-20% larger than 

those predicted by the elliptical model. 
  

Neglecting the effect of the radial variation of the elongation and triangularity 
( 0, 0s sκ δ= = ) and also momentarily neglecting the triangularity ( 0δ = ), reduces Eq. (13) to a 

form that more readily exhibits the various factors involved 
 
 

( )
( )

( )
( )

[ ] ( )

[ ] ( )

0

12
2 2 2

01
2 2 20

12
2 2 20

0
0

1 cos

cos 1 1 sin
1 1 s

, 0
, 0

1 cos 1 1 sin

T

T

R

r
R r d

coL r
G r

RL r
R r d

r

π

π

κ θ

θ κ θ θ
κ θ

θ
θ

θ κ θ θ

∂
+

∂
+ + −∫

+ −
= = =

∂=
+ + + −∫

∂

 
     

  
      

 (15) 

 
Prediction of poloidal distribution of conductive heat flux 

 

 One-dimensional transport codes calculate an average conductive heat flux, q ,  over 

the flux surface.  Assuming that the density, temperature and thermal diffusivity are uniform 
over the flux surface, the poloidal dependence of the conductive heat flux must arise through the 
poloidal dependence of the radial temperature gradient  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11, , ,

T T
q r n r T r r L r n r T r r L r G rθ χ θ χ θ

−−= =  (16) 

 

 The value of ( ) ( ) ( ) ( ) ( ), , ,
T T

G r q r q r L r L rθ θ θ≡ ≡  calculated from Eqs. (10)-(13) 

at the separatrix ( )r a→  of the shot 98889 model previously described 

( )' 0.25, 1.75, / 1/ 3r Rκ∆ = − = =  is plotted in Fig. 4.  The bunching of the flux surfaces at the 

outboard midplane and the elongation at the top and bottom of the plasma account for the 
distribution.    
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Figure 4 Predicted poloidal distribution of the conductive 

heat flux at the separatrix for a DIII-D shot 98889 model. 
 

 

Relation to various HEP benchmarking calculations 

 

 The 2D codes (UEDGE4 and SOLPS5) calculate ( )exp,q r θ  at the location of the measured 

temperature gradient ( )exp,
T

L r θ directly, and the two quantities can be directly combined to infer 

the experimental thermal diffusivity ( ) ( )exp exp exp, , /
T

q r L r nTχ θ θ≡ . 

 The 1.5D (2D MHD, 1D transport) codes (ONE-TWO2 and ASTRA3) use the calculated 
2D MHD equilibrium to construct an equivalent 1D transport model, from which is calculated a 

FSA value of ( )q r .  In order to evaluate the experimental thermal diffusivity, it is then 

necessary either to map this average heat flux to a local value at the location of the measurement, 

( )exp exp( , ) ( , )q r G r q rθ θ=  or equivalently to map the measured value of the temperature 

gradient to an average value over the flux surface, ( ) ( ) ( )exp exp, ,
T T

L r G r L rθ θ= .  In either 
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case, the resulting expression for the inferred experimental thermal diffusivity is 

( ) ( ) ( )exp exp exp, , /
T

G r q r L r nTχ θ θ≡ .  The 2D MHD calculation in principle uses the quantities 

necessary to evaluate the mapping function ( )exp,G r θ .  Alternatively, this function can be 

evaluated from the Miller equilibrium or the simpler elliptical equilibrium. 

 The 1D codes1 use an effective cylinder with radius ( )21 2 1.4r r rκ= + ;  (which 

preserves the surface area of an elliptical equilibrium with elongation κ ) to calculate a FSA 

value of ( )q r .  In this approximation ( ) ( ) ( )2
exp, 0) 1 2 1.4

T T
L r L r a aθ κ= = = + ; .  

Using the improved Miller approximation that retains triangularity dependence, rather than the 
elliptical approximation, results in an equivalent radius about 7% smaller, hence a heat flux 
about 7% larger, than with the elliptical approximation.  The Miller equilibrium also leads to 

( ) ( )exp, 0) 1.7
T T

L r L r θ = ;  , instead of the elliptical value of 1.4.  Thus, using the Miller 

equilibrium instead of the elliptical equilibrium in the 1D calculations1 would be roughly 

estimated to increase the inferred thermal diffusivities exp /Tq L nTχ = by about 30% for the 

parameters that characterize the benchmark problems. Note that Callen’s formula6 yields a 

somewhat smaller value of ( ) ( )
( )

( )
2

exp 2

2
, 0) ( , 0) 1 2 '

1
T TL r L r S r

κ
θ θ

κ
= = = − ∆

+
; = 1.5.   
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V. HEP BENCHMARKING ACTIVITY 

(W. M. Stacey, Georgia Tech)  
 
Abstract 

 A group of  people are collaborating in the comparison experimental thermal diffusivities 
inferred from experimental data measured in the edge pedestal of DIII-D H-mode discharges 
using different codes.  I am providing calculations based on a 1D edge transport code (as 
described in section II and Ref. 1), Rich Groebner (General Atomics) is providing calculations 
based on the 1.5D transport/MHD code ONE-TWO2, Tarig Rafiq (Lehigh) is providing 
calculations based on the Multimode transport model in the 1.5D transport/MHD code ASTRA3, 
Tom Rognlien (Lawrence Livermore National Laboratory) is providing calculations based on the 
2D transport code UEDGE4, and Larry Owen and John Canick (Oak Ridge National Laboratory) 
are providing calculations based on the 2D transport code SOLPS5.  Jim Callen (Wisconsin) is 
coordinating the activity. 
 
A. 1D Transport Calculations 

My calculations for the two shots initially being considered by the group are shown in 
Figs 1 and 2.  The edge pedestal plasma density in shot 98889 is about 1/2 of the edge density in 
shot 118897, as a consequence of which the neutral penetration is much greater for 98889, 
resulting in charge exchange being the dominant heating/cooling mechanism in the very edge for 
98889 and resulting in very different heat flux profiles for the two shots.  The inferred 
experimental chi profiles in the edge are also quite different for the two cases.  The calculation 
procedure is described fairly succinctly in Ref. 1. 
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Fig. 2a  Neutral Density Shot 118897@2140. Fig. 2b  Heating & Cooling Rates 
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 Fig. 2e  Electron χ Shot 118897@2140. Fig. 2f  Ion χ Shot 118897@2140. 
 

 

 

B. Applications of the Miller Equilibrium to the Poloidal Variation of Temperature 

Gradients and Conductive Heat Fluxes  

    
 Stimulated by the relatively good agreement between the approximate formulas for the 
poloidal variation of the conductive heat flux that Callen derived6 from the Miller equilibrium7 
with the calculations by the 2D codes, this formalism has been developed further, essentially 
retaining the dependence on triangularity and retaining an arbitrary poloidal location for 
measured temperature gradient in the Miller equilibrium.  The result is an expression for the 

quantity ( ) ( ) ( ) ( ) ( ), , ,
T T

G r q r q r L r L rθ θ θ≡ ≡  which relates the local and flux surface 

averaged conductive heat fluxes or temperature gradient scale lengths. 
 
