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Several neoclassical models for the calculation of poloidal rotation in tokamaks were rederived
within a common framework, extended to include additional physics and numerically compared.
The importance of new physics phenomena not usually included in poloidal rotation calculations
(e.g., poloidal electric field, V X B force resulting from enhanced radial particle flow arising from
the ionization of recycling neutrals) was examined. Extensions of the Hirshman-Sigmar, Kim—
Diamond—Groebner, and Stacey—Sigmar poloidal rotation models are presented. © 2008 American

Institute of Physics. [DOI: 10.1063/1.2829073]

I. INTRODUCTION

Poloidal rotation is of intrinsic interest for what it re-
veals about parallel viscous momentum transport and also
because it appears to play a role in the shear suppression of
turbulent energy transport. There are a number of theoretical
models for the calculation of poloidal rotation that are re-
ferred to as “neoclassical,” ranging from the early prediction
by Hazeltine' of an ion poloidal rotation velocity propor-
tional to the ion radial temperature gradient through the sev-
eral variants of the Hirshman—Sigmar fluid model” (in which
the ion poloidal rotation is calculated from a balance be-
tween parallel frictional and viscous forces) to the Stacey—
Sigmar model’ (in which the poloidal rotation is calculated
from the poloidal momentum balance using a rate-of-strain
tensor formulation for the viscous force).

The purposes of this paper are to place these various
models within a common framework, to extend them to rep-
resent additional phenomena, and to present numerical cal-
culations comparing the predictions of the various models
and illustrating the importance of various phenomena to the
calculation of poloidal rotation. To this end, the various mod-
els are derived within the common framework of fluid mo-
mentum balance, with kinetic theory effects incorporated via
constitutive relations (i.e., the Hirshman—Sigmar fluid formu-
lation). The various theoretical models then follow from
various choices of the viscous force formulation and from
the retention of various terms in the poloidal momentum
balance. Extensions of the theories for poloidal rotation pre-
viously developed by Hirshmam—Sigmar,2 Kim-Diamond—
Groebner,* and Stacey—Sigmar3 are suggested by such an
approach.

The paper is organized as follows. The fluid poloidal
momentum balance is formulated in Sec. II. The Hirshman—
Sigmar formulation of the parallel viscous force is summa-
rized in Sec. III, where it is shown that the Hazeltine,1
Kim—Diamond—Groebner,4 and NCLASS? versions of poloi-
dal rotation theory are obtained by using the Hirshman—
Sigmar viscous force and retaining different terms in the po-
loidal momentum balance equation. The Stacey—Sigmar
representation of the parallel viscous force in terms of a rate-
of-strain tensor is described and extended to include heat flux
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as well as flow terms in Sec. IV. In Sec. V, the Hirshman—
Sigmar poloidal rotation theory is extended by retaining ad-
ditional terms in the poloidal momentum balance equation.
Numerical predictions of the various poloidal rotation theo-
ries are compared and the effect of retaining various terms in
the momentum balance equation is examined in Sec. VI.
Finally, the work is summarized in Sec. VIL

Il. POLOIDAL MOMENTUM BALANCE

Poloidal rotation in tokamak plasmas is governed by the
poloidal component of the momentum balance equation,

1dp;
nm[(v;- V)vlp+ [V - 1115+ ;59[ - My

+n,m;v(vg; — vg) + njej(v,B g — Eg)
+njmjViUnjU6j+njmjvelcxjvoj=0, (1)

where the poloidal component of the inertial term has been
written as

[V (mjvjv)]o=nml(v;- V)l + [(V - nym;vy) vy
=nm[(v; - V)v]g+nmvy,vy (2)
by making use of the continuity equation
Ve njv; = 5= Vi (3)

In toroidal geometry, the derivative term in Eq. (2) can be
written

njmj[(vj V) Uj]a

g U,V 1100 o,
=njm, v,j—01+—dl+———0‘+—"élsin9 . @
ar r 2r d8 R

The second term in Eq. (1) is the viscous force, the third
term is the pressure gradient, the fourth term represents any
external poloidal momentum input, the fifth term is the col-
lisional friction term, the sixth term is a combination of the
VXB force and the electric field force, the seventh term was
introduced in simplifying the inertial term, and the last term
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represents the poloidal momentum damping due to charge
exchange and elastic scattering of rotating ions with nonro-
tating neutrals.

