
Analysis of pedestal plasma transport

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 Nucl. Fusion 50 064004

(http://iopscience.iop.org/0029-5515/50/6/064004)

Download details:

IP Address: 130.207.50.192

The article was downloaded on 03/09/2010 at 21:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0029-5515/50/6
http://iopscience.iop.org/0029-5515
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION

Nucl. Fusion 50 (2010) 064004 (23pp) doi:10.1088/0029-5515/50/6/064004

Analysis of pedestal plasma transport
J.D. Callen1, R.J. Groebner2, T.H. Osborne2, J.M. Canik3,
L.W. Owen3. A.Y. Pankin4, T. Rafiq4, T.D. Rognlien5 and
W.M. Stacey6

1 Department of Engineering Physics, University of Wisconsin, Madison, WI 53706-1609,
USA
2 General Atomics, San Diego, CA 92186-5608, USA
3 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
4 Department of Physics, Lehigh University, Bethlehem, PA 18015-3182, USA
5 Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA
6 Georgia Tech, Atlanta, GA 30332, USA

E-mail: callen@engr.wisc.edu and groebner@fusion.gat.com

Received 19 October 2009, accepted for publication 12 May 2010
Published 28 May 2010
Online at stacks.iop.org/NF/50/064004

Abstract
An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal.
Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and
2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density
pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged
over the last 20% of the average 33.53 ms repetition time between type I edge localized modes. The modelled density
of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a
factor ∼102 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are
small on all flux surfaces up to within about 2.6 mm (ρN > 0.99) of the mid-plane separatrix. For the assumed
Fick’s-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 2–3 in the pedestal region;
they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest.
Convective heat flows are found to be small fractions of the electron (�10%) and ion (�25%) heat flows in this
pedestal. Appropriately averaging the transport fluxes yields interpretive 1.5D effective diffusivities that are smallest
near the mid-point of the pedestal. Their ‘transport barrier’ minima are about 0.3 (electron heat), 0.15 (ion heat)
and 0.035 (density) m2 s−1. Electron heat transport is found to be best characterized by electron-temperature-
gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion
heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it.
The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive
outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new
interpretive analysis technique that uses information from the force balance (momentum conservation) equations;
the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements
and additional modelling needed to facilitate better pedestal plasma transport modelling are discussed.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.55.Dy, 52.55.Rk

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Large edge pedestals in high- (H-) confinement mode plasmas
are critical [1] for achieving high fusion power in ITER
[2]. At present, plasma transport processes and their role
in H-mode pedestals are not well understood. In this
work we seek to identify, clarify and quantify the key
transport processes involved in H-mode pedestals in the quasi-
equilibrium transport state between type I edge localized
modes (ELMs). Specifically, an H-mode edge pedestal (HEP)
benchmarking exercise (BE) for a single DIII-D pedestal has

been undertaken in which transport modelling results from
various types of modelling codes are extensively compared and
benchmarked for a single, well-characterized, typical H-mode
pedestal in the DIII-D tokamak [3]. The initial objectives
of the HEP BE were to (1) determine channels of energy
flow through and losses from the pedestal; (2) identify key
physical processes for characterizing these energy flows to
(a) determine what key experimental measurements are most
needed, (b) clarify what processes need to be included in
transport modelling and (c) increase confidence in transport
modelling as various code results converge and (3) facilitate
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meaningful, reliable comparisons with theory-based transport
models.

Transport analyses are most straightforward when plasmas
are in transport equilibrium. But H-mode pedestals evolve [4]
between ELMs. There is a wide variability in the time scales
for edge pedestals to re-build between ELMs. However, in
an exploration [4] of pedestals after type I ELMs in DIII-D
that were slowly evolving, it was shown that after an ELM
the average pedestal pressure gradient first increased ‘rapidly’
on a time scale of about 10–20 ms to a ‘transport quasi-
equilibrium;’ it then increased more slowly for ∼30–100 ms,
until the next ELM. An ∼10 ms transient phase is consistent
with the time scale for diffusive transport over a thin pedestal
width �x ∼ 0.03 m for D ∼ 0.1 m2 s−1: τ ∼ (�x)2/D ∼
9 ms.

In this study we analyse plasma transport properties in
the transport quasi-equilibrium phase just before the next
ELM. The particular pedestal considered is from a typical low
pedestal density DIII-D discharge. It will be characterized by
data obtained by averaging over the last 20% of the average
33.53 ms period between type I ELMs from about 4 to 5 s in
DIII-D discharge 98889. Plasma transport properties will be
analysed mainly from the core region inside the top of the
pedestal (from normalized radius ρN � 0.85) through the
pedestal (0.94 � ρN � 1.0) out to the separatrix (ρN = 1).

To explore the role and importance of the many diverse
properties of plasma sources, sinks and transport involved
in the pedestal, a number of different types of transport
codes will be used. The particular codes involved are
the 1.5D (one-dimensional (1D) ‘radial’ transport across
shaped flux surfaces) core-based interpretive transport code
often used to analyse DIII-D plasmas (ONETWO [5]), a
1.5D pedestal-focused interpretive transport code (GTEDGE
[6]), a 1.5D predictive transport code (ASTRA [7]) and
two-dimensional (2D) edge-divertor region codes (SOLPS
[8], UEDGE [9, 10]) run in interpretive and semi-predictive
modes. A key contribution of these codes is that they
quantify the various sources (e.g. heating by energetic neutral
beams, fuelling by recycling neutrals) and sinks (e.g. radiative
energy losses) of density, momentum and energy in the
plasma. This information allows one to determine via
‘interpretive’ transport analysis the plasma transport required
to obtain the experimentally measured density and temperature
profiles. Conversely, in ‘predictive’ transport analysis one uses
theoretically predicted plasma transport properties to predict
the profiles.

The 1.5D codes are applicable for closed, nested flux
surfaces inside a divertor separatrix and take account of the
non-circular plasma cross-section. They average over the flux
surfaces to obtain a 1D description of plasma sources and
sinks and plasma density and energy transport ‘radially’ across
toroidal magnetic flux surfaces. The ONETWO and ASTRA
codes have been extensively benchmarked against lots of core
plasma data and carefully account for plasma sources and sinks
in the core plasma. They use a combination of collisional
(neoclassical) and (in predictive modes) various analytic-based
anomalous plasma transport models. Since the ONETWO
code is used to analyse plasma transport in many DIII-D
discharges, its results will generally be the ‘reference’ against
which other code results will be compared. The GTEDGE

code concentrates on the pedestal region using a 1.5D transport
model interfaced with results from a 2D kinetic-based neutral
source model; it includes consideration of momentum (force
balance) equations for each plasma species. The 2D codes
(SOLPS, UEDGE) have traditionally focused on modelling
divertor plasma properties outside the separatrix. They allow
for and determine poloidal variations in plasma sources, sinks
and properties. The 2D codes use local poloidal-magnetic-
flux-surface-based coordinates that are applicable both inside
and outside the separatrix. They determine plasma properties
all the way from the core plasma through the pedestal region
and scrape-off layer outside the separatrix, out to vacuum wall
and divertor plate boundaries where plasma–wall interactions
occur and are included. The 2D codes use the Braginskii [11]
collisional plasma transport model with ad hoc additions of
anomalous radial plasma particle and energy diffusivities. The
SOLPS code uses a Monte Carlo-based kinetic neutral model
while the UEDGE code uses a fluid neutrals model. A major
issue that will be addressed in this paper (mainly in section 7)
is, how far out radially (in the pedestal, towards the separatrix)
can 1.5D codes capture the most important transport processes
and where do which 2D processes become important in the
pedestal?

This paper is organized as follows. The next section
describes the particular DIII-D discharge 98889 being
considered and its pedestal plasma properties. The following
section describes the transport modelling procedures used by
the various codes; mathematical details of the coordinate
systems they use are discussed in the appendix. Section 4
presents the effective diffusivity coefficients for electron
and ion heat in this pedestal obtained via interpretive
modelling. Comparisons of these effective heat diffusivity
coefficients with various analytic-based theoretical predictions
are discussed in the following section. The next section
describes ASTRA predictive modelling of the pedestal electron
temperature profile. Pedestal plasma transport analyses from
the 2D codes are discussed in section 7 which emphasizes
the poloidal asymmetry of the recycling neutrals fuelling
source and discusses the degree to which 1.5D codes capture
the needed physics inside the separatrix. The 1.5D density
transport analysis is discussed in section 8. The next section
discusses the new interpretive procedure for determining the
density pinch and a possible explanation of it. Section 10
discusses some of the largest uncertainties in the present
plasma transport analyses. It also discusses the experimental
measurements and modelling extensions most needed to
resolve these uncertainties and facilitate better modelling
of pedestal plasma transport properties. The final section
summarizes the present conclusions of this HEP BE study.

2. Experimental characterization of DIII-D H-mode
pedestal

The pedestal to be studied comes from DIII-D discharge
98889, which has been well characterized. Waveforms for
various key plasma parameters in this lower single null (LSN)
divertor discharge during the time over which averaged profiles
are obtained are shown in figure 1. As can be ascertained
from this figure, during this time window the ELMs are
relatively reproducible; the average time between ELMs is
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Figure 1. Waveforms for line-averaged electron density n̄e/(1019 m−3), plasma stored energy WMHD (MJ), deuterium Balmer alpha (Dα)
emission, electron temperature T

ped
e (keV) at the top of pedestal measured by ECE and electron density n

ped
e /(1019 m−3) at the top of the

pedestal at the times of the TS measurements, in DIII-D discharge 98889.

33.53 ms; and the pedestal electron temperature recovers to its
transport quasi-equilibrium value in about 10 ms. Microwave
reflectometry data have recently become available on DIII-D.
It shows the density pedestal in discharges similar to 98889
recover on a similar time scale—see figure 9 in [12]. The
Thomson scattering (TS) data in the bottom trace of figure 1
is consistent with such a recovery time, but too widely spaced
in time to be definitive.

In order to reduce scatter in the TS data and facilitate
referencing these data to the separatrix, an averaging procedure
was used to obtain composite quasi-equilibrium plasma
profiles. The averaging procedure was enabled by the fact
that the ELMs were relatively reproducible (see figure 1) over
the 4 to 5 s time window used. First, pedestal region magnetic
flux surfaces were obtained by solving the Grad–Shafranov
equation using the EFIT free boundary code [13] for each
Thomson time in figure 1 allowing for a finite current on
the separatrix and using the usual magnetic diagnostics to
constrain the EFIT solutions. Previous analyses in DIII-D have
identified [14] that the best measure of the separatrix location is
where the electron temperature is about 100 eV, as determined
by the transition to open field lines outside the separatrix. Also,
it was shown [14, 15] that the pedestal profiles can be best fit
by hyperbolic tangent (tanh) fitting functions. Thus, next a
nonlinear least squares fitter was used to obtain a tanh fit for the
Thomson data in 20% windows of the ELM cycles. Then, the
Thomson profile flux coordinate positions were adjusted so the
tanh fit Te on the separatrix is a common, physics-determined

value, in this case 90 eV. Further details on the fitting procedure
and its uncertainties are provided in section 2 of [16].

The resultant composite plasma profiles are then used
to develop full ‘kinetic’ EFIT equilibria at a few specific
times during the average ELM cycle. These equilibria contain
the best available reconstructions of the pressure and current
density profiles. An example of flux surfaces from a kinetic
EFIT is shown in figure 2. This equilibrium represents the
60–80% interval of the average ELM cycle and is labelled
with a time of 4523 ms, which is 70% of an average ELM
period after the mid-point of the 4 to 5 s averaging time
interval. The cross-section of the flux surfaces is shown along
with the corresponding cylindricalized (see next section and
the appendix) flux surface of the separatrix. The toroidal
magnetic field at the geometric centre of the vacuum vessel
at R0 = 1.6955 m is Bt0 = 2 T. For this magnetic equilibrium
the magnetic axis is at Rm � 1.75 m. The mid-plane half
radius rM is �0.6 m. However, the average radius, which is
defined in terms of the toroidal magnetic flux� at the separatrix
by a ≡ √

�(sep)/πBt0, is 0.7667 m. It is larger than rM

because the plasma has an edge ellipticity of κ = 1.76 and
a triangularity of δ = −0.02. Other parameters during the
near steady-state conditions to be analysed are plasma current
I = 1.22 MA and q95 � 4.44.

