
1

A SEMI-AUTOMATED PROCEDURE FOR CREATING GEOMETRY AND BACKGROUND

PLASMA INPUT FILES FOR THE GTNEUT 2D NEUTRAL PARTICLE TRANSPORT CODE

USING THE UEDGE PLASMA EDGE CODE

Z.W. Friis

Fusion Reseach Center

Georgia Institute of Technology

July, 2009

I. INTRODUCTION

 The GTNEUT code
1-3 can provide a computationally economical and accurate calculation of neutral

particle transport in the complex 2D geometry to the tokamak divertor, scrapeoff layer and edge regions

inside of the separatrix. However, the GTNEUT code requires a geometric input file describing this

geometry and a background plasma file describing the plasma density and temperature in the various

geometric regions. This report describes semi-automated procedures: i) for using (and extending) the

input preparation capability of the UEDGE
4-5

 code to generate a GTNEUT geometric grid input file from

a DIII-D EFIT file and ii) for using the plasma density and temperature distributions calculated with the

UEDGE code to generate the background plasma input file for GTNEUT.

2

II. BACKGROUD ON GTNEUT

Before reading any further, if you would like to

use the GTNEUT code, you should familiarize

yourself with the following journal article:

J. Mandrekas, “GTNEUT: A code for the

calculation of neutral particle transport in plasmas

based on the Transmission and Escape Probability

method”, Computer Physics Communications 161,

36 (2004).

The above journal article is the only manual for

GTNEUT, and it is for an older version of

GTNEUT freely available through the ntcc

repository hosted by PPPL.

In the current version of GTNEUT, there are a

couple of new runtime options and a few inputs

that are no longer needed. However, it would be

advantageous to read the above journal. The

manual explains in depth many of the features that

will only be briefly touched upon.

III. DISCLAIMER ABOUT GTNEUT

Those wanting to use the Georgia Tech Neutrals

code (GTNEUT) should first understand two very

important issues that arise when attempting to

create the GTNEUT geometry input file called

“toneut”.

First: Although simplified geometric input can be

input manually to GTNEUT, the GTNEUT code

does NOT possess intrinsic mesh generation

capabilities for complex 2D geometries such as

those found in a Tokamak plasma edge.

Additionally, the GTNEUT methodology requires

the use of a “region-free” grid structure. This

means traditional grid points are not needed for

GTNEUT and cannot utilized in neutral particle

transport calculations.

Second: GTNEUT does NOT possess the ability to

generate its own plasma background parameters.

This means, GTNEUT is dependent on the use of

other codes or directly observable experimental

values for the ion and electron temperatures and

densities, recombination neutrals, ion fluxes to the

walls, gas puffing rates, and pumping locations.

The following paper describes a procedure for

generating geometric and background plasma

input files for GTNEUT by utilizing the 2D fluid

code UEDGE. While this generation of compatible

GTNEUT and UEDGE geometric and plasma

parameter files does NOT constitute a coupling of

the two codes, it is a step in that direction.

UEDGE is a very power 2D fluid code that has the

capability of generating very complex 2D meshes

based on equilibrium fitting data files (EFIT).

Additionally, UEDGE calculates a plasma

background throughout the 2D mesh. We have

created routines that can convert the 2D mesh

generated by UEDGE into a format that can be

directly imported into the geometry section of the

GTNEUT input file called “toneut”. Additionally,

if a UEDGE solution has already been obtained, it

is possible to extract the plasma background

information into a format usable by GTNEUT as

well.

The importation of experimental data into the

GTNEUT geometric mesh to use as background

plasma parameters still must be done manually.

IV. THE GTNEUT TONEUT FILE

As stated above, GTNEUT requires an input file

called “toneut” to run.

In the toneut file there are essentially 4 sections:

geometry, plasma background, sources for

neutrals, and runtime options.

V. GEOMETRY SECTION

The geometry section is arguably the most

complicated section of the input file. It contains

the geometric definition of the problem. The TEP

method is unique in that it does not require a

clearly defined coordinate system. Instead, cell

information is made up of the lengths and angles

of the cell interfaces. Additionally, neighboring

cells must be tracked. The greatest challenge in

creating an automated input procedure was

devising a way of tracking cell lengths, angles, and

cell neighbors. GTNEUT has a built in routine that

checks the geometry section of the input file for

consistency.

3

The figure below is a very simplified illustration

showing how we number the GTNEUT grid. The

UEDGE mesh is essentially laid out in a poloidal

and radial distribution.

The number of cells in the poloidal direction is

referred to as NX. It is defined (starting at cell one

and going in the clockwise direction) as nxleg(1,1)

+ nxxpt + nxxpt + nxcore(1,1) + nxcore(1,2) +

nxxpt + nxxpt + nxleg(1,2).

