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A neoclassical calculation of toroidal rotation profiles and comparison

with DIll-D measurements
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Momentum and particle balance and neoclassical viscosity were applied to calculate the radial
profile of toroidal rotation velocity in several DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)]
discharges in a variety of energy confinement regimes (low-mode, low-mode with internal transport
barrier, high-mode, and high-mode with quiescentd double barrier). Calculated toroidal rotation
velocities generally were found to (over) predict measured values to well within a factor of 2.
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I. INTRODUCTION

There have been longstanding experimentall_10 and
theoretical''® efforts to characterize and understand toroidal
rotation and the related radial transport of angular momen-
tum in neutral beam driven tokamaks. Since the theoretical
expression for the toroidal rotation velocity follows directly
from toroidal momentum balance once the viscous stress is
specified, understanding toroidal rotation is primarily a mat-
ter of understanding toroidal viscosity (and any other torque
input mechanisms).

It was noted earlier that the familiar PERPENDICULAR
viscosity of classical theory was much too small to account
for observed momentum damping,lJS_]5 even when extended
to take neoclassical effects into account,'* 1517 giving rise
to the now widespread belief that momentum transport in
tokamaks was “anomalous.” The observation in several re-
cent experimental investigations4’5’7’8’10’29 that the ratio of the
inferred momentum diffusivity and ion thermal diffusivity
(xg/x), or the ratio of parameters that are determined by
these diffusivities, was relatively uniform over the radial di-
mension of the plasma was interpreted as further evidence
that the momentum transport was anomalous, since the ion
thermal transport was believed to be anomalous in these dis-
charges.

It was also pointed out early'"'* (but little noted) that
there was a second, GYROVISCOUS contribution to the ra-
dial transport of angular momentum in classical theory with
a gyroviscosity coefficient that was several orders of magni-
tude larger than the perpendicular viscosity coefficient. The
relative obscurity of the gyroviscous contribution in momen-
tum transport analyses is perhaps due in part to the fact that
it vanishes in cylindrical geometry (hence would not have
survived in much of the early theoretical work) and in part
by its puzzling failure to survive in some contemporary de-
velopments of neoclassical viscosity based on a formal gy-
roradius ordering of the flow ﬁelds,l&lg’26 all of which essen-
tially recovered the much smaller classical perpendicular
viscosity with small corrections. In any case, unfamiliarity
notwithstanding, there would now appear to be a firm theo-
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retical basis for gyroviscosity. It is our pur-

pose in this paper to test neoclassical viscosity by using neo-
classical gyroviscosity to calculate the radial profile of
toroidal rotation velocity and to use neoclassical parallel vis-
cosity to calculate the poloidal rotation and the poloidal den-
sity and velocity asymmetries that are needed to evaluate the
gyroviscous torque, and to compare the result with measured
values of toroidal rotation in a set of DIII-D discharges.

We anticipate that there may be other, nonclassical mo-
mentum transport mechanisms present in DIII-D (and other)
discharges (e.g., Ref. 30). However, since the particle mo-
tions and forces that give rise to classical and neoclassical
transport are always present (trapped particle effects only in
the appropriate collisionality regime), it is important to make
a comparison of the predictions of neoclassical momentum
transport theory with rotation measurements, if for no other
reason than to establish the magnitude of the additional
transport that must be accounted for by these other transport
mechanisms.

For this purpose, we make use of the practical computa-
tion formalism that has been developed by extending the
Braginskii gyroviscosity formalism to tokamak toroidal flux
surface geometlry17 (i.e., the “Pfirsch-Schluter” extension of
classical gyroviscosity) and by developing a methodology
for evaluating the poloidal asymmetry factors needed to de-
termine the rate of radial transport of toroidal angular
momentum.”’ A number of previous, less extensive, compari-
sons of this formalism with experimental data®'>? have es-
tablished that gyroviscosity predicts the correct magnitude of
the global momentum loss rate (the momentum confinement
time) in many neutral beam driven tokamaks and under a
variety of operating conditions. The intent of this paper is to
extend these investigations to test the ability of this gyrovis-
cosity formalism to predict the radial profile, as well as the
overall magnitude, of the radial transport rate of toroidal an-
gular momentum for neutral beam driven DIII-D plasmas in
a variety of energy confinement regimes.

Radial momentum transport in tokamak plasmas is of
intrinsic interest, of course, for what it reveals about basic
transport processes. Moreover, toroidal rotation has also been
shown to affect neoclassical particle transport,34’35 to sup-
press MHD resistive wall mode instabilities,’*® and to alter

© 2006 American Institute of Physics
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MHD equilibria,39 and is postulated to be involved in the
shear suppression of transport enhancing microinstabilities.*’

Il. NEOCLASSICAL RADIAL TRANSPORT
OF TOROIDAL ANGULAR MOMENTUM

A. Viscous torques

Following the previous generalization17 to toroidal flux-
surface geometry of the Braginskii12 derivation, the toroidal
component of the viscous torque can be written
RIL,, )

B

1
R’V ¢-V- H=——(RhH¢¢)+B 1(
P

Rh,dl,,
(1)

where the II,,, are the stress tensor elements that result from
the Braginskii decomposition of the rate-of-strain tensor ex-
tended to a right-hand “radial,” “poloidal,” toroidal
(¢, p, @) flux-surface coordinate system with length ele-
ments (dly=hydi, dl,=h,dp, dl,=hgd¢). The viscous
stress tensors have'’ “perpendicular” components
Myy=—mR- "

WR) = mRA-(VyR) ()
P

gyroviscous components
V¢/R e vh=

Vo= 774R - R (Vd/R) @)

and “parallel” viscous components

I 3
Mg =0, TI,4=~3mf Ao (4)
where
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3\al, R/dl, 3\B,/ dl,
AV 4R)
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+f R (5)

14
and f,=B,/B.