Various neoclassical models of poloidal rotation differ
by which terms are retained in the momentum balance of
Eq. (1) and in the representation of the viscous force (and
friction) term.

A theoretical framework will be developed for a two-
species “ion-impurity” plasma, for simplicity; it is readily
extendable to multiple ion species by summing the friction
term over all other ion species and by summing over all ion
species in calculating the electron density from charge neu-
trality. In a similar vein, a simple Lorentz form of the friction
term will be used in order not to further complicate the for-
malism and because poloidal temperature gradient contribu-
tions would not be expected to be significant.

lll. HIRSHMAN-SIGMAR POLOIDAL
ROTATION THEORY

Perhaps the most familiar representation of the poloidal
viscous force (or poloidal component of the parallel viscous
force) is based on the comprehensive fluid momentum ap-
proach developed by Hirshman and Sigmar (HS) (Ref. 2 and
other papers in the same time frame) and succinctly summa-
rized by Kim, Diamond, and Groebner (KDG)." Following
the definitions of Kim et al. ,4 the HS FSA (flux surface av-
erage) parallel viscous force can be written

B-V-II )HS— I’ljmJVU<Bz>[,LL60M‘{90 + ,u{)]ufgl]
i -1
B¢K/T-LT4> )

2
ejB

= n,m,V”<32> MOO(
where L_1 =—dx/xdr, K'= ,um/ Moo’ and definitions and for-
mulas for 1nterp01at10n over collision frequency the u/  are
given by Kim et al.* The first term in the square brackets in
Eq. (5) represents the flow contribution and the second term
represents the heat flux contribution to the viscous force. The
banana (B), plateau (P), and Pfirsch—Schluter (PS) regime
values of the transport coefficients for the main ion species
are  wb=0.53+a, wh=3.54, wuhi=(3.02+4.250)/(2.23
+5.32a+2.4a%), where aEnzZ /n;, and the interpolation
formula is

gﬂgo
(12920 ;) mbo) (1 + piove &> 216 iy

Moo = (6)
where for the main (deuterlum) ion spemes v, =v;;,qR/
v,e2? and g=(1 46\e -0.46e*?)/(1-1 46\ +0. 4683/2) is
the ratio of trapped to circulating particles. Because g,
changes signs between regimes, the interpolation formula
Eq. (6) is applied for the quantity Ko, =3 2 1100 fo;» Where for
the main ion species K5,=0.71+a, Kb, =10.63, K} =(12.43
+20.13@)/(2.23+5.32a+2.4a%). For the impurity ion spe-
cies, these same results apply but with a— 1/ a, v¢;— v
Different versions of the HS theory of poloidal rotation
are obtained by using Eq. (5) for the viscous force but re-
taining different terms in the poloidal momentum balance
Eq. (1). Kim et al.* retained only the friction and viscous
terms in Eq. (1), which yielded the original Hazeltine result'
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[T

derived from kinetic theory for the main ion species “j,

vy =ByK'TLyile;B>, (7)

and, in the limit where the impurity viscous force is negli-
gible compared to the impurity-ion friction force (i.e., trace

impurities),
- j ity 6Tk 2
vp=ByTi| (K + 1LSKOLg ~ Lj+ LML) [ e (8)
k£

for the impurity ion species “k.” These two equations will be
referred to as the Kim—Diamond—Groebner (KDG) model.
The KDG model can be extended to remove the “trace
impurity” limitation by merely retaining the viscous and fric-
tion terms for both species in Eq. (1) and using the HS vis-
cous force of Eq. (5) to obtain the coupled set of equations

. Bz o
[v;B ho/By+ v g = [V vge = viimbo KjTjLT}
ejBBa
©)
k v B k-1
- [ij] Vg + [kaBMoo/ Bg+ ij]vak = ViMoo KT Ly
ekBBg

for the main ion (j) and impurity ion (k) poloidal velocities.
Equations similar to these (but with a more sophisticated
treatment of the friction term) are solved in the NCLASS
code.” A further extension of the HS theory for poloidal ro-
tation will be described in a later section.