A better explanation of these terms are located in

the UEDGE manual, but nxleg(1,1) and nxleg(1,2)

are the number of cells in the poloidal direction for

the inner and outer divertor strike points

respectively.

Likewise, nxcore(1,1) and nxcore(1,2) are the

number of poloidal cells for the regions above the

X-Point. Resolution to the X-Point region may be

added by increasing nxxpt. This creates 4 * nxxpt

number of cells around the X-Point. Various options

are available to determine how closely these extra

cells are clustered around the X-Point.

Fig 1: Simplified Geometry of UEDGE Mesh

The number of cells in the radial direction (NY) is

the summation of nycore(1) and nysol(1). nycore(1)

is the number of poloidal layers within the

separatrix. nysol(1) is the number of poloidal layers

outside the separatrix.

The conversion of numbering from the 2D array of

UEDGE coordinates to the GTNEUT 1D array of

cells is given by:

 icn = ix + NX*(iy-1)

In total, there are NX*NY cells in the UEDGE grid.

This numbering scheme was suggested by Tom

Rognlien.

The UEDGE grid, however, requires some

modifications before it can be used in GTNEUT.

First, the grid should be fit to the divertor for all

GTNEUT runs. Additionally, UEDGE imposes

boundary conditions at the edge of the grid that are

not extended to the wall. The UEDGE grid does not

extend to the walls of the confinement vessel. The

routines we have created extend the UEDGE mesh

to the wall. Intrinsic to the UEDGE calculation,

there is a dummy layer of cells along the last layer

of cells in the SOL. We call this the HALO region.

When GTNEUT utilizes this layer of cells, there

are effectively (NY+1)*(NX) number of cells in the

GTNEUT grid. The same formula

icn = ix + NX*(iy-1);

can be used to locate cells in term of icn. NY is

now given by NY = NY + 1.

Lastly, the GTNEUT mesh also needs to fill in the

gap in the private flux region with computational

cells. These cells are slightly different. All of the

other NX*(NY+1) cells are 4 sided. The cells in the

private flux region are 3 sided. The number of cells

is determined by the sum of

nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2).

In total there are:

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2)

cells in a GTNEUT calculation. Additionally, the

number of plasma regions and the number of wall

locations must be tracked. The number of plasma

regions is simply

nxppt+nxcore(1,1)+nxcore(1,2)+nxxpt

The number of wall locations is given by:

NX + 2* NY + 2

The additional 2 wall segments are from the 2 cells

touching the wall in the private flux region.

The numbering scheme for the plasma and wall

cells can appear complicated.

4

However, it is fairly straight forward. The plasma

numbering scheme starts from the total number of

cells in GTNEUT. So, if there are

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2)

cells in the problem, and the first plasma region is:

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) +1

The first plasma location is located adjacent to the

first internal cell bordering the plasma region. The

numbering likewise goes in the clockwise fashion.

The wall regions start at:

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) +

nxppt+nxcore(1,1)+nxcore(1,2)+nxxpt

The numbering starts at the wall location

immediately adjacent to internal cell 1. In many of

the GTNEUT input options, the wall locations are

labeled from 1 to # of wall segments. Be aware, in

this numbering convention, wall segment 1 is

located adjacent to cell 1. The wall segments

increase linearly from 1 to # of wall locations in a

clockwise fashion until it reaches the wall segment

bordering the first private flux region cell.

It should be noted, we are unaware of what

problems this redefining of the NY+1 may cause in

the evaluation of an actual UEDGE run. All of our

calculations have been run in post. It is conceivable

this may modify the UEDGE calculation if the two

codes are truly coupled. The script is very simple to

modify. It should be trivial to create copies of the

UEDGE grid locations used in our UEDGE to

GTNEUT mesh converter, and only extend the

copies of the UEDGE NY+1 layer of cells to the

wall.

VI. PROCEDURE TO CREATE GEOMETRY

SECTION

The first step in creating the GTNEUT geometry

section is obtaining the EFIT files you would like to

use to create a grid from. The steps to do this are

quite simple:

1
st
: Run IDL.

2
nd

: From the IDL command prompt, generate the

“a” and “g” EQDSK files by issuing the commands:

writea,shotnumber,timeslice,runid

writeg,shotnumber,timeslice,runid

Next, export the EQDSK files into a directory of

your choosing. You will need a UEDGE template

to generate the mesh. Templates can be found in

my directory:

/u4/friis/uedge/runs/UEDGE_DEMO

Several templates have the extension, “.template”.