Miller equilibrium 

 

 Miller, et al.7 derived analytical expressions for an equilibrium flux surface in a plasma as 
shown in Figure 3 with elongation κ , triangularity δ , and displaced centers ( )0R r , where r  is 
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the half-diameter of the plasma along the midplane with center located at distance ( )0R r  from 

the toroidal centerline.   
 

r

R(r) κrsinθ

Midplane

r [cos2(θ+xsinθ)] + [κsinθ]2 

r cos (θ+xsinθ)

L

θ

R0(r)
 

 
Figure 3 Miller equilibrium parameters 
 
 
The R and Z coordinates of this plasma are described by7 

 

( ) [ ]

( )
0( ) cos sin

sin

R r R r r x

Z r r

θ θ

κ θ

= + +

=
  (1) 

where  1sinx δ−≡ . 
 The poloidal magnetic field in such flux surface geometry is7 

 

 ( ) ( )

( ) [ ] ( )

1
2 21 2 2 2

0

sin sin 1 cos cos

cos sin cos cos (1 ) cos sin sin sin

pRB r
r

x x
r

R
x s s s x x

r
κ δ κ

ψ
φ ψ

ψ
κ θ θ θ κ θ

θ θ θ θ θ θ θ

−

∂
= ∇ ×∇ = ∇

∂

∂  + + +
 ∂        =

∂
+ + − + + +

∂

 (2) 

where  
r

s
r

κ

κ

κ

∂
=

∂
 and ( )2/ 1s r

r
δ

δ
δ

∂
= −

∂
account for the change in elongation and 

triangularity, respectively, with radial location. 
 The shifted circle model (which leads to the Shafranov shift) yields 
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0

0

1
'

2p i

R r

r R
β

∂  
≡ ∆ = − + 

∂  
l          (3a) 

and a shifted ellipse model by Lao, et al.8 yields 
 

( )
( )

( )
( )

2 2

0

2 2
0

2 1 11 1

2 23 1 3 1
p i

R r

r R

κ κ
β

κ κ

 + −∂  
 = − + + 

∂ + +   

l       (3b)   

 
Flux surface average 
  

The flux surface average (FSA) of a quantity ( ),A r θ  in this flux surface geometry is 

 

( )
( ) ( )

( )

( , )

, ,
,

,

p

p p

p p

p

A r d

B A r z r d
A r

d z r d

B

θ

θ θ
θ

θ

∫
∫

≡ =
∫

∫

l
Ñ

lÑ
l lÑ

Ñ

     (4) 

where 
 

( )
( ) [ ] ( )

( )( )
( ) [ ]

0

1
2 22 2 2

0

cos sin cos cos (1 ) cos sin sin sin
,

sin sin 1 cos cos

cos sin

R
x s s s x x

rz r

x x

R r r x

κ δ κθ θ θ θ θ θ θ
θ

θ θ θ κ θ

θ θ

∂
+ + − + + +

∂≡
 + + +
 

 + + 

  (5) 

 
and the differential poloidal length is (see Fig. 3) 
 

( )2 2 2cos sin sin
p

d r x dθ θ κ θ θ = + +
 

l        (6) 

 

 

Equivalent toroidal models  

 

 Simple toroidal models are widely used for transport calculations and experimental data 
interpretation (e.g Ref. 1).  The usual flux surface model implicitly assumed in such codes, 
which will be referred to as the “elliptical” model” is (e.g. Ref. 1) 0 cos , sin ,R R r Z rθ κ θ= +  =  

0
0

1 cosp p

r
B B

R
θ

 
= + 

 
.  The usual approach is to construct an effective toroidal or cylindrical 

model that preserves the area of flux surface, which for this model leads to a relation between the 

effective radius variable r of the equivalent torus and the actual radial variable in the horizontal 

midplane r given in the elliptical model by  ( )21
1

2
r r κ= + . 
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Such equivalent models should be improved by using instead the Miller equilibrium.  The 
area of the flux surface ψ  passing through the midplane radius r  is 

 

( )

( )
( )

( ) ( )

2

0

2 1
2 2 2 2

0
0 0

2

2 1 cos sin cos sin sin

p p
A d h d Rd

r
rR r x x d

R r

π

φ
ψ ψ

π

ψ φ π

π θ θ θ θ κ θ θ

= =∫ ∫ ∫

 
           = + + + +∫    

 

l lÑ Ñ

 (7) 

The area of a cylinder with radial variable r  is ( ) ( )02 2
c

A r R a rπ π= .  Equating the two areas 

and solving for 
 

( )
( ) ( )

( ) ( )
2 1

0 2 2 2 2

00 0

1 cos sin cos sin sin
2

R r r
r r x x d

R a R r

π

θ θ θ θ κ θ θ
π

 
 = + + + +∫    

 
  (8) 

 
defines the radial variable of an equivalent cylinder that preserves the surface area of the Miller 
equilibrium flux surface. 
 A comparison calculation was made for a plasma representative of shot 98889 with minor 
horizontal radius a = 0.583 m, varying triangularity, elongation 1.75,κ =  and major radius 

( )0 1.77R a m= .  The elliptical model predicts for these parameters an effective circular plasma 

radius 0.830a = m.  Evaluation of Eq. (8) with 1sinx δ−= yields almost the same value of  

0.817a m=  for 0δ = , as shown in Table 1.  For non-zero values of the triangularity, the Miller 
model predicts increasingly smaller equivalent cylindrical  radii than the elliptical model to 
preserve surface area. 
 

Table 1 Effect of triangularity on effective cylindrical radius and ( ), 0G a θ =  

 
 δ  
triangularity 

 ( )a m  
Miller equil. 

 ( )a m  

elliptic equil 

 ( ), 0G a θ =  

Miller equil. 

( ), 0G a θ =  

elliptic equil 
0.0 0.817 0.830 1.73 1.43 
0.1 0.800 “ 1.73 “ 
0.2 0.784 “ 1.73 “ 
0.3 0.769 “ 1.73 “ 
0.4 0.753 “ 1.72 “ 
0.5 0.739 “ 1.71 “ 
0.6 0.725 “ 1.69 “ 
0.7 0.710 “ 1.66 “ 
0.8 0.696 “ 1.62 “ 
0.9 0.680 “ 1.55 “ 
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Interpretation of thermal conductivities from measured temperature gradients 

 

 Another application of the Miller equilibrium that immediately comes to mind is in the 
inference of experimental thermal diffusivities from measured temperature gradients in 
tokamaks.  The measured temperature gradient exp( )dT dr pertains of course to the location  

( )exp,r θ  at which the measurement is made (although sometimes it is mapped along flux surfaces 

to another location such as the outboard midplane at ( ), 0r θ = ).  On the other hand, one-

dimensional radial transport codes calculate an average conductive heat flux ( )q r< > .  In order 

to use the calculated average heat flux and the local (inθ ) measured temperature gradient in the 

heat conduction relation to infer a measured thermal diffusivity ( )/ / /Tq n dT dr qL nTχ = − ≡ ,  

the local temperature gradient scale length must be mapped into an average value over the flux 
surface 
  

( ) ( )( )
( ) ( )( ) ( ) ( )( )

exp exp expexp

exp expexp exp

( ) ( ) /

/ /

T T

T T

L T dr dT L T dr dT dr dr

L dr dr L r r

θ

θ θ

≡ − ⇒< >= − < >

           ≡ < > = ∇ < ∇ >
 (9) 

 

 From Eq. (2), the local r∇  may be written 

 

( )
( )( )

( ) [ ] ( )

