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Abstract
A neoclassical rotation theory (poloidal and toroidal) is developed from the fluid moment equations, using the
Braginskii decomposition of the viscosity tensor extended to generalized curvilinear geometry and a neoclassical
calculation of the parallel viscosity coefficient interpolated over collision regimes. Important poloidal dependences
are calculated using the Miller equilibrium flux surface geometry representation, which takes into account elongation,
triangularity, flux surface compression/expansion and the Shafranov shift. The resulting set of eight (for a two-ion-
species plasma model) coupled nonlinear equations for the flux surface averaged poloidal and toroidal rotation
velocities and for the up–down and in–out density asymmetries for both ion species are solved numerically.
Comparison of prediction with measured carbon poloidal and toroidal rotation velocities in a co-injected and a
counter-injected H-mode discharge in DIII-D (Luxon J. 2002 Nucl. Fusion 42 614) indicates agreement to within
<10% except in the very edge (ρ > 0.90) in the co-injected discharge.

(Some figures may appear in colour only in the online journal)

1. Introduction

Rotation of tokamak plasmas is known to be important for the
stabilization of magnetohydrodynamics (MHD) instabilities
and for achieving good confinement in tokamaks, as well as
providing insight about transport. Earlier studies indicated
that toroidal rotation affects neoclassical particle transport to
suppress the MHD instabilities [1–4] and is postulated to play a
role in the shear suppression of microinstabilities that enhance
transport [5]. Because of the importance of characterizing
and understanding toroidal rotation and the related angular
momentum transport in neutral beam driven tokamaks, there
has been a longstanding effort both experimentally [6–11]
and theoretically [12–28] to understand and predict toroidal
rotation, but this task has been challenging. Poloidal rotation
is also of interest because of its role in the shear suppression
of turbulent energy transport [5].

In understanding toroidal rotation and the angular torque
mechanisms, representation of the viscosity stress is very
important. From the earlier classical studies in cylindrical
geometry [9, 15, 16], the familiar perpendicular viscosity
was calculated to be too small to account for the observed
momentum damping. Taking neoclassical effects into account

a Author to whom any correspondence should be addressed.

[15, 16, 19, 20] did not change this result, leading to the belief
that the momentum transport in tokamak plasmas must be
due to an ‘anomalous’ effect. For clarification, in this paper
‘neoclassical’ refers to the classical transport plus the transport
due to toroidal geometry (i.e. Pfirsch–Schluter (PS) transport)
and trapped particle effects.

What generally has not been accounted for in these early
neoclassical studies [15, 16, 19, 20] is the GYROVISCOUS
contribution to the radial angular momentum transport, which
is larger than the PERPENDICULAR viscosity component
by several orders of magnitude when significant up–
down asymmetries are present [13, 14]. This gyroviscous
contribution vanishes in classical cylindrical geometry and
appears only at a higher gyroradius order in neoclassical
theories. Even more advanced neoclassical theories
[19, 20, 26] which do not treat poloidal dependences
(geometric expansion and compression) of density and
velocity in the formalism failed to properly calculate the
gyroviscous transport contribution, but recovered only the
much smaller perpendicular viscosity. However, there exist
several theoretical studies [13, 14, 17, 18, 21–25, 27–29] that
have provided a firm theoretical basis for the importance of
gyroviscosity relative to perpendicular viscosity.

Motivated by the indicated importance of neoclassical
gyroviscosity, studies with a simple circular flux surface
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geometry (the ‘circular model’ [12, 30–33]) were previously
carried out to calculate toroidal velocity and the related
gyroviscous momentum transport, taking into account density
and velocity asymmetries in the formalism. These studies
established that gyroviscosity predicts the right order of
magnitude of the toroidal velocity, thus demonstrating the
greater importance of the gyroviscous contribution relative
to the much smaller perpendicular transport. The calculated
carbon toroidal velocities, however, were about a factor of
two larger (e.g. [30]) than the experimental measurement,
indicating either that the approximations in the representation
of important poloidal asymmetries made in the ‘circular
gyroviscous model’ were too crude or that other equally
significant momentum transport mechanisms must be present,
or both.

One gross approximation in the circular model studies
[12, 30–33] is believed to be the representation of the actual
D-shaped equilibrium flux surfaces with a circular geometry,
which limits the accuracy of the calculation of poloidal
dependences of density and velocity. In these previous
studies, it was shown that the angular momentum transport
rates are strong functions of these poloidal asymmetries.
Thus, without a more accurate representation of the poloidal
dependences along the flux surfaces, it was not possible to
determine how well neoclassical theory could predict rotation.
This observation has motivated the development of a new
neoclassical plasma rotation theory based on the more accurate
flux surface geometry given by the Miller equilibrium flux
surface geometry (the ‘Miller model’ hereafter) [34] that
became available in 1998 [35, 36].

The main objectives of this paper are (i) to present the
theoretical development of a new neoclassical plasma rotation
and transport theory based on the Miller model representation
of poloidal asymmetries, and (ii) to compare the calculated
poloidal and toroidal rotation velocities with measurements
made in two recent DIII-D discharges [37]. The implication
of the results to the general question of the adequacy of
neoclassical rotation calculations in accounting for rotation in
tokamaks is discussed.

2. Plasma fluid equations

The motions of charged particles in plasmas are governed
by the continuity, momentum balance, and energy balance
equations shown below with ‘j ’ being species (ions or
electrons).

