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The hypothesis is advanced and it is investigated that, in between or in the absence of edge-localized
modes, the structure of the edge pedestal is determined by the transport requirements of plasma
particle, momentum and energy balance, and by recycling neutral atoms. A set of “pedestal
equations” following from this hypothesis are presented and applied to calculate the edge density,
temperature, rotation velocity, and radial electric field profiles in a DIII-DH (high)-mode plasma.
It is found that a pedestal structure in the density profile and sharp negative peaks in the radial
electric field and poloidal velocity just inside the separatrix are predicted as natural consequences of
the conservation of particle and momentum, in qualitative and quantitative agreement with
measured values. Detailed examination of the calculation reveals a sequence of mechanisms by
which the ionization of recycling neutrals affect the structure of the density profile in the edge
pedestal. ©2004 American Institute of Physics. [DOI: 10.1063/1.1808751]

I. INTRODUCTION

A thin region in the edge of tokamak plasmas within
which the density and temperatures increase sharply from the
values at the separatrix to much larger “pedestal” values
have been observed to be intrinsically associated with
H-(high) mode confinement. Since the radial temperature
profiles in tokamaks are found to be relatively “stiff,” the
achievable central temperatures(and the good performance
associated therewith) are thought to be directly related to the
achievable pedestal temperatures(e.g., Refs. 1,2).

Thus, the physics that determines the “structure”(width
of the steep gradient region and magnitude of the gradients)
has been and remains a subject of intensive research. Corre-
lations of the edge structure with various edge and global
parameters have been identified experimentally, and a num-
ber of possible physical causes have been suggested(e.g., as
reviewed in Ref. 3). This work has led to a number of semi-
empirical, theory-based scaling laws(e.g., Refs. 3–7), but a
comprehensive explanation of the physics of the pedestal
structure remains elusive.

Recent advances in magnetohydrodynamic(MHD) sta-
bility analysis(e.g., Refs. 8–12) have been successful in pre-
dicting the limiting magnitude of the pedestal pressure or
pressure gradient at which edge-localized modes(ELMs) be-
come unstable, the nested flux surface magnetic field struc-
ture is destroyed, and the pedestal collapses. However, the
MHD limits are inherently inequality constraints, and there is
no reason nor evidence that they should affect the pedestal
structure when the pedestal pressure or pressure gradient is
less than the limiting value for MHD stability.

Our purpose in this paper is to advance and investigate
the hypothesis that between or in the absence of ELMs the
pedestal structure in tokamaks is determined entirely by the
requirements of plasma particle, momentum, and energy
conservation coupled with the recycling of neutral atoms in
the edge plasma. This hypothesis that the pedestal structure
is determined by plasma transport(i.e., the plasma particle,
momentum, and energy balance equations) has evolved in

the course of previous work,13–15 and the hypothesis that
recycling neutral atoms play an important role in determin-
ing edge structure is motivated by observation of the corre-
lation of the experimental width of the density pedestal and
the neutral atom penetration mean-free path.16–18

We previously inferred14 the experimental values ofx
and the momentum transfer frequency averaged over the
edge pedestal and compared these values with the values
predicted using various theories, in the process introducing
some flux-gradient-pinch relations embodying the constraints
of particle and momentum balance. In this paper we extend
these relations and use them to calculate detailed density,
temperature, poloidal velocity, and radial electric fields pro-
files in the edge pedestal.

The outline of the paper is as follows. We first develop
the equations that would determine the edge pedestal struc-
ture caused by plasma particle, momentum and energy, and
neutral atom transport equations in Sec. II. Then these equa-
tions are solved for oneH-mode discharge and the predicted
edge structure is compared with the measured edge structure
in Sec. III. Results and conclusions are summarized in Sec.
IV.

II. THE EDGE PEDESTAL EQUATIONS

A. Local ion pressure gradient scale length

The multifluid particle and momentum equations can be
used to obtain a coupled set of equations relating the radial
particle fluxes, pressure gradients, and pinch velocities for
the different ion species present in the edge of a tokamak
plasma in the presence of a recycling source of neutral atoms
and neutral beam injection. The particle continuity equation
for ion species “j” is

= ·njy j = Sj , s1d

where Sjsr ,ud=nesr ,udnj0sr ,udksylion;nesr ,udnionsr ,ud is
the ionization source rate of ion speciesj andnj0 is the local
concentration of neutrals of speciesj . Taking the flux surface
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average of this equation yieldsks= ·njy jdrl=kSjl because
k= ·njy jdul=0 identically andk= ·njy jdfl=0 by axisymmetry,
which allows Eq.(1) to be written ass= ·njy jdu=Sj −kSjl
; S̃j. Subtractingmjy j times this form of Eq.(1) from the
momentum balance equation for ion speciesj and noting that
s= ·njy jdr ! s= ·njy jdu leads to

njmjsy j · = dy j + = pj + = · p j

= njejsy j 3 Bd + njejE + F j + M j − njmjnat
j y j − mjS̃jy j ,

s2d

whereF j represents the interspecies collisional friction,M j

represents the external momentum input rate, and the last
two terms represent the momentum loss rate due to elastic
scattering and charge exchange with neutrals of all ion spe-
cies ‘‘k’’ fnatj=Sknk0

c sksylel+ksylcxd jkg and due to the intro-
duction of ions with no net momentum via ionization of a
neutral of speciesj . Only the “cold” neutrals that have not
already suffered an elastic scattering or charge-exchange col-
lision in the pedestal are included innatj. The development of
a general flux-gradient-pinch relationship from these two
equations is summarized in Appendix A and treated more
fully in Refs. 14,15.