The Braginskii values of the viscosity coefficients in a
collisional plasma are

ny=nTt, m4=nTmiZeB = 1y/Qr,

(6)
M = mlQr= 7/(Q7)°,

where 7 is the self-collision time and {=m/ZeB is the gy-
rofrequency. Since typically Q7=103-10% ,> 7> »,.
Taking into account trapped particle effects that would occur
at lower collisionality should not directly effect 74, which
has no 7 dependence, and has been shown'®" to have very
little effect on 7,. However, trapped particle effects at lower
00311isi0nality have a major effect on 7, which we represent
as

njm; vth]qu v

=n
(1+s‘3’2 4.)(1+ jj) J

Mo = m v R V;) , (7)

where v = VjjqR vy, vy s the thermal speed, g is the safety
factor, and e=r/R.
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Since the flux surface average of the second term in Eq.
(1) vanishes identically, and the “parallel” component of the
first term in Eq. (1) vanishes identically, the flux surface
averaged toroidal viscous torque may be written as the sum
of the gyroviscous and perpendicular viscous components

(RPV -V I)=(R*V ¢-V -y +(R°V ¢V - TI),
8)

where

(R*V -V - I)y, = - <R2 ; (R3hp7]4 V¢/R))>
©)

and

<R2v¢-V-H>l=—<R2 ; (R3 o <v¢/R>)>
(10)

If the plasma rotated as a rigid body, 2=V,/R
#Q(i,p), then both of these components of the viscous
torque would vanish identically. It is departure from rigid
body rotation in the flux surface, ()=((p), that drives the
gyroviscous torque, and departure from rigid body rotation
radially, Q=Q(y), that drives the perpendicular viscous
torque. Although the radial departure of the toroidal rotation
velocity from rigid body rotation is generally larger by an
order of magnitude or more than the poloidal departure of
the toroidal rotation velocity from rigid body rotation in the
flux surface, the gyroviscosity coefficient is larger than the
perpendicular viscosity coefficient by 3—4 orders of magni-
tude, 7, =~ (Q17) 7,~ (103—=10% 7,, so that the gyroviscous to-
roidal torque is generally a couple of orders of magnitude
larger than the perpendicular toroidal viscous torque. We
note again that it was the smaller, but more familiar, perpen-
dicular toroidal viscous torque to which several authors were
referring when they stated that the neoclassical viscosity is
too small to account for experimentally observed rotation
damping.

Finally, we further note that it has been suggested23 that
the above expression for the gyroviscous toroidal torque,
which is based on the Braginskii development of the viscous
stress tensor, may overestimate the momentum transport rate
in regions of steep pressure gradients and low toroidal rota-
tion (e.g., the plasma edge pedestal) because of the Vg~
ordering of the Braginskii derivation.' M1kha110vsk11 and
Tsypin"’ were the first, and Catto and Simakov®’ and
Ramos® the most recent, to repeat the Braginskii derivation
in the V,<u, ordering. Braginskii’s derivation, which is
used in this paper, is valid if the fluid velocities in the direc-
tions perpendicular and parallel to B are larger than the dia-
magnetic velocity and the diamagnetic velocity multiplied by
B,/B,, respectively.25 If this condition is not satisfied, then a
heat flux term may be required also in the parallel perpen-
dicular, and gyroviscous torque express1ons 7 This “large
rotation” condition for the validity of the Braginskii ordering
appears to be valid over most of the radius for the discharges
considered in this paper, as will be discussed later.
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B. Toroidal viscous torque approximate
representation

In order to obtain an approximate model for numerically
evaluating the gyroviscous torque on each flux surface sepa-
rately, we specialize in toroidal geometry, use the represen-
tations B=B"/(1+¢ cos ), R=Ry(1+e¢ cos 6), replace the ra-
dial gradients in Eq. (9) by radial gradient scale lengths (e.g.,
L;l =—1/ndn/dr), and expand the poloidal dependence of
densities and velocities in a low-order Fourier series of the
form

ny(r,0) =n{[1 + nf(r)cos O+ ni(r)sin 6] (11)

to obtain a representation of the toroidal gyroviscous torque
in terms of an angular momentum transfer, or “drag,” fre-
quency, v ;

- nmT. V.
mil; Ve _
6,G; 2= Rnym;vg Vi,

REV -V -m) =~
< ¢ 71-‘]>gV e]B¢ R

1
2
(12)
where
6= (4+m)Viy+ (1= Vy)
= (4 +77) (= (Vg V) (D* +78) + B(1 + (P}1V )

+ (Vi V) (D + 75 +2) = D1+ (P}1V )

(13)
represents poloidal asymmetries and
r o ANV
Giz-—M=r(L;1+L;I+L;1) (14)

774jv¢j or

represents radial gradients. We have used the gyroviscosity
coefficient 7,;~n;m;T;/e;B and introduced the notation

y Vo Ve 4 1 ap;
JpUn; Uhj n;e B g, Or
(15)
= ﬁ ~cls _ Eﬁ el _ P _ L/Y
fp - , I’lj = s (I) = —
By € & e(ed/T,)

with the last relation following from electron momentum
balance, and neglected radial gradients in the density asym-
metry coefficients njs The radial gradient scale lengths
needed to evaluate the G; from Eq. (14) are taken from ex-

periment in this paper. ® is the electrostatic potential.