1
2 21 2 2 2

0

sin sin 1 cos cos
,

cos sin cos cos (1 ) cos sin sin sin

x x
r r

R
x s s s x x

r
κ δ κ

κ θ θ θ κ θ
θ

θ θ θ θ θ θ θ

−  + + +
 ∇ =

∂
+ + − + + +

∂

  (10) 

 
Using this in Eq. (4) yields an expression for the FSA value 
 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 1
2 2 2 2

0
0

2 1
2 2 2 2

0
0

cos sin cos sin sin

, cos sin cos sin sin

R r r x x d

r r

F r R r r x x d

π

π

θ θ θ θ κ θ θ

θ θ θ θ θ κ θ θ

 + + + + ∫    
∇ =

 + + + + ∫    

 (11) 

where 
 

( )
( ) [ ] ( )

( )( )

0

1
2 21 2 2 2

cos sin cos cos (1 ) cos sin sin sin
,

sin sin 1 cos cos

R
x s s s x x

rF r

x x

κ δ κθ θ θ θ θ θ θ
θ

κ θ θ θ κ θ−

∂
+ + − + + +

∂=
 + + +
 

 (12) 

 

 The FSA value of the temperature gradient scale length, ( )/
T

L T dT dr= − , which is 

the quantity needed for the inference of experimental thermal diffusivity using the average heat 
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flux calculated by 1D transport codes, is related to the local value of the temperature gradient 

scale length, ( ) ( ) ( )/TL T dT dr
θ

θ θ= − , which is the quantity measured, by 

 

( )
( )

( )

( )
( )

,
,

,
T

T

L r r r
G r

L r r r

θ
θ

θ

∇
= ≡

∇
        (13) 

 
For the case 0θ = , corresponding to the outboard midplane location of the measured gradient 
scale lengths, Eq. (10) reduces to the Shafranov shift correction 
 

( )
0

1
, 0

1
r

R
r

θ∇ = =
∂ + ∂ 

         (14) 

 
 A series of calculations was performed for the same plasma model (representative of shot 
98889) with minor horizontal radius a = 0.583 m, varying triangularity, elongation 1.75,κ =  and 

major radius ( )0 1.77R a m= , using Eqs. (10)-(13) with 0, 0s sκ δ= =  and using the elliptical 

model discussed in the previous section, for which ( ) ( )21
, 0 1

2
G r θ κ= = + .  The results are 

shown in Table 1.  The Miller model predicts values of ( ), 0G a θ =  that are 10-20% larger than 

those predicted by the elliptical model. 
  

Neglecting the effect of the radial variation of the elongation and triangularity 
( 0, 0s sκ δ= = ) and also momentarily neglecting the triangularity ( 0δ = ), reduces Eq. (13) to a 

form that more readily exhibits the various factors involved 
 
 

( )
( )

( )
( )

[ ] ( )

[ ] ( )

0

12
2 2 2

01
2 2 20

12
2 2 20

0
0

1 cos

cos 1 1 sin
1 1 s

, 0
, 0

1 cos 1 1 sin

T

T

R

r
R r d

coL r
G r

RL r
R r d

r

π

π

κ θ

θ κ θ θ
κ θ

θ
θ

θ κ θ θ

∂
+

∂
+ + −∫

+ −
= = =

∂=
+ + + −∫

∂

 
     

  
      

 (15) 

 
Prediction of poloidal distribution of conductive heat flux 

 

 One-dimensional transport codes calculate an average conductive heat flux, q ,  over 

the flux surface.  Assuming that the density, temperature and thermal diffusivity are uniform 
over the flux surface, the poloidal dependence of the conductive heat flux must arise through the 
poloidal dependence of the radial temperature gradient  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11, , ,

T T
q r n r T r r L r n r T r r L r G rθ χ θ χ θ

−−= =  (16) 

 

The value of ( ) ( ) ( ) ( ) ( ), , ,
T T

G r q r q r L r L rθ θ θ≡ ≡  calculated from Eqs. (10)-(13) 

at the separatrix ( )r a→  of the model problem previously described 

( )' 0.25, 1.75, / 1/ 3r Rκ∆ = − = =  is plotted in Fig. 4  The curve labeled symmetric uses averaged 

values 1.77, 0.14κ δ= = for all values of θ , while the curve labeled asymmetric uses 

experimental values 1.50, 0.0
top top

κ δ= = in the upper half 0 θ π≤ ≤ and 2.32, 0.14κ δ= = in the 

lower half 2π θ π≤ ≤ . 
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Figure 4 Predicted poloidal distribution of the conductive 

heat flux at the separatrix for a DIII-D shot 98889 model. 
 

 

Relation to various HEP benchmarking calculations 

 

 The 2D codes (UEDGE4 and SOLPS5) calculate ( )exp,q r θ  at the location of the measured 

temperature gradient ( )exp,
T

L r θ directly, and the two quantities can be directly combined to infer 

the experimental thermal diffusivity ( ) ( )exp exp exp, , /
T

q r L r nTχ θ θ≡ . 

 The 1.5D (2D MHD, 1D transport) codes (ONE-TWO2 and ASTRA3) use the calculated 
2D MHD equilibrium to construct an equivalent 1D transport model, from which is calculated a 

FSA value of ( )q r .  In order to evaluate the experimental thermal diffusivity, it is then 

necessary either to map this average heat flux to a local value at the location of the measurement, 

( )exp exp( , ) ( , )q r G r q rθ θ=  or equivalently to map the measured value of the temperature 

gradient to an average value over the flux surface, ( ) ( ) ( )exp exp, ,
T T

L r G r L rθ θ= .  In either 
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case, the resulting expression for the inferred experimental thermal diffusivity is 

( ) ( ) ( )exp exp exp, , /
T

G r q r L r nTχ θ θ≡ .  The 2D MHD calculation in principle uses the quantities 

necessary to evaluate the mapping function ( )exp,G r θ .  Alternatively, this function can be 

evaluated from the Miller equilibrium or the simpler elliptical equilibrium. 

 The 1D codes1 use an effective cylinder with radius ( )21 2 1.4r r rκ= + ;  (which 

preserves the surface area of an elliptical equilibrium with elongation κ ) to calculate a FSA 

value of ( )q r .  In this approximation ( ) ( ) ( )2
exp, 0) 1 2 1.4

T T
L r L r a aθ κ= = = + ; .  

Using the improved Miller approximation that retains triangularity dependence, rather than the 
elliptical approximation, results in an equivalent radius about 7% smaller, hence a heat flux 
about 7% larger, than with the elliptical approximation.  The Miller equilibrium also leads to 

( ) ( )exp, 0) 1.7
T T

L r L r θ = ;  , instead of the elliptical value of 1.4.  Thus, using the Miller 

equilibrium instead of the elliptical equilibrium in the 1D calculations1 would be roughly 

estimated to increase the inferred thermal diffusivities exp /Tq L nTχ = by about 30% for the 

parameters that characterize the benchmark problems. Note that Callen’s formula6 yields a 

somewhat smaller value of ( ) ( )
( )

( )
2

exp 2

2
, 0) ( , 0) 1 2 '

1
T TL r L r S r

κ
θ θ

κ
= = = − ∆

+
; = 1.5.   
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V. HEP BENCHMARKING ACTIVITY 

(W. M. Stacey, Georgia Tech)  
 
Abstract 

 A group of  people are collaborating in the comparison experimental thermal diffusivities 
inferred from experimental data measured in the edge pedestal of DIII-D H-mode discharges 
using different codes.  I am providing calculations based on a 1D edge transport code (as 
described in section II and Ref. 1), Rich Groebner (General Atomics) is providing calculations 
based on the 1.5D transport/MHD code ONE-TWO2, Tarig Rafiq (Lehigh) is providing 
calculations based on the Multimode transport model in the 1.5D transport/MHD code ASTRA3, 
Tom Rognlien (Lawrence Livermore National Laboratory) is providing calculations based on the 
2D transport code UEDGE4, and Larry Owen and John Canick (Oak Ridge National Laboratory) 
are providing calculations based on the 2D transport code SOLPS5.  Jim Callen (Wisconsin) is 
coordinating the activity. 
 