When it is assumed that(i) the plasma contains a main
ion species “i” and a single effective impurity species “z” the
concentration of which is a constant fractionfz=nz/ni of the
main ion concentration, and that(ii ) both ion species have
the same temperatureTi, Eqs.(1) and(2) reduce(see Appen-
dix A and Ref. 15) to a flux-gradient-pinch relationship for
the main ions,

−
1

pi

dpi

dr
; Lpi

−1 =
Gi/ni − vpi

D̂i

;
vri − vpi

D̂i

, s3d

where Gi is the radial particle flux. The effective diffusion
coefficient is[with reference to Eqs.(A2)]

D̂i ; Dii − Diz =
miTiniz

seiBud2F1 +
ndi

*

niz
−

1

kZlG , s4d

where niz is the interspecies collision frequency,ndi
* is the

viscous plus atomic physics(charge-exchange, elastic scat-
tering, ionization) frequency for the radial transfer of toroidal
momentum[see Eqs.(A4)–(A6)], andkZl is the average lo-
cal charge state of the impurity species. The remaining col-
lection of quantities entering this relationship is identified as
the “pinch” velocity

vpi =
1

eiBu

f− Mfi/ni − eiEf
A + mindi

* sEr/Bu + fp
−1vuid

+ minizfp
−1svui − vuzdg, s5d

whereMw and Ew
A are the toroidal components of the input

momentum rate and the induced electric field,Er is the radial
electric field, yu is the poloidal rotation velocity, andfp

=Bu /Bw.
An expression for calculating the radial electric field can

be derived by summing the toroidal component of the mo-
mentum balance equation for all species and using the radial

component of the momentum balance equationyw j = fp
−1yu j

+Er /B0−sdpj /drd / snjejB0d to obtain (see Appendix A and
Ref. 19)

Er

Bu

=

o
ions

fMf j − njmjndj
* hfp

−1vu j − sdpj/drd/snjejBudjg

o
ions

njmjndj
*

. s6d

The poloidal rotation velocities for the main ions and
impurities, along with the sinesnj

sd and cosinesnj
cd compo-

nents of the ion and impurity density poloidal variation over
the flux surface(needed to calculate the gyroviscous compo-
nent ndi of ndi

* —see Appendix A), are calculated by taking
the low order Fourier moments of the poloidal components
of the momentum balance equations for the main ions and
impurities,15,20

kXnu · Eq2jl = 0, X = 1,sinu,cosu, j = i,z, s7d

whereEq2j denotes the momentum balance Eq.(2) for spe-
cies j = i ,z and k l denotes a flux surface average. Equations
(7) are given explicitly by Eqs.(A10)–(A12) in Appendix A.

B. Local temperature and density
gradient scale lengths

The local heat conduction relationqj =−njx jdTj /dr , j
= i ,e, can be used to express the local ion and electron tem-
perature gradient scale lengths,LTj

−1;−Tj / sdTj /drd, in terms
of the respective local total heat fluxes,Qj, and convective
heat fluxes, 5/2TjG j:

LTj
−1 =

1

x j
F Qj

njTj
−

5

2

G j

nj
G, j = i,e. s8d

The inverse ion density gradient scale length may then
be determined by subtracting the inverse ion temperature
gradient scale length of Eq.(8) from the inverse ion pressure
gradient scale length given by Eq.(3):

Lni
−1 = Lpi

−1 − LTi
−1. s9d

C. Local particle and heat fluxes

With reference to the discussion following Eq.(1), the
local flux surface averaged particle balance equation for the
main ion particle flux in the edge region can be written

dGi

dr
= nenioni + ninionb, Gisrsepd = Gi

sep, s10d

wherenioni andnionb are the frequencies for the ionization by
electron impact of recycling neutral atoms of the main ion
species and for ionization of neutral beam injected particles,
respectively. In order to solve this equation it is necessary to
specify a boundary condition either at the separatrix or at
some radius interior to the pedestal location. Because we are
interested in calculating profiles from the separatrix inward
and because we can determine the particle flux crossing the
separatrix from a particle balance on the region inside the
separatrix, we choose to specify the(net outward) ion par-
ticle flux crossing the separatrix,Gsepi, as the boundary con-
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dition and to numerically integrate this equation inward from
the separatrix to determine the local particle flux within the
edge region of interest.

The ion and electron heat fluxes in the edge region sat-
isfy the energy balance equations,

dQi

dr
= −

3

2
Tinenati − Q̇ie + Q̇nbi, Qisrsepd = Qi

sep s11d

and

dQe

dr
= − Eionnenioni − nenzLz + Q̇ie + Q̇nbe

,

s12d
Qesrsepd = Qe

sep,

whereQ̇ie is the rate of collisional energy transfer from ions

to electrons,Q̇nbi,e is the rate of energy deposition in the ions
or electrons by injected neutral beams(or any other form of
heating), nati is the frequency of charge exchange plus elastic
scattering of cool recycling neutral atoms which have not
previously suffered a collision in the scrape-off layer(SOL)
or edge region,Eion is the ionization energy, andLz is the
radiation emissivity of the impurity ions(which is calculated
with a coronal equilibrium model using the local electron
density and temperature, taking into account the enhance-
ment due to charge exchange and recombination with the
recycling neutrals). For reasons similar to those discussed
above for the ion particle flux, we specify the values of the
ion and electron heat fluxes at the separatrix as boundary
conditions and numerically integrate Eqs.(11) and (12) in-
ward from the separatrix into the edge region. The total heat
flux at the separatrix,Qsep=Qi

sep+Qe
sep, can be determined

from a power balance on the region inside the separatrix, but
the split between ion and electron heat flux is generally un-
known experimentally.