C. “Neoclassical” terminology and collisionality
dependence of gyroviscosity

The terminology “neoclassical” is used differently by
various authors, and the collisionality dependence of the neo-
classical gyroviscosity is subtle, so a brief discussion of both
is in order. Transport due to collisions in straight field-line
geometry (e.g., cylinders) is referred to as “classical” trans-
port. Kaufman'' and Braginskii12 worked out a “classical”
theory of viscosity. In the more familiar case of Braginskii,
the viscosity was derived from kinetic theory under the as-
sumption of large collisionality and large rotation V,~ vy,
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Extension of the “classical” Braginskii collisional trans-
port to include the effects of toroidal geometry (i.e., Pfirsch-
Schluter transport) is referred to in this paper, but not by all
authors, as “neoclassical” transport. In general, collisional
transport in toroidal geometry includes the “classical” trans-
port plus the new Pfirsch-Schluter “neoclassical” transport
effects due to the toroidal geometry. Since the latter effects
are larger, the “classical” transport is usually neglected in
toroidal geometry relative to the new Pfirsch-Schluter “neo-
classical” transport, but it is still there (i.e., the forces pro-
ducing it are still operable). Mikhailovskii and Tsypin,16
Stacey and Sigmar,17 and recently Catto and Simakov?® ex-
tended “classical” viscosity theory to toroidal geometry to
obtain what we refer to in this paper as a “neoclassical vis-
cosity” theory that takes into account Pfirsch-Schluter-type
toroidal geometry effects.

We note from Eq. (13) that this “Pfirsch-Schluter gyro-
viscosity” vanishes to leading order in the absence of an
up-down asymmetry in either the density or the toroidal ro-
tation velocity,17 but survives at higher order.”’ This does not
mean that gyroviscosity vanishes in a tokamak with an up-
down symmetric magnetic field structure, because inertial
and other effects can produce up-down density and rotation
velocity asymmetries even in tokamaks with an up-down
symmetric magnetic field structure.”®?'*  Catto and
Simakov?’ recently concluded purely on theoretical grounds
that sufficiently strong up-down asymmetries such as that
found in diverted plasmas could drive gyroviscous momen-
tum transport rates comparable to those observed experimen-
tally, but did not note that similarly strong up-down asym-
metries could be produced by inertial and other effects (as
our calculations will show). Relatively small poloidal asym-
metries can cause a significant effect on radial momentum
transport because 7,~(Q7)7,~(103-10*) 7, and because
the parallel viscosity contribution vanishes identically on the
flux surface average.

At sufficiently small collisionality, trapped particle ef-
fects introduce additional transport effects in toroidal geom-
etry that are usually larger than the Pfirsch-Schluter transport
effects (at least for the more familiar heat conductivities),
although the latter (and also the “classical” transport effects)
are still present because most of the particles are untrapped.
We refer to the transport associated with these trapped par-
ticle effects also as “neoclassical” transport, while noting
that some authors refer to it as “banana-plateau” transport,
and that yet other authors refer to only these trapped particle
transport effects as “neoclassical.” Numerous authors have
investigated trapped particle effects on the parallel compo-
nent of the viscosity tensor and found them to cause a sig-
nificant enhancement of the viscosity coefficient [Eq. (7)
is one such example], but of course to exist only when
the collisionality was small enough to allow a small num-
ber of trapped particles to execute trapped particle orbits.
Hinton and Wong18 (and others) worked out the trapped par-
ticle effects on the perpendicular component of the viscosity
and found only a small enhancement over the “classical”
Braginskii value.

The Pfirsch-Schluter-type “neoclassical gyroviscosity”
of this paper does not have any explicit collisionality depen-
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dence, and no one has suggested that there is any direct
trapped particle effect on gyroviscosity, to our knowledge.
This does not mean that the Pfirsch-Schluter-type gyrovis-
cosity does not exist in low collisionality plasmas, only that
trapped particle effects do not directly enhance gyroviscosity
relative to the ‘“neoclassical Pfirsch-Schluter” values pro-
duced by toroidal geometry effects. However, since trapped
particle effects enhance the parallel component of viscosity
[Eq. (7)] that is used in solving the poloidal momentum mo-
ments equations [Egs. (19)—(22)] for the poloidal velocities
and density asymmetries needed to evaluate the gyroviscous
torque from Eqgs. (12)—(14), there is an indirect trapped par-
ticle collisionality dependence of gyroviscosity that is taken
into account in the calculation of this paper.

D. Poloidal rotation velocities and density
asymmetries

Evaluation of the poloidal asymmetry factors 0 of Eq.
(13) requires the solution of the poloidal momentum balance
equations for the poloidal rotation velocities and the poloidal
density asymmetries.

The poloidal component of the momentum balance
equation is

1 dp;
mi[(V;- V)V]g+[V 115+ ;3; —Mg—Fy
+ne(V,;By—Ep=0, (16)

where the poloidal components of the inertial and viscous
terms are

Vi

2
)i qV¢js(n + (I)Y) qufp(l + (I)C > +fp2 jk(l + Afrlc; :|
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Ny V.V, 113V
mﬂ(VJ"V)VﬂF”fmf{Vv?*ﬁ— 27 a0
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+—% gin e] (17)
R
and
1 191n(7yA,;)  sin @
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and M and F represent external momentum input from the
neutral beam injection and interspecies collisional friction,
respectively. We note that the “parallel” component of the
viscosity enters the rotation calculation at this point and ul-
timately affects the calculation of the poloidal asymmetry

factors 5] which enter into the calculation of the frequencies
vy; for the radial transport of toroidal angular momentum.

Making expansions of the type indicated by Eq. (11) for
the density and velocities for each species in Eq. (16) and
taking the flux surface average with weighting functions 1,
sin # and cos 6 results in a coupled set of moments equations
(three times the number of ion species) that must be solved
for the V?)j and 77¢ for all the plasma ion species. If the first
term on the r1ght -hand side in Eq. (17) is neglected, these
equations can be solved locally on each radial flux surface.
The justification for this neglect is the plausible assumption
V,j <V <V, The resulting equations are

N " m;
-> Vak[fijk \/ _L}(l + Apics)
. my

k#j

) 1 NEPS P P P
V(1 +A,)—qszﬁj—qs¢j{z(¢é+A¢j)] —qujfp(V¢j+Pj)(D —q8V¢j[(V¢j+Pj)q) +EV¢jnj], (19)

where A =—3&2(1+n5+(n5)*+(n)?), Ag;=5d*— D",
A, is a higher order term that arises from the second term in
Eq. (17), and

|: prV9,+ 8V sfpz VkVak\/;k:|

~ 1 2772 1
T Eprvej_Zq

1

A U U
=-— Esfpz ViV ity — EqV(M + qu)j(l)
k#j

2
q 1 . % N L 5o
= il (Vo= Vo= PP = 2af, Vo + Ay,

(20)

where A, ; is a collection of higher order terms calculated
with a symbolic algebra routine, and

