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Inclusion of ion orbit loss and intrinsic rotation in plasma fluid rotation
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The preferential ion orbit loss of counter-current directed ions leaves a predominantly co-current

ion distribution in the thermalized ions flowing outward through the plasma edge of tokamak plas-

mas, constituting a co-current intrinsic rotation. A methodology for representing this essentially ki-

netic phenomenon in plasma fluid theory is described and combined with a previously developed

methodology of treating ion orbit particle and energy losses in fluid theory to provide a complete

treatment of ion orbit loss in plasma fluid rotation theory. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939884]

I. INTRODUCTION

A methodology previously has been developed for cal-

culation of the ion-orbit-loss of particles, momentum, and

energy in the thermalized outflowing ion distribution in toka-

mak edge plasmas.1,2 The calculation is based on combining

the requirements for the conservation of canonical angular

momentum, energy, and magnetic moment to obtain an

equation for the minimum speed a particle at a given location

ðr; hÞ on an internal flux surface with a given pitch angle f0

(with respect to B) must have in order to reach a given loca-

tion on the last closed flux surface (LCFS), V0minðf0Þ. This

minimum V0minðf0Þ enables the calculation of the fractions

of particles, ion energy, and ion momentum flowing across

an internal flux surface in the edge plasma that consists of

free-streaming ion-orbit-loss particles.1,2 This methodology

and similarly based methodologies have been applied to

explain the intrinsic co-current rotation peaking of toroidal

rotation (which is an experimental signal of ion orbit loss

(IOL)) measured in the edge of several DIII-D discharges3–7

and in an EAST discharge.8,9

IOL is essentially a “kinetic” effect very much associ-

ated with the directionality of the ion distribution, so the

question of how to incorporate such a kinetic effect into the

“fluid” theory commonly used for edge plasma analyses nat-

urally arises. It has been previously shown10 that the particle

and energy ion orbit losses can be incorporated into the ra-

dial continuity and energy balance equations as differential

loss rates proportional to the local particle and energy fluxes

at each radius, and that the continuity equation can be further

corrected to account for the return current necessary to main-

tain charge neutrality. However, inclusion of the toroidal and

poloidal ion orbit momentum gain/loss into the toroidal and

poloidal momentum balance equations at each radial location

is less straightforward and is the main topic of this paper.

II. ION ORBIT LOSS OF PARTICLES AND ENERGY

Plasma fluid theory treats an outwardly flowing distribu-

tion of plasma ions that are at least implicitly assumed to be

near Maxwellian. As these ions near the edge, some of the

higher energy ions in the distribution become able to access

orbits that carry them outside the plasma. The methodology

employed in Refs. 1, 2, and 10 describes the calculation of

radially cumulative particle and energy ion orbit loss frac-

tions of the outwardly flowing ion distribution, in effect

assuming that the ion distributions remain Maxwellian with

a temperature that decreases with radius, as in fluid theory,

but with the distribution being “chopped off” above a certain

minimum energy which depends on the directionality of the

ion and the parameters of the edge plasma, and which

decreases with radius.

The cumulative fractions of the outflowing thermalized

ion and ion energy fluxes that are in the form of ion orbit

loss particles streaming outward across an internal flux sur-

face are the fractions of these distributions associated with

particles with V0ðq; f0Þ > V0minðq; f0Þ

Forb �
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where Riol
loss is the fraction of such particles leaving the con-

fined plasma that do not return, emin � mV2
0minðf0Þ=2T, C is

the gamma function, and a Maxwellian distribution has been

used to evaluate the integrals over ion speed. V0minðf0Þ is the

minimum speed of a particle at a given location on an
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internal flux surface with pitch angle f0 (with respect to B)

which can reach a given location on the LCFS, and can be

determined1,2 from conservation of canonical angular mo-

mentum, energy, and magnetic moment, which yield an

equation for this minimum value

V2
0
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f0
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where / is the electrostatic potential and the quantity

f0 ¼ Vk0=V0 is the cosine of the initial guiding center

velocity relative to the toroidal magnetic field direction.

Equation (2) is quite general with respect to the flux sur-

face geometry representation of R, B, and the flux surfaces

w. Equations (1) and (2) display the important dependence

of the ion orbit loss on electric field (gradient of /) first

noted in Ref. 11.

