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I.    INTRODUCTION 

      The GTNEUT code
1-3 can provide a computationally economical and accurate calculation of neutral 

particle transport in the complex 2D geometry to the tokamak divertor, scrapeoff layer and edge regions 

inside of the separatrix.  However, the GTNEUT code requires a geometric input file describing this 

geometry and a background plasma file describing the plasma density and temperature in the various 

geometric regions.  This report describes semi-automated procedures: i) for using (and extending) the 

input preparation capability of the UEDGE
4-5

 code to generate a GTNEUT geometric grid input file from 

a DIII-D EFIT file and ii) for using the plasma density and temperature distributions calculated with the 

UEDGE code to generate the background plasma input file for GTNEUT. 
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II.    BACKGROUD ON GTNEUT  

Before reading any further, if you would like to 

use the GTNEUT code, you should familiarize 

yourself with the following journal article: 

 

J. Mandrekas, “GTNEUT: A code for the 

calculation of neutral particle transport in plasmas 

based on the Transmission and Escape Probability 

method”, Computer Physics Communications 161, 

36 (2004). 

 

The above journal article is the only manual for 

GTNEUT, and it is for an older version of 

GTNEUT freely available through the ntcc 

repository hosted by PPPL.  

 

In the current version of GTNEUT, there are a 

couple of new runtime options and a few inputs 

that are no longer needed. However, it would be 

advantageous to read the above journal. The 

manual explains in depth many of the features that 

will only be briefly touched upon.  

 

III.    DISCLAIMER ABOUT GTNEUT  

 

Those wanting to use the Georgia Tech Neutrals 

code (GTNEUT) should first understand two very 

important issues that arise when attempting to 

create the GTNEUT geometry input file called 

“toneut”.  

 

First: Although simplified geometric input can be 

input manually to GTNEUT, the GTNEUT code 

does NOT possess intrinsic mesh generation 

capabilities for complex 2D geometries such as 

those found in a Tokamak plasma edge. 

Additionally, the GTNEUT methodology requires 

the use of a “region-free” grid structure. This 

means traditional grid points are not needed for 

GTNEUT and cannot utilized in neutral particle 

transport calculations. 

 

Second: GTNEUT does NOT possess the ability to 

generate its own plasma background parameters. 

This means, GTNEUT is dependent on the use of 

other codes or directly observable experimental 

values for the ion and electron temperatures and 

densities, recombination neutrals, ion fluxes to the 

walls, gas puffing rates, and pumping locations.  

 

 

 

 

The following paper describes a procedure for 

generating geometric and background plasma 

input files for GTNEUT by utilizing the 2D fluid 

code UEDGE. While this generation of compatible 

GTNEUT and UEDGE geometric and plasma 

parameter files does NOT constitute a coupling of 

the two codes, it is a step in that direction.  

 

UEDGE is a very power 2D fluid code that has the 

capability of generating very complex 2D meshes 

based on equilibrium fitting data files (EFIT). 

Additionally, UEDGE calculates a plasma 

background throughout the 2D mesh. We have 

created routines that can convert the 2D mesh 

generated by UEDGE into a format that can be 

directly imported into the geometry section of the 

GTNEUT input file called “toneut”. Additionally, 

if a UEDGE solution has already been obtained, it 

is possible to extract the plasma background 

information into a format usable by GTNEUT as 

well.  

 

The importation of experimental data into the 

GTNEUT geometric mesh to use as background 

plasma parameters still must be done manually.  

IV. THE GTNEUT TONEUT FILE 

As stated above, GTNEUT requires an input file 

called “toneut” to run. 

 

In the toneut file there are essentially 4 sections: 

geometry, plasma background, sources for 

neutrals, and runtime options.  