Penetration of the inward flux of recycling neutrals,
J+srd, into the edge region is calculated using an interface-
current-balance method,21 using as a boundary condition the
recycling neutral currentJ+srsold=Jsol

+ , passing inward across
the outer boundary of the scrape-off layer. The inwards+d
and outwards−d partial currents at successive interfacesrn

and rn+1 are related by

J+srn+1d = TnJ+srnd + RnJ−srn+1d,

s13d
J−srnd = TnJ−srn+1d + RnJ+srnd, n = 1,2¯ N,

whereTn is the probability that a neutral atom is transmitted
through the intervalDn=rn+1−rn without a collision and 2Rn

is the probability that a neutral atom(or its neutral progeny
via charge-exchange) that does have one or more collisions
in the intervalDn ultimately escapes from the interval across
the interface atrn or rn+1. These quantities are defined in
Appendix B, where the computational algorithm is given,
and the theoretical development is described in detail in Ref.
21.

Two groups of neutrals are treated:(i) cold neutrals
which have recycled from the wall and penetrate across the
SOL and into the separatrix with a temperature characteristic
of the wall recycling atoms; and(ii ) neutrals that have un-

dergone one or more charge exchange or scattering collisions
in the SOL or pedestal regions and take on the local ion
temperature as a result. The first group of neutrals is used to
compute the cold neutral density that is used to evaluatenati,
while both groups contribute tonioni.

D. Density and temperature profiles
in the plasma edge

The ion density profile and the ion and electron tempera-
ture profiles in the plasma edge are calculated by numerically
integrating the defining relations for the respective inverse
gradient scale lengths inward from the separatrix,

−
1

ni

dni

dr
= Lni

−1 = Lpi
−1 − LTi

−1 =
vri − vpi

D̂i

− LTi
−1,

nisrsepd = ni
sep, s14d

−
1

Ti

dTi

dr
= LTi

−1 =
1

xi
F Qi

niTi
−

5

2

Gi

ni
G, Tisrsepd = Ti

sep, s15d

and

−
1

Te

dTe

dr
= LTe

−1 =
1

xe
F Qe

neTe
−

5

2

Ge

ne
G, Tesrsepd = Te

sep

s16d

subject to a separatrix boundary condition.
The neutral atom density profile in the plasma edge is

calculated from the attenuating current of neutral atoms by
equating the local divergence in total neutral flux to the ion-
ization rate,dJ/dr=noineksyl, and the cold neutral atom den-
sity profile is calculated from the local attenuated cold neu-
tral atom fluxJ+

cold=noyo
cold.

E. Boundary conditions for edge plasma
profile calculations

In order to solve Eqs.(10)–(16) for the profiles in the
edge plasma it is necessary to specify the indicated separatrix
boundary conditions on density, temperature, particle, heat
fluxes, and the SOL inward recycling neutral flux boundary
condition. For this purpose we have embedded the above
edge plasma calculation within a global code22 which: (i)
performs core plasma particle and power balance calcula-
tions (including radiative cooling and recycling neutral in-
flux) to determine outward plasma particle and heat fluxes
across the separatrix into the SOL which(ii ) are input to a
“two-point” divertor model(including radiative and atomic
physics cooling, particle sources, and momentum sinks) to
calculate plasma density and temperature on the separatrix at
the midplane and at the divertor plate and to calculate the
plasma flux to the divertor plate which(iii ) creates the recy-
cling source of neutral molecules and atoms for a two-
dimensional(2D) neutral transport recycling calculation23

throughout the divertor and plasma chamber that provides
the neutral influx for the core particle balance calculation.
Thus, the global code can calculate all of the boundary con-
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ditions needed for the edge plasma calculation, although the
present code does not distinguish betweenTe

sep andTi
sep nor

does it provide separateQe
sep andQi

sep.
When the global code is used for experimental analysis,

experimental values ofne
sep,Te

sep, andTi
sep are normally used

as input, and the gas fueling source is adjusted until the
calculated line average density matches the measured values,
in order to “normalize” the neutral recycling fueling calcula-
tion to experiment.

For the edge plasma calculations reported in the follow-
ing section, experimental values ofne

sep,Te
sep, andTi

sep, par-
ticle and power balance calculated values ofGi

sep and Qsep

=Qi
sep+Qe

sep, andJsol
+ from the 2D neutral recycling calcula-

tion are used.