Interpretive modelling with ONETWO indicates the total
input power was 3.21 MW, from a combination of energetic
neutral beams (2.91 MW of which 1.17 MW goes to electrons,
1.74 MW to ions) and ohmic heating (0.3 MW). This total input
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Figure 2. EFIT magnetic flux surfaces are nested about the
magnetic axis at Rm � 1.75 m and Z = 0 in the analysed DIII-D
discharge 98889. Also shown is the cylindricalized radius
a � 0.7667 m of the separatrix magnetic flux surface which is
centred at R0 � 1.683 m and Z � −0.035 m. The region
(0.85 � ρN � 1.0) whose plasma transport properties are analysed
in this work lies between the third from last dashed flux surface and
the magnetic separatrix. The pedestal region 0.95 � ρN � 1.0 lies
between the last dashed flux surface and the separatrix.

power is about a factor of 4 higher than the L–H transition
power threshold of 0.75 MW determined from the latest ITER
scaling [17] at an earlier time when the density is lower.
Global plasma parameters are as follows: central electron
temperature Te(0) = 3.2 keV and deuterium ion temperature
Ti(0) = 4.6 keV, toroidal beta β̄t = 0.013, poloidal beta
β̄p = 0.59, thermal energy confinement time τE � 0.153 s
[HITER98y2 � 1.02] and estimated particle confinement time
τp � 0.4 s.

The composite profiles of the electron density and
temperature, and ion temperature are shown in figure 3. Data
for the electron density ne and temperature Te were obtained
from a multi-point, multi-time TS system [18], which has a
high density of viewing chords in the pedestal region. The
edge channels view along the vertical Thomson laser; they
are separated by 1.3 cm (about 0.013 in ρN) with the spot
size being comparable to the separation. Thomson profile
measurements were made every 12–13 ms throughout the
discharge considered here. Data for the ion temperature Ti

were obtained from a charge-exchange recombination (CER)
spectroscopy system, which views the C VI 5290.5 Å line [19].
This system also has a high density of view chords in the
pedestal region with a separation of tangential chords, oriented
along the outer mid-plane, of about 0.6 cm (about 0.01 in ρN)
and a spot size slightly smaller than the chord separation. A
system of vertically viewing chords is interleaved with the edge

chords and is often used to improve the spatial resolution for
Ti. The Ti data were acquired with an averaging time of 10 ms.
The TS tanh fits at the separatrix (ρN = 1) yield ne(1) �
0.077 × 1020 m−3 and Te(1) � 0.09 keV. At the ρN symmetry
points of the tanh fits ne(0.982) � 0.165 × 1020 m−3 and
Te(0.978) � 0.39 keV. Spline fits to the CER-determined ion
temperature profiles were used in the various modelling codes,
which yield Ti(1) � 0.28 keV and Ti(0.982) � 0.49 keV.

In figure 3 and throughout the rest of this paper we identify
three key regions (I, II, III) of the edge plasma being analysed.
There is no unique definition for the position of the ‘top’ of the
pedestal. Here, we will define it to occur at ρN � 0.94, which
is about twice the width of region III in from the tanh symmetry
points. Region III is defined to be from the symmetry points
(ρN � 0.98) of the pedestal tanh fits to the separatrix. Thus,
region I will be the extension of the core plasma region out
to the top of the pedestal, i.e. here 0.85 < ρN < 0.94.
Region II will be called the ‘top half’ of the pedestal and
is defined by 0.94 < ρN < 0.98. Finally, region III will
be called the ‘bottom half’ of the pedestal and is defined by
0.98 < ρN < 1.0.

3. Transport modelling equations and procedures

The fundamental plasma transport equations solved by all the
codes used in this study are developed from the collisional
Braginskii [11] density and energy equations for each species
of charged particles in the plasma, which will be written
initially in the form

density : ∂n/∂t + ∇ · nV = Sn, (1)

energy :
∂

∂t

(
3

2
nT

)
+ ∇ ·

(
q +

5

2
nT V

)
= Q. (2)

Here, n is the density (units of m−3), V is the flow velocity
(m s−1) and T is the temperature (eV) of the species being
considered. The density source Sn (m−3 s−1) has been added
to the usual Braginskii density equation to allow for particle
sources and sinks. It is predominantly due to ionization of
recycling thermal neutrals emanating from the LSN divertor
X-point region in DIII-D discharge 98889—see section 7.
(The net beam source of ions from ionization minus charge
exchange of beam neutrals is only 10% of the recycling neutrals
ionization source at ρN = 0.85 and is negligible in the pedestal
region 0.94 � ρN � 1.0.) The GTEDGE code [6] solves in
addition various components of the species momentum (force
balance) equation for the flow velocity components; these
solutions and their consequences will be discussed in section 9.

In the energy equation, (3/2)nT is the internal energy
(eV m−3), q is the conductive heat flux (W m−2) and
(5/2)nT V is the convective heat flux (W m−2). The Q

(W m−3) on the right side of the energy equation represents
the net energy input to or loss from the species due to
cross-species collisional energy exchange, Joule heating and
energy sources and sinks; it will be discussed in the following
paragraph. In ONETWO [5] and SOLPS [8] the ion flow
energy (1/2)mini|Vi|2 is added to the ion internal energy and
convective heat transport; this flow energy will be neglected
because it gives only a very small modification (�1%) to the
internal energy in the 98889 pedestal.
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Figure 3. Edge profiles of (a) electron density ne/(1020 m−3), (b) electron temperature Te(keV) and (c) ion temperature Ti(keV). The
fundamental normalized radial coordinate used here, ρN ≡ √

�/πB0/a, is based on the toroidal magnetic flux �. Data used in obtaining the
tanh fits (solid lines) are indicated by plus (+) symbols, which illustrate the degree of uncertainty in these profiles and the tanh function fits
to them for ne and Te. The tanh ρN symmetry points are indicated by large dots (•) on the tanh fit lines. A spline fit is used for the Ti profile.
The edge regions identified here are I core, II top and III bottom halves of the pedestal. The normalized poloidal flux coordinate �N and
radial distance along the horizontal outboard mid-plane R − Rsep (m) are indicated in rulers at the bottom.

The pedestal heating (or energy loss) rates per unit
volume (power density) Q of electrons and ions have many
components. The dominant ones from 1.5D ONETWO
modelling are shown in figure 4. In the pedestal region
0.94 � ρN � 1 (II and III), figure 4(a) shows that electrons
are heated modestly by the collisional energy exchange Q�

(because Ti > Te in the pedestal), with smaller contributions
due to Joule heating QOH and (nearly negligible) neutral beam
heating Qe beam. Radiative losses Qrad are a significant but
not dominant electron heat loss process in the pedestal. The
radiated power is measured by a multi-chord, multi-channel
bolometer array; the total radiated power is only 0.2 MW,
predominantly due to carbon. (Electron impact ionization
energy losses are �0.13×104 W m−3 in the pedestal and hence
negligible.)

The dominant ion energy losses in the pedestal region
0.94 � ρN � 1 (II and III) are more significant. They can be
seen from figure 4(b) to be mainly due to charge-exchange and
collisional energy transfer Q� to the colder electrons. There is
modest heating from the production of ions via electron impact
ionization of recycling neutrals Qi ion.

Similar dominant contributions have been found in
modelling of other DIII-D pedestals [20–23]. However,
electron heating by neutral beams can be larger when the beam

power and pedestal density are higher [20–22]. There can
also be larger charge-exchange ion energy losses when the ion
temperature is higher near the separatrix [22].

Because the various transport modelling codes focus on
different regions of the plasma, they use different coordinate
systems. All the codes assume axisymmetry in the toroidal
(angle ζ ) direction. The 1.5D core transport codes (ONETWO,
ASTRA) use magnetic flux coordinates based on the nested
toroidal magnetic flux surfaces (toroidal flux ψt → � in
ONETWO, ASTRA). For their radial coordinate they use
ρ ≡ (ψt/πBt0)

1/2, which is the average radius of the ψt or �

toroidal flux surface. In this definition Bt0 is the magnitude of
the toroidal magnetic field at the geometric axis of the vacuum
vessel (i.e. at R0 = 1.6955 m). The core transport codes
base their coordinate system on the toroidal magnetic flux
because [24] during typical magnetic field transients (e.g. due
to a non-inductive current drive being turned on) the toroidal
magnetic field (flux ψt) changes (in magnitude and spatial
structure) much less than the poloidal magnetic field (flux
ψp), which is determined by the toroidal current distribution
in the plasma. However, the toroidal flux ψt or � is not well
defined outside the separatrix—because the area involved in its
definition extends vertically through the vacuum vessel coils,
past the divertor coils and vertically to infinity.

5
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Figure 4. Dominant components of net heating per unit volume (×104 W m−3) in the 98889 edge plasma from ONETWO modelling: (a) net
electron power density Qe net due to cross-species collisional energy exchange Q� (qdelt), neutral beam heating Qe beam (qebeam), Joule
heating QOH (qoh) and radiative losses Qrad (qrad) and (b) net ion power density Qi net due to cross-species collisional energy exchange
−Q� (-qdelt), neutral beam heating Qi beam (qibeam), ionization minus recombination Qi ion (qioni), and charge-exchange Qcx (qcx).

The 2D codes (SOLPS and UEDGE), which focus on edge
plasmas up to the divertor plate and the wall boundaries, use a
poloidal-flux-based radial coordinate, which is well defined all
the way to the divertor plates. In ONETWO the poloidal flux
ψp → � and a corresponding normalized radial coordinate
�N ≡ �/�sep are often used. Both the toroidal and poloidal
flux coordinates are applicable in the pedestal region in the
quasi-equilibrium transport situation being studied here. The
2D codes often present results in terms of the radial distance
from the separatrix on the horizontal mid-plane of the plasma
cross-section, R − Rsep.

The rulers at the bottom of figure 3 show the relations
between these three different radial coordinate systems in the
plasma edge. This paper will present results primarily in
terms of the normalized toroidal-flux-based radial coordinate
ρN ≡ ρ/a, in which ρ is the average minor radius of the flux
surface and a ≡ (ψt sep/πBt0)

1/2 is the average minor radius
of the separatrix (see figure 2).

We will be mainly interested in net plasma transport
radially from one flux surface to the next. Thus, it is convenient
to define the flux-surface average (FSA) of an axisymmetric
(i.e. ∂f/∂ζ = 0, in which ζ is the toroidal angle) scalar function
f (xψ, xθ ):

〈f 〉 ≡ lim
δxψ→0

∫ xψ +δxψ

xψ
d3xf∫ xψ +δxψ

xψ
d3x

= 2π
∮

dxθ

√
gf

dV/dxψ

. (3)

Here, as discussed in the appendix, xψ is a generic radial
flux-surface-based coordinate and xθ is a generic poloidal

coordinate on a flux surface. Also,
√

g ≡ 1/(∇xψ ·
∇xθ × ∇ζ ) = (dψp/dxψ)/B · ∇xθ is the Jacobian of the
transformation from the laboratory to generic (xψ, xθ , ζ ) flux-
surface-based coordinates and

∮
dxθ indicates integration over

the cyclic generic poloidal coordinate xθ on a xψ flux surface.
Also,

dV/dxψ ≡ V ′ = 2π

∮
dxθ

√
g (4)

is the radial derivative of the volume V (xψ) ≡ ∫ xψ

0 d3x

encompassed by the flux surface labelled by xψ . Note that
V ′ has units of volume (m3) divided by the units of xψ . The
FSA of the divergence of a vector such as the particle flux Γ is

〈∇ · Γ〉 ≡ ∂

∂V
〈Γ · ∇V 〉 = 1

V ′
∂

∂xψ

(V ′〈Γ · ∇xψ 〉). (5)

The FSA annihilates the poloidal (xθ ) derivative terms implicit
in (1), (2) which are specified in (A.3), (A.4). Thus, the FSA
density and energy equations become

∂〈n〉
∂t

+
1

V ′
∂

∂xψ

(V ′〈Γ · ∇xψ 〉) = 〈Sn〉, (6)

∂

∂t

(
3

2
〈nT 〉

)
+

1

V ′
∂

∂xψ

(
V ′

〈(
q +

5

2
T Γ

)
· ∇xψ

〉)
= 〈Q〉.