V. GEOMETRY SECTION 

 

The geometry section is arguably the most 

complicated section of the input file. It contains 

the geometric definition of the problem. The TEP 

method is unique in that it does not require a 

clearly defined coordinate system. Instead, cell 

information is made up of the lengths and angles 

of the cell interfaces. Additionally, neighboring 

cells must be tracked. The greatest challenge in 

creating an automated input procedure was 

devising a way of tracking cell lengths, angles, and 

cell neighbors. GTNEUT has a built in routine that 

checks the geometry section of the input file for 

consistency.  

 

 

 



3 

The figure below is a very simplified illustration 

showing how we number the GTNEUT grid. The 

UEDGE mesh is essentially laid out in a poloidal 

and radial distribution. 

 

The number of cells in the poloidal direction is 

referred to as NX. It is defined (starting at cell one 

and going in the clockwise direction) as nxleg(1,1) 

+ nxxpt + nxxpt + nxcore(1,1) + nxcore(1,2) + 

nxxpt + nxxpt + nxleg(1,2). 

 

A better explanation of these terms are located in 

the UEDGE manual, but nxleg(1,1) and nxleg(1,2) 

are the number of cells in the poloidal direction for 

the inner and outer divertor strike points 

respectively. 

 

Likewise, nxcore(1,1) and nxcore(1,2) are the 

number of poloidal cells for the regions above the 

X-Point. Resolution to the X-Point region may be 

added by increasing nxxpt. This creates 4 * nxxpt 

number of cells around the X-Point. Various options 

are available to determine how closely these extra 

cells are clustered around the X-Point.  

 
Fig 1: Simplified Geometry of UEDGE Mesh 

The number of cells in the radial direction (NY) is 

the summation of nycore(1) and nysol(1). nycore(1) 

is the number of poloidal layers within the 

separatrix. nysol(1) is the number of poloidal layers 

outside the separatrix.  

 

The conversion of numbering from the 2D array of 

UEDGE coordinates to the GTNEUT 1D array of 

cells is given by: 

 
    icn = ix + NX*(iy-1) 

In total, there are NX*NY cells in the UEDGE grid. 

This numbering scheme was suggested by Tom 

Rognlien.  

 

The UEDGE grid, however, requires some 

modifications before it can be used in GTNEUT.  

 

First, the grid should be fit to the divertor for all 

GTNEUT runs. Additionally, UEDGE imposes 

boundary conditions at the edge of the grid that are 

not extended to the wall. The UEDGE grid does not 

extend to the walls of the confinement vessel. The 

routines we have created extend the UEDGE mesh 

to the wall. Intrinsic to the UEDGE calculation, 

there is a dummy layer of cells along the last layer 

of cells in the SOL. We call this the HALO region. 

 

When GTNEUT utilizes this layer of cells, there 

are effectively (NY+1)*(NX) number of cells in the 

GTNEUT grid. The same formula  

 
icn = ix + NX*(iy-1); 

 

can be used to locate cells in term of icn. NY is 

now given by NY = NY + 1.  

 

Lastly, the GTNEUT mesh also needs to fill in the 

gap in the private flux region with computational 

cells. These cells are slightly different. All of the 

other NX*(NY+1) cells are 4 sided. The cells in the 

private flux region are 3 sided. The number of cells 

is determined by the sum of 

nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2).  

 

In total there are:  

 

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2)  

 

cells in a GTNEUT calculation. Additionally, the 

number of plasma regions and the number of wall 

locations must be tracked. The number of plasma 

regions is simply  

 

nxppt+nxcore(1,1)+nxcore(1,2)+nxxpt 

 

The number of wall locations is given by:  

 

NX + 2* NY + 2 

 

The additional 2 wall segments are from the 2 cells 

touching the wall in the private flux region.  

 

The numbering scheme for the plasma and wall 

cells can appear complicated.  
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However, it is fairly straight forward. The plasma 

numbering scheme starts from the total number of 

cells in GTNEUT. So, if there are  

 

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) 

 

cells in the problem, and the first plasma region is: 

 
NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) +1  

 

The first plasma location is located adjacent to the 

first internal cell bordering the plasma region. The 

numbering likewise goes in the clockwise fashion.  