III. CALCULATION OF EDGE PROFILES
IN A DIII-D SHOT

The equations described in the preceding section were
solved numerically for DIII-D shot #92976 at a time(3210
ms) well into theH-mode phase of the discharge. This was a
heavily gas-fueleds<80 Torr l /sd shot characterized by
the parameters sI =1.0 MA,B=−2.1 T,Pnb=5.0 MW,R
=1.71 m,a=0.6 m,k=1.78,q95=5.7d with a carbon impurity
concentration in the edge offz=0.025. The experimental val-
ues of ne

sep,Te
sep, and Ti

sep, the particle and power balance
values ofGi

sep and Qi
sep+Qe

sep (with the further assumption
Qi

sep=Qe
sep), and the value of the recycling neutral influxJsol

+

calculated by the global code were used as boundary condi-
tions for the pedestal calculations. The experimental values
of ywcarbon were used forywi and ywz (and to evaluateLvw

−1).
Based on previous experience,14 the thermal conductivities
were modeled asxi =2xch

os+xitg andxe=xetg+xedw in order to
match values inferred from experiment, wherexch

os is the
Chang–Hinton expression corrected for orbit squeezing
(xch

os=xch/S3/2 where S is a factor that accounts for orbit
squeezing in the presence of a strong shear inEr), xitg is an
ion temperature gradient(ITG) mode expression,xetg is an
electron temperature gradient(ETG) mode expression, and
xedw is an electron drift wave(EDW) (or TEM) expression
(see Appendix C). For consistency, we also correct the dif-

fusion coefficient of Eq. (4) for orbit squeezing,D̂i
os

=D̂i /S
3/2. Neoclassical gyroviscosity was used to evaluatendi

and a neoclassical model for the parallel viscosity was used
(Appendix A).

A. Density and temperature profiles

The calculated density and temperature profiles in the
edge pedestal region are compared with measured data in
Figs. 1–3. There is a sharp pedestal structure in both the
calculated and measured electron densities and distinct but
somewhat less dramatic pedestal structures in the electron
and ion temperature data and calculations.

The agreement is sufficiently good to support the con-
clusion that the solution of the “pedestal equations” of the
preceding section can describe the pedestal structure at this
time in this discharge.(We could improve the agreement by
adjusting the transport coefficients, but refrained from doing
this.) This result provides one point of support for our hy-

pothesis that between or in the absence of ELMs the struc-
ture of theH-mode pedestal in tokamaks is determined en-
tirely by the requirements of plasma particle, momentum,
and energy conservation coupled with the recycling of neu-
tral atoms in the edge plasma.

Now we examine the details, but first a cautionary note.
Since the pedestal equations of the preceding section are
highly coupled nonlinear equations, it is difficult to identify
what is the “cause” and what is the “effect,” although some
interesting relationships can certainly be identified.

B. Factors determining the ion pressure gradient

The normalized ion pressure gradient,Lpi
−1, and the terms

determining it in Eq.(3) are plotted in Fig. 4, except forD̂i

which decreased from<1 m2/s at r=0.865 to<0.4 m2/s
just inside the separatrixsr=1.0d. Lpi

−1 peaks sharply just in-
side the separatrix, which is caused in part by the fact that
the ion radial velocity,vri =Gi /ni, peaks just inside the sepa-
ratrix due(i) to an increase with radius(by a factor of about

FIG. 1. Measure and calculated electron densities in the edge of a DIII-D
H-mode shot.

FIG. 2. Measure and calculated ion temperatures in the edge of a DIII-D
H-mode shot.
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3.5 over the calculation interval inside the separatrix) of Gi

due to ionization of recycling neutrals and(ii ) to the sharp
decrease inni just inside the separatrix.

The increase invri , and henceLpi
−1, as the separatrix is

approached from inside contributes to a sharp increase in
magnitude of the negative poloidal velocity[see Eq.(A10)],
as may be seen in Fig. 4. The strong increases in negative
poloidal rotation and in negative pressure gradients produce
a strong negative peak in the radial electric field of Eq.(6)
just inside the separatrixsfp,0d. (The calculatedEr be-
comes positive forr,0.95 and has not been plotted to avoid
difficulty with the logarithmic scale.)

The inward pinch velocity given by Eq.(5) and plotted
in Fig. 4 was primarily determined by the toroidal electric
field Ew and friction niz terms well inside the separatrix.
However, the momentum dragndi

* term involving the
strongly peaked radial electric field and the poloidal rotation
velocity became dominant and caused the sharp inward
(negative) spike just inside the separatrix. This large inward
(negative) pinch velocity just inside the separatrix further
contributes to the large negative pressure gradient of Eq.(3)

just inside the separatrix and would seem to be the cause of
the particle “transport barrier” in the edge pedestal.

The sharp negative spikes iny0z (the carbon poloidal
velocity profile was calculated to be similar to, but of slightly
larger negative magnitude than, the deuterium poloidal ve-
locity profile shown in Fig. 4) andEr are characteristic fea-
tures observed inH-mode pedestals. The measured values
just inside the separatrix in this shot wereyuz

<−s5–10dkm/s andEr <−13 kV/m, which are similar to
the calculated results in Fig. 4.

C. Factors determining the ion density gradient

The ion temperature gradient also affects the determina-
tion of the ion density profile. The calculated ion density
profile (and the electron density profile also in thisfz

=nz/ni =const model) is directly determined via integration
of Eq. (14) by Lni

−1=Lpi
−1−LTi

−1. For this shot, the calculated
Lpi

−1<LTi
−1 for 0.87,r,0.94, but the calculatedLpi

−1 was sig-
nificantly larger than the calculatedLTi

−1 for 0.94,r,1.0,
resulting in a steep ion density gradient over 0.94,r,1.0
but a relatively small density gradient over 0.87,r,0.94.
The calculated ion density profile and the calculated ion den-
sity gradient producing it are shown in Fig. 5. The factors
determining the calculatedLpi

−1 were discussed in the preced-
ing Sec. III B. The factors determiningLTi

−1 are given in Eq.
(8). xi =2xch

os+xitg decreased by<3, Qi decreased by a fac-
tor of 2, andGi decreased by<3 betweenr=0.87 andr
=1.0, andni andTi varied as shown in Figs. 2 and 5.