(7)

These are the 1D transport equations solved in the 1.5D
modelling codes.
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Figure 5. Heat flows through pedestal flux surfaces obtained from various modelling codes: (a) electron total and convective heat flows
(MW) and (b) ion total and convective heat flows (MW).

4. Interpretive 1.5D modelling of heat transport

In general the radial fluxes Γ and q vary poloidally on a
flux surface. However, in the core- and pedestal-relevant low
(banana–plateau) collisionality regime where collision lengths
are long compared with the poloidal periodicity length along
magnetic field lines, net radial (i.e. across field lines) plasma
transport from one flux surface to the next is the only physically
meaningful quantity. In terms of the generic coordinates, the
flow of a vector particle flux Γ across a flux surface is defined
by

∫
dS(xψ) · Γ ≡ 2π

∮
dxθ

√
gΓ · ∇xψ = (dV/dxψ)〈Γ ·

∇xψ 〉 = S(xψ)〈Γ·∇xψ 〉/〈|∇xψ |〉. In obtaining the last forms
we used dS(xψ) ≡ 2π

√
gdxθ∇xψ = 2π

√
g dxθ |∇xψ |êxψ

,
which can be used to show that the area of a flux surface is
S(xψ) = 〈|∇xψ |〉 dV/dxψ . Thus, the physically relevant net
particle flow and electron and ion conductive heat flows (energy
flowing) across a flux surface are

Ṅ(xψ) ≡
∫

dS(xψ) · Γ = V ′〈Γ · ∇xψ 〉, s−1, (8)

Pcond(xψ) ≡
∫

dS(xψ) · q = V ′〈q · ∇xψ 〉, W. (9)

As a check that all the modelling codes are beginning
with the same ‘input data,’ in figure 5 we show the heat
flows defined in (9) for the edge region. Here, the convective
heat flow is defined by Pconv ≡ ∫

dS(xψ) · (5/2)nT V =
V ′〈(5/2)T Γ · ∇xψ 〉. (The 5/2 factor in the convective heat

flow will be used throughout this paper since it arises naturally
in the collisonal Braginskii [11] fluid moment equations and
is what most of these modelling codes usually use.) The
conductive power Pcond will be defined as the total power flow
Ptot minus the convective heat flow Pconv through the surface:
Pcond ≡ Ptot −Pconv. It is an experimentally inferred quantity;
i.e. it does not result from or necessarily imply the Fourier heat
flux form (see equation (11) below) used below in interpretive
analyses.

As can be seen in figure 5, the various modelling codes
agree reasonably well on the heat flows through the pedestal
region. The total electron power flow (∼1.8 MW) through the
pedestal is nearly constant with ρN—because the net electron
heating in this region (II and III) is rather small (see figure 4(a)).
The total ion power flow (∼0.7 MW) through the pedestal
decreases somewhat with increasing ρN because of collisional
energy losses to the colder electrons and charge-exchange
losses there (see figure 4(b)). The net ion cooling power
in the pedestal region (II and III, i.e. 0.94 � ρn � 1),
which has a volume δV � 1.5 m3, is δPi � δV Qi ∼
(1.5 m3)(−105 W m−3) ∼ −0.15 MW. Since variations in heat
flows through the pedestal region are relatively small fractions
of net energy flows there, the energy balances in this pedestal
are dominated by the heat flows through the pedestal region,
not by local heating or cooling processes there. However,
the ion cooling processes are significant in the pedestal and
become progressively more important as one approaches the
separatrix (cf figure 5(b)). Previous transport analyses [20–22]

7



Nucl. Fusion 50 (2010) 064004 J.D. Callen et al

of radial heat flows in similar DIII-D pedestals have come
to similar conclusions, except for cases where larger charge-
exchange ion heat losses near the separatrix strongly reduce
the conductive ion heat flow [20, 21].

Figure 5 also shows that the convective heat flow is
relatively small for the pedestal we are considering; it is largest
near the separatrix where it is about 10% of the total electron
heat flow and about 25% of the total ion heat flow. The
variability in the modelling code results for convective heat
flows near the separatrix is caused mainly by differences in
models of the plasma fuelling by recycling thermal neutrals.
Section 7 will discuss the neutral models used in the various
codes; in particular, the 2D neutral models and their effects
on the particle flow Ṅ defined in (8) are discussed there. The
density transport properties in the pedestal are discussed in
sections 8 and 9.

Plasma transport (caused by collisions and microturbu-
lence) is often characterized by effective diffusivity
coefficients for particle and heat transport. Specifically, in
analogy with the kinetic theory of gases, one assumes the
particle flux is given by a Fick’s diffusion law Γ = −D∇n

and the conductive heat fluxes are in the Fourier heat flux form
q = −nχ∇T . The effective diffusion coefficients D and
χ , which have units of m2 s−1, are determined ‘interpretively’
from experimental data by dividing the transport fluxes by the
appropriate plasma gradients. While this procedure neglects
possible ‘off-diagonal’ transport fluxes (e.g. particle fluxes
induced by temperature gradients) and possible ‘pinch’ flux
(or threshold gradient) effects, it does provide a measure of
the transport required by a dominantly diffusive process to
yield a given transport flux in response to the respective plasma
gradient. Plausible pinch flow effects in density transport will
be discussed in sections 8 and 9.

Plasmas in the hot core of tokamaks often hover near the
threshold for the onset of drift-wave-type microinstabilities.
Then, small changes in temperature or density gradients can
cause very large changes in transport fluxes. For such cases the
recommended procedure [25] for analysing plasma transport
is to use theoretical or computational predictions of the (highly
nonlinear) transport fluxes Γ and q in equations (6) and (7) to
determine the density and temperature profiles. Unfortunately,
this procedure is not useful here, mainly because, as discussed
in sections 5 and 6, most drift-wave-type modes are stable
and/or cause little or no radial plasma transport in the pedestal
region, especially in its bottom half (III). Recently, MHD-like
kinetic ballooning modes (KBMs) have been advanced [26] as
a similar possible determiner of the pedestal pressure profile
gradient; however, the nonlinear evolution (turbulence or
intermittency?) of KBMs and possible transport representation
of their effects have not yet been developed. Here, we will use
the original, more primitive procedure of interpreting effective
heat and particle diffusivities from the ratio of transport fluxes
to plasma gradients, which gives at least an initial perspective
on the relative amounts of plasma transport taking place in the
various electron and ion density and heat transport channels.

Further assumptions are needed to facilitate comparisons
of radial transport in 1.5D and 2D codes. First, one
usually assumes the plasma density and temperatures are
approximately constant on flux surfaces; section 7 will
show that this is the case for the 98889 DIII-D pedestal.

Figure 6. Poloidal variation of radial electron heat flux (∝|∇ρ|) at
the edge of the core plasma for χe constant on a flux surface: from
UEDGE and SOLPS modelling and from estimates of |∇ρ| (dots,
squares) using the analytic Miller geometry model [27]. (Reprinted
from [28]. Copyright © 2008 American Institute of Physics.)

Next, the diffusivities are assumed to be constant on flux
surfaces. Physically, diffusivities and transport fluxes vary
significantly on flux surfaces; they usually peak strongly
on the tokamak’s outboard side where particle gyroradii
and drift orbit excursions from flux surfaces are largest and
microinstabilities ‘balloon.’ However, characterizing radial
transport by diffusion coefficients that are constant on flux
surfaces is reasonable in the low collisionality regimes of
interest here where the collision lengths exceed the poloidal
periodicity length which causes the only relevant transport to
be from one magnetic flux surface to the next. Thus, labelling
flux surfaces for simplicity as in the ONETWO and ASTRA
codes by xψ → ρ, the Fick’s diffusion and Fourier heat flux
laws become

Γ = −D(ρ)∇n = − D ∇ρ dn/dρ, (10)

q = −nχ(ρ)∇T = − nχ ∇ρ dT/dρ. (11)

The ∇ρ factors represent the poloidal variation on a
magnetic flux surface of the ‘radial’ gradients (in laboratory
coordinates) of density and temperatures from one flux surface
to the next (see figure 2). The resultant poloidal variation
(∝|∇ρ|) on the flux surfaces of the electron heat flux from
(11) is illustrated in figure 6 at ρN � 0.82 (Rsep − R � 6 cm)
in 98889. The heat flux is largest on the outboard mid-plane
where the magnetic flux surfaces are most closely bunched
together (compressed) and the local temperature gradients are
largest. The smallest radial heat fluxes occur at the top and
bottom (near the LSN divertor X-point) of the tokamak where
the flux surfaces are most widely separated and local radial
gradients are smallest. In reality, as was explained in the
preceding paragraph, the heat fluxes are even more strongly
peaked on the outboard mid-plane than is indicated by the
Fourier heat flux model in (11) with constant heat diffusivity
on a magnetic flux surface that is being used in these codes.
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Figure 7. ONETWO radial variation of the dimensionless geometry
factor 〈|∇ρ|2〉 in the edge.

Substituting the expressions in (10) and (11) into (8) and
(9) yields

D = Ṅ(ρ)

(dV/dρ) 〈|∇ρ|2〉 (−dn/dρ)
, (12)

χ = Pcond(ρ)

(dV/dρ) 〈|∇ρ|2〉 (−n dT/dρ)
. (13)

Using these formulae to determine effective particle and heat
diffusivities is usually referred to as interpretive transport
modelling. From (3) and the definition of the surface
area above (8) we see that the volume factor dV/dρ =
S(ρ)/〈|∇ρ|〉, in which S(ρ) is the area of the ρ flux surface.
For reference, in the pedestal region 0.94 � ρN � 1,
ONETWO indicates S � 53 ρN m2, 〈|∇ρ|〉 � 1.22, and
dV/dρ � 43.4 ρN m2.

The dimensionless factor 〈|∇ρ|2〉 in (12) and (13) is the
FSA of the square of the poloidal variation of the heat flux
(∝|∇ρ|) illustrated in figure 6. It is near unity in the core of
tokamak plasmas; for example, in 98889 it is about 1.15 at
ρN � 0.5 (the half-radius of the plasma). Thus, it is often
neglected in core transport studies [29]. However, as shown
in figure 7, in the pedestal region (II and III) it is of order a
factor of 2 and varies modestly with ρN there; hence it must be
taken into account. For example, the diffusivity values quoted
in the ONETWO output files are in fact 〈|∇ρ|2〉 χ and must
be divided by 〈|∇ρ|2〉 to yield the χ values to be compared
with other transport modelling codes and theoretical formulae
for χ(ρ).

The interpretive, effective electron and ion heat
diffusivities determined from (13) using the conductive heat
flows Pcond = Ptot −Pconv from figure 5 and the 〈|∇ρ|2〉 factor
from figure 7 are shown in figure 8. Given the wide variety of
physics models, coordinate systems and numerical procedures
used in the various modelling codes run in their interpretive
modes, the degree of agreement between them is satisfactory.
Since all the interpretive codes begin from the same plasma
profile gradients, differences in these effective diffusivities
are primarily due to minor differences in the computed heat
flows through various regions of the pedestal. Averaging
the interpretive results, the minimum heat diffusivities for

the 98889 pedestal are about 0.3 m2 s−1 for electrons and
0.15 m2 s−1 for ions. The interpretive diffusivities near the
minima agree within about 25% for χe and 50% for χi.
The interpretive ion heat diffusivities vary the most mainly
because of the differences in the charge-exchange ion heat
losses in the pedestal, as indicated in figures 4(b) and 5(b).
The different charge-exchange losses result from differences
in recycling neutrals fuelling models, which are discussed at
the end of section 7. The variations in modelling code results
are comparable to the systematic and statistical experimental
uncertainties in the gradients obtained from the tanh fits of the
ne and Te and spline fit Ti profiles (see figure 3) used in these
transport analyses.