Continuity equation:

∂nj

∂t
+ ∇ · (nj

�Vj ) = So
j . (1)

Momentum balance equation:

mj

∂

∂t
(nj

�Vj ) + mj∇ · (nj
�Vj

�Vj ) + ∇pj + ∇ · ↔
Πj

= njej ( �E + �Vj × �B) + �F 1
j + �S1

j . (2)

Energy balance equation:

∂

∂t

(
1

2
Tr Mj

)
+∇ ·

(
1

2
njmjV

2
j

�Vj +
5

2
njTj

�Vj +
↔
Πj · �Vj + �qj

)
= njej

�Vj · �E + F 2
j + S2

j , (3)

where Tr Mj is the scalar trace of the momentum stress tensor
←→
M j ≡ njmj 〈 �Vj

�Vj 〉j = njmj
�Vj

�Vj + pj

↔
I +

↔
Πj , (4)

�Fj is the friction, and �qj = −njχj∇Tj is the heat conduction
relation. The first and second term in the momentum balance
equation (2), can be expanded as

mj

∂

∂t
(nj

�Vj ) = mj
�Vj

∂nj

∂t
+ njmj

∂ �Vj

∂t
, (5)

mj∇ · (nj
�Vj

�Vj ) = njmj ( �Vj · ∇) �Vj + mj
�Vj∇ · (nj

�Vj ). (6)

When multiplying the continuity equation by mj
�Vj , we obtain

mj
�Vj

∂nj

∂t
= mj

�VjS
o
j − mj

�Vj∇ · (nj
�Vj ) (7)

which when replacing the first term in equation (5) its second
term cancels out the second term in equation (6), thus yielding
the basic form of the momentum balance equation used in this
research:

njmj

∂ �Vj

∂t
+ njmj ( �Vj · ∇) �Vj + ∇pj + ∇ · ↔

Πj

= njej ( �E + �Vj × �B) + �F 1
j + �S1

j − mj
�VjS

o
j . (8)

The viscosity tensor (
↔
Πj ) can be represented in (at least) two

different ways by different ordering arguments. The short
mean free path (i.e. highly collisional or PS) description of
viscosity, originally formulated by Braginskii [14], assumes
a ‘strong rotation’ ordering in which ion mean flow is on the
order of ion thermal speed, |V⊥| 
 |V‖| ∼ Vthi where Vthi

is the ion thermal velocity. Mikhailovskii and Tsypin [17]
realized that this ordering is not one of the most interest in
many practical situations, as in the plasma edge region or in
discharges with low rotation, and assumed ion mean flow to be
on the order of the diamagnetic drift velocity, thus |V‖| 
 Vthi

in this ‘weak rotation’ ordering. In reducing the plasma
fluid equations to derive a neoclassical plasma rotation theory,
either Braginskii’s or Mikhilovskii’s viscosity formalism may
be employed if the corresponding ordering conditions are
satisfied. For this research, we limit the scope of the research
to Braginskii’s ordering since it is valid for strongly rotating
tokamak plasmas heated with directed neutral beam injection,
except in the edge region. Using this ordering will enable us
to check the validity of the new plasma rotation theory against
measurements with significant rotation, presumably involving
less experimental uncertainty. The extension of the present
theory to Mikhailovskii’s ordering is a useful topic for future
research.

Applying Braginskii’s viscosity formalism to axisymmet-
ric (∂/∂φ = 0) toroidal flux surface geometry [18], which
is eventually the ‘PS’ extension of classical gyroviscosity,
the steady-state plasma fluid equations are reduced to equa-
tions (9)–(12). Note that the momentum balance equation is

2
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composed of three scalar components (r, θ, φ) and that the en-
ergy balance equation is not needed in this study with Bragin-
skii’s ordering (but would be included in future weak rotation
studies).
Continuity equation:

1

hr

∂

∂r
(njVrj ) +

njVrj

hr

(
1

hφ

∂hφ

∂r
+

1

hθ

∂hθ

∂r

)
+

1

hθ

∂

∂θ
(njVθj )

+
njVθj

hθ

(
1

hφ

∂hφ

∂θ
+

1

hr

∂hr

∂θ

)
= ne(noj 〈σV 〉ionj ) ≡ neνionj . (9)

Radial momentum balance equation:

njmj [( �Vj · ∇) �Vj ]r +
1

hr

∂pj

∂r
+ (∇ · ↔

Πj )r

= njej (Er + VθjBφ − VφjBθ ) + Frj

+ (S1
rj − mjVrjS

0
j ). (10)

Poloidal momentum balance equation:

njmj [( �Vj · ∇) �Vj ]θ +
1

hθ

∂pj

∂θ
+ (∇ · ↔

Πj )θ

= njej (Eθ − VrjBφ) + Fθj + (S1
θj − mjVθjS

0
j ). (11)

Toroidal momentum balance equation:

njmj [( �Vj · ∇) �Vj ]φ + (∇ · ↔
Πj )φ = njej (E

A
φ + VrjBθ ) + Fφj

+(S1
φj − mjVφjS

0
j ), (12)

where hr, hθ and hφ are differential metric coefficients (or
scale factors) for a given flux surface geometry, which relate
differential coordinates and their length elements by dlr =
hr dr , dlθ = hθ dθ and dlφ = hφ dφ. EA

φ is the toroidal

component of the inductive electric field �EA = −∂ �A/∂t .
Details of representing the plasma fluid equations in general
curvilinear geometry has been worked out earlier [36]. All
coordinate components of the inertial term, [( �V · ∇) �V ], and

the viscous term, (∇ · ↔
Π), can be found in appendix A.