It has been hypothesized16–18 that neutral penetration
may cause the width of the density pedestal, which extends
over <0.94,r,1.0 for this shot. To further examine this
hypothesis, we plot the calculated ionization sourceSi and
the ion particle fluxGi in Fig. 5. Si does increase with in-
creasingr just inside the separatrix, and the combination of
ni decreasing withr and noi increasing withr produces a
peak just inside the separatrix. This causes the ion fluxGi to
increase more rapidly withr just inside the separatrix where
Si is largest. The sequence of mechanisms by which this
increase inGi due to ionization affect the ion pressure gradi-
ent was discussed in the preceding section. Ionization and

FIG. 3. Measure and calculated electron temperatures in the edge of a
DIII-D H-mode shot.

FIG. 4. Factors determining the ion pressure gradient in the edge of a
DIII-D H-mode shot.

FIG. 5. Relation of recycling neutral atom ionization source and the edge
density profile in the edge of a DIII-DH-mode shot.
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charge exchange could also affect the temperature profiles,
thereby having an effect on the density profile.

We note that all calculations were carried out using a
flux surface averaged model employing a neutral influx that
was a weighted average of the influxes from theX-point
region and from the mid-plane region. Since the flux surfaces
are more widely separated in theX-point region, the domi-
nantX-point influx would actually attenuate more rapidly in
r than was calculated in this flux surface average model,
resulting in the rapid variation inSi and Gi being concen-
trated somewhat closer to the separatrix than is indicated in
Fig. 5.

IV. SUMMARY AND CONCLUSIONS

We have examined the hypothesis that, between and in
the absence of ELMs, the edge pedestal structure(gradients
in density and temperature and the widths over which they
extend) are determined by the transport requirements of
plasma particle, momentum and energy balance, and by re-
cycling neutral atoms. A set of pedestal equations was devel-
oped based on this hypothesis and applied to calculate den-
sity, temperature, and other profiles in the edge region of a
DIII-D H-mode tokamak plasma. The calculated density and
temperature profiles exhibited an edge pedestal structure and
were in reasonable quantitative agreement with the experi-
mental profiles. The calculated profiles of radial electric field
and poloidal rotation velocity exhibited sharp negative peak-
ing just inside the separatrix, also in reasonable quantitative
agreement with experiment. All of these calculated pedestal
profile features were the natural consequence of particle, mo-
mentum and energy balance, and of neutral particle recy-
cling. The only “external” input to these calculations were
the thermal transport coefficients, which were chosen to
yield values close to those inferred from experiment.

Detailed examination of the calculation indicated that
the plasma ion pressure gradient was produced by the differ-
ence of the total ion radial velocity and the inward(negative)
radial ion pinch velocity, both of which were peaked just
inside the separatrix. The peaking in the total radial velocity
was due to the buildup of radial ion flux with increasing
radius due to ionization of recycling neutral atoms and to the
decrease in ion density. This peaking in the radial ion veloc-
ity just inside the separatrix apparently was the cause of the
negative peaking of the ion and impurity poloidal velocities
in the same location, which in turn were the cause of the
negative peaking in the radial electric field. The negative
peaking in ion poloidal velocity and radial electric field ap-
pear to be the cause of the peaking in the inward(negative)
pinch velocity, which in turn was the principal cause of the
sharp ion pressure gradient just inside the separatrix. This
sequence of events appears to be the mechanism by which
the ionization of recycling neutrals affects the density profile
in the edge pedestal.

The ion and electron temperature gradients, calculated
from the respective heat conduction requirements, were also
large and negative just inside the separatrix and diminished
in magnitude for smallerr, leading to a modest pedestal
structure in the respective temperature profiles. The(nega-

tive) ion temperature gradient was comparable to the ion
pressure gradient inside ofr<0.94, but was smaller in mag-
nitude for r. <0.94. When the ion temperature gradient
was subtracted from the ion pressure gradient, the resulting
ion density gradient was very small forr, <0.94 but large
for r. <0.94, producing a strong pedestal structure in the
ion (and electron) edge density profile.

Clearly, the edge pedestal equations of this paper need to
be applied to the calculation of edge profiles in a wide vari-
ety of shots with different edge parameters, heating powers,
neutral recycling levels, etc., both to confirm the validity of
the hypothesis on which they are based and to better under-
stand the very complex interactions that determine the ob-
served edge pedestal structure in tokamaks. We intend to
make such calculations in the future.

The question of whether the same set of equations can
describe “internal transport barriers” observed in tokamaks
naturally arises. The same equations should describe internal
transport barriers, but obviously the recycling neutral atoms
and impurity radiation will be less important and the particle,
momentum, and energy sources due to neutral beams and
any rf heating source will be more important. The effects of
ion radial and poloidal rotation and the radial electric field,
which were found to be so important in the edge, are not at
all clear for an internal transport barrier. Furthermore, the
heat conductivities might be quite different in the core than
in the edge.

The three most significant findings of this paper are as
follows.

(1) The demonstration that the density pedestal structure of
the edge pedestal seems to be a natural consequence of
the requirements of particle, momentum, and energy bal-
ance, together with neutral recycling.

(2) The identification of the involved sequence of mecha-
nisms by which the ionization of recycling neutrals af-
fects the edge pedestal structure.