 

The wall regions start at:  

 
NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) + 

nxppt+nxcore(1,1)+nxcore(1,2)+nxxpt 
 

The numbering starts at the wall location 

immediately adjacent to internal cell 1. In many of 

the GTNEUT input options, the wall locations are 

labeled from 1 to # of wall segments. Be aware, in 

this numbering convention, wall segment 1 is 

located adjacent to cell 1. The wall segments 

increase linearly from 1 to # of wall locations in a 

clockwise fashion until it reaches the wall segment 

bordering the first private flux region cell.  

 

It should be noted, we are unaware of what 

problems this redefining of the NY+1 may cause in 

the evaluation of an actual UEDGE run. All of our 

calculations have been run in post. It is conceivable 

this may modify the UEDGE calculation if the two 

codes are truly coupled. The script is very simple to 

modify. It should be trivial to create copies of the 

UEDGE grid locations used in our UEDGE to 

GTNEUT mesh converter, and only extend the 

copies of the UEDGE NY+1 layer of cells to the 

wall. 

VI. PROCEDURE TO CREATE GEOMETRY 

SECTION 

The first step in creating the GTNEUT geometry 

section is obtaining the EFIT files you would like to 

use to create a grid from. The steps to do this are 

quite simple:  

 

1
st
: Run IDL.  

2
nd

: From the IDL command prompt, generate the 

“a” and “g” EQDSK files by issuing the commands:  

 

writea,shotnumber,timeslice,runid 

writeg,shotnumber,timeslice,runid 

 

Next, export the EQDSK files into a directory of 

your choosing. You will need a UEDGE template 

to generate the mesh. Templates can be found in 

my directory:  

 

/u4/friis/uedge/runs/UEDGE_DEMO 

 

Several templates have the extension, “.template”. 

You will also need several of the files in this folder 

in order to simply run UEDGE. As previously 

stated, all UEDGE runs need to be run with the 

divertor fitting option. When running the mesh 

generation routines, keep in mind the geometry of 

the divertor shelf, and insure the correction divertor 

configuration is used.  

 

Several options are available to create a large 

variety of UEDGE meshes. Some of these options 

may cause the make_toneut script to break down. 

Only a limited number of test cases were carried 

out.  

 

After the template file has been set up and the EFIT 

files have been generated, UEDGE may be run.  

 

It should be noted that the versions of UEDGE and 

GTNEUT utilized are all located on the linux 

cluster at GA. Zeus was primarily used for most of 

the calculations; however, since Zeus’ demise, 

Delphi has been used with success.  

 

The version of UEDGE used for all of our run is 

located in: 

  

/d2/uedge/Ver_5.0b_linux/dev/lnx-2.3-

i32/bin/xuedge 

 

The version of GTNEUT used is located in: 

 

/u4/friis/GTNEUT/ 

 

The routine used to create the convert the UEDGE 

mesh into a GTNEUT mesh can be found in: 

 

/u4/friis/uedge/GTNEUT_DEMO 

 

and it is called:  

 

make_toneut 
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Before the script make_toneut can be run, the 

UEDGE mesh must be created. This can be 

accomplished by running UEDGE using the 

executable provided above and then typing: 

 

read “template file name” 

 

This routine sets up the UEDGE file. Next, the 

UEDGE grid must be created. Instead of actually 

running UEDGE, this is accomplished by typing:  

 

call flxrun 

 call grdrun 

 

This simply makes the UEDGE grid. One can view 

the mesh by typing  

 

win on 

 

followed by  

 

read plotmesh 

 

If the newly created mesh has been generated 

successfully, the make_toneut routine may be called 

by typing  

 

read make_toneut 

 
By running this, you have just extended the mesh to 

the wall and generated several outputs.  

 

To view the new GTNEUT mesh, you may type  

 

read plotgtneutmesh 

 

This routine is located in my post directory within 

the UEDGE directory. It will create a very color 

depiction of the new GTNEUT mesh.  

 

The output files created from make_toneut are 

primarily the geometry files.  