A. 1D Transport Calculations 

My calculations for the two shots initially being considered by the group are shown in 
Figs 1 and 2.  The edge pedestal plasma density in shot 98889 is about 1/2 of the edge density in 
shot 118897, as a consequence of which the neutral penetration is much greater for 98889, 
resulting in charge exchange being the dominant heating/cooling mechanism in the very edge for 
98889 and resulting in very different heat flux profiles for the two shots.  The inferred 
experimental chi profiles in the edge are also quite different for the two cases.  The calculation 
procedure is described fairly succinctly in Ref. 1. 
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 Fig. 1a Neutral Density   Fig. 1b  Heating & Cooling Rates 
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 Fig. 1e  Electron χ Shot 98889@3960  Fig.1f  Ion χ Shot 98889@3960 
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Fig. 2a  Neutral Density Shot 118897@2140. Fig. 2b  Heating & Cooling Rates 
       Shot 118897@2140. 
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 Fig. 2e  Electron χ Shot 118897@2140. Fig. 2f  Ion χ Shot 118897@2140. 
 

 

 

B. Applications of the Miller Equilibrium to the Poloidal Variation of Temperature 

Gradients and Conductive Heat Fluxes  

    
 Stimulated by the relatively good agreement between the approximate formulas for the 
poloidal variation of the conductive heat flux that Callen derived6 from the Miller equilibrium7 
with the calculations by the 2D codes, this formalism has been developed further, essentially 
retaining the dependence on triangularity and retaining an arbitrary poloidal location for 
measured temperature gradient in the Miller equilibrium.  The result is an expression for the 

quantity ( ) ( ) ( ) ( ) ( ), , ,
T T

G r q r q r L r L rθ θ θ≡ ≡  which relates the local and flux surface 

averaged conductive heat fluxes or temperature gradient scale lengths. 
 
Miller equilibrium 

 

 Miller, et al.7 derived analytical expressions for an equilibrium flux surface in a plasma as 
shown in Figure 3 with elongation κ , triangularity δ , and displaced centers ( )0R r , where r  is 
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the half-diameter of the plasma along the midplane with center located at distance ( )0R r  from 

the toroidal centerline.   
 

r

R(r) κrsinθ

Midplane

r [cos2(θ+xsinθ)] + [κsinθ]2 

r cos (θ+xsinθ)

L

θ

R0(r)
 

 
Figure 3 Miller equilibrium parameters 
 
 
The R and Z coordinates of this plasma are described by7 

 

( ) [ ]

( )
0( ) cos sin

sin

R r R r r x

Z r r

θ θ

κ θ

= + +

=
  (1) 

where  1sinx δ−≡ . 
 The poloidal magnetic field in such flux surface geometry is7 

 

 ( ) ( )

( ) [ ] ( )

1
2 21 2 2 2

0

sin sin 1 cos cos

cos sin cos cos (1 ) cos sin sin sin

pRB r
r

x x
r

R
x s s s x x

r
κ δ κ

ψ
φ ψ

ψ
κ θ θ θ κ θ

θ θ θ θ θ θ θ

−

∂
= ∇ ×∇ = ∇

∂

∂  + + +
 ∂        =

∂
+ + − + + +

∂

 (2) 

where  
r

s
r

κ

κ

κ

∂
=

∂
 and ( )2/ 1s r

r
δ

δ
δ

∂
= −

∂
account for the change in elongation and 

triangularity, respectively, with radial location. 
 The shifted circle model (which leads to the Shafranov shift) yields 
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0

0

1
'

2p i

R r

r R
β

∂  
≡ ∆ = − + 

∂  
l          (3a) 

and a shifted ellipse model by Lao, et al.8 yields 
 

( )
( )

( )
( )

2 2

0

2 2
0

2 1 11 1

2 23 1 3 1
p i

R r

r R

κ κ
β

κ κ

 + −∂  
 = − + + 

∂ + +   

l       (3b)   

 
Flux surface average 
  

The flux surface average (FSA) of a quantity ( ),A r θ  in this flux surface geometry is 

 

( )
( ) ( )

( )

( , )

, ,
,

,

p

p p

p p

p

A r d

B A r z r d
A r

d z r d

B

θ

θ θ
θ

θ

∫
∫

≡ =
∫

∫

l
Ñ

lÑ
l lÑ

Ñ

     (4) 

where 
 

( )
( ) [ ] ( )

( )( )
( ) [ ]

0

1
2 22 2 2

0

cos sin cos cos (1 ) cos sin sin sin
,

sin sin 1 cos cos

cos sin

R
x s s s x x

rz r

x x

R r r x

κ δ κθ θ θ θ θ θ θ
θ

θ θ θ κ θ

θ θ

∂
+ + − + + +

∂≡
 + + +
 

 + + 

  (5) 

 
and the differential poloidal length is (see Fig. 3) 
 

( )2 2 2cos sin sin
p

d r x dθ θ κ θ θ = + +
 

l        (6) 

 

 

Equivalent toroidal models  

 

 Simple toroidal models are widely used for transport calculations and experimental data 
interpretation (e.g Ref. 1).  The usual flux surface model implicitly assumed in such codes, 
which will be referred to as the “elliptical” model” is (e.g. Ref. 1) 0 cos , sin ,R R r Z rθ κ θ= +  =  

0
0

1 cosp p

r
B B

R
θ

 
= + 

 
.  The usual approach is to construct an effective toroidal or cylindrical 

model that preserves the area of flux surface, which for this model leads to a relation between the 

effective radius variable r of the equivalent torus and the actual radial variable in the horizontal 

midplane r given in the elliptical model by  ( )21
1

2
r r κ= + . 
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Such equivalent models should be improved by using instead the Miller equilibrium.  The 
area of the flux surface ψ  passing through the midplane radius r  is 

 

( )

( )
( )

( ) ( )

2

0

2 1
2 2 2 2

0
0 0

2

2 1 cos sin cos sin sin

p p
A d h d Rd

r
rR r x x d

R r

π

φ
ψ ψ

π

ψ φ π

π θ θ θ θ κ θ θ

= =∫ ∫ ∫

 
           = + + + +∫    

 

l lÑ Ñ

 (7) 

The area of a cylinder with radial variable r  is ( ) ( )02 2
c

A r R a rπ π= .  Equating the two areas 

and solving for 
 

( )
( ) ( )

( ) ( )
2 1

0 2 2 2 2

00 0

1 cos sin cos sin sin
2

R r r
r r x x d

R a R r

π

θ θ θ θ κ θ θ
π

 
 = + + + +∫    

 
  (8) 

 
defines the radial variable of an equivalent cylinder that preserves the surface area of the Miller 
equilibrium flux surface. 
 A comparison calculation was made for a plasma representative of shot 98889 with minor 
horizontal radius a = 0.583 m, varying triangularity, elongation 1.75,κ =  and major radius 

( )0 1.77R a m= .  The elliptical model predicts for these parameters an effective circular plasma 

radius 0.830a = m.  Evaluation of Eq. (8) with 1sinx δ−= yields almost the same value of  

0.817a m=  for 0δ = , as shown in Table 1.  For non-zero values of the triangularity, the Miller 
model predicts increasingly smaller equivalent cylindrical  radii than the elliptical model to 
preserve surface area. 
 

