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Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal
profiles of rotation velocity, radial electric field, density, and temperature

Weston M. Stacey
Fusion Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

(Received 20 June 2013; accepted 20 August 2013; published online 17 September 2013)

An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion

current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal

and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles,

and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is

described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion

42, 614 (2002)] plasma are presented and compared with experimental results. Taking into

account, ion orbit loss of thermal ions and the compensating return ion current is found to have a

significant effect on the structure of the radial profiles of these quantities in the edge plasma,

indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting

these quantities. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820954]

I. INTRODUCTION

Since its discovery,1 the (high-confinement) H-mode of

operation in tokamak plasmas has been intensively investi-

gated (e.g., Refs. 2–6). This interest arises not only because

of its importance for the achievement of improved plasma

confinement and other performance parameters but also

because of the implications about the underlying physics in-

herent in the interesting structure that develops in the radial

profiles of rotation, electric field, density, and temperature in

the edge plasma when the H-mode is formed.2 In the com-

mon tokamak configuration in which the plasma current and

toroidal magnetic field are oppositely directed, the radial

electric field and the carbon poloidal rotation velocity

become negative (in a right-hand r-h-u system), and steep

gradients in the density and temperature distributions are

formed, all in a rather narrow “edge pedestal” region just

inside the last closed flux surface (LCFS).

Numerous theoretical explanations have been proposed

for the change in structure observed in the edge profiles

during H-mode formation. It has been suggested that pro-

duction of the negative well structure in the radial electric

field is caused by non-ambipolar diffusive transport proc-

esses,7 by the bifurcation in the momentum balance and in

the poloidal rotation due to ion-orbit-loss in the edge

plasma,8 by the suppression of transport due to thermal

instabilities by an increasing temperature gradient,9 and by

other means. The present reigning paradigm for the forma-

tion of the steep density and temperature gradients is that

shear stabilization of microinstabilities due to the steep gra-

dients (shear) in the radial electric field reduces the diffu-

sive transport coefficients, requiring a steepening of density

and temperature gradients in order to maintain the exhaust

of heat and particles from the plasma core.10,11 However,

there is recent theoretical and experimental evidence that

transport in the edge pedestal of H-mode plasmas has a

strong non-diffusive component (e.g., Refs. 12–17) and that

ion-orbit-loss has a significant effect on rotation in the

plasma edge (e.g., Refs. 18–21).

Thus, while limiting values of temperature and density

gradients are likely set by MHD (magnetohydrodynamic)

instability limits on pressure gradients (e.g., Refs. 22 and

23), it would seem that before these MHD limits are reached,

the density, temperature, rotation velocity, and electric field

profiles in the edge plasma must be determined by the inter-

action of the edge plasma with external mechanisms (e.g.,

particle, energy and momentum losses,18–21 and influ-

xes24,25), the response to which must be determined by the

plasma physics conservation constraints and the various

transport processes taking place within the plasma.

Understanding how the gradients are set prior to reaching the

MHD limits is the key to understanding how to avoid these

limits, or at least to control which MHD limits are reached.

The purpose of this paper is to present a model that relates

the dependence of the density, temperature, rotation velocity,

and radial electric field profiles in the edge plasma to the exter-

nal sources and sinks of particles, energy, and momentum and

to the momentum transport and energy conduction coefficients

in the plasma edge. The particle sources and ion orbit losses

determine the radial ion particle fluxes, which in turn affect the

rotation velocities and thereby the radial electric field. The

energy sources and sinks determine the radial energy fluxes of

ions and electrons, and the heat conduction relations (surro-

gates for the fourth moment equations) determine the tempera-

ture gradients. The momentum balances govern the ion

toroidal and poloidal rotation velocities and radial pressure gra-

dient, and the ion density gradient is determined from the pres-

sure gradient by subtracting the ion temperature gradient. The

model used in this paper is based on “two-ion” fluid theory.

II. A TWO-ION FLUID MODEL FOR THE STRUCTURE
IN THE DENSITY, TEMPERATURE, ROTATION
VELOCITY, AND ELECTRIC FIELD PROFILES
IN THE PLASMA EDGE

A. Radial ion flux

Integration of the steady-state particle continuity equa-

tion for species “j”
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r � njVj � r � Cj ¼ Snbj þ nojnehriontij � Snbj

þ ne�ionj � Sj (1)

determines the flux-surface averaged radial component of

the ion particle flux, which is denoted Crj and is usually

outward except perhaps in the edge. The first term on the

right is the neutral beam or pellet particle source rate of

ions of species “j” and the second term is the ion particle

source rate due to ionization of recycling or fueling neutral

atoms of species “j.” A similar equation obtains for all ion

species present in the plasma, in particular, the main ion

and impurity species with which we will be concerned in

this paper.

Not all of this particle flux flows in the plasma subject to

plasma transport processes because some of the ions are ei-

ther born on drift orbits that pass outward through the LCFS

or are carried radially outward in the flowing plasma until

they access such orbits, at which point these ions are lost

from the plasma across the separatrix or LCFS. A cumulative

(with radius) fraction ForbjðrÞ of this total particle flux Crj

resulting from external sources is lost from the edge region

across the separatrix by ion-orbit-loss and by gradB drifting

outward through the X-region (X-loss26) of either the fast

beam ions or of the thermalized plasma ions, thereby reduc-

ing the actual flux of particles being transported radially out-

ward in the plasma from that calculated by Eq. (1) to

C
_

rj � ð1� ForbjÞCrj.

In order to maintain charge neutrality, the loss of fast

beam and thermalized plasma ions by ion-orbit-loss and X-

loss must be compensated by either an inward current or a

displacement current, which drives a negative radial elec-

tric field in the plasma edge to reduce the ion orbit loss. In

this paper, we take into account the displacement current

effect by using the measured radial electric field to calcu-

late the ion orbit loss, but explicitly represent the return

current that compensates those ions which are lost. We plan

to explicitly treat the displacement current effect in a future

paper.

Since the electrons are generally more effectively tied to

field lines than are the ions, this current must be primarily

carried by the ions.18 Thus, the total inward current must

compensate the ion-orbit-loss from both the “thermalized”

plasma ions (main ion and impurities) and the fast neutral

beam ions, jr ¼ jiol
r þ jnbi

r . Because the ion orbit loss of the

main (deuterium) ion species “j” is much greater than for the

impurity (carbon) ion species “k,”21 we make the approxima-

tion jiol
r ðrÞ ¼ �ejForbjCrj � ekForbkCrk ’ �ejForbjðrÞCrjðrÞ

in calculating the return current. In this paper, we will be

concerned with the ion orbit loss of thermalized plasma

ions, which we consider to be likely to affect the edge

plasma structure, but note that the loss of fast neutral beam

ions (and one day alpha particles) should also be taken into

account.