To acquire relations required to solve for rotation
velocities and poloidal asymmetries, further approximations
are made to equations (9)–(12) by introducing the strong
rotation ordering to eliminate negligible terms. We start by
neglecting radial velocities because Vr 
 Vθ < Vφ ∼ Vth

holds in tokamak plasmas in the strong rotation ordering. The
continuity equation then becomes

1

hr

∂

∂r
(njVrj ) +

1

hθ

∂

∂θ
(njVθj ) +

njVθj

hθ

(
1

hφ

∂hφ

∂θ
+

1

hr

∂hr

∂θ

)
= neνionj . (13)

Assuming that all other terms except the pressure gradient
and electromagnetic force terms are negligible, the radial
momentum balance equation reduces to
1

hr

∂pj

∂r
= njej (Er + VθjBφ − VφjBθ )

= njej

(
− 1

hr

∂�

∂r
+ VθjBφ − VφjBθ

)
, (14)

where � is the electrostatic potential. In the poloidal
momentum balance equation (11), the inertial and viscous
terms from appendix A reduce to

[( �V · ∇) �V ]θ = Vθj

hθ

∂Vθj

∂θ
− VθjVφj

hθhφ

∂hφ

∂θ
, (15)

(∇ · 	)θ = 1

H

∂

∂r
(Rhθ	rθ ) +

1

H

∂

∂θ
(hrhφ	θθ )

− 1

hθhr

∂hr

∂θ
	rr +

1

hθhr

∂hθ

∂r
	θr − 1

Rhθ

∂R

∂θ
	φφ, (16)

where H = hrhθhφ . In the toroidal momentum balance
equation (12), the inertial and viscous terms in appendix A
reduce to

[( �V · ∇) �V ]φ =
(

Vrj

hr

∂Vφj

∂r
+

VφjVrj

hφhr

∂hφ

∂r

)
+

(
Vθj

hθ

∂Vφj

∂θ
+

VφjVθj

hφhθ

∂hφ

∂θ

)
, (17)

(∇ · 	)φ =
[

1

Rhθhr

∂

∂r
(Rhθ	rφ) +

1

Rhr

∂R

∂r
	rφ

]
+

[
Bθ

hθ

∂

∂θ

(
	θφ

Bθ

)
+

1

Rhθ

∂R

∂θ
	θφ

]
. (18)

These reduced forms of the continuity and momentum balance
equations constitute the basic set of relations required to
develop any plasma rotation theory in strongly rotating
plasmas. In this study, a neoclassical plasma rotation theory
is developed for a two-species ‘deuterium-carbon’ plasma for
simplicity but can also be extended to multiple ion species by
summing over all ion species to calculate the friction term and
the electron density from charge neutrality.

2.1. Extended Stacey–Sigmar plasma poloidal rotation model

Quite different plasma poloidal rotation theories can be
developed from the same basic set of equations in the
previous section, based on which terms are retained in the
momentum balance equations and how the viscosity and
poloidal dependences of density and velocity are represented
in equations (10)–(12). One of the biggest differences among
existing theories is the number of terms retained in the
poloidal momentum balance, equation (11). Such differences
in poloidal rotation calculation models ultimately affect the
toroidal velocity calculations. One of the early poloidal
rotation models is based on the Hirshman–Sigmar poloidal
rotation theory (the H–S model) [38], which neglects all terms
except the viscosity and friction terms, which are treated with
a sophisticated friction and viscosity representation. This
model is used in the NCLASS code [39]. The model by
Kim, Diamond and Groebner (the KDG model) [40] is a
trace-impurity approximation to the H–S model. The Shaing–
Sigmar–Stacey (the S–S–S) model [1] retains more terms in the
poloidal momentum balance equation and calculates poloidal
density asymmetries to represent poloidal dependences. The
most recent form of neoclassical poloidal rotation theory
evolved from the S–S–S model is the Stacey–Sigmar poloidal
rotation model (the ‘S–S model’ hereafter) [21, 30, 41], which
uses the generalized curvilinear form of Braginskii’s flow rate-
of-strain tensor (see appendix A) [36, 42] and retains all terms
to obtain

njmj [( �Vj · ∇) �Vj ]θ + (∇ · ↔
Πj )θ

+
1

hθ

∂pj

∂θ
− Mθj + njmjνjk(Vθj − Vθk)

+ njej (VrjBφ − Eθ) + njmjνionjVθj

+njmjνelcxjVθj = 0, (19)
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which is basically equation (11) rewritten with the source and
friction terms replaced with actual calculation models. The
third term in equation (19) is the pressure gradient. The fourth
term (Mθj ) represents any external poloidal momentum input
or torque and comes from representing the momentum source
term as the momentum input minus momentum damping due
to charge exchange and elastic scattering of rotating ions with
non-rotating neutrals, as in

�S1
j = �Mj − njmjνelexj

�Vj . (20)

The fifth term is the interspecies collisional friction, and a
simple Lorentz form, �F 1

j = −njmj

∑
k νjk( �Vj − �Vk), is used

in this study. The sixth term is a combination of �V × �B
force and electric field force, the seventh term comes from
the right-hand side of equation (13), and the last term comes
from the second term in equation (20). This S–S model also
replaces the parallel viscosity coefficient in the H–S model with
the Shaing banana-plateau-PS viscosity interpolation formula
〈B · ∇ · 	j 〉 = 3〈(n · ∇B)2〉η0j (Vθj · B)/B2, where n is the
unit vector in the magnetic field direction and

η0j = njmjVthj qR0ε
−3/2ν∗

jj

(1 + ε−3/2ν∗
jj )(1 + ν∗

jj )
≡ njmjVthj qRfj (ν

∗
jj ) (21)

and where the normalized collision frequency is ν∗
jj ≡

νjj qR0/Vthj with νjj being the self-collision frequency of
species ‘j ’, q is the safety factor, and ε ≡ r/R0 [18, 42].