(3) The identification of a prescription for the pinch velocity
and a demonstration of its importance in determining
edge particle transport and the edge density pedestal
structure.

These results have important implications for how the
edge pedestal should be modeled. We note that 2D edge
codes, which treat particle transport with diffusive models
and neglect momentum transport inside the separatrix, rou-
tinely calculate an edge density pedestal by adjusting the
diffusion coefficient to do so, but our results indicate that the
pinch velocity (which is usually neglected or treated on an
ad hocbasis in such codes) is dominant in determining the
density pedestal. This calls into question the physical mean-
ingfulness of these pedestal predictions. The present model
avoids the necessity for usingad hocdiscontinuities or near
discontinuities in transport coefficients to model the pedestal
region.

The present results also call into question the physical
meaningfulness of the more ambitious recent effort to model
the pedestal by combining a diffusive plasma density model
and anad hocneutral model,16,18 again because of the omis-

5492 Phys. Plasmas, Vol. 11, No. 12, December 2004 W. M. Stacey

Downloaded 19 Jul 2011 to 130.207.50.192. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



sion of the pinch velocity and other requirements of momen-
tum conservation, which appear to dominate in the determi-
nation of the pedestal structure.

APPENDIX A: FLUX-GRADIENT RELATIONS FROM
PARTICLE AND MOMENTUM BALANCE

1. Pressure gradient

It has been shown previously15 that the momentum and
particle balance equations for a multispecies tokamak plasma
can quite generally be solved to obtain a coupled set of equa-
tions relating the particle fluxes, the pressure gradients, and
the “pinch velocities” for the various species

G j = njDjjsLnj
−1 + LTj

−1d − njDjksLnk
−1 + LTk

−1d + njypj, sA1d

where the “diffusion coefficients” are given by

Djj ;
mjTjsndj

* + n j jd
sejBud2 , Djk ;

mjTkn jk

ejekBu
2 , sA2d

the pinch velocities are given by

njypj ; −
M̄f j

ejBu

−
njĒf

A

Bu

+
njmjndj

*

ejBu
SEr

Bu
D

+
njmj fp

−1

ejBu

fsn jk + ndj
* dȳu j − n jkȳukg, sA3d

and where a sum over thekÞ j terms is understood. Here,n jk

is the interspeciesj-k collision frequency,Mw and Ew
A de-

note the toroidal components of the momentum input and the
induced electric field,Lpj

−1;−sdpj /drd /pj ,yrj and yu j denote
the radial and poloidal components of the velocity of species
j averaged over the flux surface,fp;Bu /Bw, the total mo-
mentum transfer, or “drag,” frequencyndj

* is given by

n̄dj
* ; n̄dj + n̄atj + n̄ionjj j , sA4d

which consists of a cross-field viscous momentum transport
frequency formally given by

n̄dj ; kR2 = f · = · p jl/R̄n̄jmjȳf j sA5d

and of “atomic physics”(charge exchange plus elastic scat-
tering) and ionization momentum loss terms, with the neutral
ionization source poloidal asymmetry characterized by

j j ; kR2 = f ·mjS̃jyf jl/R̄mjS̄jȳf j , sA6d

where Sjsr ,ud=nesr ,udnj0sr ,udksylion;nesr ,udnionsr ,ud is
the ionization source rate of ion speciesj ,nj0 is the local
concentration of neutrals of speciesj , andyw j is the toroidal
component of the velocity of speciesj .

2. Viscous cross-field momentum transport

In order to actually evaluate the above equations it is
necessary to specify the toroidal viscous force
kR2=f ·= ·pl, which determines the viscous momentum
transport frequencyndj, given by Eq.(A5). There are three
neoclassical viscosity components—parallel, perpendicular,
and gyroviscous. The “parallel” component of the neoclassi-
cal viscosity vanishes identically in the viscous force term,

and the “perpendicular” component is several orders of mag-
nitude smaller than the “gyroviscous” component24

kR2 = f · = · p jl =
1

2
ũ jGj

njmjTj

ejBf

yf j

R̄
; Rnjmjndjyf j ,

sA7d

where

ũ j ; s4 + ñj
cdỹf j

s + ñj
ss1 − ỹf j

c d

= s4+ñj
cdf− sŷu j/ŷf jdsF̃s

+ ñj
sd + F̃sg + ñj

sfsŷu j/ŷf jds2 + F̃c + ñj
cd − F̃cg sA8d

represents poloidal asymmetries and

Gj ; −
r

h4jyf j

] sh4jyf jd
] r

= rsLpj
−1 + Lyf j

−1 d sA9d

with the gyroviscosity coefficienth4j <njmjTj /ejB andLx
−1

=−sdx/drd /x.

