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A model for the calculation of toroidal rotation velocities and the radial electric field in the edge
pedestal of tokamaks is described. The model is based on particle and momentum balance and the
use of the neoclassical gyroviscous expression for the toroidal viscous force. Predicted toroidal
rotation velocities in the edge pedestal are found to agree with measured values to within about a
factor of 2 or less, for a range of DIII-D@Luxon, Nucl. Fusion42, 614 ~2002!# edge pedestal
conditions. © 2004 American Institute of Physics.@DOI: 10.1063/1.1710520#

I. INTRODUCTION

The coincidence of changes in the local plasma rotation
and radial electric field in the plasma edge, theL-H ~low-to-
high mode! transition, and the establishment of theH-mode
edge pedestal is well established experimentally~see, e.g.,
Refs. 1–4!, leading to the widely held opinion that the
plasma rotation and the radial electric field are important
phenomena affecting theL-H transition and the formation of
the H-mode pedestal. The leading paradigm for how these
phenomena act to effect theL-H transition is via the creation
of a local region of strongE3B shear that stabilizes turbu-
lent transport.5

This situation motivates us to develop a first-principles
calculation model for the rotation velocities and radial elec-
tric field in the edge of tokamak plasmas in order to under-
stand the dependence of these quantities on the edge plasma
and operating parameters. We have previously presented a
model for the calculation of poloidal velocities and poloidal
density asymmetries in the edge plasma,6 and the purpose of
this paper is to present a complementary model for the cal-
culation of toroidal velocities and the radial electric field.

The model presented in this paper and in Ref. 6 is based
on fluid particle and momentum balance. Neoclassical phys-
ics is included through the use of neoclassical forms for the
parallel viscous force~in Ref. 6!, for the toroidal viscous
force ~this paper! and for the collisional momentum ex-
change among species~both papers!. The development fol-
lows the same general lines as for our similar calculation
model for rotation in the core plasma,7 but also takes into
account atomic physics ionization sources and atomic phys-
ics momentum damping unique to the plasma edge, as well
as the radial particle flux into the edge from the core~which
is the dominant term driving rotation in the edge! and the
gyroviscous momentum damping.

II. THEORY

The particle continuity equation for ion speciesj is

¹•njy j5Sj , ~1!

where Sj (r ,u)5ne(r ,u)nj 0(r ,u)^sy& ion[ne(r ,u)n ion(r ,u)
is the ionization source rate of ion speciesj and nj 0 is the
local concentration of neutrals of speciesj. Taking the flux
surface average of this equation yields^(¹•njy j ) r&5^Sj&
becausê (¹•njy j )u&50 identically and̂ (¹•njy j )f&50 by
axisymmetry, which allows Eq.~1! to be written

~¹•njy j !u5Sj2^Sj&[S̃j ~2!

when we make the assumption (¹•njy j ) r5^(¹•njy j ) r&
1O(«).

Integration of this equation, in toroidal (r ,u,f) coordi-
nates, yields

njyu j5
K jB̄u1rB̄u*0

u~11« cosu!S̃jdu

11« cosu

[@K j~r !1I j~r ,u!#Bu~r ,u!, ~3!

whereBu5Bu0 /(11« cosu), which ignores Shafranov shift
effects, has been used and whereK j5^njyu j&/B̄u

'n̄ j ȳu j /B̄u and the overbar denotes the average value over
the flux surface. We note that using toroidal geometry and
assuming poloidally uniform radial particle fluxes ignores
some potentially important geometric effects in diverted to-
kamaks.

Subtractingmjy j times Eq.~1! from the momentum bal-
ance equation for ion speciesj and noting that (¹•njy j ) r

!(¹•njy j )u leads to

njmj~y j•¹!y j1¹pj1¹•p j

5njej~y j3B!1njejE1Fj1M j2njmjnat
j y j2mjS̃jy j ,

~4!

whereFj represents the interspecies collisional friction,M j

represents the external momentum input rate, and the last
two terms represent the momentum loss rate due to elastic
scattering and charge exchange with neutrals of all ion spe-
ciesk@nat j5(knk0

c (^sy&el1^sy&cx) jk# and due to the intro-
duction of ions with no net momentum via ionization of a
neutral of speciesj. Only the ‘‘cold’’ neutrals that have not
already suffered an elastic scattering or charge-exchange col-
lision in the pedestal are included innat j . Equation~4! cana!Electronic mail: weston.stacey@nre.gatech.edu
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be understood by noting that the conservative form of the
inertia term @div(nmyy)5my•div(ny)1nm(y•del)y# appears
in the usual momentum equation. Whenmy•Eq. ~1! is sub-
tracted from that momentum equation, themy•div(ny) terms
cancel and the ionization source term shows up.