. 14 . 1 . 1 o mj
~ 1 (2 L
+15| - ECprVa/‘*‘ Z‘I

1 L~ q
== 58}22 nk[ kVaj] qq’qu - ;fjfp
k#

Lo
X[E{(l + D)V~ (V¢j+Pj)(I>‘}} +4,;,  (21)

where A, ; is a collection of higher order terms calculated
with a symbolic algebra routine. The Vibj are derived from
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the radial component of the momentum balance equation and
defined in Eq. (13) and in Eq. (25) below. We note that
ng/V2j=—8(1+ﬁj) and Vsﬁj/ngz—s(ﬁj) have been derived
from the particle continuity equations and used in the above
development. We have introduced the additional notation

Ar — Vrj , V“"kE 2&’ (f)E g&
! (_um'”lh')v |<ﬂz) Ty T
ejB% P\ gR gR

(22)

The A,, in Egs. (19)—(21) are higher order terms that were
not consistently retained in earlier versions (e.g., Ref. 24) of
these equations.

E. Radial electric field and toroidal rotation velocities

For each ion species, the momentum balance equation
minus m;V; times the particle balance equation is

where F;=—nm;v;(V,~V,) is the interspecies collisional
friction and M; is the net external momentum input (e.g.,
neutral beam input less any charge-exchange and asymmetric
ionization source losses). The lowest-order radial component
of the flux surface average of Eq. (23) for each species j is

(E/BY) = V= (By/BY) Vi + P} +1,, (24)
where the overbar or zero superscript indicates the average
value over the flux surface. If the inertial term is retained in
the radial momentum balance, there is an additional term on
the right-hand side of Eq. (24) I;=(m/e)((V4;)*/r) but this
term is generally higher order. We will include it in the cal-
culation of toroidal rotation velocities [Eq. (32)], but since it
is not used to construct the “experimental” electric field we
will not include it in the calculation of radial electric field for
comparison with experiment.

The lowest-order radial component of the flux surface
average of the sin 6 and cos # moments of Eq. (23) can be
solved for the toroidal rotation asymmetry factors when an
expansion V. (r, 0)=V?/)j(r)(l+VfN cos 0+ Vi sin 6) is made

. Vo \ =~ - P!
Vgi=1- (A—HL)(@"+ﬁ;+2)+<bc<l +7L)
Vi Vi

(25)

E, [{My+ My} + BAP] - (BYBY)(Vi)} + BAP] — (BYBY (V)]
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(e (B
V= — (@ +m) + D 1+,
Vi Vy)
where Vi}c= V;¢/e. The lowest-order radial component of the
flux surface average of the sin 6 and cos # moments of Eq.
(23) for the electrons can be solved for electrostatic potential
asymmetry factors when a similar expansion is made

cls cls
n,

(I'Sc/x = — )
e e(edT,)

(26)

The flux surface average of the toroidal component of
Eq. (23) for each species j can be written

nym; (1 + B)Viy = Vi) = nje,Eg + e Byl + M

= nim7y;, 27

where radial transport of toroidal momentum is represented
by the parameter

_ l_ld!"l' Vn!'+Snbi/n0i (28)

! Vik ’
where §,,; is the local neutral beam source rate, which arises
because of use of the continuity equation in evaluating the
inertial term, and the gyroviscous angular momentum trans-
port frequency, vy;, is defined by Eq. (12) and the inertial
angular momentum transport frequency, v,;, is defined by

(R*V d-nm(V;* V)V,

(v, ~
— rj ~ -1
== Z(R {e(1+7;+ Vi) —2R,L,, }

0

Vo .
- s;"[{vfﬁj(l + 7T+ Vo)

- V(1 + V) - Vfbjﬁf})”jij Vi

The ion-electron friction term has been neglected. A sum
over other species k is implied and the collisional momentum
conservation requirement n?mjiikzngmkikj has been used in
deriving Eq. (27).

We note that most neoclassical derivations (e.g., Refs. 14
and 27) obtain the result that the radial electric field is pro-
portional to the radial ion temperature gradient (which is
proportional to V in those derivations). The above equations
can be rearranged to compare with these earlier derivations.
Using the radial momentum balance Eq. (24) (but dropping
the inertial terms) in the toroidal momentum balance Egs.
(27) to eliminate the V?/)j and summing over species yields
another expression for the radial electrostatic field

B - [Bi+ 8]

(30)
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TABLE I. Parameters of DIII-D shots selected for rotation analysis.

Shot Conlf. P, n Tio, Ty ra
(time) mode (MW) (1019/[113) ncarb/ne (nneon/ne) (nni.cu/n(l) (kev) (I’HS)
98777 L 45 3.4 0.011 35,25 66
1.6s Cco
98775 L 4.5 4.1 0.005 0.028 6.3,3.3 90
1.6s CcO
99411 H 9.2 4.8 0.050 83,39 168
1.8s coO
106919 H- 9.3 2.8 0.037 0.005 142,42 140
3.5s QDB CTR
106972 H- 8.7 29 0.031 0.003 0.003 152,42 117
2.9s QDB CTR
102942 L- 7.0 29 0.016 12.0, 4.7 94
14s ITB cO
102940 L- 7.0 32 0.006 0.013 9.7, 4.1 128
145 ITB CO

that displays the dependence on momentum input, pressure,
and poloidal rotation velocity. Since earlier derivations usu-
ally do not take into account the presence of external angular
momentum input they naturally do not obtain the terms in
the first brackets.

lll. COMPARISON WITH DIlI-D ROTATION
MEASUREMENTS

The main purposes of this paper are to compare theoret-
ical and experimental toroidal rotation velocity radial profiles
and to draw some conclusions therefrom about how much of
the radial transport of toroidal angular momentum in DIII-D
tokamak plasmas is accounted for by neoclassical viscosity
(as represented in the previous section) and how much must
be attributed to other processes. A diverse set of discharges
including L and H modes, with and without internal transport
barriers and with and without neon injection, were analyzed
for this purpose, as indicated in Table 1. A secondary purpose
was to extend the investigation of the effect of neon impurity
injection on momentum transport, for which purpose three
“sister shot” pairs with and without neon injection were in-
cluded. The toroidal rotation measurements were made with
charge-exchange recombination spectroscopy.