Assuming that the inward compensating current is carried

by the main ion species, the net outward particle flux of the

main ion species in the plasma due to loss of “thermalized”

plasma ions (taking into account ion-orbit-loss and X-loss

of outward flowing ions and the compensating inward current

of main ions from the scrape-off layer) is then Ĉrj ’ ð1
�ForbjÞCrj � ForbjCrj ¼ ð1� 2ForbjÞCrj, where again Crj

would be the outward main ion flux due to the neutral beam

and recycling neutral sources in the absence of any ion-orbit-

loss or X-loss of ions or compensating inward current. A neg-

ative value of Ĉrj, as will occur in the edge when Forbj > 0:5,

indicates a net inward flux of the main ions. Since it is

assumed that the compensating return current is carried by

ions of the main species “j” and that ion orbit loss of the

impurity species “k” is negligible, then ion orbit loss can

be taken into account by replacing Crj with Ĉrj � ð1
�2ForbjÞCrj for the main ions, but using the value of C

_

rk

� ð1� ForbkÞCrk ’ Crk calculated from the continuity equa-

tion for the impurity ion species. The net radial flux of elec-

trons is Cre ¼ zjĈrj þ zkC
_

rk.

It may be helpful to think of the radial particle fluxes of

two categories of ions: (1) those that are on confined orbits

and that are transported radially outward by diffusive and

non-diffusive interactions within the plasma; and (2) those on

loss orbits that constitute essentially instantaneous charge

losses from the plasma when they reach a radius where they

can access a loss orbit. This loss constitutes a reduction in the

outflow of category 1 ions flowing radially in the plasma. The

category 2 ions must be replaced immediately by an inward

compensating current of cold ions from the scrape-off layer

(SOL) flowing in the plasma and interacting with it (i.e., by a

negative inward flow of category 1 ions) in order to maintain

charge neutrality. The total outward ion flow of category 1

ions plus category 2 ions is unchanged by the ion orbit loss.

However, the outward flow of category 1 ions is reduced first

by the transfer of ion orbit loss ions to category 2 and then by

the negative inflow of the compensating current category 1

ions. It is only the category 1 ions flowing in the plasma and

interacting with it that are included in the plasma momentum

balance equations and that thereby influence the plasma rota-

tion and radial electric field (the category 2 ions are instanta-

neously removed from the plasma and influence it only via

the effect on the category 1 ions just described).

B. Ion rotation velocities

The continuity Eq. (1) can be combined with the mo-

mentum balance equation to obtain a balance among the in-

ertial, pressure, viscous, electric field, VxB, collisional

friction, and external source terms27

njmjðVj � rÞVj þrpj þr �Pj ¼ njejðEþ Vj � BÞ þ R1
j

þ ðS1
j � mjVjSjÞ: (2)

In a two-ion-species plasma (“j” and “k”), the toroidal

component of the momentum balance equation for species

“j” can be written

BhejĈrj ¼ njmjð�dj þ �jkÞV/j � njmj�jkV/k � ðM/j þ njejE
A
/Þ
(3)

and the equation for the other ion species “k” is obtained by

interchanging the “j” and “k” subscripts. (This formalism is

readily generalized to multiple species by summing over “k.”)

092508-2 Weston M. Stacey Phys. Plasmas 20, 092508 (2013)



The quantity �dj � �/
viscj þ �

/
inertj þ �ionj þ �elcxj þ �/

anomj is a

composite toroidal momentum exchange frequency due to

toroidal viscosity, toroidal inertia (Reynold’s stress), ioniza-

tion, elastic scattering plus charge exchange (defined simi-

larly to �ionj but with the elasticþ charge-exchange cross-

section), and “anomalous” viscosity (due to turbulence, non-

symmetric toroidal magnetic field, etc.), respectively, and

can be determined experimentally28 by solving Eq. (3) using

measured rotation velocities. The quantity �dj þ �jk repre-

sents the total momentum exchange frequency for ions of

species “j.” Justification for writing the viscous and inertial

momentum transfer in this form is discussed in Refs. 12

and 29. M/j ¼ Mnbi
/j þMiol

/j þManom
/j is the toroidal momen-

tum input from neutral beams, from the directionally prefer-

ential ion-orbit-loss and X-loss of “thermal” plasma ion

momentum,21 and from other sources. EA
/ is the induced to-

roidal electric field, and the other quantities have their usual

meaning.

Equation (3) and the corresponding equation for species

“k” can be solved for

V/j ¼

ejBhĈrj þM/j þ njejE
A
/

njmjð�jk þ �djÞ

" #
þ �jk

ð�jk þ �djÞ
ekBhC

_

rk þM/k þ nkekEA
/

nkmkð�kj þ �dkÞ

2
4

3
5

1� �jk�kj

ð�jk þ �djÞð�kj þ �dkÞ

� � (4)

and a similar equation with the subscripts “j” and “k” inter-

changed for V/k. Here, in the case of the main ion species “j,”

Ĉrj ¼ ð1� 2ForbjÞCrj, taking into account both the ion orbit

loss and the compensating inward current, but for the impurity

species “k,” Ĉrk is replaced by C
_

rk � ð1� ForbkÞCrk. Thus,

the toroidal rotation for each species is driven by the terms in

the numerator—the beam, ion-orbit-loss, and induced electric

field toroidal momentum input to both species and the torque

due to the radial particle fluxes of both species. The first term

in the numerator represents the direct momentum drive to spe-

cies “j,” and the second term represents the momentum drive

to species “k” that is transferred to species “j” by scattering.

The response to these drives is determined by the momentum

transport frequencies—interspecies, viscous, inertial, atomic

physics, and anomalous—in the denominator.

The poloidal rotation velocities for the two ion species

are determined by the poloidal component of the momentum

balance equations for each species. Using the Shaing-Sigmar

form of the parallel viscosity30 g0j ¼ njmjVthjqRfjð��jjÞ;
fj � e�3=2��jj=ð1þ e�3=2��jjÞð1þ ��jjÞ; ��jj � �jjqR=Vthj and

neglecting poloidal asymmetries over the flux surface in

density and flow, the poloidal momentum balance equation

for ion species “j” may be written31

ð��viscj þ �jk þ �atomjÞVhj � �jkVhk

¼ �B/
ej

njmj
Ĉrj � �viscj

KjTjL
�1
Tj

ejB2

 !( )
; (5)

where �viscj � qfjVthj=R, L�1
Tj � �T�1

j @Tj=@r, and Kj

� lj
01=l

j
00 (the l’s are the Hirshman-Sigmar coefficients31–33).