The strong radial variations of these interpretive, effective
heat diffusivities in the pedestal region are generic. The
reasons for them can be understood by examining the role
of the various terms in (13). As noted above, Pcond, V ′

and 〈|∇ρ|2〉 do not vary much in the pedestal region. Thus,
variations in the effective heat diffusivities are caused mainly
by changes in the magnitudes of the temperature gradients
and the density. AsρN increases from the core into the pedestal,
the effective heat diffusivities first decrease, mainly because
the temperature gradients are increasing as ρN increases
towards and down the top half (II) of the pedestal. The
diffusivities reach a minimum a bit before the extrema of the
temperature gradients (at symmetry points of the tanh fits at
ρN � 0.98); these minima represent the H-mode pedestal
‘transport barriers’ in electron and ion heat transport. Finally,
the intrepretive χ values increase in the bottom half (III) of
the pedestal as ρN increases further outwards towards the
separatrix, mainly because the density decreases significantly
there; the decreasing magnitudes of the temperature gradients
there also contribute slightly.

The specific χ profiles obtained in figure 8 result from
the tanh and spline fits to the data used to represent the input
data for the modelling codes. However, similar χe and χi

profiles have been obtained from interpretive SOLPS transport
modelling of some ASDEX-U H-mode pedestals [30, 31].
Also, GTEDGE modelling of other DIII-D H-mode pedestals
[20–23] has obtained similar profiles.

5. Comparisons of heat diffusivities with theoretical
predictions

Radial profiles of some theoretically relevant magnetic field
structure and plasma transport properties in the edge region
are shown in figures 9 and 10. These parameters are obtained
from ONETWO modelling using the kinetic EFIT equilibrium
flux surfaces in figure 2 and the fitted plasma profiles shown
in figure 3. Note that the q profile in figure 9(a) has a slight
negative slope in the region 0.955 � ρN � 0.97, which causes
the global magnetic shear parameter ŝ ≡ (ρN/q)(dq/dρN) to
be negative there. This effect is caused by the increase in the
bootstrap current density to about 4.6 times the ohmic current
density as ρN increases towards the symmetry point of the
pedestal (ρNsym � 0.98).

As figure 9(b) shows, in the pedestal region the gradient
scale lengths are small fractions of the average plasma radius
a. The pedestal width tanh fit parameter � [4, 14, 15] is about
twice the normalized gradient scale length at the symmetry

9
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Figure 8. Modelling code results for interpretive, effective diffusivities obtained from (13) for the (a) electron heat diffusivity χe (m2 s−1)
and (b) ion heat diffusivity χi (m2 s−1).
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Figure 9. Radial profiles using ONETWO parameters of (a) the ‘safety factor’ q and global magnetic shear parameter ŝ ≡ (ρN/q)(dq/dρN)
and (b) the normalized electron density and electron and ion temperature gradient scale length parameters Lne/a ≡ −(d ln ne/dρN)−1,
LTe/a ≡ −(d ln Te/dρN)−1 and LTi/a ≡ −(d ln Ti/dρN)−1 in which a = 0.7667 m. In addition, the ratio of the ion gyroradius
�i ≡ vTi/ωci = √

2Ti/mi/(eB0/mi) ∼ 0.2 cm to the electron density gradient scale length Lne is indicated in the lower right.

point: �ne � 0.047 ∼ 2 Lne(ρNsym)/a, �Te � 0.043 ∼
2 LTe(ρNsym)/a and �Ti � 0.106 ∼ 2 LTi(ρNsym)/a. Because
the ratio of the deuterium ion gyroradius to the density gradient
scale length is of order 0.1 or smaller, a small gyroradius

expansion is valid throughout the pedestal. But since the half-
width of banana drift orbits are a factor of order

√
2q/

√
ε � 10

larger than the ion gyroradius in the pedestal region, there
could be significant ion orbit losses from the bottom half (III)
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Figure 10. Radial profiles using ONETWO parameters of
(a) neoclassical collisionality parameter [32] for electrons (ν∗e)
and ions (ν∗i) and (b) ratios of gradient scale lengths, ηe ≡ Lne/LTe ,
ηi ≡ Lni/LTi .

of the pedestal. However, since thermal deuterium ions are
near the transition from the banana to plateau collisionality
regime there (see figure 10 and the following paragraph), it is
likely that only superthermal ions on the tail of the deuterium
ion distribution will be lost from this region. Fully ionized
carbon ions have smaller gyroradii than deuterium ions by a
factor of about 1/

√
6 � 0.4; they are also more collisional by

a factor of Z2
I � 36. Thus, apparently only ‘high energy tail’

fully stripped carbon ions will contribute to the CER-inferred
carbon ion temperatures measured outside the separatrix, as
indicated in figure 3(c).

As indicated in figure 10(a), in the core (I) and top
half (II) of the edge plasma, thermal electrons and ions are
both in the banana collisionality regime (ν∗s � 1, ν∗s ≡
νs/(ε

3/2vTs/R0q), which is
√

2 smaller than the definition
in [32]). Fully stripped carbon impurities (nC/ne � 0.061
in the edge region) are the only significant impurity in
DIII-D plasmas. They have been taken into account in the
electron and ion collision frequencies via νe ∝ Zeff and
νi ∝ [1 +

√
2 (neZeff/ni − 1)]/

√
2 with Zeff ≡ ∑

i niZ
2
i /ne =

(ni + nCZ2
C)/ne � 2.83 throughout the edge region being

considered. Also, vTs ≡ (2Ts/ms)
1/2 and ε is an inverse

aspect ratio parameter that represents the variation of the
magnetic field strength on a flux surface: ε ≡ (Bmax −
Bmin)/(Bmax + Bmin) � rM/Rm, which is ∼0.6/1.75 ∼ 0.34
in the pedestal region. Electrons are in the plateau regime
(1 < ν∗ < ε−3/2 ∼ 5) in the bottom half (III) of the pedestal
and barely reach the Pfirsch–Schlüter regime (ν∗ > ε−3/2 ∼ 5)
just inside the separatrix (i.e. for ρN > 0.995). Deuterium
thermal ions are near the banana–plateau transition all the way
to the separatrix—because Ti does not decrease much in the
bottom half (III) of the pedestal.

The parameters ηi (>ηi,crit � 1.25 [33]), ηe (>ηe,crit � 1.2
[34]) and R0/LT = (R0/a)(a/LT) � 2.3 (a/LT) (�10 for
ρN > 0.91) are all sufficiently large in the core region that ion-
temperature-gradient (ITG) and electron-temperature-gradient
(ETG) driven drift-wave-type microinstabilities are probable
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Figure 11. Profiles of characteristic plasma diffusivity coefficients
from ONETWO parameters: ETG-induced electron heat diffusion at
the electron gyro-Bohm level χ

gB
e ≡ (�e/LTe )(Te/eBt0) �

0.075 Te(keV)3/2/LTe (m)Bt0(T) m2 s−1, neoclassical ion heat
diffusion using the Chang–Hinton formula [39] for χ nc

i , and
paleoclassical transport scaled to the magnetic field diffusivity
Dη ≡ ηnc

‖ /µ0 ∼ 103 Zeff/[Te(eV)]3/2 m2 s−1.

there. However, ITG modes should be stable in most of the
pedestal (II and III) because ηi < 1.25 there. Dissipative
trapped electron modes (TEMs) are likely to be stabilized by
the E × B flow shear [35] in the pedestal region and by the
high (plateau) electron collisionality in the bottom half (III) of
the pedestal. The shorter wavelength and higher growth rate
ETG instabilities are less likely to be stabilized by the flow
shear [34]. Finally, the negative global magnetic shear ŝ in the
region 0.955 � ρN � 0.97 can have a stabilizing effect on
these drift-wave-type microinstabilities. However, the local
magnetic shear on the outboard side of divertor plasmas is
almost always negative in the pedestal region (II and III) and
ETG modes are still unstable there [34].

For a generic scaling perspective on possible plasma
transport processes, the radial profiles of some characteristic
plasma diffusion coefficients are shown in figure 11.
ETG-induced electron heat transport has been advanced [34] as
being a significant contributor to electron heat transport in the
pedestal; for example, simulation of an ASDEX-U pedestal at
a point where Te � 0.69 keV predicted χe � 0.83 m2 s−1 [34].
In addition, paleoclassical electron heat transport [36, 37] has
been advanced as being a major contributor to electron heat
diffusion in a different DIII-D pedestal—see figure 14 in [36].
Further, predictive modelling with ASTRA [38] found that for
15 DIII-D H-mode discharges the plasma Te profiles were best
modelled by a combination of electron heat diffusion from
ETG-induced anomalous transport near the top of the pedestal
(I to II) and paleoclassical transport throughout the pedestal (II
and III). Profiles of the underlying characteristic electron gyro-
Bohm and magnetic field diffusivities for these two processes
are shown in figure 11. From these profiles, we see that ETG-
induced transport is a good candidate to dominate near the
top of the pedestal (I to II)—because it scales as T

3/2
e and

Te is highest there. In the bottom half (III) of the pedestal
paleoclassical electron heat transport is a good candidate to
dominate—because there the helical multiplier [36] M < 1 so
it scales as T

−3/2
e and Te is smallest there and decreases as one
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moves radially outwards towards the separatrix. Also shown
for reference is the predicted neoclassical ion heat diffusivity
[32] profile obtained from ONETWO using the Chang–Hinton
formula [39].

The magnitude and profile of the sum of the
generic predictions for ETG-driven gyro-Bohm level and
paleoclassical transport shown in figure 11 are similar to the
interpretive effective electron heat diffusivity χe shown in
figure 8(a). The neoclassical prediction indicated in figure 11
is of the same order of magnitude as the experimentally inferred
ion heat diffusivity χi shown in figure 8(b); however, its profile
is quite different and it is about a factor of 4 larger near the
minimum in the interpretive χi. Recent calculations with
the more precise NEO code [40] have indicated the Chang–
Hinton prediction is too large by about 20% in the plasma
core; for a typical pedestal the NEO code indicates [41] the true
neoclassical χi is about 30% smaller than the Chang–Hinton
prediction. These calculations include the orbit squeezing
effects [42] which are caused by the strong radial variation of
the radial electric field in the pedestal. Decreasing the Chang–
Hinton prediction by 30%, it still seems that the inferred
effective ion heat diffusivity in the 98889 pedestal is less than
(by a factor ∼3) the best estimate of the neoclassical ion heat
diffusivity there.

The interpretive heat diffusivities have been compared
with a wide variety of analytic-based, mixing-length-type
theoretical predictions for a number of DIII-D pedestals in
[20–23], and most extensively in [43]. For the pedestal in
98889, figures 12 and 13 compare predictions of a number
of theoretical models with the interpretive GTEDGE χe and
χi profiles shown in figure 8. Detailed formulae for the
various analytic-based theoretical model predictions are given
in [43]. To determine radial heat fluxes the GTEDGE
interpretive transport model integrates the equilibrium heat
transport equations (7) from the separatrix inwards using
experimentally determined density and temperature gradients.
For this GTEDGE modelling it is assumed that the ratio of
ion to electron power flow through the separatrix is 25% to
75%. This is quite close to and between the values of this
parameter from ONETWO (28/72) and SOLPS (24/76). The
data in figures 12 and 13 are obtained at a slightly different
time slice (∼3962 ms, at the first of the time interval being
considered) [23]; however, the profiles and plasma geometry
are not significantly different from the profiles shown in
figure 3 and the slight differences are not expected to change
the conclusions discussed below.