Table 1 Effect of triangularity on effective cylindrical radius and ( ), 0G a θ =  

 
 δ  
triangularity 

 ( )a m  
Miller equil. 

 ( )a m  

elliptic equil 

 ( ), 0G a θ =  

Miller equil. 

( ), 0G a θ =  

elliptic equil 
0.0 0.817 0.830 1.73 1.43 
0.1 0.800 “ 1.73 “ 
0.2 0.784 “ 1.73 “ 
0.3 0.769 “ 1.73 “ 
0.4 0.753 “ 1.72 “ 
0.5 0.739 “ 1.71 “ 
0.6 0.725 “ 1.69 “ 
0.7 0.710 “ 1.66 “ 
0.8 0.696 “ 1.62 “ 
0.9 0.680 “ 1.55 “ 
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Interpretation of thermal conductivities from measured temperature gradients 

 

 Another application of the Miller equilibrium that immediately comes to mind is in the 
inference of experimental thermal diffusivities from measured temperature gradients in 
tokamaks.  The measured temperature gradient exp( )dT dr pertains of course to the location  

( )exp,r θ  at which the measurement is made (although sometimes it is mapped along flux surfaces 

to another location such as the outboard midplane at ( ), 0r θ = ).  On the other hand, one-

dimensional radial transport codes calculate an average conductive heat flux ( )q r< > .  In order 

to use the calculated average heat flux and the local (inθ ) measured temperature gradient in the 

heat conduction relation to infer a measured thermal diffusivity ( )/ / /Tq n dT dr qL nTχ = − ≡ ,  

the local temperature gradient scale length must be mapped into an average value over the flux 
surface 
  

( ) ( )( )
( ) ( )( ) ( ) ( )( )

exp exp expexp

exp expexp exp

( ) ( ) /

/ /

T T

T T

L T dr dT L T dr dT dr dr

L dr dr L r r

θ

θ θ

≡ − ⇒< >= − < >

           ≡ < > = ∇ < ∇ >
 (9) 

 

 From Eq. (2), the local r∇  may be written 

 

( )
( )( )

( ) [ ] ( )

1
2 21 2 2 2

0

sin sin 1 cos cos
,

cos sin cos cos (1 ) cos sin sin sin

x x
r r

R
x s s s x x

r
κ δ κ

κ θ θ θ κ θ
θ

θ θ θ θ θ θ θ

−  + + +
 ∇ =

∂
+ + − + + +

∂

  (10) 

 
Using this in Eq. (4) yields an expression for the FSA value 
 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 1
2 2 2 2

0
0

2 1
2 2 2 2

0
0

cos sin cos sin sin

, cos sin cos sin sin

R r r x x d

r r

F r R r r x x d

π

π

θ θ θ θ κ θ θ

θ θ θ θ θ κ θ θ

 + + + + ∫    
∇ =

 + + + + ∫    

 (11) 

where 
 

( )
( ) [ ] ( )

( )( )

0

1
2 21 2 2 2

cos sin cos cos (1 ) cos sin sin sin
,

sin sin 1 cos cos

R
x s s s x x

rF r

x x

κ δ κθ θ θ θ θ θ θ
θ

κ θ θ θ κ θ−

∂
+ + − + + +

∂=
 + + +
 

 (12) 

 

 The FSA value of the temperature gradient scale length, ( )/
T

L T dT dr= − , which is 

the quantity needed for the inference of experimental thermal diffusivity using the average heat 
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flux calculated by 1D transport codes, is related to the local value of the temperature gradient 

scale length, ( ) ( ) ( )/TL T dT dr
θ

θ θ= − , which is the quantity measured, by 

 

( )
( )

( )

( )
( )

,
,

,
T

T

L r r r
G r

L r r r

θ
θ

θ

∇
= ≡

∇
        (13) 

 
For the case 0θ = , corresponding to the outboard midplane location of the measured gradient 
scale lengths, Eq. (10) reduces to the Shafranov shift correction 
 

( )
0

1
, 0

1
r

R
r

θ∇ = =
∂ + ∂ 

         (14) 

 
 A series of calculations was performed for the same plasma model (representative of shot 
98889) with minor horizontal radius a = 0.583 m, varying triangularity, elongation 1.75,κ =  and 

major radius ( )0 1.77R a m= , using Eqs. (10)-(13) with 0, 0s sκ δ= =  and using the elliptical 

model discussed in the previous section, for which ( ) ( )21
, 0 1

2
G r θ κ= = + .  The results are 

shown in Table 1.  The Miller model predicts values of ( ), 0G a θ =  that are 10-20% larger than 

those predicted by the elliptical model. 
  

Neglecting the effect of the radial variation of the elongation and triangularity 
( 0, 0s sκ δ= = ) and also momentarily neglecting the triangularity ( 0δ = ), reduces Eq. (13) to a 

form that more readily exhibits the various factors involved 
 
 

( )

( )
( )

( )
[ ] ( )

[ ] ( )

0

12
2 2 2

01
2 2 20

12
2 2 20

0
0

1 cos

cos 1 1 sin
1 1 s

, 0
, 0

1 cos 1 1 sin

T

T

R

r
R r d

coL r
G r

RL r
R r d

r

π

π

κ θ

θ κ θ θ
κ θ

θ
θ

θ κ θ θ

∂
+

∂
+ + −∫

+ −
= = =

∂=
+ + + −∫

∂

 
     

  
      

 (15) 

 
Prediction of poloidal distribution of conductive heat flux 

 

 One-dimensional transport codes calculate an average conductive heat flux, q ,  over 

the flux surface.  Assuming that the density, temperature and thermal diffusivity are uniform 
over the flux surface, the poloidal dependence of the conductive heat flux must arise through the 
poloidal dependence of the radial temperature gradient  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11, , ,

T T
q r n r T r r L r n r T r r L r G rθ χ θ χ θ

−−= =  (16) 

 

The value of ( ) ( ) ( ) ( ) ( ), , ,
T T

G r q r q r L r L rθ θ θ≡ ≡  calculated from Eqs. (10)-(13) 

at the separatrix ( )r a→  of the model problem previously described 

( )' 0.25, 1.75, / 1/ 3r Rκ∆ = − = =  is plotted in Fig. 4  The curve labeled symmetric uses averaged 

values 1.77, 0.14κ δ= = for all values of θ , while the curve labeled asymmetric uses 

experimental values 1.50, 0.0
top top

κ δ= = in the upper half 0 θ π≤ ≤ and 2.32, 0.14κ δ= = in the 

lower half 2π θ π≤ ≤ . 
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Figure 4 Predicted poloidal distribution of the conductive 

heat flux at the separatrix for a DIII-D shot 98889 model. 
 