A similar equation with the “j” and “k” sub/super-scripts inter-

changed obtains for the “k” ion species. The two Eqs. (5) can

be solved to obtain the poloidal rotation velocities

Vhj ¼

�B/

�hj

��viscj

KjTj

ejB2
L�1

Tj þ
ej

njmj
Ĉrj

" #
þ
�jk

�hk

��visck

KkTk

ekB2
L�1

Tk þ
ek

nkmk
Ĉrk

� �( )

1�
�jk�kj

�hj�hk

" # ; (6)

where �hj � �viscj þ �jk þ �atomj þ �anomhj. A similar equa-

tion with the “j” and “k” sub/super-scripts interchanged

results for Vhk. Again, for the main ion species “j,” Ĉrj

¼ ð1� 2ForbjÞCrj; but for the impurity species “k,” Ĉrk is

replaced by C
_

rk � ð1� ForbkÞCrk. Equation (6) indicates

that the poloidal rotation for each species is driven by the

torques due to the radial particle fluxes and the temperature

gradients of both species. The drive to species “j” is the

sum of the torques acting directly on species “j” and

the torques acting on species “k”, which are transferred to

species “j” by scattering. The direction of the torques,

hence the direction of the poloidal rotation, depends upon

the direction of the toroidal magnetic field, the direction (in

or out) of the radial particle fluxes and the direction of the

temperature gradients. The response to this drive is deter-

mined by the momentum transport frequencies—interspe-

cies, poloidal (parallel) viscous, atomic physics, and

anomalous in the denominator.
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C. Radial electric field

Multiplying the radial component of the momentum

balance for each species by er=mr for the species and

summing over main ions, impurities, and electrons yields a

generalized Ohm’s law that governs the radial electric

field27

Er ¼ gjr � ðu� BÞr þ
rrðpj þ pkÞ
eðnj þ zknkÞ

¼ �gejCrjForbj �
ðVjhB/ � Vj/BhÞ
ð1þ nkmk=njmjÞ

� ðVkhB/ � Vk/BhÞ
ð1þ njmj=nkmkÞ

�
ðpjL

�1
pj þ pkL�1

pk Þ
eðnj þ zknkÞ

; (7)

where u is the plasma mass velocity, g ’ 1:03� 10�4 Zef f

lnK=T3=2
e ðeVÞX� m is the Spitzer perpendicular plasma re-

sistivity, and jr ¼ �ejCrjForbj is the inward main ion current

compensating the ion orbit loss and X-loss of fast beam ions

and thermal plasma ions, again with Crj being the outward

flow of main plasma ions that would result in the absence of

ion orbit loss and X-loss (i.e., the solution of the continuity

equation).

D. Ion pressure and density gradient scale lengths

The toroidal and radial components of the momentum bal-

ance equations for two ion species “j” and “k” can be solved to

obtain a pinch-diffusion relation for the radial particle fluxes, the

flux surface averaged component of which may be written12

Ĉrj ¼ njDjjðL�1
nj þ L�1

Tj Þ � njDjkðL�1
nk þ L�1

Tk Þ þ njV
pinch
rj ; (8)

where the “self-diffusion” coefficient is Djj � ðmjTjð�dj

þ �jkÞÞ=ðejBhÞ2, the “other-species-diffusion” coefficient is

Djk ¼ ðmjTk�jkÞ=ejekB2
h, and the pinch velocity representing

electromagnetic and other external forces is

Vpinch
rj ¼ � M/j

njejBh
�

EA
/

Bh
þ mj�dj

ejBh

Er

Bh

þ mjB/

ejB2
h

½ð�dj þ �jkÞVhj � �jkVhk�: (9)

Equations (3) and (8) and a similar equation with sub-

scripts “j” and “k” interchanged for ion species “k” can be

solved for the value of the pressure gradient scale length L�1
pj

� �ð@pj=@rÞ=pj that is required by momentum balance

L�1
pj ¼

ðejBhÞ2
Ĉrj

nj
� Vpinch

rj

( )
þ mj=ej

mk=ek

�jk

ð�dk þ �kjÞ
Ĉrk

nk
� Vpinch

rk

( )2
4

3
5

mjTjð�dj þ �jkÞ½1�
�
�jk�kj=ð�dj þ �jkÞð�dk þ �kjÞ

�
�

: (10)

Again, for the main ion species “j”, Ĉrj ¼ ð1� 2ForbjÞCrj;

but for the impurity species “k,” Ĉrk is replaced by

C
_

rk � ð1� ForbkÞCrk. The ion pressure gradient in the edge

is seen to be driven by the electromagnetic forces in the

pinch velocity and the radial particle fluxes corrected for ion

orbit loss.

In using these equations to interpret experiments, it is

practical to use the radial momentum balance to replace the

impurity poloidal velocity (which is usually measured in

DIII-D but not always in other experiments) with the impu-

rity toroidal velocity (which usually is measured) and other

terms to obtain

njV
pinch
rj ¼ � M/j

ejBh
�

njE
A
/

Bh
þ njmj

ejBh

� ð�jk þ �djÞ
Er

Bh
þ B/

Bh
Vhj

� �
� �jkV/k

� �
: (11)

If we take advantage of the fact that usually L�1
Tk ’ L�1

Tj for

different ion species and further assume L�1
nk ’ L�1

nj , we

obtain a simplified expression for the main ion pressure gra-

dient scale length that can be used to obtain a simple expres-

sion for the density gradient scale length

L�1
nj � L�1

pj � L�1
Tj ’

Ĉrj � njV
pinch
rj

njDj
� L�1

Tj ; where

Dj �
mjTj�jk

ðejBhÞ2
1þ �dj

�jk
� ej

ek

� �
:

(12)

E. Ion and electron temperature gradient scale
lengths

The temperature gradient scale lengths for the ion spe-

cies and the electrons are determined by the heat conduction

relations14

L�1
Tj ¼

�
Qrjð1� EorbjÞ � 1:5TjCrjð1� ForbjÞ

�
njTjvj

; (13)

where the ion-orbit-loss fractions only obtain for the ions,

not the electrons. This expression recognizes the reduction in

both the outward total heat flux and outward convective heat

flux due to ion orbit loss, but assumes that because of the

much smaller SOL temperature that the inward convective

heat flux from the SOL associated with the compensating

inward ion current is negligible. The total energy fluxes sat-

isfy the ion energy balance equations

092508-4 Weston M. Stacey Phys. Plasmas 20, 092508 (2013)



@Qrj

@r
� @

@r
qj þ

3

2
CjTj

� �

¼ qnbj � qje � njn
c
ohrticx

3

2
ðTj � Tc

oÞ (14)

and the electron energy balance equation

@Qre

@r
� @

@r
qe þ

3

2
CeTe

� �
¼ qnbe þ qje � nenkLkðTeÞ: (15)

The qnb terms represent neutral beam (or other) heating, qje is

the ion-to-electron collisional energy transfer, and the last terms

in Eqs. (14) and (15) represent charge-exchange cooling of the

ions and radiation cooling of the electrons, respectively. The

quantities qj;e � nj;eTj;evj;eL�1
Tj;e

are the conductive heat fluxes.