Various points can be made about the theory-experiment
electron heat diffusivity comparisons shown in figure 12.
As can be seen, the paleoclassical prediction parallels the
interpretive, effective χe(ρN) in the bottom half of the pedestal
(III, 0.98 � ρN � 1.0) and in the core region (I, ρN � 0.94).
There are no points indicated between these regions because
integrating as in equations (35) and (36) in [43] from the
separatrix region inwards gives negative values for χe in this
region (II) and the integration outwards from the core becomes
inappropriate in this region (II). The four paleoclassical χe

values in the bottom half (III) of the pedestal, where the
paleoclassical helical multiplier M < 1, have been estimated
in figure 12 by equation (32) in [43].

The spatial variation of the ETG and TEM analytic-
based predictions, which include [43] the reductions in growth

I IIII IIIIII

Figure 12. Comparison of interpretive GTEDGE-determined
effective electron heat diffusivity χe (exp) with analytic-based
predictions [43] of various theoretical models: paleoclassical
(paleo) collision-induced electron heat transport and
electron-temperature gradient (etg) and trapped-electron mode
(tem) microturbulence-induced anomalous electron heat transport.

I IIII IIIIII

Figure 13. Comparison of GTEDGE-determined effective ion heat
diffusivity χi (exp) with analytic-based predictions [43] of various
theoretical models: neoclassical collision-induced ion heat
diffusivity (neocl) and ion-temperature gradient (itg) and
drift-Alfvén (da) microturbulence-induced anomalous ion heat
transport.

rates caused by E × B flow shear effects, also parallel the
interpretive, effective χe(ρN) in the core region, but have
different magnitudes. In the transition from the core region
to the top half of the pedestal they first increase with ρN

(specifically, for 0.92 � ρN � 0.95)—because the analytic-
based theoretical formulae in equations (39) and (43) for ETG
and TEM transport in [43] are proportional to the magnitude
of the ETG which increases with ρN there. However, this
trend is opposite to the interpretive χe(ρN) in this region.
The ETG and TEM predictions then decrease rapidly with
ρN down the top half of the pedestal (0.95 � ρN � 0.98).
In the bottom half of the pedestal electrons are in the plateau
collisionality regime (i.e. ν∗e > 1, see figure 10(a)); hence
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TEM modes are stable there. Finally, the ETG χe increases
with increasing ρN in the bottom half of the pedestal primarily
because the analytic formula for the ETG-induced transport
is inversely proportional to the electron density ne in this
collisional regime. But in the bottom half (III) of the
pedestal ETG-induced transport might be limited by the gyro-
Bohm scaling factor indicated in figure 11 and hence be
negligible there. Direct gyrokinetic simulations (for example,
as in [34, 44]) of ETG- and TEM-induced microturbulence,
the electron heat transport they induce and the Te profile
they produce are needed to obtain more precise theoretical
predictions for these pedestal transport processes.

In summary, none of these electron heat transport models
can be unequivocally ruled in or out by this comparison of
simple analytic-based theoretical models with the interpretive,
effective electron heat diffusivities in this 98889 edge region.
However, the paleoclassical model provides perhaps the best
overall fit in the pedestal regions where it can be appropriately
determined. Also, ETG transport is likely to be a major
contributor in the transition from the pedestal (II) into the core
(I) region.

Figure 13 shows that for ions the analytic-based theoretical
predictions also differ some from the interpretive, effective
ion heat diffusivity. As in the discussion of figure 11, the
neoclassical ion heat diffusivity is larger than the interpretive χi

by a factor of about 3 at ρN ∼ 0.965 and has the wrong profile.
Here, the neoclassical χi has been evaluated using the Chang–
Hinton formula [39] specified in equation (1) of [43] using the
reduction factor given in equation (6) of [43] to account for
orbit squeezing [42].

The ITG transport seems too high in the core region going
into the top half (II) of the pedestal; it is not present in the lower
parts of the pedestal because the ITG instability criterion in
equation (7) of [43] is not satisfied, mainly because ηi < 1.25
there. However, since the plasma is obviously well above
ITG-threshold conditions in the core going into the top half of
the pedestal, full gyrokinetic turbulence simulations [44] are
needed to clarify the magnitude of the ion heat flux in the core
region of this 98889 discharge. Drift-Alfvén microturbulence-
induced ion heat transport is apparently negligible in the core
but could contribute in the bottom half (III) of the pedestal.

In summary, for ion heat transport, ITG microturbulence-
induced transport likely plays a dominant role in the core region
(I). Neoclassical transport is likely to be a major contributor
in the pedestal region (II and III), where it even seems to be
too large by perhaps a factor of 3. However, more detailed
gyrokinetic-based simulations will be required to clarify the
precise roles and magnitudes of ITG-induced, and perhaps
other ion heat pedestal transport processes, including possible
ion heat pinch effects.

6. Predictive 1.5D modelling of pedestal electron
temperature profile

The preceding transport analyses have focused primarily on
interpretive modelling of the 98889 pedestal. In this section
for completeness we briefly discuss some ASTRATe predictive
modelling results [45]. In predictive transport modelling one
uses formulae from various analytic-based theoretical models
for diffusivities or transport fluxes as input and simulates the

0.85 0.9 0.95 1 ρ
0

1

2

3

4

5

6

7

8
χ

e
 = χPaleo

e

χ
e
 = χWH

EM

χ
e
 = χGLF

ETG
χ

e
 = χ

TOT

I IIII IIIIII

N

Figure 14. Electron heat diffusivities χe (m2 s−1) used in ASTRA
predictive modelling of the 98889 edge region: paleoclassical [48]
χPaleo

e , Horton [46] electromagnetic ETG χWH
EM , GLF23 [47]

electrostatic ETG χGLF
ETG and sum of these three diffusivities χTOT.

plasma transport evolution to steady state. It seeks to match,
within some statistical error, the experimentally obtained
quasi-equilibrium plasma profiles.

Previous predictive transport modelling of H-mode
plasmas has usually had difficulty modelling the electron
temperature profiles—mainly because they did not have a
good model of the electron heat diffusivity χe in the pedestal.
However, recent ASTRA modelling [45] has been quite
successful in modelling the overall Te profiles in 15 DIII-D
H-mode discharges. Two aspects of the modelling are
critical. First, the density and ion temperature profiles were
held fixed; thus, only the electron temperature profile was
modelled and evolved to steady state. Second, a wide variety
of analytic-based theoretical models were considered and a
‘particular combination of electron thermal transport models’
was developed and applied to all 15 DIII-D H-mode discharges.

The particular electron heat transport model that worked
best was composed of ETG-induced and paleoclassical
transport models. In particular, the electromagnetic limit of
the Horton ETG model [46] was used. In addition, the GLF23
electron heat transport model [47] with the TEM component
suppressed (presumably due to E × B flow shear) was used;
thus, only GLF23’s electrostatic version of ETG-induced
transport is retained. Finally, a paleoclassical electron heat
transport model [48] was included.

The contributions of these electron heat transport models
to the ASTRA modelling of the 98889 edge region are shown in
figure 14 for the 3962 ms time slice. These predictive ASTRA
diffusivities are somewhat larger in magnitude but have the
same profile as the interpretive results in figure 8(a). These
results show that in the core (I) all three models contribute
about equally. In the top half (II) of the pedestal ETG transport
becomes small and paleoclassical transport begins to become
dominant. Finally, in the bottom half (III) of the pedestal the
paleoclassical electron heat transport completely dominates.

The electron temperature profile produced by this
combination of electron heat transport models is shown in
figure 15. The ASTRA-modelled and experimental Te profiles
are in reasonable agreement. However, the ASTRA-modelled
electron temperature in the pedestal (i.e. in regions II and III)
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Figure 15. ASTRA predictive Te modelling results [45] for the
combination of electron heat diffusivities shown in figure 14
produces reasonable agreement with the experimentally measured
profile in the 98889 edge region.

is somewhat larger than the Te experimental profile there. In
part, this could be the result of only using the lowest order
paleoclassical electron heat transport model [48]; heat-pinch-
type effects that result from the different structure [49] of the
paleoclassical electron heat transport operator could reduce the
effective χPaleo

e in the pedestal region by a factor of 2 or more
and thereby increase the magnitude of ∇Te in the top half of
the pedestal.

7. Interpretive 2D modelling

There are two key issues for 1.5D transport modelling in the
pedestal region: (1) how far out in radius is it appropriate to
use the 1.5D transport model? and (2) what 2D physics effects
need to be introduced to extend the transport modelling out to
the separatrix (ρN = 1)? These questions will be addressed
in this section with 2D transport modelling, primarily using
SOLPS results [50].

These SOLPS 2D transport studies are semi-predictive
in that they use the interpretive analysis diffusivities from
ONETWO as input and then adjust them slightly in a predictive
mode to obtain good agreement with the experimentally
measured profiles shown in figure 3. This two-step, semi-
predictive procedure provides [50] a very efficient new
approach for obtaining transport results with the SOLPS
modelling code.

First, we consider the poloidal variation of the electron
and ion temperatures on magnetic flux surfaces. Relevant
results from SOLPS 2D modelling of the pedestal are shown
in figures 16 and 17. For reference, the mapping of ρN flux
surfaces to Rsep − R, which is the radial distance from the
separatrix at the vertical elevation of the magnetic axis, is
indicated in table 1. As shown in figures 16 and 17, the
poloidal temperature variations on flux surfaces throughout
the pedestal region are negligibly small (compared with the
variation in the magnetic field strength, ε ∼ 0.34). Even at the
outermost surface shown (about 1 mm inside the separatrix, at
ρN � 0.997), the electron and ion temperatures vary by only
about 0.13% and 6.5%, respectively. In the SOLPS transport
model the ‘source’ that induces these small, approximately
sinusoidal poloidal variations in the temperatures is the peaking
of the radial heat fluxes on the outboard mid-plane shown in

Figure 16. Poloidal variation of electron temperature Te on pedestal
flux surfaces is negligibly small. These results are from SOLPS
modelling of 98889 [50].

Figure 17. SOLPS poloidal variation of ion temperature Ti on
pedestal flux surfaces is negligible except very near the
separatrix [50].

figure 6. The magnitude of the induced poloidal asymmetry
is limited by the dissipative relaxation caused by the very
large collisional [11] parallel heat conduction. The poloidal
variation in the ion temperature is about a factor ∼50 larger
than that in the electron temperature because parallel ion
heat conduction is smaller than electron heat conduction by a
factor ∼(mD/me)

1/2 ∼ 60. Since these temperature variations
within flux surfaces are so small, the assumption in the 1.5D
modelling codes, which was used in the preceding section,
that temperatures are approximately constant on flux surfaces
is well justified on all flux surfaces inside the separatrix.
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Table 1. Mapping of radial distance (in m and approximate cm)
between flux surfaces and the separatrix (on outboard mid-plane) to
the normalized radial coordinate ρN.

R − Rsep (m) Rsep − R (cm) ρN

−0.000886 0.09 0.99662
−0.00268 0.27 0.99062
−0.00451 0.45 0.98455
−0.00554 0.55 0.98
−0.00640 0.64 0.97832
−0.01030 1.03 0.96564
−0.01670 1.67 0.94528
−0.0144 1.44 0.95
−0.0175 1.75 0.94
−0.0307 3.07 0.90
−0.0487 4.87 0.85
−0.0682 6.82 0.80

The 2D behaviour of the density is more complicated—
because the recycling of thermal neutrals that provides the
plasma fuelling in the edge comes predominantly from the
poloidally localized X-point region of the LSN divertor
separatrix in 98889 (see figure 2 and [50]). A typical contour
plot of the 2D neutral density distribution from UEDGE run
in an interpretive mode is shown in figure 18. It clearly shows
that the neutral density is very strongly peaked near the X-point
region. Figure 19 illustrates the Monte-Carlo-based SOLPS
modelling of the very large poloidal variation of the deuterium
ion source rate Sn just inside the separatrix induced by thermal
neutral fuelling from recycling in the divertor region. Since,
as shown in figure 2, the 98889 plasma is relatively far from
the upper baffles and outboard wall, neutral recycling from the
chamber walls has been neglected in this SOLPS modelling
[50]. In the pedestal the ion source is a factor of the order
of 102 smaller at the inboard, outboard mid-planes and top of
the flux surface compared with the ion fuelling rate near the
X-point. Neutral recycling from the chamber walls could add
to the thermal ion source in the top half of the plasma and
thereby reduce the asymmetry factor somewhat. However,
this should not significantly change the FSA recycling ion
source rate obtained from these Monte-Carlo-based SOLPS
modelling results, which is shown in figure 22.