IV. STACEY-SIGMAR POLOIDAL ROTATION THEORY

A similar poloidal rotation theory, but one that retained
more of the terms in Eq. (1) and used a different viscous
force representation that allowed the representation of poloi-
dal asymmetries, was developed in Refs. 3 and 6-8 by
Stacey, Sigmar, and co-workers. This theory is summarized
and extended in this section.

Shaing and Sigmar6 made a kinetic theory calculation of
the flow contribution to the parallel viscous force (neglecting
the heat flux contribution) in a strongly rotating plasma to
obtain an expression for the parallel viscous force,

. ~ “ ’)7 .
(B -V THY"S = 3((A VB)2)—0LU(,_,«, (10)
where 7A=B/B  and 70,1 mjv,h]quJ(VH) with  f;

_g32 =312

V;:-/ (1+¢ VH)(I +v; ) being an 1nterpolat1on formula
connecting the collisional result fj— 1/1/ to the strongly 1o-
tating banana and plateau regime results Here VH
=v;;qR/ vy,;. The same viscosity formula applies for the main
plasma ions and for impurity ions, but evaluated with
species-specific parameters. This expression can be extended
to include a heat flux contribution to viscosity by analogy

with Eq. (5), yielding an extended Shaing—Sigmar form

i -1
BMK]T'LT}. (11)

2
e]B

(B V- TH)S = 3(( - VB)2>%){U‘9]+
0
In toroidal coordinates, ((7-VB)?)=1/2(sB/Rq)>.
Stacey and Sigrnar7 generalized Braginskii’s flow rate-
of-strain tensor results’ to toroidal geometry and replaced the
Braginskii collisional viscosity coefficient with the Shaing—
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Sigmar viscosity coefficient 7,; given above to obtain for the
flow contribution to the parallel viscous force

3 0 9By 3 By
(B VIS = _< ojAo, 70 > <7]01A01 Y, >U¢]’

(12)

where €,= r6 is the length element in the poloidal direction,
and

1{ ovy, 1\orR 1[1\aB,
e )
J 3\ dl, a, 3 al,

(13a)
and, with prBg/B¢,
Nvy/R) /| _
A(@:zprJa}L/u(,,j. (13b)
0

This form introduced the contribution of poloidal asymme-
tries in both the poloidal and toroidal velocities (as well as
the density) into the parallel viscous force. The overbar on
the velocity in Egs. (12) and (13) distinguishes the FSA
quantity from the poloidally varying quantity (the FSA quan-
tity is implied in previous equations). By analogy with Eq.
(5), the Stacey-Sigmar (SS) form of the parallel viscous
force can be extended to include the neoclassical heat flux
contribution,

3 JB B,KIT,L
J\S-S _ 0720 = J=Tj

3 9By
2\ Al (14)

As mentioned previously, the various versions of neo-
classical theory for the calculation of the poloidal rotation
velocity are distinguished by which terms are retained in Eq.
(1) and which form of the parallel viscous force is used. A
more comprehensive formulation of poloidal rotation theory
results when all the terms are retained in Eq. (1). We now do
this, using the extended SS viscous force of Eq. (14).

In order to treat the poloidal variation over the flux sur-
face, the poloidal density, velocity, and potential asymme-
tries in the Ag; terms are represented with a low-order Fou-
rier expansion,

ny(r,0) = n?(r)[l +nj cos 0+ n; sin 0], (15)

etc., and Fourier moments of various components of the mo-
mentum balance and the continuity equation are used to re-
late the velocity and electrostatic potential asymmetries to
the ion density asymmetries.

The continuity Eq. (3) can be used to relate the poloidal
velocity asymmetries to the density asymmetries,

— 1}Up; + ”Vlon, “(nS+n
nj

(16a)

- S
VgV = o)

and
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n,
591‘11?9] =—(1+ ”;)17(9] - rﬁionjfe(ni + ”Soj)7 (16b)
nj
where n; and n,; denote asymmetries in the densities of
electrons and neutral atoms of species “j,” respectively.