While the density and temperature gradient scale lengths

of Eqs. (12) and (13), along with the particle and energy flux

Eqs. (1), (14), and (15), can be integrated to obtain density

and temperature profiles, these profiles depend also on the

boundary conditions at the last closed flux surface and at the

inner boundary for the edge region calculation. Thus, for

investigation of edge physics by comparison with experi-

mental results, it is probably less ambiguous to compare gra-

dient scale lengths.

III. ION ORBIT LOSS FROM THE THERMALIZED ION
FLUX FLOWING THROUGH THE PLASMA EDGE

In general, both fast beam ions (and fusion alpha particles)

and thermalized plasma ions can execute lost orbits that cross

the separatrix and interact with a material surface or plasma

and recycling neutral atoms in the scrape-off layer, thus be lost

from the confined plasma ion population. In small “spherical”

tokamaks such as MAST,34 it has been shown18,35 that most of

neutral beam injected ions are ion-orbit-lost before they slow

down and that the rotational torque is produced by the radial

return current necessary to maintain charge neutrality. On the

other hand, for a larger more conventional tokamak such as

DIII-D,36 the beam ions are confined while they slow down to

become part of the thermalized plasma ion population, which

are ion-orbit-loss from the plasma edge.19–21 We summarize in

this section a computational methodology21,26,37 that has been

developed to treat the latter situation of ion-orbit-loss of ther-

malized ions from the plasma edge, but which could be

extended to treat the loss of fast beam ions as well. We note

that there is also an X-loss ion-orbit-loss mechanism,38,39 but

we have found this to compete for the same ions that would be

loss by the ion-orbit-loss mechanism described below and will

not explicitly consider it in this paper.

A. Ion orbit loss of particles, energy, and ion
momentum

We are concerned with the calculation of the loss of ther-

malized plasma ions, their energy, and their directed momentum

by excursions from the flux surface on orbits that cross the

LCFS and do not return to the plasma. (It is possible, of course,

to define other loss surfaces and to calculate return fractions, but

this is beyond the scope of the present paper.) Such processes

take place for the thermalized plasma ions primarily in the edge

plasma, which is constantly replenished by outward ion particle,

energy, and momentum fluxes from the core plasma.

Following the general computation procedure intro-

duced by Miyamoto,37 we have found26,39 that at each flux

surface in the plasma edge, there is a minimum ion speed

Vminðf0Þ (or energy) for which an ion with a given directional

cosine f0 with respect to the magnetic field can be lost, and

that all ions with this f0 and speeds above this minimum will

be lost. We have also found26,39 by numerical calculation for

several edge plasma distributions that Vminðf0Þ decreases with

increasing plasma radius (decreasing distance to the last

closed flux surface). As a given volume of plasma flows out-

ward across the plasma edge, it first loses the highest energy

ions and then loses successively lower energy ions as it flows

across successively outward flux surfaces with successively

lower ion temperatures. This loss is different for the different

ion directions f0. So, the “hole” in the plasma velocity distri-

bution extends progressively down to lower Vminðf0Þ with

increasing radius, and the depth of the “hole” is different for

different f0; i.e., the loss region is cumulative with increas-

ing radius and directionally dependent.

The ion loss situation for a constant influx of plasma (from

the core) flowing across the edge region and accumulating a

progressively larger and direction-dependent loss region is dif-

ferent from the situation usually calculated of a static plasma

with no source and a fixed loss cone. In the latter static, source-

free situation, in-scattering of plasma from outside the loss

cone is necessary to maintain the plasma loss rate. However, in

the flowing plasma situation considered is this paper, the

plasma loss rate is maintained by the influx of plasma from the

core into the edge region. We do not consider in-scattering in

this paper, based on estimates26 that it would only slightly

increase the calculated loss rates in most DIII-D discharges.

The details of ion particle and energy loss in a plasma

flowing across the edge region in a tokamak have been

worked out in Refs. 26 and 40, where detailed calculation

results may be found. These results were extended in Ref. 21

to calculate the net directional momentum loss, hence the net

oppositely directed momentum in the remaining plasma ions

that are not lost (i.e., the intrinsic rotation produced by the

directed momentum loss).

We use the conservation of canonical toroidal angular

momentum

RmVkfu þ ew ¼ const ¼ R0mVk0fu0 þ ew0 (16)

to write the orbit constraint for an ion introduced at a loca-

tion “0” on flux surface w0 with parallel velocity Vk0, where

fu ¼ jBu=Bj, R is the major radius, and w is the flux surface

value. The conservation of energy and of poloidal angular

momentum

1

2
mðV2

k þ V2
?Þ þ e/ ¼ const ¼ 1

2
mðV2

k0 þ V2
?0Þ þ e/0

� 1

2
mV2

0 þ e/0;

mV2
?

2B
¼ const ¼ mV2

?0

2B0

; (17)

further require
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Vk ¼ 6V0 1� B

B0

����
����ð1� f2

0Þ þ
2e

mV2
0

ð/� /0Þ
" #1 2 ;=

(18)

where / is the electrostatic potential. The quantity f0

¼ Vk0=V0 is the cosine of the initial guiding center velocity

relative to the toroidal magnetic field direction. Using Eq.

(18) in Eq. (16) and squaring leads to a quadratic equation in

the initial ion velocity V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
k0 þ V2

?0

q
,

V2
0

B

B0

����
���� fu0

fu
f0

 !2

� 1þ ð1� f2
0Þ

B

B0

����
����

2
4

3
5

þ V0

2eðwo � wÞ
Rmfu

B

B0

����
���� fu0

fu
f0

 !" #

þ eðw0 � wÞ
Rmfu

 !2

� 2eð/0 � /Þ
m

2
4

3
5 ¼ 0: (19)

Note that Eq. (19) is quite general with respect to flux sur-

face geometry representation of R, B, and the flux surfaces

w. By specifying an initial “0” location for an ion with initial

direction cosine f0, and specifying a final location on the

flux surface w, Eq. (19) can be used to determine if an ion

with initial speed V0 and direction cosine f0 can reach that

final location on the flux surface w.