Using the Lorentz form for the interspecies collisional
friction

Fj52njmj(
kÞ j

n jk~y j2yk! ~5!

and taking the flux surface average of the toroidal component
of Eq. ~4! yields a coupled set of equations for the toroidal
velocities of the different ion species present plus the elec-
trons

S nd j* 1(
kÞ j

n jkD yf j2(
kÞ j

n jkyfk

5
~njejEf

A1ejG jBu1Mf j !

njmj
[yj ~6!

where the total ‘‘drag’’ frequencynd j* is given by

n̄d j* [n̄d j1 n̄at j1 n̄ ion jj j ~7!

which consists of a cross-field viscous momentum transport
frequency formally given by

n̄d j[^R2¹f•¹•p j&/R̄n̄jmj ȳf j ~8!

and of the two atomic physics momentum loss terms dis-
cussed previously, with the neutral ionization source asym-
metry characterized by

j j[^R2¹f•mjS̃jyf j&/R̄mjS̄j ȳf j . ~9!

Since the condition (ncarbonZcarbon
2 /ne)@(me /mD)1/2

'0.016 is satisfied in most plasmas, the ion-electron colli-
sions can be neglected relative to the ion-impurity collisions
in Eq. ~6!. In the limiting case of a two-species ion-impurity
( i -I ) plasma, the two Eqs.~6! can be solved to obtain the
toroidal rotation velocity of each species,

yf j5
@11~ndk* /nk j!#yj1yk

@$11~ndk* /nk j!%$11~nd j* /n jk!%21#
. ~10!

The toroidal rotation is driven by the input beam torque
(RMw j ), the input torque associated with the induced field
(RnjejEw), and by the internal torque due to the radial ion
flow (ejBuG j ) which enter theyj , and depends on the radial
transfer rate of toroidal angular momentum (nd j* ) due to vis-
cous, atomic physics and convective effects and on the inter-
species momentum exchange rate (n jk).

The difference in toroidal rotation velocities of the two
species is

nf j2nfk5
~ndk* /nk j!yj2~nd j* /n jk!yk

@$11~ndk* /nk j!%$11~nd j* /n jk!%21#
. ~11!

In order to actually evaluate the above equations it is
necessary to specify the toroidal viscous force,^R2¹f•¹
•p&, which determines the viscous momentum transport fre-
quencynd j , given by Eq.~8!. There are three neoclassical

viscosity components—parallel, perpendicular, and gyrovis-
cous. The ‘‘parallel’’ component of the neoclassical viscosity
vanishes identically in the viscous force term, and the ‘‘per-
pendicular’’ component is several orders of magnitude
smaller than the ‘‘gyroviscous’’ component8

^R2¹f•¹•p j&5
1

2
ũ jGj

njmjTj

ejBf

yf j

R̄
[Rnjmjnd jyf j ,

~12!

where

ũ j[~41ñ j
c!ỹf j

s 1ñ j
s~12 ỹf j

c ! ~13!

represents poloidal asymmetries and

Gj[
r

h4 jyf j

]~h4 jyf j !

]r
~14!

with the gyroviscosity coefficienth4 j'njmjTj /ejB.
In order to evaluate Eq.~13! it is first necessary to cal-

culate the sine and cosine components of the density and
toroidal velocity poloidal variations over the flux surface. A
low-order Fourier expansion of the densities and rotation ve-
locities over the flux surface can be made, and Eq.~3! and
the radial component of Eq.~4! can be used to relate the
Fourier components of the rotation velocities for speciesj to
the Fourier components of the density for that species. These
results then can be used in the poloidal component of Eq.~4!,
the flux surface average of which with 1, sinu and cosu
weighting then yields a coupled set of three nonlinear equa-
tions per species that can be solved numerically for the flux
surface average poloidal velocities and the sine and cosine
components of the ion density variations over the flux
surface.6

We note that is has been suggested9 that the above ex-
pression for the gyroviscous toroidal force underestimates
the momentum transport rate in regions of steep pressure
gradients and low toroidal rotation~e.g., the edge pedestal!
because of failure to take into account a drift kinetic correc-
tion not present in the original Braginskii derivation. Bragin-
skii’s momentum equations are valid if the fluid velocities in
the directions perpendicular and parallel toB are much larger
than the diamagnetic velocity and the diamagnetic velocity
multiplied byBw /Bu , respectively. Ordering arguments sug-
gest that this is not the case in the absence of a large ‘‘exter-
nal’’ source of momentum. It is nota priori clear if the
Braginskii gyroviscous formulation is correct for the condi-
tions of the plasma edge or needs to be supplemented by a
heat flux term.10 In any case, the above equations have done
well in predicting toroidal rotation~hence radial momentum
transport! in the DIII-D core plasma,11 which motivates us to
investigate their predictions in the edge pedestal.