In the S–S poloidal rotation model, the poloidal
dependences of density and velocity over flux surfaces are
represented by the following low-order Fourier expansion:

nj (r, θ) ≈ nj (r)[1 + nc
j (r) cos θ + ns

j (r) sin θ ], (22a)

Vj (r, θ) ≈ V j (r)[1 + V c
j (r) cos θ + V s

j (r) sin θ ], (22b)

where the overbar indicates the average values over flux
surfaces, the cosine asymmetries with superscript ‘c’ represent
‘in–out’ variations, and the sine asymmetries with superscript
‘s’ represents ‘up–down’ asymmetries. It should be noted that
the poloidal variation of the flux surfaces will be represented
by the Miller model, and any further poloidal variation of
the density and flows will be represented by equations (22a)
and (22b). This low-order Fourier representation should
be adequate to pick up the leading order up–down and in–
out component of any further asymmetries of the densities
and flows over the flux surface. It would be conceptually
straightforward to extend the formalism to include higher
order Fourier expansions, but since this would be algebraically
and computationally difficult we will defer this until there is
evidence of the necessity to do so.

The electrostatic potential is also expanded in the form
of equations (22a) and (22b) and, in principle, the ion and
electron temperatures could be as well. However, we will argue
that the large parallel thermal conductivities make a significant
variation in temperature over the flux surface unlikely, which
should certainly be true for the electrons. Calculation of the
poloidal variation of the ion temperature would require use of
the heat balance and heat conduction equations, which would
greatly complicate the formalism, and this possibility will be
deferred until a later paper. More details on the S–S poloidal
rotation model can be found in [18, 42].

Figure 1. Miller equilibrium flux surface geometry.

Earlier studies with the S–S model [12, 30–33] have
developed a neoclassical plasma rotation theory based on
the circular flux surface geometry, and these previous
calculations were compared to actual velocity measurements
[30]. Although the calculated toroidal velocities were off by
about a factor of two, these studies proved the possibility
of using simple analytic flux surface geometry models in
this type of neoclassical rotation and the related momentum
transport calculations but concluded that higher accuracy could
be achieved with a more accurate flux surface geometry since
poloidal asymmetries are closely related to the geometric
expansion, compression, and elongation of flux surfaces [30].
These findings have motivated the use of the Miller flux surface
geometry to rederive a plasma rotation theory [35] based on
the S–S poloidal rotation model.

2.2. Miller equilibrium flux surface model

The circular model was rather simpler in terms of the
derivation and numerical coding but lacks the accuracy in the
representation of poloidal dependences along the flux surfaces.
Miller et al [34] presented an analytical geometry to better
describe actual D-shaped equilibrium flux surfaces of tokamak
plasmas with elongation κ and triangularity δ as shown in
figure 1, thus one of the most advanced analytic representations
of tokamak plasmas. R0(r) is a function of r , the half-
diameter from the centre of plasma along the plasma mid-
plane, representing the shifts of the centre of each flux surface.
The R and Z coordinates of the Miller model are described by

R(r) = R0(r) + r cos(θ + x sin θ) ≡ R0(r) + r cos ξ, (23a)

Z(r) = κr sin θ, (23b)

where x ≡ sin−1 δ and ξ ≡ θ + x sin θ .
Analysis of the curvilinear differential geometry in all

coordinates (r, θ, φ) yields the following metric coefficients
for the Miller model [34, 35, 43]:

hr =
[
κ

[
cos(x sin θ) +

∂R0(r)

∂r
cos θ

+[sκ − sδ cos θ + (1 + sκ)x cos θ ] sin θ sin ξ

]]
×
[√

sin2 ξ(1 + x cos θ)2 + κ2 cos2 θ

]−1

, (24)
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hθ =
[
rκ

[
cos(x sin θ) +

∂R0(r)

∂r
cos θ

+[sκ − sδ cos θ + (1 + sκ)x cos θ ] sin θ sin ξ

]]

×
[√(

∂R0

∂r
+ cos ξ− sδ sin ξ sin θ

)2

+ κ2 sin2 θ(sκ + 1)2

]−1

,

(25)

hφ = R(r) = R0(1 + ε cos ξ), (26)

where sκ(r) = (r/κ)(∂κ/∂r) and sδ(r) = r(∂δ/∂r)/
√

(1 − δ2)

account for the changes in elongation and triangularity respec-
tively along the radial direction. Ampere’s law provides the
following magnetic field representations for the Miller model:

Bθ(r, θ) =
(

1 +
∂R0(r)

∂r

)
Bθ

hr(1 + ε cos ξ)
, (27)

Bφ = Bφ

1 + ε cos ξ
. (28)

With this analytical Miller model, we can use the S–S plasma
poloidal rotation model to calculate the poloidal dependences
of density and velocity represented in equations (22a) and
(22b) more accurately, ultimately increasing the accuracy in
the toroidal velocity and momentum transport calculations.