Thus, Eq. (19) can be solved for the minimum ion

energy necessary for an ion located on an internal flux sur-

face to cross the last closed flux surface at a given location

(or to strike the chamber wall at a given location, etc.). All

of the ions with speeds greater than this V0minðf0Þ are able to

cross the last closed flux surface. We will assume in this

work that a fraction Riol
loss of these ions crossing the last

closed flux surface strike the chamber or divertor wall, inter-

act with plasma or neutrals in the scrape-off layer, etc., such

as not to return back across the last closed flux surface into

the confined plasma. (This loss fraction can in principle be

calculated, but this will be deferred until a later paper.) We

note that in actuality Riol
loss will depend on ion energy, direc-

tion f0 and location for crossing the LCFS, as well as the ge-

ometry and composition of the plasma chamber external to

the LCFS, so that the use of a single number is an approxi-

mation made to illustrate the magnitude of this effect.

For the usual DIII-D anti-parallel current/magnetic field

configuration, the quantity V0minðf0Þ is very large for par-

ticles with parallel velocity components opposite to the

direction of the toroidal magnetic field ðf0 < 0Þ, which exe-

cute banana orbits inside the flux surface, but becomes

smaller with increasing f0 > 0 (i.e., as the particle velocity

becomes more nearly aligned with the toroidal magnetic field

direction). Some detailed calculations for a DIII-D shot are

given in Refs. 21, 26, and 40. The particle charge “e” and

mass “m” enter Eq. (19) as the ratio e/m, so, e.g., deuterium

and carbon have the same minimum ion speed (but not the

same minimum ion energy) for ion orbit loss.

The GTEDGE code, used to make the calculations dis-

cussed in Sec. III B, calculates V0minðf0Þ using the electrostatic

potential calculated by integrating the (experimental or other)

radial electric field, an approximate representation of the mag-

netic flux surface geometry described by ½Rðr; hÞ ¼ �Rhðr; hÞ;
Bh;uðr; hÞ ¼ �Bh;u=hðr; hÞ; hðr; hÞ ¼ ð1þ ðr= �RÞcos hÞ�, and

an approximate flux surface representation wðqÞ ¼ RAu

¼ 1
2

l0I
2pa2

� �
�R�a2q2, which follows from Ampere’s law and the

assumption of uniform current density.

Since V0minðf0Þ decreases with radius, cumulative (with

increasing radius) particle, momentum, and energy loss frac-

tions can be defined

Forb �
Nloss

Ntot
¼

Riol
loss

ð1

�1

ð1
V0minðf0Þ

V2
0 f ðV0ÞdV0

" #
df0

2

ð1
0

V2
0 f ðV0ÞdV0

¼
Riol

loss

Ð 1

�1
C
�

3
.

2; eminðf0Þ

�
df0

2Cð3
.

2Þ
; (20)

Morb �
Mloss

Mtot
¼

Riol
loss

ð1

�1

ð1
V0minðf0Þ

ðmV0f0ÞV2
0 f ðV0ÞdV0

" #
df0

2

ð1
0

ðmV0ÞV2
0 f ðV0ÞdV0

¼
Riol

loss

ð1

�1

f0C
�

2; eminðf0Þ

�
df0

2Cð2Þ ; (21)

and

Eorb �
Eloss

Etotal
¼

Riol
loss

ð1

�1

ð1
V0minðf0Þ

1

2
mV2

0

� �
V2

0 f ðV0ÞdV0

" #
df0

ð1

�1

ð1
0

1

2
mV2

0

� �
V2

0 f ðV0ÞdV0

" #
df0

¼
Riol

loss

ð1

�1

C
5

2
; eminðf0Þ

� �
df0

2C
5

2

� � ; (22)

where eminðf0Þ ¼ mV2
0minðf0Þ=2kT is the reduced energy cor-

responding to the minimum speed for which ion orbit loss is

possible, and an initially Maxwellian ion distribution has

been assumed. The quantities CðnÞ and Cðn; xÞ in Eqs.

(20)–(22) are the gamma function and incomplete gamma

function. The ion-orbit-loss-corrected ion particle and energy

transport fluxes are then C
_

ðrÞ ¼ CðrÞ
�

1� ForbðrÞ
�
;Q
_

ðrÞ
¼ QðrÞ

�
1� EorbðrÞ

�
. For a given ion temperature, the loss

fractions decrease with increasing ion mass because the min-

imum reduced energy for loss eminðf0Þ increases with ion

mass.

We note that the effect of scattering collisions, which

could both remove ions from loss orbits and scatter other

confined ions into loss orbits, have been neglected in the

above discussion. This neglect is valid when the time

between collisions is long compared to the loss orbit transit

time or ��jk < 1.
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B. Momentum loss and intrinsic rotation due to ion
orbit loss

The effect of ion orbit momentum loss is somewhat dif-

ferent than for particle and energy loss. In the “standard”

DIII-D anti-parallel current/toroidal field configuration, the

usual preferential loss of f0 > 0 (counter-current) ions

causes a residual f0 < 0 (co-current) intrinsic rotation in the

edge plasma due to the preferential retention of co-current

direction ions. The net co-current rotation velocity at any

flux surface is determined by the cumulative net counter-

current directed ion orbit loss that has taken place over all

inner radii out to that flux surface in question. Determining

the minimum loss speed Vminðf0Þ as described above leads to

an expression for the equivalent net parallel counter-current

momentum loss rate (or co-current momentum gain rate) due

to ion orbit loss DMiol
/j ¼ jB/=Bjnm�djDVk, which can be

used to compute the intrinsic co-rotation caused by ion orbit

loss

DVkðqÞ¼Riol
loss2p

ð1
�1

df0

ð1
Vminðf0Þ

ðV0f0ÞV2
0 f ðV0ÞdV0

2
64

3
75

q

¼4pMorbðqÞ
ð1
0

ðV0ÞV2
0 f ðV0ÞdV0

2
4

3
5

q

¼2
Cð2Þ
p1=2

MorbðqÞVthðqÞ¼
2

p1=2
MorbðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTionðqÞ

m

r
(23)

with Morb given by Eq. (21). When the current and toroidal

fields are anti-parallel, this net counter-current momentum

loss (reduction) rate produces an intrinsic co-current rotation

given by Eq. (23). Although ion species with the same

charge-to-mass ratio e/m (e.g., deuterium and carbon) will

have the same Vminðf0Þ, the intrinsic rotation will decrease

with ion mass because both Morb (because the minimum

energy corresponding to the minimum loss speed scales with

ion mass) and the thermal velocity decrease with ion mass,

for the same ion temperature.

IV. APPLICATION TO A DIII-D H-MODE DISCHARGE

A DIII-D36 H-mode lower single null divertor plasma

discharge with directed neutral beam injection and rotation

(#123302 at 2600 ms: Pnb¼ 8.66 MW, I¼ 1.5 MA,

B¼�2.0 T, R¼ 1.75 m, a¼ 0.6 m, j¼ 1.84, q95¼ 3.86, and

nC/nD¼ 0.03) was chosen to illustrate the use of the formal-

ism presented in the previous sections. The experimental

data, fitting procedures, error analyses, and various previous

analyses are discussed for discharge #123302 in Refs. 26 and

41–43 and, in general, in Refs. 6, 26, 44 and 45. The back-

ground plasma representation, the recycling neutral calcula-

tion, and the solution of the equations of the previous

sections were carried out in the GTEDGE code.