The electron poloidal momentum balance (retaining only
the pressure and electric field terms) can be used to relate
poloidal asymmetries in the electrostatic potential to poloidal
asymmetries in the electron density,

T nc/s
POPes = ——, (17)
e

The radial component of the momentum balance for ion

(IRt

spemes Js

17
—pl—ne(E +'U91B¢, U¢j 9) (18)
r

can be used to relate the poloidal asymmetries in the toroidal
velocity to the density asymmetries [using expansions such
as Eq. (15) and taking sin and cos moments],

n,
U¢Jlf‘¢l—L¢ =R+ Mg (n +n;;)
0 "J
_ 2E
— 13| 2P + gy - = (192)
By
and
_ T _ n
U@Uff)j:L(DlTeni—eron] < (n +11,,)
0 ”J
N 2E
—(1+n)| 2P] + 04— — |, (19b)
By
where Ly =E,/®==(d®°/or)/®°, P!=(1/ije;B,)dp;/ dr,

and the electron density asymmetries are related to the ion
density asymmetries by charge neutrality,
65 _ Z‘ﬁfi’lqyj + Zkﬁan’s

ne
Z n + ank

=yt + v (20)

Making such low-order Fourier series expansions in the
poloidal momentum balance Eq. (1) and taking the flux sur-
face average results in a pair of coupled equations for the
poloidal velocities,

2
|: qv¢jsn +qu_fp<l+3n>+fp Jk+fp atomj:|

* n;
2 7

~ VaVik'\| Ip
my

A 1
=-Dy- 7 +

LT
VA P

J0oZ - (1+ )]

2
@>f (7 + i)

1
+6If]fp rj = qevqﬁ]” "'Vlon]|:3

— qef, (A + 1 } — L LGP + qetig ), (21)
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Vg =Vgi/ fpUmj» V= Vi Unjo P' P'/v,hj,
iy ”—nj ‘Ie, E =E o/ UniB g Vionj = (rion;/ Uy, / 11}, and L¢
=L, 'T /eBgv,,,J A similar equation with the “j”” and “k” sub-
scrlpts interchanged is obtained for the 1mpur1ty species.

The atomic physics momentum transfer frequency v,
=V,iexF Vion COnsists of a momentum loss rate term due to
charge-exchange and elastic scattering that enters the mo-
mentum balance directly plus an ionization term that enters
via the inertia term. The friction terms are identified by ij
=vqR/ vy, and the viscosity terms resultmg from the use of
the Shaing—Sigmar® express10n M= ]v,hqufj(vU) are
identified by fi=¢ ‘3/21/ i (1+87"y, )(1+v ;) both in Eg.
(21) and in Egs. (23) and (24) below

The electron momentum balance can be solved for
POPs = DOD/S/e=n "/ &(e/T,), which represents the poloi-
dal asymmetry in the electrostatic potential. The FSA of the
electrostatic potential, ®°, is conventionally determined by
integrating the radial electric field radially inward from

where e=r/R,
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®=0 at the first grounded (in contact with the vessel) field
line, but the equations are independent of the normalization

of ®° which enters only as the product ®°Ps
=n"/e(e/T,) or as the logarithmic derivative Ly
=—(D%/ ar)/ P,

The term

2 j -1
4B KTy

b = BedR
! esz

7j
MU U Uthj

 [PBKTiLy
E‘Ur.

22
! vthj e]Bz ( )

represents the poloidal rotation driving forces from the
V X B force and from the heat flux contribution to the paral-
lel viscous force.