Different flux surface geometries provide different
formulas for the flux surface average (FSA) calculations. For
the Miller model, we have

〈A(r, θ)〉 ≡
∮ A(r, θ) d�θ

Bθ∮ d�θ

Bθ

=
∮

A(r, θ)Y (r, θ) dθ∮
Y (r, θ) dθ

, (29a)

where

Y (r, θ) =
[
(1 + ε cos ξ)

[
cos(x sin θ) +

∂R0(r)

∂r
cos θ

+[sκ − sδ cos θ + (1 + sκ)x cos θ ] sin θ sin ξ

]2]
×
[[[(

∂R0

∂r
+ cos ξ − sδ sin ξ sin θ

)2

+κ2 sin2 θ(sκ + 1)2

]
[sin2 ξ(1 + x cos θ)2

+κ2 cos2 θ ]

]1/2]−1

. (29b)

Unlike those of the circular model used in earlier studies
[12, 30–33], FSAs in the Miller model do not reduce to simple
analytic forms, thus must be numerically computed separately
and imported into the final computation code. Note here that
the circular model is simply a special case of the Miller model
with elongation κ = 1, triangularity δ = 0 and no Shafranov
shift. This simple fact served as one of the tools to check the
accuracy and validity of the new plasma rotation theory against
the earlier circular model [12, 30] (see appendix B for revised
circular model formalism) and for the numerical coding in this
work.

3. Plasma rotation theory in the Miller model
representation

3.1. Angular toroidal torques and transport with the Miller
model

Now with all theoretical backgrounds required to develop
a new neoclassical plasma rotation theory with the Miller
geometry presented, we are ready to derive the formalism
for calculating toroidal velocity and neoclassical gyroviscous
contribution to angular momentum damping. The strong
rotation ordering Vr 
 Vθ < Vφ ∼ Vth is used. Earlier studies
with the circular model [12, 30–33] now become special cases
of this new theory. Thus, the new theory with the Miller
model was developed in a similar fashion to the circular model
theory [30] so that direct comparison would be possible to
enable evaluation of the accuracy improvement. In this section,
derivation of the toroidal angular torque formalism is presented
first to stress the importance of the gyroviscous contribution to
the total viscous torque.

From the first term of the toroidal momentum balance
equation (12), the FSA of toroidal angular ‘inertial’ torque
formalism using the Miller model is given by

〈njmjR
2∇φ · ( �Vj · ∇) �Vj 〉 = R0njmjνnjV φj (30)

with the ‘inertial’ transport frequency (νnj ) given by

νnj = V rj

R0

[
∂R0

∂r

〈
1

hr

〉
+

〈
cos ξ

hr

〉
+ε

(
ñc

j + Ṽ c
φj

)〈
cos θ

cos ξ

hr

〉
− R0L

−1
V φ

]

+V θj εṼ
s
φj

(〈
cos θ

1

hθ

〉
+

〈
1

R

∂R

∂θ
sin θ

1

hθ

〉
〈
sin2 θ

1

hθ

〉 〈
cos2 θ

1

hθ

〉

+ε

〈
cos θ

cos ξ

hθ

〉
+

1

R0

〈
∂R

∂θ
sin θ

1

hθ

〉)
(31)

where L−1
X = −(1/X)(∂X/∂r) is the gradient length scale for

a given quantity X, ñ
s,c
j = n

s,c
j /ε, and Ṽ

c,s
φj ≡ V

c,s
φj /ε.

Also from the second term of the toroidal momentum
balance equation (12), the FSA of toroidal angular ‘viscous’
torque formalism is given by

〈R2∇φ · ∇ · ↔
Π〉 = 〈(R2∇φ · ∇ · ↔

Π)⊥〉
+〈(R2∇φ · ∇ · ↔

Π)gv〉 ≈ 〈(R2∇φ · ∇ · ↔
Π)gv〉

= −
〈

1

Rhθhr

∂

∂r

[
R3η4

∂(VφR−1)

∂θ

]〉
= R0njmjνdjV φj ,

(32)

where η4j = njmjTj/ejB, the gyroviscous transport
(or ‘drag’) frequency is given by

νdj ≈ ν1
dj + ν2

dj (33)

5
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with

ν1
dj = − Tj

R0ejBφ

ε



Ṽ s
φj

(
2

〈
cos θ

cos ξ

hθhr

〉
+

1

R0

〈
R cos θ

cos ξ

hθhr

〉
+

1

R0

〈
R sin θ

sin ξ

hθhr

〉
+

1

R0
x

〈
R sin θ cos θ

sin ξ

hθhr

〉)
+ñs

j

1

R0

(〈
R sin θ

sin ξ

hθhr

〉
+x

〈
R sin θ cos θ

sin ξ

hθhr

〉)
,



, (34)

ν2
dj ≡ 1

2

θ̃jGjTj

R2
0ej B̄φ

, (35)

where

Gj ≡ r(L−1
nj

+ L−1
Tj

+ L−1
V φj

), (36)

θ̃j = 2ε



Ṽ s
φj

(
ñc

j

〈
R

cos2 θ

hθhr

〉
+

1

ε

〈
R

cos θ

hθhr

〉
+

〈
R cos θ

cos ξ

hθhr

〉
+

〈
R sin θ

sin ξ

hθhr

〉
+x

〈
R sin θ cos θ

sin ξ

hθhr

〉)
+ñs

j

(
− Ṽ c

φj

〈
R

sin2 θ

hθhr

〉
+

〈
R sin θ

sin ξ

hθhr

〉
+x

〈
R sin θ cos θ

sin ξ

hθhr

〉)


. (37)

We note that there is mention in the literature of a ‘gyroviscous
cancellation’ of inertial and gyroviscous terms, e.g. as
discussed in [28]. One of many terms in the gyroviscous
representation of that paper has a (u∗ · ∇)u form that is
formally similar to the (u · ∇)u inertial term (although u∗ is a
magnetization velocity whereas u is the fluid mass velocity).
These two terms may add or subtract, depending on the
signs of these velocities (directions of currents and magnetic
fields), and the terminology ‘gyroviscous cancellation’ is
rather misleading for this reason as well as because of the
existence of the other gyroviscous terms. In this paper the
magnitudes of the gyroviscous and inertial terms are primarily
determined by the poloidal asymmetries, which are calculated
from momentum balance in the elongated Miller model flux
surface geometry; if the poloidal asymmetries vanished or
were assumed to vanish, then the gyroviscosity would vanish.
Neither a specific flux surface geometry nor the representation
of poloidal asymmetries were considered in [28], so it is not
really possible to further compare the present results with those
of that paper.