3. Poloidal velocities and density asymmetries

In order to evaluate Eq.(A8) it is first necessary to cal-
culate the sine and cosine components of the density and
toroidal velocity poloidal variations over the flux surface.
Using a low-order Fourier expansion of the poloidal depen-
dence of the densities and rotation velocities over the flux
surface in the poloidal component of the momentum balance
equation and taking the flux surface average with 1, sinu,
and cosu weighting then yields a coupled set of three non-
linear moments equations per species that can be solved nu-
merically for the flux surface average poloidal velocities and
the sine and cosine components of the density variations, for
the various ion species present, over the flux surface.15,20

ŷu jF− qŷf j«sñj
s + F̃sd − q2f j fpS1 + F̃c +

2

3
ñj

cD + fpo
kÞ j

n jk
*

+
q

«
natj

* fp +
1

2
fp«nionj

* Hs1 + ñj
cdF n̄e

n̄j

sñe
c + ñoj

c d − sñj
c

+ ñoj
c dG + ñj

sF n̄e

n̄j

sñe
s + ñoj

s d − sñj
s + ñoj

s dGJG
− o

kÞ j

ykuF fpn jkÎmj

mk
G

= − ŷrj − q«
1

4
ñj

s − q«F̂ jF1

4
sF̃s + ñj

cF̃s − ñj
sF̃cdG

− q2f j fpsŷf j + Pj8̂dF̃
c − q«ŷf jFsŷf j + Pj8̂dF̃

s +
1

2
ŷf jñj

sG
−

n̄e

n̄j

nionj
* qFŷf j«sñe

c + ñoj
c d −

2

3
qfjsñe

s + ñoj
s dG , sA10d
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ñj
sF1

3

q2

«
f j fpŷu j +

1

2
«ŷrj −

1

2
«fpo

kÞ j

n jk
* ŷukÎmj

mk
+

1

2
qnion

* fpŷu jG
+ ñj

cF1

2
qfp

2ŷu j
2 −

1

4
q +

1

2
qnatj

* nionj
* G

= −
1

2
«fpo

kÞ j

n jk
* ŷu jñk

s −
1

4
qF̂ jf− F̄cg

−
q2

«
f j fpF1

2
sŷu j − ŷf j − P8 j

ˆdF̃s −
1

2
qfp

2ŷu j
2 −

1

2
qŷf j

2

−
1

2
qnatj

* ffpŷu jñoj
s + nionj

* ñoj
c gG

− qnionj
* fpF1

2
ŷu jHñoj

s S1 +
n̄e

n̄j
D +

n̄e

n̄j

ñe
sJ

+
1

3

q

«
f j

n̄e

n̄j

sñe
c + ñoj

c dG , sA11d

and

ñj
cF1

3

q2

«
f j fpŷu j +

1

2
«ŷrj −

1

2
«fpo

kÞ j

n jk
* ŷukÎmj

mk

+
1

2
qnionj

* fpŷu jG + ñj
sF−

1

2
qfpŷu j

2 +
1

4
q −

1

2
qnatj

* nionj
* G

= − o
kÞ j

ñk
cF1

2
«fpn jk

* ŷu jG −
1

4
qF̂ jfF̃sg

−
q2

«
f j fpF1

2
hs1 + F̃cdŷu j − sŷf j − Pj8̂dF̃

cjG
− qŷf j

2 F1

4
«hỹf j

s ỹf j
c + ñj

cỹf j
s + ñj

sỹf j
c jG

−
1

2
qnatj

* ffpŷu jñoj
c − nionj

* ñoj
s g

− qfpnionj
* F1

2
ŷu jHñoj

c S1 +
n̄e

n̄j
D

+
n̄e

n̄j
ñe

cJ +
1

3

q

«
f j

n̄e

n̄j

sñe
s + ñoj

s dG , sA12d

where

ŷu j ;
ȳ

u j

ufpuythj
, ŷf j ;

ȳf j

ythj
,

ŷrj ;
ȳrj

Smjythj

ejBu
0 DufpuS ythj

qR
D , fp ;

Bu

Bf

,

ñj
c/s ;

nj
c/s

«
, F̃c/s ;

Fc/s

«
, ñoj

c/s ;
noj

c/s

«
,

n jk
* ;

n jk

sythj/qRd
, nionj

* ;
n̄ionjr

ythj
, natj

* ;
n̄atjr

ythj
, sA13d

F̂ j ;
ejF̄

Tj
, Pj8̂ ;

1

Bu
0n̄jejythj

] pj

] r
.

In order to solve the poloidal moments of the momentum
equation described in the previous paragraph, we have used
the neoclassical parallel viscosity tensor obtained by extend-
ing the classical rate-of-strain tensor formalism to toroidal
geometery,24 leading to the poloidal component of the diver-
gence of the parallel viscosity tensor,

nu · = · p = hojS1

2
AojDH1

r

] lnshojAojd
] u

3sinu

R
J , sA14d

where

1

2
Aoj = H−

1

3

1

r

] yu j

] u
+ yu jS 1

R

1

r

] R

] u
+

1

3

1

Bu

1

r

] Bu

] u
D

+ SBu

Bf
DR

r

] syf j/Rd
] u

J , sA15d

and by replacing the classical parallel viscosity coefficient
with a neoclassical form25

hoj =
njmjythjqR«−3/2n j j

*

s1 + «−3/2n j j
* ds1 + n j j

* d
; njmjythjqRfjsn j j

* d sA16d

that takes banana-plateau collisionality effects into account.