 

Relation to various HEP benchmarking calculations 

 

 The 2D codes (UEDGE4 and SOLPS5) calculate ( )exp,q r θ  at the location of the measured 

temperature gradient ( )exp,
T

L r θ directly, and the two quantities can be directly combined to infer 

the experimental thermal diffusivity ( ) ( )exp exp exp, , /
T

q r L r nTχ θ θ≡ . 

 The 1.5D (2D MHD, 1D transport) codes (ONE-TWO2 and ASTRA3) use the calculated 
2D MHD equilibrium to construct an equivalent 1D transport model, from which is calculated a 

FSA value of ( )q r .  In order to evaluate the experimental thermal diffusivity, it is then 

necessary either to map this average heat flux to a local value at the location of the measurement, 

( )exp exp( , ) ( , )q r G r q rθ θ=  or equivalently to map the measured value of the temperature 

gradient to an average value over the flux surface, ( ) ( ) ( )exp exp, ,
T T

L r G r L rθ θ= .  In either 
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case, the resulting expression for the inferred experimental thermal diffusivity is 

( ) ( ) ( )exp exp exp, , /
T

G r q r L r nTχ θ θ≡ .  The 2D MHD calculation in principle uses the quantities 

necessary to evaluate the mapping function ( )exp,G r θ .  Alternatively, this function can be 

evaluated from the Miller equilibrium or the simpler elliptical equilibrium. 

 The 1D codes1 use an effective cylinder with radius ( )21 2 1.4r r rκ= + =  (which 

preserves the surface area of an elliptical equilibrium with elongation κ ) to calculate a FSA 

value of ( )q r .  In this approximation ( ) ( ) ( )2
exp, 0) 1 2 1.4

T T
L r L r a aθ κ= = = + = .  

Using the improved Miller approximation that retains triangularity dependence, rather than the 
elliptical approximation, results in an equivalent radius about 7% smaller, hence a heat flux 
about 7% larger, than with the elliptical approximation.  The Miller equilibrium also leads to 

( ) ( )exp, 0) 1.7
T T

L r L r θ = =  , instead of the elliptical value of 1.4.  Thus, using the Miller 

equilibrium instead of the elliptical equilibrium in the 1D calculations1 would be roughly 

estimated to increase the inferred thermal diffusivities exp /Tq L nTχ = by about 30% for the 

parameters that characterize the benchmark problems. Note that Callen’s formula6 yields a 

somewhat smaller value of ( ) ( )
( )

( )
2

exp 2

2
, 0) ( , 0) 1 2 '

1
T TL r L r S r

κ
θ θ

κ
= = = = − ∆

+
= 1.5.   
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VI. SABR FUEL CYCLE ANALYSIS  
C. M.  Sommer, W. Van Rooijen and W. M. Stacey,  Georgia Tech 

 

Abstract 

Various fuel cycles for a sodium cooled, subcritical, fast reactor, SABR
1
, with a 

fusion neutron source for the transmutation of light water reactor spent fuel have been 

analyzed.  All fuel cycles were 4-batch, and all but one were constrained by a total fuel 

residence time consistent with a 200 dpa clad and structure materials damage limit. The 

objective of this study was to achieve greater than 90% burn up of the transuranics from 

the spent fuel, consistent with the Advanced Fuel Cycle objectives of DoE
2
.  A more 

detailed account of this work can be found in the MS thesis of the first author
3
. 

 

A. SABR spent nuclear fuel transmutation reactor 

 

SABR
1
 is a TRU-metal-fueled, sodium cooled, subcritical fast transmutation 

reactor driven by a D-T fusion neutron source.  Figure 1 shows a simplified three 

dimensional model of the reactor.  An annular fission core contains metallic TRU fuel 

with initial weight percent composition of 40Zr-10Am-10Np-40Pu and maximum nominal 

operating temperature of 970 K.  The core produces 3000MWth (83.3 kWth/kg TRU), with 

coolant nominal Tin = 650 K and Tout = 923 K.  Reactivity decrease with fuel burnup is 

offset by increasing the fusion neutron source strength. 

The fusion neutron source is surrounded on the outside by an annular fission core.  

Surrounding the fission core and the plasma there are tritium breeding blankets and 

several layers of shielding to protect the superconducting magnets that are used for the 

confinement of the plasma.   The tokamak DT fusion neutron source for SABR is 

described in Ref. 4. 

 

Figure 1: Configuration of SABR 
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B. Fuel cycle analysis 

 

Five fuel cycle scenarios were investigated.  The first two fuel cycle scenarios (A 

and B) examined the difference between in-to-out and out-to-in fuel shuffling for once-

through fuel cycles (in the in-to-out scenario the fresh fuel batch is loaded next to the 

plasma source and shuffled successively outward, and vice-versa for the out-to-in 

scenario), and the third scenario (C ) examined the effect of a design variation on power 

flattening.  The fourth fuel cycle (D) examined the achievement of greater than 90% TRU 

burnup in a once-through fuel cycle, assuming the development of an advanced structural 

material that could withstand the associated radiation damage. Finally, the fifth fuel cycle 

(E) analysis, which is representative of the reference fuel cycle envisioned for advanced 

burner reactors (ABRs), examined the achievement of 90% TRU burnup by repeated 

reprocessing/recyling of the TRU fuel.  The calculations for the fuel cycle of SABR were 

done by employing the TRITON/NEWT
5,6

 package from SCALE5.1
7
  and the neutronics 

code EVENT
8
.  Cross sections were obtained fron NJOY

9
.  A code was written to couple 

the cross section processing, the neutronics calculation and the depletion calculation in 

the fuel cycle.    

A 4-batch fuel cycle was used in which the fuel resides for one burn cycle (of 750 

days) in each of the four annular rings of the core, for a total fuel residence time (equal to 

4 burn cycle times) of 3000 days, limited by the radiation damage to the clad and fuel 

assembly structure corresponding to 200 dpa.  A “once-through” fuel cycle (in which 

“fresh” TRU fuel from SNF is loaded into one of the 4 rings at the beginning of each 

burn cycle and fuel which has been in residence for 4 burn cycles is removed and sent to 

a high level waste repository [HLWR]) achieves about 23% burnup (about 8.3 MT of 

TRU) before the fuel acquires 200 dpa and must be removed.  A maximum keff = 0.95 

occurs at beginning of life with fresh TRU fuel in all assemblies. Once such a fuel cycle 

reaches equilibrium, the values of keff at beginning and end of cycle (BOC and EOC) are 

about 0.90 and 0.85, which requires corresponding neutron source strengths in terms of 

Pfusion of about 180 and 240 MW, respectively, to maintain 3000 MWth fission power.  

The integral decay heat of the discharged fuel over 10
6
 years is only reduced by a factor 

of about 2 (relative to the SNF discharged from LWRs) by such a “once-through” fuel 

cycle, implying a factor of 2 reduction in repository requirements. This fuel cycle 

provides a baseline of what can be accomplished without further reprocessing and 

recycling of the TRU fuel. 

When the same 4-batch, 3000 day residence time fuel cycle is used but the fuel 

removed after 4 burn cycles is reprocessed and the TRU is recycled (together with 

“fresh” TRU from SNF), only the fission products and a small fraction of the actinides 

(0.15% Pu and Np, 0.03% Am) are sent to the HLWR after each reprocessing step.  For 

such a “reprocessing” fuel cycle, the values of  keff and Pfusion at BOC and EOC are about 

the same and the TRU burnup rates are slightly larger.  The integral decay heat of 

material placed in a HLWR in such a reprocessing transmutation fuel cycle would be 

reduced to only 10% of the integral decay heat of the original SNF; i.e. the repository 

requirement is reduced by a factor of 10.  SABR operating with 80% availability could 

support (i.e. burn the TRU in the discharged SNF of) four 1000 MWe LWRs. 