A few words are in order regarding the “interpretive”

perspective taken in this section. If the transport coefficients

[the particle diffusion coefficients (actually the momentum

transport frequencies that determine them) and the thermal dif-

fusion coefficients] were known, then it would be possible to

take a “predictive” approach and just solve the equations of

Sec. III B with and without accounting for ion orbit loss and

the compensating return current, and compare the two different

solutions with each other and with experimental results to

assess the effects of ion orbit loss on the structure in the edge

pedestal. However, the transport coefficients are not known,

and to guess at them for the purpose of solving the equations of

Sec. III B with and without ion orbit loss corrections can lead

to results that are somewhat ambiguous (e.g., if the transport

coefficients are chosen to yield agreement in some fashion

with measured profiles in other experiments, these coefficients

must implicitly already compensate for some ion orbit loss).

To avoid this ambiguity, we take an “interpretive” approach by

using the equations of Sec. III B, with and without ion orbit

loss corrections, to interpret experimental measurements in

terms of the underlying transport mechanisms, with and with-

out taking into account ion orbit loss and the compensating

return current. These interpreted transport coefficients are then

used to predict the profiles of other quantities for comparison

with each other and with experiment.

A. Radial ion flux

The radial ion flux calculated from the continuity equa-

tion using experimental data as input ðCrjÞ is shown in

Fig. 1. Also shown are the radial ion fluxes corrected for ion

orbit loss and the compensating return current ðCrj½1�
2Forbj�Þ for two values of the fraction of the ions on orbits

crossing the separatrix which do not return to the confined

plasma, Riol
loss ¼ 100%; 50%. Without ion orbit loss, the radial

ion flux is outward and increasing with radius in the edge

because of the ionization of recycling neutral atoms.

However, taking into account the loss of outward flowing

ions by ion orbit loss and the compensating inward flux of

ions necessary to maintain charge neutrality, the radial ion

flux decreases in the very edge and even becomes inward for

a sufficiently large value of Riol
loss.

FIG. 1. Radial ion particle flux with (Riol
loss¼ 50% and 100%) and without

(Riol
loss¼ 0%) ion orbit loss and compensating return current.
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B. Toroidal rotation

If the toroidal angular momentum transport frequencies,

�dj, were known and the toroidal velocities were measured

for both the carbon impurity and deuterium main ions, then

Eq. (4) for the two species could be evaluated and compared

with the measured toroidal rotation velocities for the two ion

species with and without accounting for ion orbit loss in

order to evaluate the effect of ion orbit loss on toroidal rota-

tion. However, the determination of a validated theoretical

prediction of the �dj is an ongoing effort, and usually only

the carbon impurity ion rotation velocity, V/k, is measured

(although there is recent progress46 in determination of the

deuterium toroidal rotation velocity from charge-exchange

recombination (CER) data).

In order to move forward with an evaluation of the

effect of ion orbit loss on toroidal rotation, we resort to a

“bootstrapping” perturbation approach to infer reasonable

values of the �dj and the “experimental” velocity for deute-

rium by first assuming a common toroidal momentum trans-

port frequency �d0 ¼ �dj ¼ �dk and summing the toroidal

momentum balance Eq. (3) for the two ions species to

obtain

�d0 ¼
½fgj þ fgk�

½njmjðV/k þ DV/Þ þ nkmkV/k�
; (24)

where fgj � fBhejĈrj þM/j þ njejE
A
/g. We evaluate EA

/
from measurement of the loop voltage, calculate the small

beam momentum input from a simple analytical model, cal-

culate the radial particle flux for deuterium from the conti-

nuity equation corrected by the ion orbit loss and

compensating inward ion current, and assume the carbon ra-

dial particle flux is zero in equilibrium. The inferred mo-

mentum transfer frequency of Eq. (24) is plotted in Fig. 2

with and without taking into account ion orbit loss and the

compensating return current. As can be seen, taking into

account ion orbit loss and the compensating inward ion cur-

rent substantially reduces the inferred experimental momen-

tum transport rate in the edge, and the inferred toroidal

momentum transport frequency even becomes inward (<0)

just inside the separatrix for a sufficiently large value of

Riol
loss. It is clearly important to take ion orbit loss into

account when interpreting the experimental data for the pur-

pose of determining the experimental value of the momen-

tum transport rate.

An equation for the quantity DV/ � V/j � V/k can be

determined by subtracting the two toroidal momentum bal-

ance Eqs. (3)

DV/ ¼
1� �kj

ð�kjþ �dkÞ

� � fgj

njmjð�jk þ �djÞ
� 1� �jk

ð�jk þ �jÞ

� � fgk

njmjð�kjþ �dkÞ

" #

1� �jk�kj

ð�jk þ �djÞð�kjþ �dkÞ

� � : (25)

A surrogate for the experimental deuterium velocity

V}exp}
/j ¼ Vmeas

/k þ DV/0 can then be constructed from the

measured value of the carbon velocity V/k and Eq. (25) by

using �dj ¼ �dk ¼ �d0 given by Eq. (24) and Fig. 2. We

improve the solution of the nonlinear set of Eqs. (24) and

(25) iteratively, and find that the process converges when

jDV/0=V}exp}
/k j � 1. Both V}exp}

/j and Vmeas
/k are plotted in Fig.

3 (the solid symbols); the small difference lends confidence

to the use of the above perturbation technique for this

discharge.

Next, we use ��dj ¼ ��dk ¼ �d0 given by Eq. (24) to calcu-

late the carbon and deuterium toroidal velocities from

Eq. (4). While we can calculate the radial ion flux for

deuterium, taking into account recycling neutral ionization

sources and ion orbit loss, we are not presently able to make

a similar calculation for the radial carbon flux, which is thus

set to zero in the calculation. The calculated toroidal rotation

velocities for deuterium and carbon are also plotted in Fig. 3

(the empty symbols). The calculated and “experimental” val-

ues agree rather well, providing some confidence in the self-

consistency of the calculation.

When this calculation is repeated for Riol
loss¼ 50% and

0%, the results are very similar to those shown in Fig. 3.