The Forbðq; f0;h0; hsÞ and Eorbðq; f0;h0; hsÞ are calcu-

lated at a number of locations h0 on the internal flux surface

and hs on the LCFS, and are appropriately averaged1,2 to

obtain a value characterizing the internal flux surface q.

These factors are incorporated into the fluid continuity and

energy balance equations (in the slab approximation) as dif-

ferential losses proportional to the particle and energy

fluxes10
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where the carat indicates that the radial particle and heat

fluxes are calculated including the effects of ion orbit loss

(and return current) represented by (cumulative in radius)

thermalized ion particle and energy loss fractions Forbi and

Eorbi and by the (local) fast beam ion loss fraction f iol
nbi and

beam ion energy loss fraction eiol
nbi calculated similarly to

Forbi and Eorbi except for the beam ions being mono-

directional and mono-energetic. For co-current injection,

nearly all the beam energy is deposited collisionally in the

plasma12 ðaco ¼ 0Þ. For counter-current injection, not all the

beam energy is absorbed in the plasma, even though the jXB

energy deposition due to radial movement of the lost beam

ions heats the plasma, and calculations for MAST12 indicate

ð0:5 < actr < 1Þ. The quantities Nnbi and qnbi are the source

rates of neutral beam particles and energy in the plasma. The

factor of 2 in the first of Eqs. (3) arises from taking into

account the divergence of the inward main ion currents from

the SOL which are necessary to maintain charge neutrality in

the presence of the beam and thermalized plasma ion orbit

losses.13

Making use of the method of integrating factors, it can

be shown that Eqs. (3) have solutions of the form

ĈriðrÞ ¼ Ĉriðr0Þ þ
ðr

r0

Sniðr0Þe�2½ForbiðrÞ�Forbiðr0Þ�dr0;

Q̂riðrÞ ¼ Q̂riðr0Þ þ
ðr

r0

SEiðr0Þe�½EorbiðrÞ�Eorbiðr0Þ�dr0;

(4)

where r0 is the innermost radius of the calculation (inside of

which the ion orbit loss of thermalized ions is unimportant)

and Sni and SEi are the net sources (sources minus sinks) of

ions and ion energy, respectively (i.e., all the terms except

the last on the right sides of Eqs. (3)). Thus, ion orbit loss

exponentially attenuates the thermalized ion particle and

energy fluxes that would be calculated in their absence.

III. INTRINSIC ROTATION DUE TO ION ORBIT LOSS

We now extend this formalism to also take into account

momentum ion orbit loss, which is related to intrinsic rota-

tion. The preferential ion orbit loss of counter-current ions

causes an effective co-current intrinsic rotation of the resid-

ual ions in the edge plasma due to the preferential retention

of co-current direction ions. The net co-current parallel (to

the plasma current) rotation velocity at any flux surface is

determined by the net counter-current directed fraction of

ion orbit momentum loss that has taken place inside of that

flux surface1

DVk qð Þ ¼ 2p
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is the net (co-current minus counter-current) fraction of the

outflowing thermalized ion parallel momentum that has been

lost from the plasma by ions accessing orbits that cross the

separatrix. Different values of Morb are calculated for the dif-

ferent thermalized ion species (e.g., deuterium and carbon),
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resulting in different parallel intrinsic velocities, which can

be projected into toroidal and poloidal intrinsic rotation

velocities for the different ion species.

This prediction of intrinsic co-current rotation by ion

orbit loss has been confirmed by measurements of co-current

peaking of the toroidal velocity just inside the LCFS in

DIII-D5–7 and EAST.8

IV. EFFECTIVE FLUID TOROIDAL MOMENTUM
SOURCE FROM INTRINSIC ROTATION

The “kinetic” intrinsic rotation calculated in Sec. III can

just be added to the fluid rotation calculated from momentum

balance, as discussed in the Secs. V and VI. However, it may

be convenient in some applications to instead define an

effective IOL fluid momentum that would produce this same

rotation if included in the fluid momentum balance equa-

tions. For a two-species plasma, the fluid toroidal momentum

balance equations can be written14

njmj½�jkðVuj � VukÞ þ �djVuj� ¼ njejE
A
u þ ejBhĈrj þMuj;

nkmk½�kjðVuk � VujÞ þ �dkVuk� ¼ nkekEA
u þ ekBhĈrk þMuk;

(7)

where the first term on the left represents the interspecies

friction force and the second term represents the viscous plus

inertial plus charge-exchange forces, and the terms on the

right represent the electric field, VXB, and external momen-

tum input forces, respectively.