The very strong poloidal asymmetries in the recycling
neutral density in figure 18 and consequent ion source Sn

in figure 19 together with the poloidal variation of the radial
particle flux (similar to figure 6) yield the poloidal variations
of the electron and deuterium and carbon ion densities shown
in figure 20. The poloidal variation in ne is so small (at
most of order 4%, even just inside the separatrix) because of
the large electrical conductivity and consequent equilibration
of electron density along magnetic field lines. This small
electron density variation implies a Boltzmann-type potential
variation of eδ�/Te ∼ δne/ne0 ∼ 0.04. Electron density
and potential variations within flux surfaces of about these
magnitudes have been experimentally measured or inferred
previously (see figure 6 of [51]) at and just inside the separatrix
in DIII-D low power H-mode LSN discharges. The poloidal
variation in plasma density in figure 20 is very small and
much less than the fractional variation of the magnetic field
strength (∼ ε ∼ 0.34). Thus, the assumption in the 1.5D
modelling codes, which was used in the preceding section, that
the electron density is approximately constant on flux surfaces

Figure 18. 2D neutral density distribution obtained from a typical
UEDGE modelling of 98889 shows recycling neutrals are strongly
peaked in the LSN X-point region.

Figure 19. Monte-Carlo-based SOLPS modelling [50] shows that
on flux surfaces just inside the separatrix the poloidal distribution of
the deuterium ion source produced by neutrals recycling from the
divertor are strongly peaked (factor ∼102) in the X-point region. The
black dots are for the modelling flux surface closest to the separatrix
(Rsep − R � 0.1 cm, ρN � 0.997) and the red boxes are for a flux
surface near the top of the pedestal (Rsep − R � 1 cm, ρN � 0.966).

in the edge plasma is well justified on all flux surfaces inside
the separatrix.

The deuterium ion density shown in figure 20 is peaked
in the X-point region because the dominant divertor recycling
source is strongly peaked there. It is less than its FSA on the
outer mid-plane because radial particle flux losses are largest
there for the Fick’s diffusion law model in (10) used in the
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Figure 20. Poloidal variation of the electron density determined
from SOLPS modelling [50] is relatively small (�4%) on the last
modelled flux surface just inside the separatrix (ρN � 0.997).
However, the deuterium and carbon ion densities vary significantly
within this near-separatrix flux surface because of the strong
deuterium ion source in the X-point region.

SOLPS modelling of this discharge [50]. The carbon densities
(of C6+ and C5+) are peaked near the outer mid-plane because,
as for the electron and ion temperature variations in figures 16
and 17, their primary ‘source’ is provided by radial transport
outwards from the core plasma, which is peaked near the
outer mid-plane (see figure 6). More details about SOLPS
2D modelling of deuterium and carbon ion densities and flows
and their effects on this discharge can be found in [50].

In summary, despite the very large poloidal asymmetry in
the recycling neutral density in figure 18 and the consequent
ion recycling source shown in figure 19, it appears that on
all flux surfaces inside the separatrix the electron density
is essentially constant on flux surfaces. And recall that
the electron temperature is also essentially constant on flux
surfaces in the pedestal. Hence the net particle and electron
energy transport in the 98889 pedestal can clearly be described
by the 1.5D equations in (6) and (7).

As shown in figure 20, the ion and carbon densities vary
poloidally by factors of about two just inside the separatrix in
this SOLPS modelling. However, as shown in figure 21, the
poloidal variation of the deuterium ion density about its FSA
rapidly becomes very small on successive flux surfaces inside
the separatrix. In particular, it drops to less than about 15%
by the next modelled flux surface at Rsep − R = 0.002 68 m.
Thus, except very close to the separatrix (perhaps for ρN >

0.99, Rsep − R < 2.6 mm), the deuterium and carbon ion
densities can also be assumed to be approximately constant
on flux surfaces. Deuterium ion orbit losses in this region
could introduce ‘kinetic’ poloidal asymmetry effects near the
separatrix. However, presumably only a small fraction of
energetic ‘tail’ ions would be on lost orbits because thermal
ions in this region (III) are in the transition from the banana to
plateau collisionality regime (ν∗i � 0.5).

1

Figure 21. Poloidal variation of the deuteron density from SOLPS
modelling [50] shows that it becomes negligible only a short
distance from the separatrix.

Hence, the effects of the 2D particle and energy sources
will apparently enter transport analyses predominantly through
their FSAs, at least out to about ρN > 0.99. Therefore,
within the 1.5D pedestal transport modelling paradigm, the role
of the 2D modelling codes is to determine the 2D character of
the sources and sinks in the pedestal induced by the 2D effects
originating outside the separatrix. Then the FSAs of them are
included on the right-hand sides of the transport equations (6)
and (7).

The FSA of the modelled recycling ion source is shown
in figure 22. This source 〈Sn〉 is given by the FSA of the
product of the neutral density and the ne〈σv〉 collision rate for
ionization; i.e. it is proportional to the neutral particle density.
The ONETWO results in figure 22 are obtained using a 1D
cylindrical model for the recycling neutrals [52] modified to
take account of the ‘flux expansion’ effects near the divertor
via the Mahdavi model [53]. The 2D SOLPS neutral model
is a kinetic Monte-Carlo-based model whose recycling ion
source results are shown in figure 19. Its 〈Sn〉 is larger than
the ONETWO value at the separatrix because in SOLPS the
diffusion coefficient at the separatrix D(Rsep) was increased
about a factor of 2 to facilitate matching the density profile
in the pedestal [50]. Its 〈Sn〉 is below the ONETWO values
for Rsep − R � 6.5 cm (ρN � 0.8) because this SOLPS
modelling does not include the core neutral beam ionization
source whereas ONETWO does. The UEDGE code uses a 2D
fluid-based neutral transport model [9]. The GTEDGE code
obtains the 2D neutral density distribution from the GTNEUT
code [54, 55] which uses an integral transport calculation for
the neutral transport based on transmission-escape-probability
(TEP) theory. The variability in the recycling plasma source
from the divertor region is indicative of the largest uncertainty
in the present pedestal transport analyses. More divertor data
are needed [50] to reduce these uncertainties.
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Figure 22. FSA of the recycling source of ions obtained from
ONETWO and SOLPS [50] modelling is concentrated near the
separatrix.
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Figure 23. Particle flow rate Ṅ (×1021 s−1) increases with ρN in the
pedestal region.

8. Density transport

As a first step in exploring density transport, in figure 23
we plot the net flow rate Ṅ (s−1) defined in (8) of charged
particles through flux surfaces as a function of ρN. It is
obtained from ONETWO, SOLPS and UEDGE modelling
of the edge plasma we are considering. In the core
region (I) the particle flow rate is approximately constant at
∼0.44 × 1021 s−1 or 70 A equivalent. Its near constancy
indicates the neutral beam fuelling of the core plasma and
its nearly uniform radial transport outwards. The rapid
increase in Ṅ in the pedestal region (II and III) is caused
by recycling neutrals providing the edge ion source shown in
figure 22. The net increase in outward particle flow Ṅ over the
pedestal of (from ONETWO and UEDGE) ∼0.7 × 1021 s−1

(∼110 A equivalent) is approximately given by δṄ � 〈Sn〉
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Figure 24. Effective density diffusivity D (m2 s−1) versus ρN

obtained from GTEDGE, ONETWO, SOLPS and UEDGE
interpretive modelling is very small in the pedestal.

δV � (5×1020 m−3 s−1) ·1.5 m3 = 0.75×1021 s−1. All these
modelling codes indicate that the edge recycling fuels the
pedestal region (II and III) but is mostly negligible from the
top of the pedestal inwards into the core (I).

The interpretive, effective density diffusivityD is obtained
by dividing the net particle flow through a flux surface by
the density gradient, as defined in (12). The interpretive D

profiles obtained this way from the modelling codes are shown
in figure 24. There are a number of interesting features of
these results. First, it is encouraging that the modelling codes
obtain much the same effective density diffusivity profiles,
despite significant differences in their analysis procedures and
ion source rates, as shown in figures 22 and 23. Next, note
that the shapes of the curves are similar to those for effective
heat diffusivities in figure 8. Analogous to the reasons for the
shapes of the χ profiles, as ρN increases outwards from the
core (I) and down the top of the pedestal (II), the interpretive
D decreases mainly because the magnitude of the density
gradient is increasing. Then, after passing the mid-point of
the pedestal (III), the effective D increases with increasing ρN

because of both the increasing particle flow rate Ṅ and the
decreasing magnitude of the density gradient there. It is also
noteworthy that the minimum density ‘transport barrier’ value
of the effective D is very small. It is about 0.035 m2 s−1 (±
a factor of almost 2), which is almost an order of magnitude
smaller than the effective heat transport barriers in figure 8.

In tokamak plasmas it is often inferred [56] that density
transport in the core plasma is not purely diffusive. Instead,
the radial density flux seems to be a combination of diffusive
outward density transport as in (10) balanced by an inward
density pinch flow:

Γ = −D∇n + nVpinch. (14)

Here, Vpinch is a negative velocity (m s−1) which indicates an
inward ‘pinch’ flow velocity of the species density. Note
that Vpinch represents radial flow of the species particle
distribution as a whole. Thus, it does not necessarily imply
that individual particles have an inward ‘pinch velocity’
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component; rather, it could just be a fluid moment property
of a given plasma species in a tokamak. Alternatively, it
could represent: ‘off-diagonal’ transport fluxes (e.g. due to
temperature gradients), threshold density gradients (e.g. due
to KBMs [26]) beyond which fluctuation-induced transport
dramatically increases to produce a form of local ‘profile
resiliency,’ or more generally that, as in the paleoclassical
density transport model (see equations (74), (75) and (78)
in [57]), the density transport operator does not result from
a Fick’s diffusion law particle flux as in (10).

There are a number of indications that a strong pinch
effect is operative in H-mode pedestals. It was shown in 1993
that ‘flux-surface-averaged transport modelling of the time
evolution for the core plasma density profile during H-mode
suggests that a strong inward particle pinch is necessary near
the separatrix’ [58]. Here, we note that at the top of the pedestal
(i.e. at ρN � 0.94, Rsep − R � 1.75 cm) where the density is
∼3 × 1019 m−3, the ion source rate from figure 22 is 〈Sn〉 �
2 × 1020 m−3 s−1. Thus, at the top of the pedestal (boundary
between I and II) the time scale for all this density to re-build via
〈Sn〉 after an ELM is τn ∼ ne/〈Sn〉 ∼ 150 ms. However, this
time is about an order of magnitude longer than the τn ∼ 10 ms
electron density re-build time observed in the 98889 pedestal
(see bottom waveform in figure 1 and discussion of it). The
pinch velocity required to re-build the density at the top of the
pedestal on this time scale is modest: Vpinch ∼ (1−ρN) a/τn ∼
0.045 m/0.01 s ∼ 4.5 m s−1. Other indications that pinch
effects might be operative in the core plasma just inside the
top of the pedestal are (1) the interpretation of ELM-induced
transient responses of helium impurities in DIII-D H-mode
plasmas imply an inward pinch velocity for them at ρN ∼ 0.65
of about 1 m s−1 which increases with ρN [59] and (2) the
often-observed ‘ears’ [58, 60, 61] on radial profiles of electron
density that peak just inside the top of the density pedestal
apparently require a pinch-type effect to produce them.

9. Inferring, explaining the density pinch and its
consequences

Up to now there has been no way to determine the pinch
velocity experimentally, except by analyzing responses to
spatially localized transients [56]. However, a recent series
of papers [62] have developed an important new interpretive
procedure for inferring the pinch velocity. It is based
on using [28, 62], in addition to the usual density and
energy transport equations, the momentum conservation (force
balance) equations. The full procedure [62] includes many
terms. In the following we provide a brief description of
its main terms and procedural logic. Also, an alternative
justification for its proposed representation of key effects on
toroidal flow. Thereafter, we present results obtained from
this new procedure and compare them with predictions of the
paleoclassical density transport model.