If the 200 dpa radiation damage limit on fuel residence time could be relaxed, 

then greater TRU burnup could be achieved in a single residence time. A “once-though” 
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fuel cycle as described in the first paragraph, but now with four 3000 day burn cycles and 

a fuel residence time of 12,000 days (24.65 yr) was found to burn up 91.2% of the TRU 

fuel.   Once such a fuel cycle reaches equilibrium, the values of keff at BOC and EOC are 

about 0.68 and 0.48, which require corresponding neutron source strengths in terms of 

Pfusion of about 433 and 663 MW, respectively, to maintain 3000 MWth fission power.  It 

is feasible to modify the SABR neutron source to produce more than the present Pfusion = 

500 MW design limit.  However, the integral decay heat of the remaining 8.8% of the 

TRU and the fission products (hence the HLWR requirement) is only reduced by a factor 

of about 3 relative to SNF discharged from LWRs, and the power was so strongly peaked 

near the neutron source in such a far subcritical reactor as to make the practical design of 

such a reactor unattractive.  

 The reference fuel cycle, in which the TRU fuel was reprocessed, mixed with 

fresh TRU fuel, and recycled into the reactor (with an “out-to-in” shuffling pattern) after 

each 24% burnup residence time, achieved greater than 90% TRU burnup after 9 

residence times.  The fuel ultimately discharged to the high level waste repository 

(HLWR) was reduced relative to the original spent nuclear fuel (SNF) from which it was 

produced by 99% in integral decay heat at 100,000 years after discharge.  The resulting 

repository volume required for the millennial storage of the fuel discharged from the 

SABR was calculated to be 1/130 the volume that would have been required to store the 

original SNF from which that fuel was made.  Detailed properties of this fuel cycle are 

given in Table 1. 

 

Table 1 Reference fuel cycle parameters 

Parameter Units Values 

Thermal Power MW 3000 

Cycles per Residence Time   4 

Burn Cycle Length Time Days 750 

4 Batch Residence Time Years 8.21  

BOC keff   0.900 

EOC keff   0.847 

BOC Pfus MW 181 

EOC Pfus MW 241 

TRU BOC Loading MT 36 

Power Density KW/kg 83.3 

Power Peaking BOC  1.28 

Power Peaking EOC  1.54 

TRU Burned per Residence % 23.6% 
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TRU Burned per Year MT/FPY 1.03 

TRU Burned per Residence MT 8.496 

SNF Disposed per Year MT/FPY 103 

LWR Support Ratio  4 

Average Core Flux Across Cycle n/cm
2
-s 1.47E16 

Average Fast (>0.1 MeV) Flux n/cm
2
-s 

 

9.20E15 

Fluence per Residence Time n/cm
2
 3.81E24 

Fast Fluence per Residence Time n/cm
2 

5.75E15 

Hardness of Spectrum % 62.6% 

Heat Load at 100,000 years W/kg TRU Initial .00187 

Heat Load at 100,000 years SABR 

Input W/kg TRU Initial 
.127 

Integral Heat Load W/kg TRU Initial 667 

Integral Heat Load SABR Input W/kg TRU Initial 88705 

Passes For 90% Burn Up # 9 

Repository Space Gain Factor 129 

 

 

C. Conclusions 

 

A 4 batch fuel cycle representative of the ABR’s fuel cycle envisioned by GNEP 

was explored.  This 4 batch, 3000 day cycle with repeated reprocessing and recycling of 

the TRU fuel to achieve greater than 90% burnup of the fuel after 9 recycles.  The decay 

heat to the repository in this cycle would be short term and caused by the fission 

products.  The increase in repository space by a factor of 129 is due to only 1% of the 

TRU having to be placed in the repository.  This fuel cycle is the reference cycle for 

SABR.  It was chosen as the reference cycle, because it meets all of the design criteria: 1) 

minimizes power peaking, 2) achieves a high transmutation rate and reaches 90% burnup 

of the TRU, 3) produces enough tritium to maintain self sufficiency, 4) decreases the long 

term decay heat, 5) and it reduces the repository requirements for spent nuclear fuel by a 

factor of 10.   
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VII. SABR DYNAMIC SAFETY ANALYSIS 
T. Sumner, W. M. Stacey and W. Van Rooijen,  Georgia Tech 
 

Abstract  

 A model was developed to simulate the coupled dynamics of a sub-critical fast 
reactor fueled with transuranics (TRU), a DT tokamak fusion neutron source and the heat 
removal and secondary systems.  Several types of accident initiating events—inadvertent 
increases in the auxilliary power and fueling sources for the fusion neutron source, 
inadvertent control rod ejection from the reactor core, loss of flow (LOFA), and loss of 
heat sink (LOHSA)—were simulated in order to determine the time available to detect 
accident onset and take corrective action.  A more detailed description is presented in 
Ref. 1. 
 

A. SABR spent nuclear fuel transmutation reactor 
 

SABR2 is a TRU-metal-fueled, sodium cooled, subcritical fast transmutation 
reactor driven by a D-T fusion neutron source.  Figure 1 shows a simplified three 
dimensional model of the reactor.  An annular fission core contains metallic TRU fuel 
with initial weight percent composition of 40Zr-10Am-10Np-40Pu and maximum 
nominal operating temperature of 970 K.  The core produces 3000MWth (83.3 kWth/kg 
TRU), with coolant nominal Tin = 650 K and Tout = 923 K.  Reactivity decrease with fuel 
burnup is offset by increasing the fusion neutron source strength. 

The fusion neutron source is surrounded on the outside by an annular fission core.  
Surrounding the fission core and the plasma there are tritium breeding blankets and 
several layers of shielding to protect the superconducting magnets that are used for the 
confinement of the plasma.   The tokamak DT fusion neutron source for SABR is 
described in Ref. 3. 

 

Figure 1: Configuration of SABR 
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B. Dynamical safety analyses 

 

A Subcritical Advanced Burner Reactor )SABR) fueled with pure TRU (in order 
to maximize net TRU burnup) presents some safety issues relative to a similar reactor 
fueled with uranium.  The delayed neutron fraction β is smaller for TRU than for U-235, 
meaning that the reactivity margin to prompt critical is smaller for TRU fueled reactors.  
The absence of U-238 removes the large negative fuel Doppler reactivity coefficient 
which limits inadvertent power excursions.  Operating subcritical by an amount ρ 
increases the reactivity margin to prompt critical from β to ρ+β >> β for SABR.  
Moreover, the dynamics of a subcritical reactor will differ from those of a critical reactor 
in several ways; e.g. there does not seem to be an inherent feedback mechanism that 
would shut off the neutron source if a fission power excursion started, control rod 
insertion would lead to a lower power operation of the fission reactor, not to complete 
shutdown, if the neutron source remained on. On the other hand, turning off the neutron 
source is a very effective way to shut down a subcritical reactor. 
 A model of the coupled dynamics of the fusion neutron source, the fission core, 
and the heat removal system has been implemented1, and some initial simulations of 
reactor shutdown and of accidents in SABR have been simulated to determine how much 
time is available to detect an accident and shut down the neutron source before damage 
would occur (e.g. fuel melt at 1473 k, sodium boiling at 1156 K).  Turning off the 
auxiliary heating power to the fusion neutron source was found to be an effective “scram” 
mechanism, shutting down the fission reactor within a few plasma energy confinement 
times, which is about a second.  There are inherent “soft” plasma pressure and density 
limits that will inhibit any inadvertent plasma power excursion (hence neutron source 
excursion) by spoiling the plasma confinement and thus reducing the plasma power 
(hence neutron source).  
 