Although the effects of ion orbit loss and return current on

the radial particle flux and on the inferred momentum trans-

fer frequency are significantly different for the different

FIG. 2. Inferred experimental toroidal momentum transfer frequency with

(Riol
loss¼ 50% and 100%) and without (Riol

loss¼ 0%) ion orbit loss and compen-

sating return current.
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values of Riol
loss, these two effects wash out in the calculation

of the toroidal rotation velocity. This can be understood in

terms of (i) the inference procedure described above com-

pensating for any difference in the assumed and actual ion

orbit loss with an inferred momentum transport frequency

that reproduces the measured carbon toroidal rotation, (ii)

the differences in the toroidal rotation velocities of carbon

and deuterium being sufficiently similar that the perturbation

theory calculation of the difference is valid, confirming the

self-consistency of the methodology.

C. Poloidal rotation

The poloidal velocity calculation is different in that pre-

vious experience indicates that the carbon and deuterium

poloidal velocities may be quite different, so that a perturba-

tion treatment such as used in Sec. IV B is not possible. Nor

have we found a reliable way to infer the poloidal momen-

tum transport frequency from experiment. Rather, a theoreti-

cal model for the poloidal angular moment transport

frequency is used in calculations of the poloidal velocities of

both species. The deuterium poloidal rotation velocity calcu-

lated from Eq. (6) is plotted in Fig. 4, with and without tak-

ing into account the ion orbit loss and compensating current

effect on the radial particle flux of deuterium. Also plotted is

an “experimental” value of the deuterium poloidal velocity

constructed using the radial component of the momentum

balance Eq. (2) for deuterium

V}exp}
hj ¼ 1

B/
BhV}exp}

/j � Eexp
r þ

1

nexp
j ej

@pexp
j

@r

" #
; (26)

where the “experimental” value of the deuterium density is

determined from the measured electron (Thomson scattering)

and carbon (Charge Exchange Recombination) densities and

the measured carbon temperature (assumed to be the same

for deuterium), V}exp}
/j is calculated as described in Sec. IV B

using Eq. (25), and Eexp
r is calculated from the radial compo-

nent of the momentum balance Eq. (2) for carbon

Eexp
r ¼ BhVexp

/k � B/Vexp
hk þ

1

nexp
k ek

@pk

@r
; (27)

using the measured (CER) carbon rotation velocities, density,

and temperature (the usual procedure for the determination of

the experimental value of Er). We emphasize that the

“experimental” value shown in Fig. 4 is not a measured value

but rather the difference in several measured values.

Furthermore, the poloidal rotation calculation is based on a

version of neoclassical theory. So, the main point to be made

is that the different radial particle fluxes associated with differ-

ent ion orbit losses produce different poloidal rotation veloc-

ities, not that theory agrees or disagrees with experiment.

Ion orbit loss and the compensating return current

clearly can have a significant effect on the structure of the

poloidal velocity in the edge plasma, but there is also clearly

a difference between the theoretical and experimental struc-

ture independent of the treatment of ion orbit loss in H-mode

shot 123302. This could be due to important phenomena

(e.g., ion orbit loss of fast neutral beam ions,34,35 up-down

poloidal asymmetries in flux surface geometry, densities and

flows,29 etc.) not treated in the basic poloidal rotation theory

used for the calculation or to the simplified representation of

the flux surfaces ðwðqÞ ¼ RA/ 	 ðloI=4pa2ÞR2a2q2Þ used in

the ion orbit loss calculations.

D. Transport coefficients

The differences in inferred toroidal momentum transfer

frequencies shown in Fig. 2 translate directly into differences

in the inferred experimental diffusion coefficients of Eq.

(12), as shown in Fig. 5.

Taking ion orbit loss and return current into account sig-

nificantly affects the pinch velocity of Eq. (9), both through

the effect on the rotation velocities and the effect on the

inferred momentum transfer frequency, as shown in Fig. 6.

FIG. 3. Toroidal rotation velocity with Riol
loss¼ 100% ion orbit loss and return

current correction for discharge 123302.

FIG. 4. Calculated and experimental deuterium poloidal rotation velocities

with (Riol
loss¼ 50% and 100%) and without (Riol

loss¼ 0%) ion orbit loss and

compensating return current.
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An experimental Er determined from the carbon radial mo-

mentum balance Eq. (27) was used in the calculation. The

smaller effect of ion orbit loss on the radial deuterium parti-

cle velocity ðVrad � V̂ rj ¼ Ĉrj=njÞ is also shown in Fig. 6.

Clearly, the net radial velocity is the difference between

much larger inward pinch velocities and outward diffusive

velocities (or normalized forces).

E. Pressure, temperature, and density gradients

In Fig. 7, the deuterium pressure gradients calculated

from the momentum balance constraint of Eq. (12)

L�1
pj ’

Ĉrj � njV
pinch
rj

njDj
(28)

with and without correction for ion orbit loss and return cur-

rent are compared with the measured (Thomson and CER)

pressure gradient. The excellent agreement confirms the in-

ternal consistency of the calculation. Again, the fact that

there is very little difference between the calculated pressure

gradients with or without ion orbit loss (all four curves are

literally on top of each other) is that the inference procedure

used to obtain the toroidal momentum transfer frequency

used in the evaluation of both Dj and Vpinch
rj compensates for

any difference between the actual ion orbit loss and the value

used in the calculation by an adjustment in the inferred toroi-

dal momentum transport frequency.

If we knew the ion thermal diffusivity, the logarithmic

ion temperature gradient could be calculated from Eq. (13)

with and without taking into account the ion orbit correction.

However, determination of a theory for the ion thermal diffu-

sivity is still a matter of current research. Clearly, if we sub-

tracted the measured log ion temperature gradient from

the log ion pressure gradient determined from Eq. (2) and

shown in Fig. 7, we would get a value of the log ion

density gradient in very good agreement with the measured

(ThomsonþCER) log ion density gradient, because the ex-

perimental log ion pressure gradient was constructed by add-

ing the measured log ion density and temperature gradients.

It is more instructive to rearrange Eq. (13) to obtain an

expression for the experimental ion thermal diffusivity that

would be inferred from the measured log ion temperature

and density gradients,26 with and without taking into account

ion orbit loss corrections

vexp
j ¼

�
Qrjð1� EorbjÞ � 1:5TjCrjð1� ForbjÞ

�
njTjðL�1

Tj Þ
exp : (29)

Here, the total ion particle and thermal fluxes, as determined

from the continuity and thermal balance equations without

ion orbit loss, are used, and the ion orbit loss corrections are

shown explicity. (There is a cumulative with radius ion orbit

loss fraction Eorbj of the radial ion energy flux, as given by

Eq. (21), as well as the ion orbit loss fraction Forbj of the

FIG. 5. Inferred experimental diffusion ion coefficient with (Riol
loss¼ 50% and

100%) and without (Riol
loss¼ 0%) ion orbit loss and compensating return

current.

FIG. 6. Deuterium radial and pinch velocities with (Riol
loss¼ 50% and 100%)

and without (Riol
loss¼ 0%) ion orbit loss and compensating return current.