A. Description of discharges

L mode “sister shots” 98777 and 98775 at 1.6 s:*'

These were L mode shots that were operated identically
in every respect except for the injection of 2.8% neon impu-
rity concentration in shot 98775. Long wavelength turbu-
lence as well as heat and momentum transport were mea-
sured to be reduced with neon injection. The intrinsic carbon
concentrations were 1.1% in 98777 and 0.5% in the neon
injected 98775. (The cited carbon and neon concentrations
correspond to the measured values at p=% in this and other
shots.)

L mode ITB “sister shots” 102942 and 102940 at 1.4
o2

These were co-injected shots with an internal transport
barrier (ITB) and a typical L mode edge. The measured tem-
perature and toroidal velocity profiles were quite peaked
throughout the discharge. The density profiles were flat early
in the discharge, but sharp density and electron temperature
gradients developed later in the discharge following an in-
crease in beam power, indicating the formation of an internal
transport barrier (ITB). The shots were operated identically
except for neon injection in shot 102940, which produced
broader profiles and higher temperatures (i.e., better energy
confinement), larger toroidal rotation velocities, and reduced
turbulence levels in the core as compared to the sister shot
102942 without neon injection.

H mode shot 99411 at 1.8 s:*

This was a high performance (Hggp=2.8, ByHgzop=10)
ELMing H mode shot with a typical H mode edge pedestal
and a relatively large (5%) carbon intrinsic impurity concen-
tration.

H mode QDB “sister shots” 106919 at 3.5 s and 106972
at 2.9 s

These were counterinjected, quiescent double barrier
(QDB) shots with both an internal transport barrier and an
edge transport barrier typical of H mode discharges. The
edge was quiescent [i.e., free of edge localized modes
(ELMs)], but a saturated coherent MHD edge harmonic os-
cillation (EHO) was present at the separatrix. The turbulence
was reduced but not entirely suppressed in the internal trans-
port barrier. These discharges had relatively low plasma den-
sities and large and accumulating concentrations of Ni and
Cu (Z; at p=% was 4.1 at 2010 ms and 5.4 at 3510 ms,
more than half of which was due to Ni and Cu). The carbon
concentration was 3.7% in 106919 and 3.1% in 10697. The
shots were operated identically except for neon injection in
shot 106972.
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B. “Two-species” calculation model

The calculation model consisted of Egs. (19)—(21) for
the poloidal rotation velocities and density asymmetries for
the main ion (deuterium) and an effective impurity ion spe-
cies, the two Egs. (27) for the toroidal rotation velocities for
the main and effective impurity ion species, and the radial
component Eq. (24) of the momentum balance. We add the
two toroidal momentum balance Egs. (27) to obtain one re-
lation between the deuterium and impurity ion rotation ve-
locities

BVyi+ BV =yi+y; (1)

and then subtract the radial momentum balance Eq. (24) for
the deuterium ion and effective impurity ion species to ob-
tain a second relation

Voi— (BYBYVy+ Pl +1;=Vy,— (BYBpVy, + P +1,.
(32)

The radial electric field then calculated from the radial mo-
mentum balance Eq. (24) for either the effective impurity
species (consistent with the way the experimental radial elec-
tric field was calculated) or the main deuterium ion species
were identical.

C. Evaluation of input parameters

We took the electron density distribution, the ion and
electron temperature distributions, the toroidal electric field,
and the radial gradient scale lengths L;l, L}l, and L;l from
experiment. The radial distribution of neutral beam angular
momentum deposition was calculated with the code
NBEAMS.* The value of the electrostatic potential ® used
in Eq. (19) to calculate the poloidal rotation velocity was
taken from TRANSP calculations*® based on an integration
inward of the experimental radial electric field. The calcula-
tion was only made out to p=0.9 or 0.95 because atomic
physics effects (not taken into account in the calculation)
become an important momentum transfer mechanism closer
to the separatrix.

A brief discussion of the use of the experimental radial
gradient scale lengths L;l, L_l, and L;l is in order at this
point so that their effect on the calculation is clear. Our intent
in this paper is to test the validity of Eq. (9) and its approxi-
mate representation Eq. (12), the expression for the gyrovis-
cous torque which determines the rate of radial transport of
toroidal angular momentum. The radial derivatives enter Eq.
(12) via the factor G;. We are not able at this time to accu-
rately calculate the radial distributions of n, T, and Ve
needed to accurately evaluate G, yet the accurate evaluation
the G; is a necessary (but not sufficient) condition for Eq.
(12) to predict the correct momentum transport rate. So we
use the experimental gradient scale lengths to insure that an
accurate evaluation of G, is used to test Eq. (12). To put it
another way, to calculate the correct momentum transport
rate it is not only necessary to use the correct G, but also
that the equation it is used in is the correct equation; e.g., if
Eq. (10) for the perpendicular viscosity with 7=,
=(nmT/ZeB)/Q 7 was used instead of Eq. (9) to represent the
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radial transport of toroidal angular momentum, and if the
same experimental radial gradient scale lengths were used to
evaluate the expression equivalent to Eq. (12) derived from
Eq. (10), the resulting magnitude of the toroidal rotation ve-
locity would be several orders of magnitude larger because
Qr=10°-10%

In a similar vein, we have elected to use the value of the
electrostatic potential ® calculated in TRANSP by integrat-
ing the experimental radial electric field, rather than integrat-
ing the calculated radial electric field, because there is some
ambiguity about the boundary conditions that should be used
that probably outweighs any difference.