The flux surface average of the radial component of the
momentum balance Eq.~4! yields

ȳf j5 f p
21ȳu j2~ P̄j81F̄8!, ~15!

where

f p[Bu /Bf , P̄j8[
1

n̄ jej B̄u

] p̄ j

]r
,
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F̄8[
1

B̄u

]f

]r
52

Ēr

B̄u

. ~16!

When Eq.~15! is used to eliminateyw j from Eq.~6!, the
resulting equations can be summed over ion species~and the
toroidal electron momentum equation can be used! to obtain
an explicit expression for the radial electric field,

Er

Bu
5

( j
ions$Mf j1njmjnd j* ~Pj82 f p

21yu j !%

( j
ionsnjmjnd j*

. ~17!

The local electric field depends on the total local input mo-
mentum deposition (Mw5( jMw j ), the local radial pressure
gradients (Pj8), the local poloidal velocities (yu j ), and the
local values of the radial momentum transfer rates (nd j* ) due
to viscous, atomic physics and convective effects.

III. COMPARISON WITH EXPERIMENT

We have used the above theory and the theory for poloi-
dal rotation presented in Ref. 6 to calculate the rotation ve-
locities and the electric field in the edge pedestals of the
DIII-D H-mode plasmas described in Table I.~‘‘ped’’ indi-
cates value at the top of edge pedestal,D is the pedestal
width, andL is the gradient scale length in the pedestal.!

We have evaluated Eqs.~10! and ~17! for the toroidal
velocities of the deuterium main ion and a carbon impurity
ion species and for the radial electric field, respectively. We
have also solved numerically for the poloidal rotation veloci-
ties and the sine and cosine components of the main and
impurity ion species using Eqs.~22!–~24! of Ref. 6, derived
from the poloidal momentum balance as described in the
previous section.

The terms entering these equations were evaluated as
follows. The viscous momentum transfer frequencyndi was
calculated from the neoclassical gyroviscous Eq.~12!, with
the poloidal asymmetry factors of Eq.~13! evaluated from
poloidal momentum balance and with the factorG of Eq.
~14! evaluated using experimental values of the radial gradi-
ent scale lengths in the edge pedestal. The radial particle flux
was determined from particle balance, and the neutral beam
momentum input in the pedestal was calculated directly. The
friction terms involving the difference in ion and electron
toroidal velocities were assumed to be negligible. TheEw

A

term and the pressure gradient terms were evaluated from
experimental data.

The neutral concentrations needed to evaluatenat and
n ion and the recycling neutral influx needed to calculate the
main ion GD were obtained using a two-dimensional~2D!
neutral transport calculation of fueling and recycling neutrals
coupled to a ‘‘two-point’’ scrape-off layer and divertor
plasma model and to a core plasma particle and power bal-
ance model.12 The plasma ion flux to the divertor plate was
recycled as neutral atoms~at a fraction of the incident ion
energy! or molecules which were assumed to immediately
dissociate into Franck–Condon atoms~at ;2 eV!. These at-
oms were transported out of the divertor across the separatrix
and into the plasma edge to produce a poloidally distributed
neutral density which was averaged to evaluatenat andn ion .
Measured plasma densities in the scrape-off layer and ped-
estal region were used in calculating the penetration of recy-
cling neutrals. Atoms that were ionized inside the separatrix
contributed to the neutral source used to calculateGD , and
atoms that were charge-exchanged or scattered were assume
to take on the energy of the ions at that location. Although
the neutral transport calculation was well founded, the recy-
cling neutral source was uncertain in these calculations. We
normalized the calculations to experiment by adjusting the
recycling source so that the calculated core fueling by neutral
influx plus neutral beam resulted in a prediction of the line-
average density that agreed with the experimental value. This
model has been found to predict neutral densities that are in
reasonable agreement with measured values in DIII-D and
with Monte Carlo predictions.14

Determination of the carbon impurityGC was more un-
certain. The argument that in steady state the carbon outflux
must equal the carbon influx and that the latter must be pro-
portional to the deuterium outflux (GC5RGD) was used to
evaluateGC . The factorR involves the sputtering yield~in
the range 0.01,Y,0.02), the enhancement of the ion flux
due to charge-exchange recycling neutrals and the reduction
of the carbon flow to the plasma due to retention in the
divertor, the calculation of which is beyond the scope of this
paper. We usedR50.01, and checked that a factor of 2 dif-
ference in the value ofR produced only about a 5% change
in the calculated toroidal velocities.

The calculated and measured rotation velocities and ra-
dial electric fields are compared in Table II. Only the carbon
rotation velocity is measured, and its separation into toroidal

TABLE I. DIII-D edge pedestal parameters (R51.74– 1.78 m, a
50.60– 0.62 m,B51.5– 2.1 T,I 51.0– 1.6 MA,k51.7–2.0,d50.13–0.86!
~Ref. 13!.