 

There are 5 output files. Table 1 breaks down the 

output files from make_toneut.  

 

The toneut-cells, toneut-cores, and toneut-walls 

contain all of the pertinent geometric data.  

 

toneut-flatflux create a uniform temperature and 

density distribution throughout the computational 

grid. This isn’t really useful, except for making sure 

the geometry is set up properly.  

 

Lastly, toneut-rwall_gex contains the run options.  

 

Table 1: make_toneut output files. 

toneut-cells contains all iType(0) cells 

and needed information. 

toneut-cores contains all iType(1) 

regions and tracks 

neighboring cells.  

toneut-walls contains all iType(2) 

regions and tracks 

neighboring cells. 

toneut-flatflux gives all of iType(0) and 

iType(1) cells a uniform 

temperature and density.  

toneut-rwall_gex generates the end of the 

toneut file with specified 

options.  

 
To test the geometry, use the unix cat command to 

make the toneut file:  

 

cat toneut-cells toneut-cores toneut-walls toneut-

flatflux toneut-rwall_gex > toneut 
 

Run GTNEUT using the executable provided 

previously.  

 

If there is a problem with the geometry, it will be 

instantly obvious. If GTNEUT starts running 

though, simply cancel the run the using. There is no 

point in running GTNEUT with the flatflux 

approximation. It may not converge to a solution.  

 

If GTNEUT ran under the flatflux run, this means 

the geometry section should be correct.  

 

Now the plasma background is needed.  

 

VII. THE PLASMA BACKGROUND 

SECTION 

 

As previously stated, a plasma background is 

needed for GTNEUT. It is up to the reader of this 

procedure to generate their own plasma 

background. Any number of codes can be used, but 

keep in mind the numbering scheme for the cells 

generated by converting the UEDGE mesh to a 

GTNEUT grid.  

 

Fortuitously, if UEDGE has been run a plasma 

background has been generated already. A plasma 

background exist for the cells numbering 1 through 

NX*NY (in this case NY is the original NY, not 

NY+1).  
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For cells in the Halo and Private Flux Regions, the 

user must specify a plasma background. For the 

analysis this procedure was developed for, a 

uniform plasma background was used for each of 

these regions.  

 

Additionally, the user must also specify the plasma 

temperatures and densities for the albedo boundary 

condition at the plasma core.  

 

A routine to perform all of these tasks has been 

created, and is located in the same 

UEDGE_DEMO folder. To call the routine, just 

type: 

 

read gtneut_temp_dense 

 

at the UEDGE command prompt. The script is 

very simple and easily modifiable to suit the needs 

of the user.  

 

The script creates a fill called:  

 

GTNEUT-TEMPS-DENSE 

 

This file contains all of the plasma background 

properties.  

 

Additionally, sources of neutrals are needed for 

GTNEUT.  

VIII. THE SOURCE SECTION 

There are 3 sources of neutrals GTNEUT can use 

(show in the table below) and from recombination 

sources, gas puffing sources, and the recycling 

source.  

 

S_ext Volumetric Source  

(due to recombination) 

g_ex gas puffing 

g_ion ions recycling off the wall 

 

Luckily, the recombination source is based off the 

plasma background and is calculated by UEDGE. 

The recombination source is different from the 

other two sources in the sense that there can be a 

source at every cell in the mesh. The other sources 

are wall sources.  

 

To extract the volumetric source, use the 

command: 

 

gtneut_volume_source 

 

which creates the file “recombination.dat”.  

The recombination source from this file does not 

include the Halo and private flux region 

recombination sources. Those have to be calculated 

by the user. 

 

Unfortunately, new routines have NOT been created 

to extract the recycling source from UEDGE or the 

gas puffing source.  

 

It should be fairly straight forward to define the gas 

puffing source; however, for the discharges analyzed 

using this procedure, gas puffing was turned off. In 

theory, one just has to determine the number of 

particles being puffed into the system, and assign 

them a specific wall location. This procedure is 

described in Mandrekas’ manual.  

