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It is argued that the structure observed in radial profiles in the tokamak edge plasma is determined by the
requirements of ion particle, momentum and energy conservation and the underlying transport mechanisms in
the presence of sources and losses of particles, energy and momentum. The intent of this paper is to define
a systematic formalism that can be employed for evaluating these transport coefficients from experimental
inference and comparison with theory.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The radial profiles of density, temperature, rotation velocities, radial electric field, etc. in the edge of tokamak
H-mode plasmas all exhibit an interesting structure [1-3]. The purpose of this paper is to demonstrate that these
profiles are coupled by the particle, momentum and energy balance requirements and their structures are related
to the sources and losses of ions, energy and momentum via diffusive and non-diffusive transport. Ion particle
sources and losses determine the radial ion flux, which torques toroidal and poloidal rotation of the plasma, which
in turn creates a U×B electric field in the rotating plasma. The resulting electromagnetic (V×B and Erad) forces
produce an inward particle pinch that sets the requirement for ion radial pressure gradient needed in order to
achieve the radial ion particle flux that is required by the continuity equation, as corrected to account for ion orbit
loss. The ion energy balance requirement determines the total ion heat flux, and subtraction of the convective heat
flux leaves the required ion conductive heat flux, which determines the required ion temperature gradient scale
length, the inverse of which in turn can be subtracted from the inverse of the ion pressure gradient scale length to
determine the ion density gradient scale length.

2 Radial Ion Flux

Integration of the steady-state particle continuity equation for the main ion species “j”

∇ · njVj ≡ ∇ · Γj = Snbj + nojne 〈σionυ〉j ≡ Snbj + neνionj ≡ Sj (1)

determines the flux-surface averaged radial component of the ion particle flux, Γrj , in terms of the neutral beam
and recycling neutral sources. However, not all of this particle flux flows in the plasma subject to plasma transport
processes and momentum balance because some of the ions are either born on drift orbits that pass outward
through the last closed flux surface (LCFS), or are carried radially outward in the flowing plasma until they
access such orbits, at which point these ions are lost from the plasma across the LCFS. A cumulative (with
radius) fraction Forbj (r) of this total particle flux Γrj resulting from external sources is lost from the edge region
across the separatrix by ion-orbit-loss of the thermalized plasma ions, thereby reducing the actual flux of particles
being transported radially outward in the plasma from that calculated from Eq. (1) to Γ̂rj ≡ (1−Forbj)Γrj [4,5].
In order to maintain charge neutrality, the loss of thermalized plasma ions by ion-orbit-loss must be compensated
by an inward current of main plasma ions jiolr (r) = −ejForbj (r) Γrj (r), so that the net outward flux of main
plasma ions is then Γ̂rj � (1− Forbj) Γrj − ForbjΓrj = (1− 2Forbj) Γrj .
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3 Ion Orbit Loss of Particles, Energy and Momentum

We are concerned with the calculation of the loss of thermalized plasma ions, their energy and their directed
momentum by excursions from the flux surface on orbits that cross the last closed flux surface (LCFS) and do not
return to the plasma. Such processes take place for the thermalized plasma ions primarily in the edge plasma. The
tokamak plasma is a flowing plasma with a source in which the lost ions are constantly replenished by the outflow
of plasma from inner flux surfaces [4,5]. The loss cone is cumulative with radius, and a source of particles into
the incrementally increased loss cone at each radius is provided by the outward radial particle flux from regions
with smaller loss cones, thus maintaining an ion orbit loss in equilibrium. This situation is different from the
static plasma situation usually treated in the literature, in which scattering into the loss cone is required for an
equilibrium with ion orbit loss.

At a given location on each flux surface in the plasma edge there is a minimum ion speed Vmin(ζ0) (and energy)
for which an ion with a given directional cosine ζ0 with respect to the magnetic field can be lost, and all ions
with that ζ0 and speeds above this minimum will be lost. The minimum speed for loss Vmin(ζ0) decreases with
increasing plasma radius (decreasing distance to the last closed flux surface). As a given volume of plasma flows
outward across the plasma edge it first loses the highest energy ions and then loses successively lower energy
ions as it flows across successively outward flux surfaces with successively lower ion temperatures. This loss is
different for the different ion directions ζ0. So, the ‘hole’ in the plasma velocity distribution extends progressively
down to lower Vmin(ζ0) with increasing radius, and the depth of the ‘hole’ is different for different ζ0; i. e. the
loss region is cumulative with increasing radius and directionally dependent.

We use the conservation of canonical toroidal angular momentum, of energy and of magnetic moment to write
the orbit constraint for an ion introduced at a location “0” on flux surface ψ0with parallel velocity V‖0,

V 2
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where fϕ = |Bϕ/B|, R is the major radius and ψ is the flux surface value, φ is the electrostatic potential,
ζ0 = V‖0

/
V0 is the cosine of the initial guiding center velocity relative to the toroidal magnetic field direction,

and V0 =
√

V 2
‖0 + V 2

⊥0 . Equation (2) can be solved for the minimum ion speed (energy) necessary for an ion
located on an internal flux surface to cross the last closed flux surface at a given location (or to strike the chamber
wall at a given location, etc.). Equation (2) implicitly assumes the electrostatic potential is either unchanged over
the time required for a particle to escape the plasma (10−6-10−5s) or is an average value in the presence of high
frequency turbulence.