It would be natural to represent the IOL momentum

input force for a two ion-species plasma by writing the toroi-

dal momentum source as Muj ¼ Mnbi
uj þMiol

uj , and similarly

for Muk, where the first term is the toroidal component of the

neutral beam momentum input and the second term is an

effective toroidal momentum input that would produce a dif-

ference in the solutions of Eqs. (7) with and without the

Miol
uj;k term equal to DViol

uj ¼ DVkjðnk � nuÞ ¼ ð2=
ffiffiffi
p
p
ÞMorbj

Vthjðnk � nuÞ and similarly for DViol
uk.

Solving Eqs. (7) analytically, with and without the

Miol
uj;k, for the difference in velocity, DViol

uj;k ¼ ð2=
ffiffiffi
p
p
ÞMorbj

Vthjðnk � nuÞ, leads to expressions for the effective fluid toroi-

dal momentum inputs that would produce this intrinsic toroi-

dal rotation in the fluid solutions

Miol
uj ¼ njmj½ð�jk þ �djÞDViol

uj � �jkDViol
uk�;

Miol
uk ¼ nkmk½ð�kj þ �dkÞDViol

uk � �kjDViol
uj �:

(8)

We note that the form of Eq. (8) required in order for

the effective fluid toroidal momentum inputs to represent

IOL in fluid equations depends upon the details of the fluid

equations and would be somewhat different for representa-

tions that differed from Eqs. (7).

The solutions to the fluid Eqs. (7) with the IOL momen-

tum sources of Eqs. (8) yield the total toroidal velocities

V̂uj;k, i.e., the quantities that would be measured experimen-

tally. Again, the carat indicates that the effects of ion orbit

loss have been taken into account.

Deuterium (j) rotation velocity is not usually measured

in tokamak experiments and a perturbation methodology15

must be used to estimate it from the more commonly meas-

ured carbon (k) velocity. Using the above effective IOL

momentum source to incorporate IOL effects directly in the

fluid formalism enables this perturbation methodology to be

applied directly, whereas treating the IOL effects in terms of

the intrinsic rotation, as discussed in Sec. V, considerably

complicates the perturbation formalism.

V. ADDITION OF INTRINSIC TOROIDAL ROTATION TO
CALCULATED FLUID VELOCITY

Alternatively, Eqs. (6) can be solved for Muj;k ¼ Mnbi
uj;k

to obtain Vf luid
uj;k which does not take into account the presence

of intrinsic rotation (but does take into account ion orbit par-

ticle loss effects on Ĉrj;k). In this case, the total toroidal rota-

tion that would be measured is understood to be

V̂
tot

uj;k ¼ Vf luid
uj; k þ Vintrin

uj; k ¼ Vf luid
uj; k þ DViol

uj; k

¼ Vf luid
uj;k þ DVkj;kðnk � nuÞ;

¼ Vf luid
uj;k þ ð2=

ffiffiffi
p
p
ÞMorbjVthj;kðnk � nuÞ: (9)

Treating the experimental velocity as the superposition

of the fluid velocity and the IOL kinetic velocity, as shown

in Eq. (9), is equivalent to the effective IOL momentum for-

malism of Eq. (8). To verify this, we examine Eqs. (7) eval-

uated with total (experimental) velocities and insert the IOL

external momentum source from Eqs. (8) and then collect

terms to obtain

njmjf�jk½ðV̂
tot

uj � DViol
uj Þ � ðV̂

tot

uk � DViol
ukÞ�

þ �djðV̂
tot

uj � DViol
uj Þg ¼ BhejĈrj þ njejE

A
u þMnbi

uj ;

nkmkf�kj½ðV̂
tot

uk � DViol
ukÞ � ðV̂

tot

uj � DViol
uj Þ�

þ �dkðV̂
tot

uk � DViol
ukÞg ¼ BhekĈrj þ njejE

A
u þMnbi

uk :

(10)

Equations (10) are identical to Eqs. (7) when Eqs. (8)

are substituted into Eqs. (7). When intrinsic rotation is sub-

tracted from the total rotation velocity, Eqs. (9) are shown to

actually be evaluated with the fluid velocities obtained

by solving Eqs. (7) with Muj;k ¼ Mnbi
uj;k to obtain Vf luid

uj;k .