 

The ion recycling source for our analysis came 

directly from experiment and had to be manually 

imported into the input file.  

 

It shall be left up to the user to determine the best way 

to ascertain the recycling source for their problem.  

IX. RUNTIME OPTIONS 

Run-time options should be specified once the other 

sections are complete. The original GTNEUT manual 

contains descriptions of most of the options. The only 

new option in the current version of GTNEUT is the 

option to run GTNEUT with the ANE approximation.  

 

To do this, the number of ANE iterations must be 

greater than 1. The author of the ANE approximation 

indicates that typically 3 are sufficient: 

 

neitr = 3 

 

It is important to note, if use the ANE approximation 

the following option must be used. 

 

 i_e0=3 

 

This initializes the neutral energies to 1.5 Ti, which is 

needed for the ANE approximation. More information 

on the science behind this method can be found in 

Dingkang Zhang’s PhD thesis: 

 

http://etd.gatech.edu/theses/available/etd-04132005-

165515/unrestricted/zhang_dingkang_200505_phd.pd

f 

X. EXECUTING GTNEUT 

Once you’ve obtained the background and the neutrals 

sources, once again use the cat command to create the 

toneut file: 
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cat toneut-cells toneut-cores toneut-walls 

GTNEUT-TEMPS-DENSE recombination.dat 

halo_recom.dat g_ions.dat  toneut-rwall_gex > 

toneut 

 

For the example in the UEDGE_DEMO folder, we 

have included the experimentally observed 

recycling measurements: g_ions.dat. 

 

Now that you have the toneut file you can run 

GTNEUT using the executable found in: 

 

/u4/friis/GTNEUT 

 

Running GTNEUT will produce the same outputs 

described in Mandrekas’ paper. Additionally, a file 

called “nmat.m” is created after each run. This is a 

matlab file containing output from GTNEUT. If 

matlab is utilized for the analysis, this file could be 

very important. The information in nmat.m was 

specifically designed for a particular analysis; 

however, by looking at the output.f file in the 

GTNEUT folder, one can easily tell what the 

different outputs are.  

 

Lastly, a file called “loadnd” has been created.  

 

This file can be called from the UEDGE command 

prompt using: 

 

read loadnd 

 

This file essentially creates a number of variables 

within the UEDGE run from the output of 

GTNEUT. It is left up to the reader to determine the 

best way to do this, but it is primarily used for 

plotting purposes.  

 

XI. GRAPHICAL INTERFACING 

Several scripts that use the data from loadnd have 

been created. They are located in the file: 

 

/u4/friis/uedge/post 

 

To run any of these files, just ensure that you’ve 

typed “win on”, and the type “read script name”.  

 

The script names are giving in the table below.  

 

Script Name Plots the Quanity 

plotpoly_nd Neutral Particle Density 

plotpoly_ir Ionization Rates 

plotpoly_id Ionization Densities 

plotpoly_cx Charge Exchange Fractions 

plotpoly_cxr Charge Exchange Rates 

plotpoly_ne Electron Density 

plotpoly_ni Ion Density 

plotpoly_te Electron Temperature 

plotpoly_ti Ion Temperature 

plotpoly_mpf Mean Free Path 

 

To plot the correct temperatures and densities, you 

have to make sure you have updated the quantities in 

the halo region. Unfortunately, these routines will 

not plot data in the private flux region; however, 

very little is going in the GTNEUT’s private flux 

region so it is not that important.  

XII.  CAUTIONARY REMARKS 

The procedure described here works fairly well 

provided UEDGE has been run; however, this 

procedure only works for Lower Single Null cases. 

One should always plot the meshes to insure the 

make_toneut script has created a decent mesh. The 

script has only been tested for a set number of cases. 

The adjustment of geometric parameters for the part 

of make_toneut that defines the very top of the mesh 

near the upper baffle or the first and last cells of the 

HALO region may be required to create a working 

GTNEUT mesh. The same is true for the GTNEUT 

private flux as well.    
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