The 1n*“=n"“/ & represent the poloidally asymmetric den-
sity components, which can be obtained by solving the equa-
tions resulting from taking the sin 6 and cos § FSA moments
of the poloidal momentum balance Eq. (1),

1 1 A 1 A 1 ” 1 * ﬂL‘A * ~ 1 A A
pr vgj EErj - ELd,j + ESUU' - Esfp Vik - Uk = VatomVej | + EprU0jVi0njyj
2

3 1 T, 14%;. D S 1 ¢°fif) ~
"‘”j{ pvz@j 4qsz7j_ 5—81 ionﬂ’j] +nk|:58fpvjkv9j+ qupvank_E_‘aﬁL¢j7k
j
BNy 1 T, 1 ., 1 ., S Vo
+nk|:_§jvionj7k_4qzj;7k =- 54]012,"?9;"'56]”%4‘ Vionj 6]f2U0, f;]+§_81noj (23)
J
and
1 1 ¢*f; 1. 1. 1.
2 A Ze ~4Jj - = = —r-1
|: qf U%j+ —qt 4qZ T 7]+ 3 & 10n17]:| |: ffp( v@j 2Pj_ 2Erj_ 2L¢/>
J
1.1 « m; . 1 1 ¢°f; . 1 T,
+ Esvrj_ Esfp<vjk ;}ivﬁk_ Vatomj >+ quv61 lon/y]:| +nk|:3_81yionj7k+ 4qZ T Yk
|1 w1 1@ fif o
+ ”k{ ngpvjkvﬁj + ECprvaﬂk - 5_8‘12%} Yk
12AA,AA12A~01L 1
- Eq fjfp(v6j+Pj_Erj)+Vionj qupvﬁjnoj-i-g e o/ + q8 ((v¢jif(bj)(v¢jv¢1)) (24)

plus a similar set of equations with the “j”” and “k” subscripts
interchanged for the impurity species.

It should be noted that Egs. (21), (24), and (25) consti-
tute a set of six (three times the number of ion species)
nonlinear equations, within which terms have been normal-
ized and grouped to facilitate numerical solution by iteration.
These equations extend the previous Stacey—Sigmar model
for poloidal rotation (e.g., as described in Ref. 3) by using
the extended parallel viscous force of Eq. (14) in place of Eq.
(12), which introduces the temperature gradient driving term
[the second term on the right in Eq. (22)] that was not
present in the earlier work.

In order to more directly compare this poloidal rotation
calculation model with an extended version of the
Hirshman—Sigmar model that will be developed in the next
section, we develop a reduced version by neglecting the po-
loidal asymmetries in density, rotation velocity, etc. (which
are not included in the HS viscosity model) but retaining the
poloidal asymmetry in magnetic field, B=B,/(1+& cos 6)
and major radius R=Ry(1+&cos §) that has been used
above. This reduces the inertial term in the poloidal momen-
tum balance to the v;,,; term and eliminates the pressure
gradient and poloidal electric fields terms. In this further ap-
proximation, the pair of Egs. (21) reduces to
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2,

ik Vatomj:| Vgj — VjkVgk

i -1
_etiBe Uth;qu<B KLy

m; R

+ thy r) (25)
J

ejB2 Bg

and a similar equation with the *j”” and “k” subscripts inter-
changed, which clearly displays the role of radial particle
flows (V X B force), radial temperature derivatives (heat flux
contribution to viscous force), and the radial electric field
(flow contribution to viscous force) in driving poloidal ve-
locity and the role of viscosity, friction, and ionization and
charge-exchange of nonrotating neutrals in damping the ro-
tation.

Diverse phenomena not usually found in poloidal rota-
tion models are represented in the above equations. Atomic
pEysiq*s ezkffects , are explicitly  indicated by the
Vion> Voiexs Vatom= VionT Veicx t€rms. The ionization of recycling
neutrals also causes the deuterium v, to increase rapidly with
radius just inside the separatrix, because I'=nv, must in-
crease with radius to satisfy the continuity equation, while n
is decreasing rapidly in the same edge pedestal region. A
poloidal electrostatic field is created in response to the den-
sity asymmetries in satisfaction of the Maxwell-Boltzmann
constraint (electron poloidal momentum balance). The radial
electric field was introduced via Eq. (18) from rotation ve-
locities in the rate-of-strain tensor. We find that these novel
effects are important in the calculations to be discussed later.