The new procedure can be explained in terms of a multiple-
time-scale approach [57, 63] to the plasma force balance
equations, as follows. On time scales longer than the fast,
compressional Alfvén wave time scale (∼µs), the radial force
balance yields a (cylindrical-type) relation between the toroidal
flow Vφ , poloidal flow Vθ and E × B and diamagnetic flows

for the j th species of plasma particles:

Vφj � Er

Bθ

− 1

njqjBθ

dpj

dr
+

Bφ

Bθ

Vθj . (15)

Here, Bφ and Bθ are the magnitudes of the toroidal and poloidal
components of the magnetic field. The more general flux
coordinate form of (15) is given in equation (8) of [63].

Next the component of the force balance equations along
the magnetic field B is considered [63]; because of the
axisymmetry, this is equivalent to the poloidal force balances
used in [62]. The parallel/poloidal force balances relax the
poloidal flows to their equilibrium values via neoclassical
parallel viscous forces [64] on the ion collision time scale,
which is of order 1 ms in the pedestal region (II and III). Details
of the determination of the equilibrium poloidal flows are given
in [62, 63, 65]. The neoclassical-determined poloidal flows
in the 98889 pedestal are small contributors to (15) and will
mostly be neglected in the following discussion.

Finally, the cylindrical form of the toroidal force balance
equation yields a transport time scale equation for the toroidal
flow velocity of an ion species j (deuterons or carbon in
98889):

mjnj

dVφj

dt
= ej�rjBθ +

∑
k

Tφjk/R +
∑

l

Ml. (16)

Here, the radial particle flux of the j th species is �rj , the sum
over k is over the various collisional and microturbulence-
induced toroidal torques Tφjk on the j th ion species, R is the
major radius, and the sum over l is over the externally applied
momentum inputs Ml (e.g. due to energetic neutral beams),
which are negligible in the pedestal. Analogous general flux
coordinate forms of the equation for the FSA toroidal rotation
frequency �t ≡ V · ∇ζ � Vφ/R are given in equation (119)
in [57] and equation (22) in [63].

In equilibrium, in the absence of any significant toroidal
momentum sources, this last equation yields

�rj = −
∑

k

Tφjk

ejRBθ

. (17)

This relation shows that the radial particle (density) flux is
caused by the sum of the toroidal torques on the plasma species.
The seven intrinsically ambipolar particle flux components
induced by collisional torques and the eight non-ambipolar
particle flux components induced by microturbulence, 3D
non-axisymmetric (NA) magnetic field components and other
effects are discussed in [57].

The key representation used in the new interpretive
procedure for determining the radial pinch velocity [62]
is that all the toroidal torques (due to charge exchange,
microturbulence, 3D field components, etc) on a plasma
species j can be written as

T an
φj /R ≡ −mjnjνdjVφj . (18)

Here, νdj is a ‘drag’ frequency on the toroidal flow caused
by the various anomalous plasma transport processes. It is
determined [62, 66] from poloidal and toroidal carbon flow
experimental data using a combination of the relations in (15)
and (16) for the deuteron and carbon species in the edge plasma.
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Once the collisional drag frequency νdj is determined,
substituting (18) into (17) and using (15), the radial ion flux of
the species j is given by the ‘pinch-diffusion’ relation [62, 66]

�rj � −Dj

(
1

Tj

dpj

dr

)
+ njV

pinch
rj . (19)

Neglecting collisional equilibration of ion flows, the density
diffusivity and radial pinch velocity are defined by

Dj � mjTjνdj

e2
jB

2
θ

, V
pinch
rj � mjνdj

ejB
2
θ

(Er + VθjBφ). (20)

These formulae are only approximate, illustrative versions of
the more comprehensive equations that have been developed
[62] and are used for determining these quantities in the 98889
edge plasma [66].

The representation of the toroidal torque T an
φj in the drag

form given by (18) can also be phenomenologically motivated
by first observing [63] that the thermodynamic force ∂fMj/∂r

for collisional and anomalous radial transport processes can be
written as
∂fMj

∂r
= fMj

[
1

pj

dpj

dr
+

ej

Tj

d�

dr
+

(
E
Tj

− 5

2

)
1

Tj

dTj

dr

]
. (21)

Next, we note that the |dTi/dr| in the pedestal region (II and
III) is typically somewhat weaker than the electron density
and temperature gradients there (see figures 3 and 9). Also,
for radial transport effects that are not too strongly dependent
on the particle energy E , the |dTi/dr| term will not contribute
significantly when this thermodynamic force is averaged over
velocity space. These effects cause the |dTi/dr| term in (21) to
not contribute significantly in the 98889 pedestal (II and III).
They also cause the neoclassical-determined poloidal flows in
the 98889 pedestal to be small.

Thus, neglecting the poloidal flows in (15) and the
|dTi/dr| term in (21), we see that in the pedestal region

∂fMj

∂r
� −ejBθfMj

Tj

Vφj . (22)

Hence, the thermodynamic force for radial plasma transport
is roughly proportional to the toroidal flow velocity Vφj [63].
Then, characterizing diffusive radial transport processes by
a microscopic, kinetic diffusion coefficient (�x)2/(2�t), in
which �x is the random radial step taken in a time �t (due
to 3D NA collisional effects or plasma microturbulence), the
radial ion flux can be written phenomenologically as

�rj � −
∫

d3v
(�x)2

2�t

∂fMj

∂r
� Dj

njejBθ

Tj

Vφj

≡ mjnj

ejBθ

νdjVφj = −Dj

Tj

[
dpj

dr
− njejEr

]
. (23)

The neoclassical toroidal viscosity (NTV) collisional
effects of 3D NA toroidal magnetic fields are naturally
written in this form when |dTi/dr| effects are neglected—see
equations (106) and (100), (101) in [57]. Microturbulence-
induced radial transport of toroidal flow may be diffusive
with a coefficient χφ via the Reynolds stress it induces
(see equations (109) and (114) in [57]). Thus, since the
thermodynamic force in (22) is proportional to the toroidal
flow Vφj , the confinement time for toroidal momentum in the

I IIII IIIIII

Figure 25. GTEDGE radial flow velocities from: new pinch flow
procedure (V exp

pinch, black squares), net (Vr , red circles), and

paleoclassical pinch (V paleo
pinch , blue triangles).

pedestal is τφ ∼ (δρ)2/χφ in which δρ is the radial width
of the pedestal. Therefore, in steady state, microturbulence
induces an effective toroidal drag frequency νdj � 1/τφ ∼
χφ/(δρ)2. Both these examples show that forms like the
relations in (23) may result from kinetic-based treatments using
the thermodynamic force in (22).

Note that the form of the ion flux obtained in (23)
is the same as that proposed in (19) for the ion density
diffusivity Dj and pinch velocity V

pinch
rj definitions in (20)

when Er � VθjBφ . Thus, when poloidal flows are
negligible, consideration of the appropriate thermodynamic
force for radial ion transport provides a motivation and possible
justification for the new interpretive procedure’s representation
of the key effects on the toroidal flow in the drag form stated
in (18).

The pinch velocity obtained via the new interpretive
procedure for the 98889 edge plasma is shown in figure 25.
In the pedestal the inferred ion pinch velocity is inwards
and very large—about 100 m s−1 at the pedestal mid-point
(boundary between regions II and III). Figure 25 also shows
that throughout the pedestal region (II and III) the inferred
radial pinch velocity is opposite to and about an order of
magnitude larger than the interpretive net ion radial ion flow
velocity Vr ≡ �ri/ni. Thus, it seems that the pinch velocity
cancels about 90% of the diffusive outward ion flux in the
98889 pedestal in yielding the net radial ion flow velocity Vr .
While the density pinch velocity discussed here is the result of
an ion-force-balance-based interpretive procedure, it is not a
direct experimental measurement of it.

The usual interpretive effective density diffusivity D (i.e.
ignoring a pinch) in the pedestal exhibits an apparent very
strong transport barrier near the mid-point of the pedestal
(i.e. near ρN ∼ 0.98, between regions II and III)—see
figures 24 and 26. However, as shown in figure 26, taking
account of the very strong pinch flow determined by the new
interpretive procedure, the inferred (true?) density diffusivity
Dexp increases monotonically with ρN throughout the pedestal
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I IIII IIIIII

Figure 26. GTEDGE-determined density diffusivities: usual
interpretive effective one (D, red circles), inferred (true?) one
corrected for inward pinch flow (Dexp, black squares) and
paleoclassical model (Dpaleo, blue triangles).

and does not attain a minimum value there. (The Dexp value is
unusually small in the core region I in this GTEDGE modelling
because the ‘pinch flow’ inferred there is outward not inward—
because the neutral beam fuelling source has been modeled
approximately and perhaps additionally because the poloidal
flows become significant there.)

Thus, the very small interpretive effective D near the
mid-point of the pedestal may not represent a transport barrier.
Rather, it may be an artefact of neglecting the pinch flow
in inferring the density diffusivity D. These new pedestal
results indicate a diffusively dominant density transport model
is likely not appropriate in the pedestal. This has very
important and profound implications for the development
of a fundamental understanding of radial density transport
processes in and fuelling of H-mode pedestals.

Unlike the situation with radial electron and ion heat
transport, there are very few analytic-based theoretical models
for particle diffusivities, pinch flow velocities and net
density transport fluxes, beyond the negligible neoclassical
predictions. This is especially true for the plasma parameters
in H-mode pedestals. Recently, the paleoclassical transport
process [36, 37] has been identified (see discussion after
equation (125) in [57]), after the toroidal rotation and hence
ambipolar radial electric field are determined and used, as a
likely dominant net ambipolar density transport process. As
indicated in equations (78) and (125) in [57], the paleoclassical
radial density transport flux is

�paleo
r = − 1

V ′
∂

∂ρ
(V ′D̄ηn) = − D̄η

∂n

∂ρ
+ nV

paleo
pinch . (24)

The paleoclassical density diffusivity D̄η and pinch flow
velocity V

paleo
pinch are

D̄η ≡ Dη

〈 |∇ρ|2/R2

〈R−2〉
〉
, V

paleo
pinch ≡ − 1

V ′
d

dρ
(V ′D̄η),

(25)

in which Dη ≡ ηnc
‖ /µ0 ∼ 103 Zeff/Te(eV)3/2 m2 s−1 is the

magnetic field diffusivity induced by the parallel neoclassical
resistivity ηnc

‖ (see blue dash–dot Dη curve in figure 11) and as
above V ′ ≡ dV/dρ is the radial derivative of the flux surface
volume.

Approximate predictions of the paleoclassical transport
model for the density pinch flow and diffusivity are indicated
by the blue triangle curves in figures 25 and 26. Here, for
simplicity, the radial variations of V ′ have been neglected
and in D̄η the FSA geometry factor (it is somewhat smaller
than the 〈|∇ρ|2〉 factor shown in figure 7) has been set to
unity; thus, in figure 25 V

paleo
pinch � −dDη/dρ and in figure 26

Dpaleo � Dη. As can be seen, in the pedestal the paleoclassical
predictions are within about a factor of 2 of both the inferred
pinch velocity and density diffusivity determined from the new
interpretive procedure. Therefore, the paleoclassical transport
model provides a plausible explanation of these important new
interpretive results.

10. Discussion: what is needed to progress?

The preceding analysis of pedestal transport has highlighted
many areas where present modelling is not complete or is
inconclusive. In this section we discuss some areas where
additional research is needed and some possible new research
directions. The various areas discussed in the following
paragraphs are heat transport modelling, density transport, new
DIII-D pedestals to analyse and pedestals from other tokamaks.