Earlier circular model studies [12, 30–33] were done
with ν2

dj only, but ν1
dj was identified to have non-negligible

contribution during the numerical calculation in this work, thus
was included for both the Miller model and the revised circular
model theories (see appendix B for the revised circular model
formalism). ν2

dj contains the same Gj and θ̃j representing
the radial gradients and poloidal asymmetries respectively,
thus allowing direct comparison with the earlier circular
model formalism [12, 30–33]. Note here in equation (32)

that the gyroviscous contribution accounts for the most of the
viscous torque since it is much larger than the perpendicular
component by the following argument. Braginskii’s parallel
(η0), gyroviscous (η3,4), and perpendicular (η1,2) viscosity
coefficients in a collisional plasma are given as follows,
expressed with their relative orderings:

η0 = 0.96nT τ, η1 = 3

10

nT

�2τ
,

η2 = 4η1, η3 = 1

2

nT

�
, η4 = 2η3, (38)

where in tokamak plasmas τ ∼ 10−5 s is the typical
self-collision time and � ∼ 108 s−1 is the typical ion
gyrofrequency. Thus, Braginskii’s parallel, gyroviscous,
and perpendicular viscosity coefficients are in the ratio of
1/(�τ)−1/(�τ)−2 ≈ 1/10−3/10−6. Therefore, the ordering
among these components are given by η0 � η4 � η2. With
the parallel contribution identically vanishing in the FSA and
η4 ≈ (�τ)η2 ≈ (103–104)η2, the gyroviscous contribution to
toroidal momentum transport is the dominant one, larger than
the perpendicular component generally by a couple of orders
of magnitude. Note that we will use a more sophisticated form
of the parallel viscosity, equation (21), when calculating the
poloidal velocity and momentum transport in the following
section.

The gyroviscous momentum transport frequency given
by equation (33) is a strong function of density and toroidal
velocity asymmetries, thus vanishes in any formalism that
neglects poloidal dependences. Also, although Braginskii’s
viscosity was derived assuming large collisionality, this PS
type ‘neoclassical’ gyroviscosity is independent of any explicit
collisionality since no direct evidence on the trapped particle
effect on gyroviscosity has been reported. When the poloidal
asymmetries are not considered, as in the NCLASS code [39],
only the perpendicular contribution survives and the calculated
neoclassical momentum damping is negligible [19, 20, 26],
leading to the incorrect conclusion that neoclassical transport
is too small.

3.2. Stacey–Sigmar poloidal rotation theory with the Miller
model

Calculation of the toroidal angular torques and transport rates
in the previous section requires a calculation of the poloidal
asymmetries (nc,s

j and V
c,s
j ) appearing in equations (22a)

and (22b). This can be accomplished by taking Fourier
moments (i.e. 1, cosine and sine moments) of the poloidal
momentum balance, equation (19), with equations (22a)
and (22b) assumed. Using the same Fourier moments of the
continuity equation (13), the velocity asymmetries (V c,s

j ) can
be related to the density asymmetries (nc,s

j ) by

Ṽ s
θj ≡ V s

θj /ε ≈ −ñs
j , (39)

Ṽ c
θj ≡ V c

θj /ε = −ñc
j +

1

ε

〈
1

R

∂R

∂θ
sin θ

1

hθ

〉/〈
sin2 θ

1

hθ

〉
(40)

to reduce the number of unknowns in the final computation
model. We may consider adding an additional atomic
physics term on the right-hand side of the continuity equation,
equation (9), to increase the accuracy in the plasma edge region

6
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as in one of the early circular model studies [44] but this is left
as a future research.

We also assume the same type of Fourier series expansion
for the electrostatic potential,

�(r, θ) ≈ �(r)[1 + �c(r) cos θ + �s(r) sin θ ], (41)

and use it in the moments of the poloidal momentum balance
equation for ‘j = electrons’ to relate the potential asymmetries
(�c/s) to the electron density asymmetries (nc/s

e ). In doing so,
we neglect all other terms except the pressure and electric field
terms in the poloidal momentum balance, equation (19), to get

��c,s = Ten
c,s
e /e (42)

where nc,s
e are related n

c,s
j (j = ions) by charge neutrality

(nc,s
e = ∑

j Zjn
c,s
j ), a consequence of the assumption of

ambipolar electron transport. The same Fourier moments of
the radial momentum balance, equation (14), can be used
to calculate the radial electric field, Er , and the toroidal
velocity asymmetries (V c/s

φj ) as a function of n
c,s
j as follows,

again allowing the reduction in the number of unknowns
in the numerical computation model. The 1, cosine, and
sine moments respectively of the reduced radial momentum
balance, equation (14), are

�̂
′
j ≡ �

′

Vthj

≡ 1

VthjBθ

∂�

∂r
= − Er

VthjBθ

= V̂θj

〈
1

1 + ε cos ξ

〉
〈

1

hr

〉 − V̂φj

(
1 +

∂R0(r)

∂r

)

×

〈
1

(1 + ε cos ξ)

1

hr

〉
〈

1

hr

〉 − P̂
′
j , (43)

where

P̂
′
j ≡ p′

j

Vthj

≡ 1

Vthj

1

njejBθ

∂pj

∂r
, fp ≡ Bθ/Bφ,

V̂θj ≡ V θj/(fpVthj ) and V̂φj ≡ V φj/Vthj ,

Ṽ s
φj = ñs

jα
1S
j + α2S

j , (44)

where α1S
j and α2S

j can be found in appendix C.