FIG. 7. Calculated and experimental deuterium logarithmic radial pressure

gradient with (Riol
loss¼ 50% and 100%) and without (Riol

loss¼ 0%) ion orbit loss

and compensating return current.
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radial ion particle flux.) The inferred experimental ion ther-

mal diffusivities, with and without ion orbit loss correction,

are shown in Fig. 8. Clearly, taking ion orbit loss corrections

to the ion energy and particle fluxes into account substan-

tially changes the structure of the inferred experimental

plasma ion thermal diffusivity in the plasma edge.

Since we have argued that there is no corresponding direct

“electron orbit loss” because the smaller mass electrons do not

execute drift orbits that cross the separatrix, the corresponding

expression for the electrons would replace “j” with “e,” have

Eorbe¼ 0 and have a radial electron flux constrained by ambi-

polarity Cre ¼ Crjð1� ForbjÞ þ ZkCrkð1� ForbkÞ.

F. Radial electric field

The radial electric field calculate from Eq. (7) for dis-

charge 123302 with and without correction for ion orbit loss

and return current is shown in Fig. 9. The contribution of the

first (current) term is negligible, and the total electric field is

the difference between the positive rotation contribution and

the negative pressure gradient contribution. The rotation con-

tribution is dominated by the deuterium poloidal rotation

term which, as shown in Fig. 4, is not well calculated for this

shot (possibly because of the neglect of neutral beam fast ion

orbit loss), with the result that the agreement between the

calculated and experimental (from the carbon radial momen-

tum balance Eq. (27)) radial electric fields in the plasma

edge is not too good. We note again that the “experimental”

electric field is not a measured quantity but rather the differ-

ence of three measured quantities, so that the main point to

be made by Fig. 9 is that the ion orbit loss has a significant

effect on the radial electric field.

V. DISCUSSION

A systematic methodology based on particle, momen-

tum, and energy balance has been developed for investigat-

ing the effects of ion orbit loss of thermal ions on rotation,

electric field, pressure, temperature, and density profiles in

the edge pedestal. Ion orbit loss is found to affect the rota-

tion profiles, which in turn affects the electric field and

pressure profiles. Taking ion orbit loss into account is im-

portant in the interpretation of transport coefficients from

measured density and temperature profiles in the edge

pedestal.

The “two-ion” fluid particle, momentum, and energy

conservation equations have been used to develop explicit

expressions for the calculation of the radial pressure, tem-

perature and density gradients, the profiles of toroidal and

poloidal velocities, and the radial electric field profile in the

plasma edge, taking into account the effects of ion orbit

loss of thermalized plasma ions and the compensating

return current. These expressions relate these quantities to

the sources and losses of particles, momentum, and energy

to/from the plasma, to the self-consistently calculated elec-

tromagnetic and thermodynamic forces acting within the

plasma, and to the momentum and energy transport coeffi-

cients. The important transport parameters are shown to be

the ion toroidal and poloidal momentum transport frequen-

cies (viscous, inertial, atomic physics, anomalous) and the

ion and electron thermal diffusivities, all of which are

unknown, necessitating their inference from experimental

data and the introduction of a theoretical poloidal momen-

tum transport model.

In the plasma edge, the particle sources and ion orbit

losses determine the radial ion particle fluxes, which in turn

provide torques that, in part, determine the rotation velocities

and thereby part of the radial electric field. These constitute

the electromagnetic forces that determine the ion radial pres-

sure gradient, which in turn partly determine the radial elec-

tric field. The energy sources and sinks determine the radial

energy fluxes of ions and electrons, which in turn determine

(via the heat conduction relations) the temperature gradients.

The ion density gradient is the difference between these ion

pressure and temperature gradients.

The formalism is applied to two DIII-D H-mode edge

plasmas with an emphasis on illustrating the effect of ion
FIG. 9. Radial electric field calculated from Eq. (7) with (Riol

loss¼ 50% and

100%) and without (Riol
loss¼ 0%) ion orbit loss for discharge 123302.

FIG. 8. Inferred deuterium thermal diffusivities with (Riol
loss¼ 50% and

100%) and without (Riol
loss¼ 0%) ion orbit loss.
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orbit loss of thermalized plasma ions and the compensating

return current on the structure of these various profiles. Ion

orbit loss of thermalized ions and the return current reduce

the outward radial ion particle flux, and can even reverse it

in the plasma edge. This ion orbit loss effect has a significant

direct effect on the toroidal and poloidal rotation velocities

and thereby an indirect effect on the radial electric field, den-

sity, and temperature profiles in the plasma edge. The ther-

mal ions from neutral beam injection are included in the

solution of the continuity equation for Crj, but neither the ion

orbit loss of fast beam ions nor the compensating return cur-

rent of low energy ions is taken into account in this paper,

which may account in part for some of the quantitative dis-

agreement between the predicted and experimental rotation

velocities and radial electric field.

In summary, ion orbit loss will affect interpretation of

the value of the diffusive transport coefficients (thermal dif-

fusivity, momentum transport frequency and resulting ion

particle diffusion coefficient) from experiment (because it

will affect the particle and energy fluxes that are flowing in

the plasma), but it will not directly affect the basic diffusive

transport mechanisms (neoclassical, ITG, etc.). However,

ion orbit loss will affect the rotation and radial electric field

in the edge (again by affecting the ion particle flux that is

flowing in the plasma), which greatly affects the non-

diffusive transport (e.g., pinch) in the edge. It is important to

take these ion orbit loss effects into account in interpreting

experimental values of diffusive transport coefficients from

the measured profiles in order to avoid drawing the wrong

conclusions about the agreement or disagreement of various

theoretical predictions of the diffusive transport coefficients

with experiment (e.g., that the diffusion coefficient is less

than the neoclassical value). The ion pressure gradient is pri-

marily determined by the pinch velocity and the particle dif-

fusion coefficient (which in turn is determined by the

momentum transport frequency), so it would be important to

take ion orbit loss effects on the non-diffusive pinch into

account in calculating the pressure gradient.

This investigation has focused almost exclusively on the

effects of ion orbit loss of particles, acting through changes

due to ion orbit loss in the radial particle fluxes flowing in

the plasma. We note other important effects of ion orbit loss

acting through changes in the radial energy26 and momen-

tum21 fluxes flowing in the plasma due to ion orbit loss, as

well as the effect of ion orbit loss on the distribution of par-

ticles, energy, and momentum into the scrape-off layer from

the plasma core.40

Future work will incorporate a calculation of the ion

orbit loss of fast neutral beam ions from deeper in the plasma

and their compensating return current, a more realistic repre-

sentation of the flux surface geometry, and a model for deter-

mining the loss fractions Riol
loss.
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