Heat transport modelling. For electron heat transport, the
main needs are for detailed gyrokinetic simulations (e.g.
as in [34, 44]) of primarily ETG-induced microturbulence
throughout H-mode pedestals, and in particular in their bottom
halves (III). Also, the complete paleoclassical electron heat
transport operator [48, 49] with its heat-pinch-type effects
needs to be taken into account. For ions, a number of areas need
to be examined in greater detail: precise neoclassical ion heat
diffusivity calculations (e.g. as in [40]), kinetic calculations
including the effects of electric-field-induced orbit squeezing
and ion orbit losses, ITG-induced microturbulence simulations
and consideration of possible paleoclassical ion heat diffusivity
and pinch effects. Also, for KBMs [26] precise instability
criteria, fluctuation spectra and their nonlinear and transport
consequences need to be explored.

Density modelling. This is a crucial area that needs
considerably more attention. The general need here is for
more recent DIII-D H-mode discharges in which more density-
related quantities are measured, particularly in the divertor
region. Divertor region measurements are needed to pin down
the neutral density and recycling ion source in this region
to facilitate a more precise determination of the ‘pedestal
boundary conditions’ for these quantities and the radial density
transport in the vicinity of the separatrix. Also, direct
experimental measurements of density pinches via analysis of
transient responses (after L–H transition, ELMs) are needed
to experimentally validate the new strongly coupled density
pinch-diffusion model discussed in section 9. In addition,
much more consideration and modelling, including of the
dynamics, of density transport with strong pinch effects is
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needed. Further, the degree of importance of 2D effects may
be able to be explored by determining the poloidal variation of
the carbon density just inside the separatrix (see figure 20).
Finally, poloidal and toroidal plasma flows in the vicinity
of the separatrix need to be explored [50] to determine the
possible roles and importance of such effects in pedestal
plasma transport.

New DIII-D pedestals to analyse. In general, more pedestals
from DIII-D need to be analysed to see how universal
the pedestal transport properties identified in this paper
are. Particularly useful would be pedestals with the
following characteristics: (1) better diagnosed pedestals with
more divertor region data; (2) pedestals with higher and
lower collisionality; (3) wider pedestals with more spatial
resolution, particularly in the bottom half of pedestal and
(4) microturbulence fluctuation data throughout the pedestal
looking in particular for intermittent bursts of fluctuations (e.g.
due to KBMs [26]) just before ELMs that could presage their
occurrence or cause ‘profile resiliency.’ Finally, studies of
paired DIII-D discharges with opposite grad-B drift directions
would be useful for exploring flows and their effects both
outside and just inside the separatrix.

Pedestals from other tokamaks. Of course the ultimate test
of one’s understanding is that it also applies to other tokamak
plasmas. Thus, it is desirable to analyse H-mode pedestals
from other tokamaks with a focus on well-diagnosed pedestals
with long transport quasi-equilibria after an L–H transition and
between ELMs, and the widest possible range of machine and
dimensionless parameters.

11. Summary

Plasma transport in one DIII-D pedestal (98889) was modelled
with many transport modelling codes: 1.5D interpretive
(ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D
(SOLPS, UEDGE) ones. The general conclusions from this
multi-faceted study are (1) magnetic flux surface geometry
effects (q ∝ ∇ρ, 〈|∇ρ|2〉 factor) are important in the
pedestal; (2) the modelling codes generally agree on effective
diffusivities if proper comparisons are made; (3) the 1.5D
transport models are apparently appropriate for ρN � 0.99
using the flux-surface-averaged 2D sources and sinks, with
the caveat that kinetic effects due to ion orbit losses from
the bottom half of the pedestal could modify this fluid-model-
based conclusion for the ions and (4) the largest uncertainties
are in the magnitudes of the recycling thermal neutral density
and ion source coming from the divertor X-point region, which
influence ion heat and density transport.

Tentative conclusions about plasma transport in the 98889
DIII-D H-mode pedestal are (1) ‘transport barrier’ interpretive,
effective diffusivities are small: 0.3 (e heat), 0.15 (i heat), 0.035
(n) m2 s−1; (2) generic scalings and interpretive and predictive
transport modelling all indicate that electron heat transport is
likely dominated by ETG effects at the pedestal top (I to II
transition) plus paleoclassical transport throughout the edge
plasma region (I, II and III); (3) the less well quantified ion
heat transport is likely ITG-induced at the pedestal top (I and
transition into II) with a significant neoclassical component in

the pedestal (II and III) that may be too large in region II and
has the wrong profile there and (4) density transport may be
determined, using a new interpretive procedure, by a strong
pinch flow that nearly cancels the outward diffusive density
flux, which indicates that the usually inferred deep density
transport barrier may be an artefact of neglecting the pinch,
and the inferred Vpinch and Dexp are approximately given by
the predictions of the paleoclassical density transport model.
While there are strong modelling, interpretative analysis and
paleoclassical model predictions for a strong density pinch in
the pedestal, it should be emphasized that there is as yet no
direct experimental measurement of the density pinch and/or
its effects.

This study has identified (in section 10) the following
needs for reaching more definitive conclusions about plasma
transport in H-mode pedestals: (1) divertor data to better
determine the flux-surface-average ion source from the divertor
region and the resultant radial density transport on the
separatrix; (2) microturbulence simulations and neoclassical
calculations for the entire pedestal region; (3) much greater
attention to density transport in the pedestal including
plausible strong pinch flow effects and (4) analysis of
other DIII-D H-mode pedestals and pedestals from other
tokamaks.
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Appendix A. Coordinate systems used in 1.5D and
2D modelling codes

To specify the divergences of particle and energy fluxes in (1)
and (2), we need to specify a coordinate system. Because the
various codes use different coordinate systems, we will utilize
a generic coordinate system that encompasses all of them.
The coordinates of a general curvilinear coordinate system are
usually identified as ui ≡ (u1, u2, u3). Because of the toroidal
axisymmetry, the third coordinate will always be taken to be the
toroidal angle: u3 ≡ ζ = φ. Since we are mainly interested
in ‘radial’ transport across flux surfaces, it is convenient to
choose the radial coordinate to be a flux surface label. To be
general we use u1 ≡ xψ , in which xψ is ρ, ρN, �N or R −Rsep

on the horizontal mid-plane. Finally, a poloidal angle variable
is needed. For it we use u2 ≡ xθ , in which xθ is a poloidal
angle θ or a poloidal distance � (x in 2D codes) along a flux
surface. The Jacobian of the transformation from laboratory
(x) to the (possibly nonorthogonal) ui curvilinear coordinates
is

√
g ≡ 1/∇u1 · ∇u2 × ∇u3 = (dψp/dxψ)/B · ∇xθ .
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The specific coordinates used in the various transport
modelling codes are

ONETWO: xψ → ρ ≡ √
�/πBt0 (m), xθ → � (m),√

g = 1/B · ∇� ≡ 1/Bp(ρ, �).
ASTRA: xψ → ρ ≡ √

�/πBt0 (m), xθ → θ (radians),√
g = 1/B · ∇θ ≡ ρ/Bpol(ρ, θ).

GTEDGE: xψ → r̄ (m), xθ → θ (geometric angle,
radians),

√
g ≡ H = 1/B · ∇�θ .

SOLPS, UEDGE: xψ → y (m), xθ → x (m), ∇xψ =
êy/hy , ∇xθ = êx/hx ,

√
g = hxhyR.

In the ONETWO and ASTRA codes the flux surfaces are
determined from the EFIT Grad–Shafranov solver [13]. The
GTEDGE code uses [28, 67] the analytic Miller equilibrium
[27] model of the EFIT flux surfaces to calculate the poloidal
(xθ → θ ) dependence of ∇T and ∇n (see section 4); it
calculates heat and particle fluxes in an equivalent circular
cross-section geometry model that conserves flux surface area
in the elliptical approximation, which yields r̄ = r[(1 +
κ2)/2]1/2 in which κ is the vertical elongation of flux surfaces.

In the 1.5D modelling codes (ONETWO, ASTRA,
GTEDGE) the radial and poloidal angle coordinates used
in developing them are not orthogonal, i.e. ∇xψ · ∇xθ �=
0—because of the toroidal geometry. The nonorthogonal
coordinates can be chosen such that, on a flux surface, the
magnetic field lines are straight (i.e. ζ = q(ψ)θ + ζ0); this
is a very useful property for analytic analyses in these low
collisionality plasmas where the collision length λ exceeds the
poloidal periodicity length 2πR0q. However, on a magnetic
separatrix all the 1.5D code coordinate systems become invalid
because at the X-point B · ∇xθ vanishes and the Jacobian is
undefined (

√
g = 1/B · ∇xθ → ∞). Thus, these 1.5D code

coordinate systems can only be used inside a separatrix.
In the 2D codes (SOLPS, UEDGE) the flux surfaces are

taken to be the EFIT equilibrium flux surfaces, which are
labelled locally by xψ → y. The poloidal coordinate xθ → x

is defined as being locally orthogonal to the local radial flux
surface coordinate. Thus, the 2D x, y and Rζ → z coordinates
represent locally Cartesian coordinates. (It is important to
note that this choice of local coordinates is unfortunately the
opposite of that used in the vast plasma instability literature
where x is usually a radial coordinate and y is a poloidal-
type coordinate.) In SOLPS and UEDGE the metric factor
hζ ≡ 1/|∇ζ | for the toroidal direction is taken to be 2πR; but
for consistency of notation here, we take ∇ζ = êζ /hζ with
hζ = R (in m) and integrate over ζ to obtain the 2π factor. In
the SOLPS, UEDGE formulae above êx, êy, êζ are unit vectors
in the x, y, ζ directions, respectively. These orthogonal 2D
code coordinates are applicable both inside and outside the
separatrix and are very useful in the collisional regime outside
the separatrix. However, they are not as useful in the hot core
plasma because magnetic field lines are not straight in them (i.e.
ζ = ∫ x

0 dx ′(dζ/dx)x ′ +ζ0 = ∫ x

0 dx ′ (B ·∇ζ/B ·∇x)x ′ +ζ0 =
f (x, y)+ζ0), which makes analytic calculations more difficult
with them.

Since for a general curvilinear coordinate system the
divergence of a vector A is ∇ · A = ∑

i (1/
√

g)(∂/∂ui)

(
√

gA · ∇ui) and because of axisymmetry ∂/∂ζ = 0, we
obtain for A = Γ ≡ nV [or A ≡ q + (5/2)T Γ]

∇ · Γ = 1√
g

∂

∂xθ

(
√

g Γ · ∇xθ ) +
1√
g

∂

∂xψ

(
√

g Γ · ∇xψ),

(A.1)

√
g = ∇xψ · ∇xθ × ∇ζ, Jacobian. (A.2)

Thus, the density and energy equations can be written in the
generic coordinates as

∂n

∂t
+

1√
g

∂

∂xθ

(
√

g Γ · ∇xθ ) +
1√
g

∂

∂xψ

(
√

g Γ · ∇xψ) = Sn,

(A.3)

∂

∂t

(
3

2
nT

)
+

1√
g

∂

∂xθ

(√
g

(
q +

5

2
T Γ

)
· ∇xθ

)

+
1√
g

∂

∂xψ

(√
g

(
q +

5

2
T Γ

)
· ∇xψ

)
= Q. (A.4)

These are the equations solved in the 2D modelling codes
SOLPS and UEDGE.

In the 2D codes the parallel (to the magnetic field B)
conductive electron and ion heat fluxes are assumed to be
given by the classical, collisional Braginskii [11] formulae.
The projection of the dominant parallel conductive heat flow
in the generic poloidal direction is q · ∇xθ = − (B ·
∇xθ/B)2 nχ‖ ∂T /∂xθ , in which χ‖ is the classical collisional
parallel heat diffusivity. In section 7 we discuss the 2D
code solutions of (A.4); they show that for the pedestal we
are considering the very large parallel electron and ion heat
diffusivities χe‖ and χi‖ cause the electron and ion temperatures
to become nearly constant along magnetic field lines and
hence on flux surfaces throughout the pedestal region. In
addition, in the 2D codes the electron parallel collisional
friction relaxes the electron density along field lines. Thus,
for the present transport analyses the most important plasma
transport processes in the pedestal region will be those that
transport particles and heat radially across magnetic flux
surfaces.
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