Ṽ c
φj = V̂θj

V̂φj

α3C
j + α2C

j

〈
1

1 + ε cos ξ

〉
〈

1

hr

〉
 + α1C

j

−α2C
j

(
1 +

∂R0(r)

∂r

)〈 1

(1 + ε cos ξ)

1

hr

〉
〈

1

hr

〉
− P̂

′
j

V̂φj

(α2C
j − α4C

j ), (45)

where α1C
j , α2C

j , α3C
j , and α4C

j are all functions of ñc
j and can

be found in appendix C.

Using all the coupling relations found so far, the first
moment of the poloidal momentum balance reduces to
equation (46), written in a generic form for simplicity, that
allows us to calculate the poloidal velocity for two ion species
‘j ’ and ‘k’:

A11V̂
2
θj + A12V̂θj + A13V̂θk = B1, (46)

where A11, A12, A13 and B1 are given in appendix C. In this
equation, the friction term appears in ν∗

jk = νjkqR/Vthj and
the viscous term in fj = ε−3/2ν∗

jj /((1 + ε−3/2ν∗
jj )(1 + ν∗

jj ))

from the use of neoclassical parallel viscosity expression,
η0j = njmjVthj qRfj (ν

∗
jj ).

The cosine and sine moments of the poloidal momentum
balance, equation (19), reduce to equations (47) and (48),
respectively (again in generic forms for the two species), to
solve for ñ

c,s
j ,

AC1ñ
c
j + AC2ñ

s
j + AC3ñ

c
k = BC, (47)

AS1ñ
c
j + AS2ñ

s
j + AS3ñ

s
k = BS, (48)

where AC,S and BC,S coefficients are given in appendix C.
When we assume ‘two-species’ plasma with the main ion
(deuterium) and a majority impurity (carbon), equations (46)–
(48) provide six equations, with j being either deuterium or
carbon and k being the other, leaving two more relations to be
identified from the toroidal angular momentum balance for the
calculation of toroidal velocities.

3.3. Toroidal rotation calculation model with the Miller
geometry

The calculation model for the toroidal velocity can be derived
from the toroidal component of the angular momentum
balance,

njmj [R( �Vj · ∇) �Vj ]φ + [R(∇ · ↔
Πj )]φ = RnjejE

A
φ

+RnjejVrjBθ + RFφj + RMφj − RnjmjνatomjVφj , (49)

from which we can get two additional relations to complete
the eight equations to solve for the eight unknowns (four
velocities and four density asymmetries). Using the FSAs of
the first (inertial) and second (viscous) torque terms presented
in equations (30) and (32), we can take FSAs of all other
terms in equation (19) to find relations for the toroidal velocity
calculation. The first moment of equation (49) yields

njmj

∑
k

νjk[(1 + βj )V φj − V φk] ≡ njmj

∑
k

νjkyj

= njejE
A
φ +

(
1 +

∂R0(r)

∂r

)〈
1

hr

〉
ejBθ�rj + Mφj , (50)

where βj ≡ (νdj + νnj + Snbj /nj )/νjk , yj ≡ (1 + βj )V φj −
V φk , and Mφ is the toroidal momentum input. βj represents
the radial transport of angular momentum with Snbj being the
local neutral beam source rate and νnj and νdj are the inertial
and gyroviscous transport frequencies respectively calculated
with equation (31) and (33). Thus, a relation between the
toroidal velocities of deuterium and impurity can be derived
by adding yj of the two species, j = i (deuterium) and j = I

(carbon) with Vthi = √
mI/miVthI when assuming equilibrium

temperature (Ti = TI ). This yields

V̂φi

√
mI/miβi + V̂φI βI = (yi + yI )/VthI , (51)

7
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which becomes the seventh equation in the numerical
computation model. The last equation comes from
manipulating the first moments of radial momentum balance,
equation (43), for the two species. Since �

′ ≡ 1/Bθ∂�/∂r

is independent of species, it must be identical when calculated
with either j = i or j = I , thus providing

V̂φi −
√

mi

mI

V̂φI =
(

V̂θi −
√

mi

mI

V̂θI

)

×

〈
1

1 + ε cos ξ

〉
(

1 +
∂R0(r)

∂r

)〈
1

(1 + ε cos ξ)

1

hr

〉 +

(
−P̂

′
i +

√
mi

mI

P̂
′
I

)

×

〈
1

hr

〉
(

1 +
∂R0(r)

∂r

)〈
1

(1 + ε cos ξ)

1

hr

〉 , (52)

which is the last eighth relation that the toroidal velocities of
both species must satisfy.

We have not considered electrons in the above formalism
under the assumption that ion-impurity collision frequencies
are much greater than ion-electron collision frequencies, which
is the case in most tokamak experiments. We implicitly treat
electrons by assuming that the resulting theory is ambipolar.