D. Modeling of multiple impurity species

Since the present model is limited (by implementation,
not inherently) to two ion species—“main ion” and
“impurity”—it was necessary to model the six charge states
of carbon as a single impurity species with effective charge
and mass determined by density weighting. This should be a
good approximation over most of the plasma where carbon is
fully ionized, but not in the edge. When neon was present it
was similarly treated, and then the effective neon and carbon
species were combined into a single effective impurity spe-
cies. In the counterinjected shots with significant Cu and Ni
impurities a similar treatment was used to obtain a single
high Z (Ni+Cu) impurity that was then combined with car-
bon and neon to obtain a single effective impurity species.
Clearly, the association of the calculated “impurity” rotation
velocity with the measured carbon VI rotation velocity in the
presence of neon and high Z impurities is valid only to the
extent that the various impurity ion species are entrained by
interspecies collisions to have a common rotation velocity,
which is thus an implicit (and probably not very good) as-
sumption of this model. We plan to introduce a multiple im-
purity species model in future work. Note that the less colli-
sional main (deuterium) ions are not assumed to have the
same rotation velocities as the more collisional impurity
ions.

E. Numerical solution

Taking Egs. (19)—(21) (for each species) and Egs. (31)
and (32) as our model for a two-species plasma of ions and
impurities, we have an eight-dimensional system of coupled
nonlinear equations at each radial mesh point. We solved
this set of nonlinear equations for the rotation velocities and
poloidal density coefficients (Vy;, Vg, Vo Vo, i, nj,
n?, nj) at each spatial location numerically, using standard
procedures based on the simplex search algorithm47’48 to
minimize a scalar residual merit function defined as the mag-
nitude of the sum of the normalized root-mean-square re-
siduals for the individual equations at that spatial location. A
convergence tolerance of 0O(107°) on the final step size in the
change in the solution vector was used to define solutions,
except as noted in the following section.

In general, more than one solution was found that satis-
fied this convergence criterion (depending on the initial trial
solution), as is to be expected for a coupled set of nonlinear
equations and an unrestricted search algorithm. Solutions
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FIG. 1. Comparison of calculated and measured toroidal rotation velocities
for the L mode shot 98777 without neon.

with scalar residuals up to a few percent (the estimated in-
accuracy of the equations due to ancillary modeling approxi-
mations and input data uncertainties) were accepted. In some
cases solutions were accepted at isolated radial locations
with a somewhat larger scalar residual when they were an
obvious continuation of the solution at nearby radial loca-
tions with smaller scalar residuals. The most physically plau-
sible solution (e.g., the solution with density asymmetries
everywhere less than the average density, hence everywhere
positive density) meeting these criteria was selected as the
physical solution.

F. Comparison of calculated and measured toroidal
rotation velocities

The measured and calculated toroidal rotation frequen-
cies are compared in Figs. 1-7. The calculated velocities are
for the deuterium main ion species and for an effective im-
purity species, while the measured rotation velocity is for
carbon VII. We generally found that the calculated deuterium
velocity was somewhat greater than the calculated impurity
velocity in the center, but that the difference diminished with
radius. The calculated impurity species rotation velocity
should be compared with the experimental carbon VII rota-
tion velocity.

For the L mode shots in Figs. 1 and 2, the two calculated
velocities were very similar at the outer radii but diverged at
smaller radii, and the calculated impurity velocity was in
quite good agreement with the measured values over the en-
tire minor radius. Since only carbon impurity was present in
shot 98777 and this impurity was fully ionized over most of
the radius the single impurity species approximation should
be valid, and the comparison of V ,; and Vf;g is an unambigu-
ous test of the theory within the uncertainty introduced by
geometric and other ancillary modeling approximations and
the uncertainty in the input experiment density and tempera-
ture data. With shot 98775, the necessity (at this stage in the
development of the calculation model) of treating neon and
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FIG. 2. Comparison of calculated and measured toroidal rotation velocities
for the L mode shot 98775 with neon.

carbon as a single impurity species introduces an additional
ambiguity into the comparison of V; and Vi, which may
account for the calculated impurity velocity falling below the
measured carbon VII velocity in the center.

For the L mode shots with an ITB (just inside p=0.4) in
Figs. 3 and 4, the calculated velocities for the impurity spe-
cies were similar to those for deuterium except inside the
location of the ITB, and generally in agreement with the
measured values to within less than a factor of 2 (overpre-
diction) at all radii. The same remarks made above about the
single impurity species approximation apply also to this pair
of shots.

For the H mode shot in Fig. 5 the calculated carbon
velocity was in quite good agreement (slight overprediction)
at all radii with the measured carbon VII velocity, and the

x10° Shot 102942 (L-mode, ITB)
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FIG. 3. Comparison of calculated and measured toroidal rotation velocities
for the L mode shot 102942 with ITB but without neon.
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FIG. 4. Comparison of calculated and measured toroidal rotation velocities
for the L mode shot 10940 with ITB and with neon.

calculated deuterium velocity was larger than the calculated
carbon velocity. Since carbon was the only impurity present,
the comparison of V4, and Vf;‘é’ provides an unambiguous test
of the theory within the uncertainty introduced by geometric
and other ancillary modeling approximations and the uncer-
tainty in the input experiment density and temperature data.