Since V0min (ζ0) decreases with radius, cumulative (with increasing radius) particle, momentum and energy
loss fractions can be defined
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where εmin (ζ0) = mV 2
0min (ζ0)

/
2kT is the reduced energy corresponding to the minimum speed for which ion

orbit loss is possible, and a Maxwellian ion distribution has been used for numerical evaluation. The quantities
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Γ (n) and Γ (n, x) in Eqs. (3-5) are the gamma function and incomplete gamma function. Most of the particles
exiting the plasma across the separatrix will be lost from the plasma, but some will follow the orbit and return to
the plasma without interacting with the wall or other particles in the SOL; the lost fraction that do not return to
the plasma is designated Riol

loss.
There is a preferential loss of particles with ζ0 > 0, which causes a residual ζ0 < 0 intrinsic rotation in

the edge plasma in the direction opposite to the toroidal magnetic field. Determining the minimum loss speed
Vmin(ζ0) as described above leads to an expression for the equivalent net parallel co-field momentum loss rate
(or counter-field momentum gain rate) due to ion orbit loss ΔM iol

ϕj = |Bϕ/B|nmνdjΔV‖, which can be used to
compute the intrinsic rotation caused by ion orbit loss [6]

ΔVll (ρ) = Riol
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4 Ion Rotation Velocities

The continuity Eq. (1) can be combined with the momentum balance equation to obtain a balance among the
inertial, pressure, viscous, electric field, VxB, collisional friction and external source terms

njmj (Vj · ∇)Vj +∇pj +∇ ·Πj = njej (E +Vj ×B) +R1
j +

(
S1
j −mjVjSj

)
(7)

In a two-ion-species plasma (“j” and “k”), the toroidal component of the momentum balance equation for the
main ion species “j” can be written

BθejΓ̂rj = njmj(νdj + νjk)Vϕj − njmjνjkVϕk − (Mϕj + njejE
A
ϕ ) (8)

and the equation for the impurity ion species “k” is obtained by interchanging the “j” and “k” subscripts. The
quantity νdj ≡ νϕviscj+νϕinertj+νionj+νelcxj+νϕanomj is a composite toroidal momentum exchange frequency
due to toroidal viscosity, toroidal inertia (Reynold’s stress), ionization, elastic scattering plus charge exchange
and ‘anomalous’ viscosity (due to turbulence, non-axisymmetric toroidal magnetic field, etc.), respectively. This
representation for the momentum exchange frequency is of course obvious for charge exchange and has been
developed also for viscosity and the inertial term in Ref. 7. An expression for the momentum transport fre-
quency associated with a given anomalous mechanism (e.g. ITG) would be calculated by dividing the anomalous
expression for the radial transport flux of toroidal momentum by nmVϕ, which is a task that could be usefully
undertaken by the transport community.

The quantity νdj + νjk represents the total momentum exchange frequency for ions of species “j”. Mϕj =
Mnbi

ϕj +M iol
ϕj +Manom

ϕj is the toroidal momentum input from neutral beams, from the directionally preferential
ion-orbit-loss of ‘thermal’ plasma ion momentum [7], and from other sources. EA

ϕ is the induced toroidal electric
field, and the other quantities have their usual meaning.

Equation (8) and the corresponding equation for species “k” can be solved for

Vϕj =

[
ejBθ

̂Γrj+Mϕj+njejE
A
ϕ

njmj(νjk+νdj)

]
+

νjk

(νjk+νdj)

[
ekBθ

̂Γrk+Mϕk+nkekE
A
ϕ

nkmk(νkj+νdk)

]
[
1− νjkνkj

(νjk+νdj)(νkj+νdk)

] (9)

and a similar equation with the subscripts “j” and “k” interchanged for Vϕk.
The poloidal rotation velocities for the two ion species are determined by the poloidal component of the

momentum balance equations for each species. Using the Shaing-Sigmar form of the parallel viscosity [8]
η0j = njmjVthjqRfj

(
ν∗jj

)
, fj ≡ ε−3/2ν∗jj

/(
1 + ε−3/2ν∗jj

) (
1 + ν∗jj

)
, ν∗jj ≡ νjjqR/Vthj and neglecting
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poloidal asymmetries over the flux surface in density and flow, the poloidal momentum balance equation for
ion species “j” may be written [9]