4. Radial electric field

Finally, we summarize the development of an expression
for the radial electric field,19 which is needed above, by sum-
ming the toroidal component of the momentum balance
equation over species and making use of the flux surface
averaged radial component of the momentum equation

ȳf j = fp
−1ȳu j − sP̄j8 + F̄8d, sA17d

where

fp ; Bu/Bf, P̄j8 ;
1

n̄jejB̄u

] p̄j

] r
, F̄8 ;

1

B̄u

] f

] r
= −

Ēr

B̄u

,

sA18d

to obtain

Er

Bu

=

o
j

ions

hMf j + njmjndj
* sPj8 − fp

−1yu jdj

o
j

ions

njmjndj
*

. sA19d

APPENDIX B: PENETRATION OF RECYCLING
NEUTRALS

The interface-current-balance method21 is used to calcu-
late the inward transport of a partial current,Jsol

+ , of neutral
particles incident on the scrape-off layer from the divertor
and plasma chamber. Defining the albedo as the ratio of in-
ward to outward partial currents,an;Jn

+/Jn
−, a recursive re-

lation relates the albedos at successive interfacesn
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=1,2,… ,N numbered successively from the outer boundary
of the SOLsn=1d inward to the innermost interfacesn=Nd:

an =
an−1sTn−1

2 − Rn−1
2 d + Rn−1

1 − an−1Rn−1
, n = 2,3,…,N. sB1d

Once the albedos are calculated by sweeping inward from
n=2 to n=N, the ratio of outward partial currents at succes-
sive interfaces can be calculated by sweeping outward from
n=N−1 to n=1 using the recursive relation

Jn
−

Jn+1
− = RnTn

−1an+1 + sTn − Rn
2Tn

−1d, n = N − 1,N − 2,…,1.

sB2d

The appropriate boundary conditions areJ+
1=J+

sol and aN

=aplasma. The quantityaplasmais the albedo of a semi-infinite
plasma medium, but the actual value is not important if the
location of interfaceN is sufficiently far(several mean free
paths) inside the separatrix that the neutral influx is highly
attenuated. The quantitiesRn and Tn are the reflection and
transmission coefficients for the region of thicknessDn

=xn+1−xn with total sionization+charge-exchange
+elastic scatteringd mean-free-pathln calculated for the lo-
cal ion and electron temperatures and densities and assuming
the neutrals to have the same local temperature as the plasma
ions,

R
n

=

1

2
CF l

n

D
n

GF1

2
− E

3SD
n

l
n

DGF1 − E
2SD

n

l
n

DG
1 − CH1 −F l

n

D
n

GF1

2
− E

3SD
n

l
n

DGJ ,

sB3d

Tn = E2SDn

ln
D + Rn,

where “C” is the ratio of the charge-exchange plus elastic
scattering cross sections to the total cross section, andEmsyd
is the exponential integral function ofmth order and of ar-
gument “y.” The neutral density in each mesh interval is
determined by equating the divergence of the neutral current
to the ionization rate.

The transmission of uncollided cold neutrals into the
edge plasma is calculated fromJn+1

c =E2sDn/ln
cdJn

c, where the
mean-free-pathlc is calculated for the temperature of neu-
trals entering the scrape-off layer from the plenum region.

APPENDIX C: THERMAL CONDUCTIVITY
MODELS
1. Neoclassical

The basic neoclassical expression for ion heat conduc-
tivity for a two-species(ion-impurity) plasma is

xi = «1/2riu
2 viI , sC1d

where«=r /R is the ratio of minor and major radii,riu is the
ion poloidal gyroradius, andviI is the ion-impurity collision
frequency. A more complete expression is given by the
Chang–Hinton formula26

xi = «1/2riu
2 viifa1g1 + a2sg1 − g2dg, sC2d

where thea’s account for impurity, collisionality, and finite
inverse aspect ratio effects and theg’s account for the effect
of the Shafranov shift.

In the presence of a strong shear in the radial electric
field Er, the particle banana orbits are “squeezed,” resulting
in a reduction in the ion thermal conductivity by a factor of
S−3/2, where27

S= U1 − riuSd ln Er

dr
DS Er

ythiBu
DU sC3d

ythi is the ion thermal speed andBu is the poloidal magnetic
field.

2. Ion temperature gradient mode

For a sufficiently large temperature gradient
(LTi,LTi

crit <0.1R—Ref. 28) the toroidal ITG mode becomes
unstable. An estimate of the ion thermal conductivity due to
ITG modes is given by29

xi =
5

2
S 1

RLTi
D1/2STe

mi
DS mi

eiB
D1

2
ri , sC4d

wherek'ri =2 has been used, withri being the ion gyrora-
dius in the toroidal field.

3. Electron drift waves

The principal electron drift wave instabilities withk'cs

øVi arise from trapped particle effects whenne
*

=ne/ svthe/qRd«3/2,1. In more collisional plasmas the mode
becomes a collisional drift wave destabilized by passing par-
ticles. An expression for the electron thermal conductivity
that encompasses both the dissipative trapped electron mode
(TEM) and the transition to the collisionless mode asne

*

→0 is given by28

xe =
5

2

«3/2

ne

cs
2rs

2

LnLTe
S 1

1 + 0.1/ne
* D , sC5d

wherecs is the sound speed andrs=cs/Vi, with Vi being the
ion cyclotron frequency.

4. Electron temperature gradient modes

The ETG mode(an electron drift wave withk'csøvpe)
is unstable forhe=Ln/LTeù1. An expression for the electron
thermal conductivity associated with the ETG mode is given
by28

xe = 0.13S cs

vpe
D2ytheSm

qR
hes1 + hed, sC6d

where vpe is the electron plasma frequency andSm=sr /qd
3sdq/drd is the magnetic shear.

The turbulent transport models discussed above are ana-
lytical simplifications. We use them because we have com-
pared them with experiment14 for several DIII-D discharges,
including the one discussed in this paper. However, neither
these nor any other transport models have yet been shown to
be valid in the edge pedestal.
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