Therefore, it follows that correct inclusion of the IOL effects

into the momentum balance equations can be accomplished

either (1) by using the intrinsic rotation velocities to modify

the fluid velocities or (2) by using an effective IOL momen-

tum source to calculate modified fluid velocities.

VI. EFFECTIVE POLOIDAL MOMENTUM OF INTRINSIC
ROTATION

The poloidal momentum balance equations (in the Kim-

Diamond-Groebner16 formulation of the extended Hirshman-

Sigmar17 model extended18 to remove the trace impurity

assumption of Ref. 16 and to include a poloidal momentum

input, i.e., Eq. (9) of Ref. 17 with a momentum input) are

�viscj þ �jk½ �V̂hj � �jk½ �V̂hk ¼ �viscj
Bu

B2

Kj

ej
L�1

Tj þ
Miol

hj

njmj
� ejĈrjBu

njmj

(11)
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and a similar equation with “j” and “k” interchanged. Here

�viscj ¼ �jjBl00j=Bh and the Kj and l00 are Hirshman-

Sigmar17 coefficients defined explicitly in Ref. 18.

Solving Eqs. (11), with and without the Miol
hj;k, the value

of poloidal momentum input required to produce the

difference in poloidal velocities, DV̂
iol

hj;k ¼ ð2=
ffiffiffi
p
p
ÞMorbj;k

Vthj;kðnk � nhÞ, leads to expressions for the effective fluid

poloidal momentum inputs that would produce this intrinsic

poloidal rotation in the fluid solution

Miol
hj ¼ njmj½ð�jk þ �viscjÞDV̂

iol

hj � �jkDV̂
iol

hk �;

Miol
hk ¼ nkmk½ð�kj þ �visckÞDV̂

iol

hk � �kjDV̂
iol

hj �:
(12)

The solutions to the fluid Eqs. (10) with the IOL momentum

sources of Eqs. (12) yield the total poloidal momentum

velocities, i.e., the quantities that would be measured

experimentally.

VII. ADDITION OF INTRINSIC POLOIDAL ROTATION TO
CALCULATED FLUID VELOCITY

Alternatively, Eqs. (11) can be solved with Mhj;k ¼
Mnbi

hj;k ¼ 0 to obtain Vf luid
hj;k which does not take into account

the presence of intrinsic rotation (but does take into account

ion orbit particle loss effects on Ĉrj;k). In this case, the total

poloidal rotation that would be measured is understood to be

V̂
tot

hj;k ¼ Vf luid
hj; k þ Vintrin

hj; k ¼ Vf luid
hj;k þ DVkj;kðnk � nhÞ

¼ Vf luid
hj;k þ ð2=

ffiffiffi
p
p
ÞMorbj;kVthj;kðnk � nhÞ (13)

VIII. CYLINDRICAL MODEL

A slab model has been used above in order to simplify

the formalism somewhat to show more clearly how kinetic

IOL effects can be included in fluid transport theory. While

the slab model is approximately valid in the plasma edge

where IOL is most important, it is straightforward to extend

Eqs. (3) to cylindrical geometry by replacing the divergence

terms on the left with ðð1=rÞ@ðrĈriÞ=@rÞ and ðð1=rÞ@
ðrQ̂riÞ=@rÞ, which changes the solutions given by Eqs. (4) to

rĈriðrÞ ¼ r0 Ĉriðr0Þþ
ðr

r0

r0Sniðr0Þe�2½ForbiðrÞ�Forbiðr0Þ�dr0;

rQ̂riðrÞ ¼ r0Q̂riðr0Þþ
ðr

r0

r0SEiðr0Þe�½EorbiðrÞ�Eorbiðr0Þ�dr0:

(14)

IX. SUMMARY

We have defined how the kinetic ion orbit loss of par-

ticles, momentum, and energy from the outflowing distribu-

tion of thermalized ions in the edge of tokamak plasmas can

be represented in a fluid transport theory, thus extending pre-

vious results10 for inclusion of ion orbit loss particle and

energy losses in fluid theory to also include the loss of toroi-

dal and poloidal momentum associated with the intrinsic

rotation velocities produced by ion orbit loss.

Another new result of this paper is the identification of

poloidal intrinsic rotation and an effective poloidal momen-

tum source due to IOL. Although it follows naturally from

the above development, this potentially important new phe-

nomenon does not seem to have been previously observed or

predicted, as far as we are aware.
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