Pnb

~MW!
ne

ped

(1019/m3)
Te

ped

~eV!
Dn

~cm!
DTe

~cm!
Ln

~cm!
LTe

~cm!
LTi

~cm!
f carbon

~%!

A 5.1 4.0 1150 5.1 5.5 2.8 2.2 4.7 4.1
B 7.5 2.8 685 8.1 10.2 4.3 4.5 8.5 5.5
C 6.5 6.3 525 3.5 5.0 3.3 2.6 6.2 1.1
D 5.0 4.6 460 4.6 4.6 2.7 2.1 5.3 1.8
E 5.0 4.6 395 4.4 5.9 2.4 2.0 10.3 2.0
F 5.0 4.9 215 3.6 7.2 6.0 4.2 10.3 1.8
G 2.1 8.3 120 2.2 2.2 1.5 1.5 10.1 0.8

TABLE II. Comparison of calculated and experimental rotation velocities
~km/s! and radial electric fields~kV/m!.

Vwc
ex /Vth Vwc

ex Vwc
cal VwD

cal Vuc
ex Vuc

cal VuD
cal Er

ex Er
cal

A 0.1 6 8 6 21 20 25 242 257
B 0.7 55 34 32 9 20 29 215 232
C 0.3 17 23 21 3 22 21 213 214
D 0.2 13 25 23 22 21 22 22 215
E 0.3 17 25 23 20 21 23 27 221
F 0.2 9 22 21 21 22 21 213 26
G 0.4 13 30 28 3 4 22 22 24
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and poloidal components introduces an uncertainty of a few
km/s. The ‘‘experimental’’ radial electric field is actually cal-
culated from the radial force balance Eq.~15! using the mea-
sured carbon velocity and pressure gradient. The calculated
values are based on averaged parameters in the sharp gradi-
ent edge pedestal region, and the experimental values corre-
spond to locations about midway in this pedestal region.

The most relevant comparison is probably between the
measured and calculated values of the carbon toroidal rota-
tion velocities, because of the large experimental error in the
measured poloidal velocities which propagates into the cal-
culation of the experimental radial electric field. The calcu-
lated and measured toroidal rotation velocities agree to
within roughly a factor of 2 or better. Since the gyroviscous
momentum transfer frequencynd was the dominant compo-
nent of the total momentum transfer frequencynd* , this
agreement between measured and calculated toroidal rotation
velocities indicates that neoclassical momentum transport
theory is in reasonable agreement with experiment in the
DIII-D edge pedestal, over a wide range of edge pedestal
conditions. We note that the difference in calculated deute-
rium and carbon toroidal rotation velocities was on the order
of 10%, so that the commonly made assumption that they are
identical is reasonable.

For the deuterium main ion species the dominant term in
the driving termyD was the radial particle flux termeBuGD .
Thus the ‘‘internal’’ torque due to the radial ion flux is the
principal driver of toroidal rotation in the edge pedestal in
these shots.

We also note that the measured carbon toroidal rotation
speed was a significant fraction of the carbon thermal speed
in the edge pedestal~i.e., yw'y th is a more appropriate or-
dering thanyw!y th).

IV. DISCUSSION

A model for ion toroidal velocities and the radial electric
field in the edge pedestal region of tokamaks was presented.
The model is based on particle and momentum balance and
incorporates the neoclassical gyroviscous toroidal viscous
force. The toroidal rotation is driven by the input beam
torque (RMw j ), the input torque associated with the induced

field (RnjejEw), and by the internal torque due to the radial
ion flow (ejBuG j ), and depends on the radial transfer rate of
toroidal angular momentum (nd j* ) due to viscous, atomic
physics and convective effects and on the interspecies mo-
mentum exchange rate (n jk). The local electric field depends
on the total local input momentum deposition (Mw

5( jMw j ), the local radial pressure gradients (Pj
u), the local

poloidal velocities (yu j ), and the local values of the radial
momentum transfer rates (nd j* ) due to viscous, atomic phys-
ics and convective effects.

The calculation model that was introduced in this paper
predicts carbon toroidal rotation velocities in the DIII-D
edge pedestal to within about a factor of 2 or less, for a wide
range of edge pedestal parameters. This result is consistent
with the recent observation13 that the measured momentum
transport frequency through the edge pedestal was within
about a factor of 2 of the neoclassical gyroviscous predic-
tion, over this same set of edge pedestal conditions. These
results provide a measure of confidence in the calculation
model for toroidal rotation in the edge pedestal that was
presented in this paper.

Finally, we note other recent treatments of toroidal rota-
tion in ALCATOR C-Mod OhmicH modes from the view-
point of neoclassical theory15 and accretion theory.16
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