You will also need several of the files in this folder

in order to simply run UEDGE. As previously

stated, all UEDGE runs need to be run with the

divertor fitting option. When running the mesh

generation routines, keep in mind the geometry of

the divertor shelf, and insure the correction divertor

configuration is used.

Several options are available to create a large

variety of UEDGE meshes. Some of these options

may cause the make_toneut script to break down.

Only a limited number of test cases were carried

out.

After the template file has been set up and the EFIT

files have been generated, UEDGE may be run.

It should be noted that the versions of UEDGE and

GTNEUT utilized are all located on the linux

cluster at GA. Zeus was primarily used for most of

the calculations; however, since Zeus’ demise,

Delphi has been used with success.

The version of UEDGE used for all of our run is

located in:

/d2/uedge/Ver_5.0b_linux/dev/lnx-2.3-

i32/bin/xuedge

The version of GTNEUT used is located in:

/u4/friis/GTNEUT/

The routine used to create the convert the UEDGE

mesh into a GTNEUT mesh can be found in:

/u4/friis/uedge/GTNEUT_DEMO

and it is called:

make_toneut

5

Before the script make_toneut can be run, the

UEDGE mesh must be created. This can be

accomplished by running UEDGE using the

executable provided above and then typing:

read “template file name”

This routine sets up the UEDGE file. Next, the

UEDGE grid must be created. Instead of actually

running UEDGE, this is accomplished by typing:

call flxrun

 call grdrun

This simply makes the UEDGE grid. One can view

the mesh by typing

win on

followed by

read plotmesh

If the newly created mesh has been generated

successfully, the make_toneut routine may be called

by typing

read make_toneut

By running this, you have just extended the mesh to

the wall and generated several outputs.

To view the new GTNEUT mesh, you may type

read plotgtneutmesh

This routine is located in my post directory within

the UEDGE directory. It will create a very color

depiction of the new GTNEUT mesh.

The output files created from make_toneut are

primarily the geometry files.

There are 5 output files. Table 1 breaks down the

output files from make_toneut.

The toneut-cells, toneut-cores, and toneut-walls

contain all of the pertinent geometric data.

toneut-flatflux create a uniform temperature and

density distribution throughout the computational

grid. This isn’t really useful, except for making sure

the geometry is set up properly.

Lastly, toneut-rwall_gex contains the run options.

Table 1: make_toneut output files.

toneut-cells contains all iType(0) cells

and needed information.

toneut-cores contains all iType(1)

regions and tracks

neighboring cells.

toneut-walls contains all iType(2)

regions and tracks

neighboring cells.

toneut-flatflux gives all of iType(0) and

iType(1) cells a uniform

temperature and density.

toneut-rwall_gex generates the end of the

toneut file with specified

options.

To test the geometry, use the unix cat command to

make the toneut file:

cat toneut-cells toneut-cores toneut-walls toneut-

flatflux toneut-rwall_gex > toneut

Run GTNEUT using the executable provided

previously.

If there is a problem with the geometry, it will be

instantly obvious. If GTNEUT starts running

though, simply cancel the run the using. There is no

point in running GTNEUT with the flatflux

approximation. It may not converge to a solution.

If GTNEUT ran under the flatflux run, this means

the geometry section should be correct.

Now the plasma background is needed.

VII. THE PLASMA BACKGROUND

SECTION

As previously stated, a plasma background is

needed for GTNEUT. It is up to the reader of this

procedure to generate their own plasma

background. Any number of codes can be used, but

keep in mind the numbering scheme for the cells

generated by converting the UEDGE mesh to a

GTNEUT grid.

Fortuitously, if UEDGE has been run a plasma

background has been generated already. A plasma

background exist for the cells numbering 1 through

NX*NY (in this case NY is the original NY, not

NY+1).

6

For cells in the Halo and Private Flux Regions, the

user must specify a plasma background. For the

analysis this procedure was developed for, a

uniform plasma background was used for each of

these regions.

Additionally, the user must also specify the plasma

temperatures and densities for the albedo boundary

condition at the plasma core.

A routine to perform all of these tasks has been

created, and is located in the same

UEDGE_DEMO folder. To call the routine, just

type:

read gtneut_temp_dense

at the UEDGE command prompt. The script is

very simple and easily modifiable to suit the needs

of the user.

The script creates a fill called:

GTNEUT-TEMPS-DENSE

This file contains all of the plasma background

properties.

Additionally, sources of neutrals are needed for

GTNEUT.

VIII. THE SOURCE SECTION

There are 3 sources of neutrals GTNEUT can use

(show in the table below) and from recombination

sources, gas puffing sources, and the recycling

source.

S_ext Volumetric Source

(due to recombination)

g_ex gas puffing

g_ion ions recycling off the wall

Luckily, the recombination source is based off the

plasma background and is calculated by UEDGE.