V. EXTENDED HIRSHMAN-SIGMAR POLOIDAL
ROTATION THEORY

Following the same procedures as used in the preceding
section, we extend the Hirshman—Sigmar theory to include
terms in the poloidal momentum balance of Eq. (1) other
than the viscous and friction terms. If we do not include
poloidal asymmetry, which was not included in the original
Hirshman—Sigmar viscous force, then the poloidal pressure
gradient and poloidal electric field terms vanish, and we ob-
tain a form similar to Eq. (25) but with the HS viscosity
representation

Jj
Moo+ Vir + Vatomj:| Vi — ViVgk

ijB_e
i -1
:_M_l_ V~£,u,j % (26)
. iig 700 B2
m] 0 e]

plus a similar equation with the *j”” and “k” subscripts inter-
changed. This extended form of the HS theory includes
atomic physics, inertial, and V X B effects not present in the
original theory discussed in an earlier section.

VI. NUMERICAL COMPARISON OF POLOIDAL
VELOCITY THEORIES

Numerical calculations were carried out using several of
the sets of equations described in this paper in order to com-
pare differences in predictions of the different theories. In
addition, a sensitivity study was performed to assess the im-
portance of various physical phenomena to the calculated
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results. In order that the numerical comparison be based on a
realistic model, experimental data from the outer 15% of a
DIII-D discharge in which background plasmalo and poloidal
rotation data'' have been analyzed were used to model the
plasma for the rotation calculations.

DIII-D discharge 119436 was run in a lower single null
divertor (SND) configuration with plasma current I,
=1.0 MA, toroidal field B,=1.6 T, and average triangularity
6=0.35. During the time of interest (3.0-3.5 s), the injected
beam power Py, was 4.3 MW, the line-averaged density
(n,) was about 0.34X10%° m~3, the global stored energy
Wynp Was about 0.55 MJ, and the average ELM (edge lo-
calized mode) period was 15.3 ms. Even though the global
parameters, such as (n,) and Wyyp, were approximately con-
stant during the time of interest, the conditions in the pedes-
tal were constantly changing due to the effect of ELMs. The
period 80-99% between ELMs was chosen for analysis for
this shot. Data measured in this time interval just before the
ELM (i.e., the last 20% of the time between successive
ELMs) for several successive inter-ELM periods were aver-
aged to minimize random measurement errors.'*!! Experi-
mental data for electron and carbon densities and for ion and
electron temperatures were available, and experimental E,’s
were constructed from measured carbon pressure gradients
and poloidal and toroidal rotation as per Eq. (18). The ex-
perimental E, was integrated inward from the separatrix and
used to construct an experimental L.

An integrated modeling code'? was used to supplement
the experimental data. This code (i) calculated particle and
power balances on the core plasma to determine the net par-
ticle and heat outfluxes from the core into the scrape-off
layer (SOL), calculated using measured confinement times,
which were input to (ii) an extended two-point divertor
plasma model (with radiation and atomic physics) that cal-
culated densities and temperatures in the SOL and divertor
and the ion flux incident on the divertor plate, which (iii) was
recycled as neutral atoms and molecules that were trans-
ported through the 2D divertor region across the separatrix to
fuel the core plasma.

The deuterium and carbon poloidal rotation profiles cal-
culated with the extended Hirshman—Sigmar model of
Egs. (26), with the extended Stacey—Sigmar model of
Egs. (21)—(24), with the reduced Stacey—Sigmar model of
Egs. (25), and with the Kim-Diamond-Groebner model of
Egs. (7) and (8) are shown in Figs. 1 and 2. Also shown is
the measured poloidal rotation for carbon. The Hirshman—
Sigmar model is in best agreement with experiment overall.
However, since the uncertainty in the measurement is com-
parable to the magnitude of the measured velocity, this com-
parison can only indicate that the calculated values are of the
same magnitude as measured values. The overprediction of
the rotation right at the separatrix by all the models is prob-
ably real and due to failure to take into account some edge
phenomena such as particle scrape—off.13 However, the pur-
pose of these calculations is to compare the various theoret-
ical models, not to compare with experiment, and we will
defer to a later time following up on this observation.