For the lower density, counterinjected QDB shots with
both an H mode edge and an ITB, it was not possible to find
solutions with a convergence tolerance of O(107) on the
change in the final step size of the solution vector, and this
tolerance was relaxed to O(1073) in order to obtain solutions.
Even with this tolerance, the solutions were outside the
physically reasonable range |n{7| <1 except in the center re-
gion for shot 106919, and these density asymmetries were
also implausibly large but less than unity in magnitude in
shot 106972. The calculated deuterium velocities were sig-
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FIG. 5. Comparison of calculated and measured toroidal rotation velocities
for the H mode shot 99411.
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FIG. 6. Comparison of calculation and measured toroidal rotation velocities
for the H mode QDB shot 106919 without neon.

nificantly greater than the calculated impurity velocities at all
but the outermost radii, and the calculated impurity velocity
was generally about a factor of 2 larger than the measured
carbon VII velocity. We attribute this behavior to a break-
down in the ancillary “one effective impurity species” ap-
proximation in which carbon, neon and several charge states
of copper and nickel (the latter contributing about half the
Z.=4) were lumped together as a single impurity species.
Even with these difficulties in the impurity representation
model, agreement between calculated impurity and measured
carbon VI velocities was within a factor of about 3. We note
that differences in trace impurity toroidal velocities have
been measured and calculated [using Eq. (32) but for two
trace impurities] in DIII-D.*

In the “sister shot” pair of L mode shots that differed
only by neon injection (98777 and 98775), both the mea-
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FIG. 7. Comparison of calculation and measured toroidal rotation velocities
for the H mode QDB shot 106972 with neon.
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sured and calculated rotation velocities were greater for the
shot with neon injection, indicating an improvement in both
calculated and measured momentum confinement with neon
injection. For the other “sister shot” pairs with internal trans-
port barriers (102942 and 102940) and with both internal and
external transport barriers (106919 and 106972), the im-
provement of experimental confinement, if any, was less evi-
dent and the calculated rotation velocities were relatively in-
sensitive to the neon injection.

In general, the agreement between calculated and mea-
sured velocities was quite good, and could certainly be char-
acterized as being “well within a factor of 2” if we exclude
the 106xxx shots in which the impurity modeling appeared to
be breaking down. This leads us to conclude that neoclassical
theory can predict radial transport of toroidal angular mo-
mentum to well within a factor of 2 in DIII-D. The general
observation of overprediction is probably indicative that a
different momentum transport mechanism (in addition to
neoclassical) was also involved in the experiments, although
refinements in the neoclassical viscosity model and improve-
ments in the ancillary geometric and other modeling approxi-
mations could well account for this modest disagreement.

G. Comparison of poloidal rotation velocities

It is instructive to examine some of the intermediate
quantities that are calculated from the poloidal momentum
balance Egs. (19)—(21) in order to evaluate the gyroviscous
momentum transport frequency of Eq. (12), namely the po-
loidal velocities and poloidal asymmetry coefficients. The
calculated profiles for the deuterium and impurity (carbon)
ions poloidal rotation are shown for shot 98777 in Fig. 8(a),
together with the measured poloidal rotation profile for car-
bon VII (here designated V.). The similarity in radial profile
for the two calculated rotation velocities was also found for
the other shots, except for the lower density 106xxx pair in
which a greater difference was found. We note that there are
new corrections for geometry and atomic physics which
could significantly affect the measured values of poloidal
velocity, and for this reason we do not emphasize the com-
parison of measured and calculated poloidal velocities in this
paper, although we plan to undertake such a comparison in
the near future.

H. Radial electric fields

The radial electric field predicted using calculated rota-
tion velocities and experimental pressure profiles to evaluate
Eq. (24) (without the inertial term) are compared in Fig. 8(b)
for shot 98777 with the experimental electric field similarly
calculated using the measured rotation velocities and pres-
sure profile for carbon VI. The calculated profile for deute-
rium used the calculated main ion (deuterium) velocities and
measured deuterium pressure profile, while the calculated
profile for the impurity species used the calculated velocities
for the effective impurity species and the measured carbon
VI pressure profile. The calculated and measured values of
the radial electric field are in relatively good agreement, with
the disagreement arising from the difference in calculated
and measured poloidal velocity profiles. Similar, and some-
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FIG. 8. Intermediate calculated quantities for the L mode shot 98777. (a)
Poloidal rotation velocities; (b) radial electric field; (c) “in-out” poloidal
asymmetry coefficients; (d) “up-down” poloidal asymmetry coefficients.
(The experimental poloidal velocity and radial electric field shown are fits to
the data.)

times better, agreement was found for the other shots, except
for the 106xxx shots (in which the single effective impurity
model seemed to break down).

I. Poloidal density and velocity asymmetries

The calculated “in-out” (cosine) and “up-down” (sine)
density asymmetries for shot 98777 are shown in Figs. 8(c)
and 8(d). The general trends and magnitudes shown in these
figures were also found for the other shots, except for the
106xxx shots in which the in-out density asymmetries be-
came larger that unity, indicating a breakdown of the single
effective impurity model. The calculated “in-out” density
asymmetries increased with radius up to about 15% for the
impurity ions (carbon in this shot) and <5% for the deute-
rium ions. The calculated “in-out” toroidal rotation fre-
quency asymmetries ((j=Vy.—e) were similar for deute-
rium and impurity ions and increased with radius up to
—15%. The calculated “up-down” asymmetries were smaller,
on the order of 10~ over much of the minor radius, except
for the impurity density coefficient which increased up to a
few times 107 at the outer radii. The other shots were simi-
lar, except that nj increased only to about 5% for shots 98775
and 99411 but to about 30% for the ITB shots 10294x, and
|nf /> 1 for shots 106xxx, which later is unphysical.
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We note that the toroidal rotation frequency is frequently
assumed to be poloidally uniform in theoretical develop-
ments. These calculations indicate that this assumption could
introduce errors on the order of as much as 15% in DIII-D.