(νviscj + νjk + νatomj)Vθj − νjkVθk = −Bϕ

{
ej

njmj
Γ̂rj + νviscj

(
KjTjL

−1
Tj

ejB2

)}
(10)

where νviscj ≡ qfj Vthj/R, L−1
Tj ≡ −T−1

j ∂Tj

/
∂rand Kj ≡ μj

01

/
μj
00 (the μ′s are the Hirshman-Sigmar coef-

ficients [9-11]. A similar equation with the “j” and “k” sub/super-scripts interchanged obtains for the “k” ion
species. The two Eqs. (10) can be solved for the poloidal rotation velocities

Vθj =

−Bϕ

νθj

{[
νviscj

KjTj

ejB2 L
−1
Tj +

ej
njmj

Γ̂rj

]
+
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[
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KkTk

ekB2 L
−1
Tk +

ek
nkmk

Γ̂rk

]}
[
1− νjkνkj

νθjνθk

] (11)

where νθj ≡ νviscj + νjk + νatomj + νanomθj . A similar equation with the “j” and “k” sub/super-scripts inter-
changed results for Vθk. A more accurate set of neoclassical poloidal rotation equations based on an elongated
flux surface geometry and retaining poloidal asymmetries in density, velocity and electrostatic potential is given
in Ref. 12.

5 Radial Electric Field

Multiplying the radial component of the momentum balance for each species (ions plus electrons) by eσ/mσ for
the species and summing over species yields a generalized Ohm’s law for the radial electric field

Er = ηjr − (u×B)r +
∇r(pj+pk)
e(nj+zknk)

= −ηejΓrjForbj − (VjθBϕ−VjϕBθ)
(1+nkmk/njmj)

− (VkθBϕ−VkϕBθ)
(1+njmj/nkmk)

− (pjL
−1
pj +pkL

−1
pk )

e(nj+zknk)

(12)

where u is the plasma mass velocity, η = 1.03x10−4Zeff ln Λ/T
3/2
e (eV ) Ω−m is the radial plasma resistivity

which results from the derivation and jr = −ejΓrjForbj is the inward main ion current compensating the ion
orbit loss. In several applications to tokamak edge plasmas, we have found that the first term is small compared
to the other terms.

Effects such as turbulence and ion orbit loss enter this equation indirectly through their effect on the rotation
velocities and pressure gradients. Equation (12) is the same as the sum of the “neoclassical” momentum balances
over ions and electrons, so it contains the radial momentum balance for the main ion species, which is the equation
which is commonly used for calculating the radial electric field.

6 Ion Pressure, Temperature and Density Gradients

The toroidal and radial components of the momentum balance equations for the two ion species “j” and “k” can
be solved to obtain a pinch-diffusion relation for the radial particle fluxes, the flux surface averaged component
of which may be written [13]

Γ̂rj = njDjj

(
L−1
nj + L−1

Tj

)
− njDjk

(
L−1
nk + L−1

Tk

)
+ njV

pinch
rj (13)

where the “self-diffusion” coefficient is Djj ≡ (mjTj (νdj + νjk))/(ejBθ)
2, the “other-species-diffusion” co-

efficient is Djk = (mjTkνjk)
/
ejekB

2
θ , and the pinch velocity representing electromagnetic and other external

forces is

njV
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rj = −Mϕj
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A
ϕ
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[
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]
(14)
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Equation (13) and a similar equation with subscripts “j” and “k” interchanged for ion species “k” can be solved
for the value of the pressure gradient scale length L−1

pj ≡ −(∂pj/∂r)/pj that is required by momentum balance

L−1
pj =

(ejBθ)
2
[{

̂Γrj

nj
− V pinch

rj

}
+

mj/ej
mk/ek

νjk

(νdk+νkj)

{
̂Γrk

nk
− V pinch

rk

}]
mjTj (νdj + νjk) [1− (νjkνkj/(νdj + νjk) (νdk + νkj))]

(15)

If we take advantage of the fact that usually L−1
Tk � L−1

Tj for different ion species and further assume L−1
nk � L−1

nj ,
we obtain a simplified expression for the main ion pressure gradient scale length that can be used to obtain a
simple expression for the density gradient scale length

L−1
nj ≡ L−1

pj − L−1
Tj =

Γ̂rj − njV
pinch
rj

njDj
− L−1

Tj , where Dj ≡ mjTjνjk

(ejBθ)
2

[
1 +

νdj

νjk
− ej

ek

]
(16)

The temperature gradient scale lengths for the ion species (and the electrons) are determined by the heat
conduction relations [13]

L−1
Tj =

(Qrj (1− Eorbj)− 1.5TjΓrj (1− 2Forbj))

njTjχj
(17)

where Qrj is the total ion heat flux determined by integrating the ion energy balance equation.

7 Conclusion

One must be able to evaluate the transport coefficients
(
νdj ≡ νϕviscj + νϕinertj + νionj + νelcxj + νϕanomj ,

νθj ≡ νviscj + νjk + νatomj + νanomθj , χj) in order to solve the above fluid equations for the various pro-
files in the edge plasma. It is possible to infer some of these from experiment for comparison with theory, and
the purpose of this paper is to suggest a framework in which this can be done consistently.
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