The extended SS models of Egs. (21)-(24) and the re-
duced SS model of Eq. (25), and to a lesser degree the
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FIG. 1. (Color online) Comparison of deuterium poloidal rotation velocity
predicted in the edge of a DIII-D discharge by various neoclassical theories.

Hirshman—Sigmar model of Eq. (26), predict a strong nega-
tive peaking of the poloidal rotation in the edge pedestal
“transport” barrier. Such peaking is commonly found in the
poloidal rotation measurements in DIII-D." Note that the
positive sense of the poloidal rotation is taken in the right-
hand sense with respect to the plasma current, which is down
at the outboard midplane in this discharge (opposite sense
from the experimental convention on DIII-D).

There is very little difference between the predictions of
the extended Stacey—Sigmar model of Egs. (21)—(24) and the
reduced SS model of Egs. (25) obtained by “turning off” all
poloidal asymmetries, which perforce neglects poloidal pres-
sure gradients and electric field, as well as poloidal effects on
the viscous and inertial forces.

Differences in the predictions of the reduced SS model
of Egs. (25) and the extended HS model of Eq. (26) are due
to differences in viscous forces used in the two models, as
given by Egs. (14) and (5), respectively. Note that the poloi-
dal asymmetry effects are not present in the reduced SS
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FIG. 2. (Color online) Comparison of carbon poloidal rotation velocity pre-
dicted in the edge of a DIII-D discharge by various neoclassical theories and
the measured poloidal velocity.
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FIG. 3. (Color online) Sensitivity of predicted poloidal rotation velocity
[Egs. (21)—(24)] to inclusion of the V X B force, the poloidal electric field,
and the heat flux component of the viscous force.

model. The carbon rotation velocities predicted by the two
models are similar (and similar to the measured velocity),
but the deuterium velocities predicted by the two models
differ considerably (even have different signs).

Predictions of the Kim-Diamond—Groebner model of
Egs. (7) and (8) are at considerable variance with the other
predictions (and with the measured velocity), indicating that
it is necessary to retain more terms than just the friction and
main ion viscous terms in the momentum balance Egs. (1).

Separate predictions were calculated from the extended
SS Egs. (21)—(24) with V,,4=0, with E,=0, and with the heat
flux contribution to the viscous force removed (¢” =0). The
predicted velocities are compared with “base” prediction of
these equations when both V4 and E, were calculated as
described previously and the heat flux was included in the
viscous force. V4 for deuterium increases strongly near the
separatrix because of the ionization of recycling and fueling
neutrals, and elimination of this driving term from the right
side of Eq. (21) significantly reduces the rotation velocity of
both species near the separatrix, as shown in Fig. 3 for car-
bon. Setting E,=0 but retaining other poloidal asymmetry
effects has a significant effect on the magnitude of the pre-
dicted negative velocity peaking in the transport barrier, as
also shown in Fig. 3. Note that when E,=0 and all other
poloidal asymmetries were also set to zero, the net effect on
the solution was negligible, as shown by comparison of the
two SS calculations in Figs. 1 and 2, indicating that there is
a compensating effect among the different poloidal asymme-
try effects. When the heat flux term in the viscous force [the
second term in the square brackets in Eq. (14)] was set to
zero, there was only a small effect on the predicted rotation
velocities, as shown for carbon in Fig. 3.

Vil. SUMMARY

It was shown that several of the extant neoclassical theo-
ries for poloidal rotation can be derived from the same fluid
poloidal momentum balance equation by retaining different
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terms and using different expressions for the parallel viscous
force. This suggested several natural extensions of these
theories.

Numerical calculations were performed to compare the
predictions of the theories and to examine the effect of vari-
ous phenomena on the prediction of poloidal rotation veloci-
ties. Inclusion of terms other than just the viscous and fric-
tion forces in the derivation of theoretical formulas for the
poloidal rotation was found to be important. In particular, the
V X B force due to the strong radial particle flux buildup in
the edge due to ionization of recycling neutrals was found to
significantly affect the poloidal rotation, and the inclusion of
the poloidal electric field and the heat flux contribution to the
viscous force were found to have smaller effects.
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