The recombination source is different from the

other two sources in the sense that there can be a

source at every cell in the mesh. The other sources

are wall sources.

To extract the volumetric source, use the

command:

gtneut_volume_source

which creates the file “recombination.dat”.

The recombination source from this file does not

include the Halo and private flux region

recombination sources. Those have to be calculated

by the user.

Unfortunately, new routines have NOT been created

to extract the recycling source from UEDGE or the

gas puffing source.

It should be fairly straight forward to define the gas

puffing source; however, for the discharges analyzed

using this procedure, gas puffing was turned off. In

theory, one just has to determine the number of

particles being puffed into the system, and assign

them a specific wall location. This procedure is

described in Mandrekas’ manual.

The ion recycling source for our analysis came

directly from experiment and had to be manually

imported into the input file.

It shall be left up to the user to determine the best way

to ascertain the recycling source for their problem.

IX. RUNTIME OPTIONS

Run-time options should be specified once the other

sections are complete. The original GTNEUT manual

contains descriptions of most of the options. The only

new option in the current version of GTNEUT is the

option to run GTNEUT with the ANE approximation.

To do this, the number of ANE iterations must be

greater than 1. The author of the ANE approximation

indicates that typically 3 are sufficient:

neitr = 3

It is important to note, if use the ANE approximation

the following option must be used.

 i_e0=3

This initializes the neutral energies to 1.5 Ti, which is

needed for the ANE approximation. More information

on the science behind this method can be found in

Dingkang Zhang’s PhD thesis:

http://etd.gatech.edu/theses/available/etd-04132005-

165515/unrestricted/zhang_dingkang_200505_phd.pd

f

X. EXECUTING GTNEUT

Once you’ve obtained the background and the neutrals

sources, once again use the cat command to create the

toneut file:

7

cat toneut-cells toneut-cores toneut-walls

GTNEUT-TEMPS-DENSE recombination.dat

halo_recom.dat g_ions.dat toneut-rwall_gex >

toneut

For the example in the UEDGE_DEMO folder, we

have included the experimentally observed

recycling measurements: g_ions.dat.

Now that you have the toneut file you can run

GTNEUT using the executable found in:

/u4/friis/GTNEUT

Running GTNEUT will produce the same outputs

described in Mandrekas’ paper. Additionally, a file

called “nmat.m” is created after each run. This is a

matlab file containing output from GTNEUT. If

matlab is utilized for the analysis, this file could be

very important. The information in nmat.m was

specifically designed for a particular analysis;

however, by looking at the output.f file in the

GTNEUT folder, one can easily tell what the

different outputs are.

Lastly, a file called “loadnd” has been created.

This file can be called from the UEDGE command

prompt using:

read loadnd

This file essentially creates a number of variables

within the UEDGE run from the output of

GTNEUT. It is left up to the reader to determine the

best way to do this, but it is primarily used for

plotting purposes.

XI. GRAPHICAL INTERFACING

Several scripts that use the data from loadnd have

been created. They are located in the file:

/u4/friis/uedge/post

To run any of these files, just ensure that you’ve

typed “win on”, and the type “read script name”.

The script names are giving in the table below.

Script Name Plots the Quanity

plotpoly_nd Neutral Particle Density

plotpoly_ir Ionization Rates

plotpoly_id Ionization Densities

plotpoly_cx Charge Exchange Fractions

plotpoly_cxr Charge Exchange Rates

plotpoly_ne Electron Density

plotpoly_ni Ion Density

plotpoly_te Electron Temperature

plotpoly_ti Ion Temperature

plotpoly_mpf Mean Free Path

To plot the correct temperatures and densities, you

have to make sure you have updated the quantities in

the halo region. Unfortunately, these routines will

not plot data in the private flux region; however,

very little is going in the GTNEUT’s private flux

region so it is not that important.

XII. CAUTIONARY REMARKS

The procedure described here works fairly well

provided UEDGE has been run; however, this

procedure only works for Lower Single Null cases.

One should always plot the meshes to insure the

make_toneut script has created a decent mesh. The

script has only been tested for a set number of cases.

The adjustment of geometric parameters for the part

of make_toneut that defines the very top of the mesh

near the upper baffle or the first and last cells of the

HALO region may be required to create a working

GTNEUT mesh. The same is true for the GTNEUT

private flux as well.

8

XIII. ACKNOWLEDMENTS

 The author of this procedure would like to express his deepest gratitude to Dr. Richard Groebner

of General Atomics and Dr. Tom Rognlien of LLNL. This procedure could not have been developed

without their guided support during the early stages its creation.