Neutron source excursions 

Simulation of neutron source excursions due to inadvertent increases in plasma 
heating or fueling indicated that the inherent plasma pressure limit (Troyon beta limit or 
Greenwald density limit) would limit fusion power excursions before fuel melting or 
sodium boiling occurred in the core, except for one case, as summarized in Tables 1 and 
2.  (BOL refers to beginning of core life, BOC refers to beginning of equilibrium fuel 
cycle, and EOC refers to end of equilibrium fuel cycle.).  The auxiliary heating power for 
the fusion neutron source consists of 6 different 20 MW sources.  Only when two of these 
sources are accidently turned on at beginning of core life would there be any core damage 
if corrective action were not taken. 

.   
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Table 1: Summary of Accidental Plasma Auxiliary Heating Increases 

(fuel melts @ 1473 K, sodium boils @ 1156 K) 

 BOL BOC EOC 

Max. Coolant Temperature for  

20 MW increase in Paux (K) 

1,079 968 952 

Max. Fuel Temperature for 

 20 MW increase in Paux (K) 

1,142 1,020 1,002 

Max. Coolant Temperature for  

40 MW increase in Paux (K) 

1,184* 1,003 976 

Max. Fuel Temperature for  

40 MW increase in Paux (K) 

1,259 1,058 1,028 

 
 The accidental increase in plasma fueling rate which would produce an increase in 
the plasma ion density and hence the fusion neutron production rate was simulated…In 
all cases the Troyon beta limit would be exceeded before the ion density increased 
enough to cause fuel melting or coolant boiling.  Even if the density exceeding the 
Troyon beta limit did not limit the fusion neutron source excursion, the time between the 
initiation of the accident and coolant boilng or fuel melting was sufficiently long to 
enable the accident to be detected and corrective action to be taken. 
 
Table 2: Summary of Accidental Plasma Ion Density Increases 

 BOL BOC EOC 

Allowable Plasma Ion Density Increase 

Before Coolant Boiling  

12% 17% 19% 

Time Until Coolant Boiling (seconds) 46 29 27 

Allowable Plasma Ion Density Increase 

Before Fuel Melting  

19% 29% 32% 

Time Until Fuel Melting (seconds) 14 13 16 

Maximum Plasma Ion Density Increase 

Before Troyon Beta Limit Exceeded  

11% 1% 2% 
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Control rod ejection 
 
Simulation of accidental control rod injection (+9$) in the most reactive condition 

resulted only in increase in fission power to a new equilibrium, with core temperatures 
remaining below levels at which either fuel melting or core boiling would occur.  

 
Loss-of-flow-accidents (LOFAs)  

Simulation of LOFAs indicate that a flow reduction of about 50% can be tolerated 
in SABR without turning off the neutron source, and that even with an unrealistic 100% 
loss of flow in the core there is about 24 seconds to shut off the neutron source before 
fuel melting occurs. The fuel and coolant maximum temperatures are plotted for 50, 65 
and 80% loss-of-flow accidents in Figs. 2 and 3.   
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Figure 2: Maximum Fuel Temperature during Loss of Flow Accident  

at BOL (Fuel melting at 1473 K) 
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Figure 3: Maximum Coolant Temperature during Loss of Flow Accident  

at BOL (sodium boiling at 1156 K) 

 
Loss-of-heat-sink-accidents 

Simulation of LOHSAs indicate that up to about 33% loss of sodium heat transfer 
to the heat exchanger can be tolerated before boiling occurs and that even then about a 
minute is available to detect this accident and turn off the neutron source; as long as heat 
transfer to the heat exchanger remains above 30% of nominal the decay heat can be 
removed without damage to the fuel.  The detailed results of the LOHSAs simulations are 
summarized in Table 3. 
 

Table 3: Loss of Heat Sink Accident Summary 

 BOL BOC EOC 

Maximum Heat Sink Loss 
Before Coolant Boiling 

33% 36% 36% 

Time Until Coolant Boiling (seconds) 65 70 78 

Maximum Heat Sink Loss 
Before Fuel Melting 

47% 53% 54% 

Time Until Fuel Melting (seconds) 77 87 86 

Maximum Heat Sink Loss for which 
Decay Heat can be Fully Removed. 

70% 70% 70% 

Time Until Coolant Boiling for 70% 
LOHSA (seconds) 

10 11 11 

Time Until Fuel Melting for 70% 
LOHSA (seconds) 

17 21 22 
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C. Conclusions 

Possible transients occurring in SABR can be placed into two different categories. 
The first category of transients is accidents affecting SABR’s neutron population in the 
fission core. Due to operation very close to the Troyon Beta Limit, SABR is safe against 
accidental increases in the plasma ion fueling rate and plasma auxiliary heating. SABR is 
also safe from any accidental control rod ejections due to the large subcriticality.  

The second category of transients is those affecting SABR’s heat removal 
systems---Loss of Flow, Heat Sink and Power Accidents. In all of these accidents, there 
are at least 10 seconds to respond to an initiating event by turning off the plasma 
auxiliary heating. The 10 second for 100% loss of flow is probably not enough time to 
react by turning off the plasma auxiliary heating but this accident is the absolute worst 
case scenario and does not take into account natural circulation or secondary coolant loop 
flow coast down times. In more realistic accident scenarios, there are many tens of 
seconds up to a couple minutes for taking corrective measures before the coolant begins 
to boil and the fuel begins to melt. This required reaction time is implies the need for 
careful monitoring of the temperature and power levels in the reacto, but it should be 
sufficient time for reactor operators to take action. After the plasma is shut down, if the 
coolant flow rate and heat sink capability continue to decrease, back-up pumps and heat 
exchangers must be turned on to remove the power produced by decay heat.  
 Because of the large positive sodium voiding and lack of 238U in the TRU fuel, 
SABR has a positive reactivity feedback. Due to this positive reactivity feedback and 
decay heat production, SABR will fail in the absence of external counter measures during 
severe accidents in the heat removal system. The subcritical nature of the reactor, 
however, provides a considerable margin of safety for dealing with this positive reactivity 
feedback during transients. The immediate risk that all accidents pose can be diminished 
if the fusion neutron source is rapidly shut down, leaving only decay heat to deal with. 
Because back-up and auxiliary pumps and heat exchangers will be responsible for 
providing sufficient heat removal in extreme cases, SABR requires further design of the 
primary, intermediate and secondary coolant loops so that a more in depth analysis can 
determine if the reactor is in fact safe from the worst case accident scenarios. Further 
work also should include separate systems dedicated to removing decay heat. However, 
for all accidents suggested in this study, there are viable options for preventing permanent 
damage to the reactor that make SABR, with additional design, a potential second 
generation Advanced Burner Reactor for minimizing the amount of Spent Nuclear Fuel 
that must be stored in High Level Waste Repositories. 
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