J. Accuracy of evaluation of gyroviscous angular
momentum transfer rate

Since the toroidal rotation velocities are calculated from
Egs. (27) with the densities and the first two terms on the
right-hand side taken from experiment and the third beam
momentum input term on the right-hand side calculated with
some confidence, a comparison of calculated and measured
toroidal rotation velocities is really a test of the quantities 3,
and of the representation of the interspecies collision fre-
quency vj. Assuming the adequacy of the standard form
used for the latter, the rotation velocity comparison is a test
of the quantities ; given by Eqs. (28). Since the beam
source can be calculated with confidence and the inertial an-
gular momentum transfer frequency given by Eq. (29) was
evaluated to be small (but not negligible) in comparison to
the gyroviscous angular momentum transfer frequency vy,
the comparison of measured and calculated toroidal rotation
velocities is largely a test of the gyroviscous angular momen-
tum transfer frequency,v,;. Thus, a brief discussion of the
accuracy with which the gyroviscous angular momentum
transport rate is represented by the quantity v,; defined by
Eq. (12), as evaluated in this paper, is in order.

The gyroviscous angular momentum transfer rate is rig-
orously given by Eq. (9). Three approximations are made in
reducing Eq. (9) to Eq. (12) that is evaluated for v,;. First,
the cylindrical flux surface geometry approximation B
=B%/(1+¢€ cos #) is made, which certainly introduces some
error at the outer radii. Second, the variation of the variables
over the flux surface is represented by a low order Fourier
expansion, e.g., Eq. (11), based on the observation that in the
cylindrical flux surface approximation there is nothing to
drive significant higher order asymmetries. Third, the radial
derivatives of the asymmetries, e.g., ﬁﬁ;"‘/ Jr, are ignored
relative to the gradients in the average densities. A limited
number of model problem calculations support this third ap-
proximation. With these approximations, Eq. (12) is ob-
tained, from which is defined

_ 17 2 0

The accuracy of this expression is determined by the relative
magnitude of the errors associated with the three approxima-
tions discussed above compared to the magnitude of the
composite term, not to the individual components. We be-
lieve this expression is accurate in the core of plasmas with
toroidal rotation velocities on the order of the corresponding
ion sound speeds.

Given the approximations discussed in the previous
paragraph, the accuracy of numerically evaluating Eq. (33)
for the gyroviscous angular momentum transfer rate comes
down to the accuracy of evaluating the various terms in Eq.
(33). The terms in the denominator are known quite accu-
rately from experiment, and the experimental ion tempera-
ture was used to evaluate the temperature in the numerator.
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Experimental gradient scale lengths were used to evaluate
the term G; given by Eq. (14) in order to minimize any
uncertainty.

The quantity 6; given by Eq. (13) depends on toroidal
and poloidal velocities and on the density asymmetries ﬁj“
The poloidal velocities and the 7 are calculated from the

moments of the poloidal momentum balance Egs. (19)—(21).

Note that the ®°* are given in terms of the 7 by Eq. (26).
Equations (19)—(21) contain terms through quadratic in the
ﬁ?’s, although the quadratic terms were found to have a neg-
ligible effect on the solution. The banana-plateau form of the
parallel viscosity of Eq. (7) is judged to be an adequate rep-
resentation in light of current knowledge.50 The poloidal mo-
ments Egs. (19)-(21) and the toroidal rotation Egs. (27) are
solved as a set of nonlinear equations using standard proce-
dures.

IV. SUMMARY AND CONCLUSIONS

A self-consistent, first-principles formulation of rotation
theory based on momentum balance and neoclassical viscos-
ity and its implementation into a calculation model was de-
scribed and then applied to calculate toroidal rotation veloc-
ity profiles in several DIII-D shots in different confinement
regimes. The agreement between calculated and measured
toroidal rotation velocities was well within a factor of 2 (ex-
cept in two shots in which an ancillary approximation of the
computation model broke down and the agreement was only
to within a factor of about 3), and the experimentally ob-
served enhancement of momentum confinement with neon
injection was predicted for a pair of L mode shots. The gen-
eral trend of overprediction of measured toroidal velocities is
attributed to a combination of the need for refinements in the
neoclassical viscosity representation, ancillary approxima-
tions in the calculation model, or to the presence in the ex-
periment of an additional “anomalous” momentum transport
or torque input mechanism not included in the calculation
model. Future work will address these possibilities.
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APPENDIX: A SHORT HISTORY OF GYROVISCOSITY

The calculational model for toroidal rotation and the un-
derlying model for the representation of the gyroviscous to-
roidal angular momentum transfer rate have evolved over the
past 20 years to the form employed in this paper. In the

carliest (1985) version'’ the poloidal asymmetry factor 6 of
Eq. (13) was estimated to be of the order r/R based on esti-
mates of the impurity density asymmetry. It was subse-
quently (1987) noted'? that to leading order in the gyroradius
the poloidal asymmetries (and poloidal velocity), hence the
gyroviscosity, vanished and that gyroviscosity must be
higher order. Subsequent measurements revealed the exis-
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tence of poloidal rotation in tokamaks, implying the need to
go to higher gyroradius ordering to touch base with experi-
ment. A first principles numerical calculation™ of poloidal
rotation and density asymmetries was made (1992) and em-

ployed to evaluate 6 and predict31 gyroviscous momentum
confinement times in general agreement with measured val-
ues for several tokamak experiments (1993). These and sub-
sequent calculations indicate that the relatively smaller po-
loidal asymmetry of the more numerous main ion species

dominates the composite 6. Subsequent calculations™ of po-
loidal asymmetries and poloidal rotation in DIII-D have led
to gyroviscous predictions of momentum confinement times
in agreement with experiment for plasmas in several differ-
ent confinement regimes (2002).

The original Braginski formulation'? of gyroviscosity
(1965), which was extended to develop the formalism used
in this paper, was based on the strong rotation ordering
V4~ Vi, appropriate for the central regions of the DIII-D
plasmas analyzed in this paper and many other beam-
injected plasmas. It was noted'® that in the weak rotation
ordering V<< Vy, it is necessary to retain additional heat flux
terms in the gyroviscosity formalism. Although initial
extensions’*? of the gyroviscous formalism to the steep-
gradient edge region (1993-1994) used the Braginski formu-
lation, subsequent work”??7 has included the heat flux
terms (2000-2005).
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