4. Numerical computation model

Six equations from the extended S–S poloidal rotation model
plus two equations from the toroidal rotation calculation
model from the previous section constitute a self-consistent
set of eight equations that we designate extended neoclassical
rotation theory. These equation may be solved for the toroidal
and poloidal velocities and the sin and cos density asymmetries
for the two species, at each radial mesh point from the centre
of plasma to the edge (we use 51 mesh points). Note that all
the unknowns in the calculation model are normalized values
so that numerical round-off errors are minimized:

V̂φi = V̂φD = V̂tD : Toroidal velocity (deuterium)

ñc
D = ñc

i : Cos asymmetry (deuterium),

V̂φI = V̂φC = V̂tC : Toroidal velocity (carbon)

ñc
C = ñc

I : Cos asymmetry (carbon),

V̂θi = V̂θD = V̂pD : Poloidal velocity (deuterium)

ñs
D = ñs

i : Sin asymmetry (deuterium),

V̂θI = V̂θC = V̂pC : Poloidal velocity (carbon)

ñs
C = ñs

I : Sin asymmetry (carbon). (53)

A numerical algorithm is designed to solve the non-
linearly coupled set of eight equations iteratively, using the
decomposition given in equations (54a)–(54c), written in
generic forms: [

c11 c12

c21 c22

][
V̂θi

V̂θI

]
=
[
d1

d2

]
, (54a)


a11 a12 a13 0
a21 a22 0 a24

a31 0 a33 a34

0 a42 a43 a44




ñc
i

ñs
i

ñc
I

ñs
I

 =


b1

b2

b3

b4

 , (54b)

[
e11 e12

e21 e22

][
V̂φi

V̂φI

]
=
[
f1

f2

]
. (54c)

This decomposition proved to be better-conditioned and more
iteratively stable than the entire set of eight-by-eight non-linear
systems taken as a single set since the latter was shown to
be extremely ill-conditioned. To iteratively solve this non-
linear system of equations for comparison with experiment,
the initial guesses for carbon velocities are taken directly from
the experimental measurements, and for deuterium velocities
perturbation theory [45] is used to infer initial guesses from
carbon velocity measurements. Initial density asymmetries are
set to zeros and subsequent values are generated as iterations
continue. The numerical algorithm for this Miller model
study can be best described as a combination of successive
over relaxation (SOR) and simulated annealing (SA) and
is developed independently from the earlier circular model
calculation algorithm [30] but shares very similar numerical
characteristics. More detailed description of this numerical
algorithm will be presented in a separate publication along
with all the coefficients.

In earlier studies with the circular model [30, 45], the
Shafranov shift was not considered for simplicity but is
represented in this study with the following form of the analytic
Shafranov shift model [34],

∂R0

∂r
= �′ ≡ −(r/R0)

(
βθ +

1

2
�i

)
, (55)

where βθ = nT/(B2
θ /2µ0) and �i is the internal inductance.

Study with more accurate Shafranov shift models can be done
when these are considered to be critical for accuracy.

5. Experimental data

Since the new rotation theory was developed based on
Braginskii’s strong rotation orderings, two strongly rotating
ELMing (edge-localized mode) H-mode DIII-D shots are
analysed in this paper. One shot was counter-injection
#138639 (2085 ms) and the other was co-injection #142020
(2310 ms). The main toroidal rotation drive for both shots was
provided by directed neutral beam injection. A summary of
the shot parameters is provided in table 1. In this table, the
impurity/deuterium density ratio shows the relative amount of
impurities with respect to deuterium density. For example,
shot 138639 has approximately 10% impurities on average
with ∼9% at the centre and ∼10% at the 90% flux surfaces.
Throughout the radial ranges except the plasma edge, the ratio
only slightly fluctuates about the average but the fluctuation
increases at more than 90% flux surfaces where the ratio
is not reliable due to lack of atomic physics treatment on
the edge. The incident neutral beam power (PNB) is given
as the ratio of incident vs. capable neutral beam power,
which is identical to the duty cycle. For example, the 30LT
beam for shot 142020 (1.3 MW/2.6 MW) has the capability of
2.6 MW beam injection but used with 50% duty cycle, thus
generating 1.3 MW of beam injection energy. Figure 2 shows
the equilibrium flux surfaces for the two shots.

We note that there have been recent advances in the
measurements and analysis of toroidal and poloidal rotation,
including proper treatment of the apparent velocity caused

8
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Table 1. Summary of two DIII-D shot parameters.

Shot properties Shot 138639(2085 ms) Shot 142020(2310 ms)

Beam injection direction Counter-injection Co-injection
R (major radius) 1.734 m 1.796 m
a (minor radius) 0.586 m 0.592 m
κ(r = 0)/κ(r = a) (elongation) 1.45/1.83 1.39/1.85
δ(zbottom)/δ(ztop) (triangularity) 0.22/0.6 0.714/0.382
I (current) −1.181 MW (CW from the top view) 1.074 MW (CCW from the top view)
Bp (poloidal magnetic strength) 0.275 T 0.249 T
Bφ (toroidal magnetic strength) −1.994 T −1.897 T
q95(safety factor at 95% flux surface) 4.9 5.63
Vloop (loop voltage) −0.262 96 V 0.315 715 V
Divertor configuration Upper single null (USN) Lower single null (LSN)
Impurity/deuterium density ratio 0.1/0.09/0.1 0.04/0.04/0.05

(average/at the centre/at 95% flux surfaces)
PNB (incident power/capable power) 30LT (2.1/2.6 MW), 30LT (1.3 MW/2.6 MW),

150LT (2.2/2.2 MW), 150LT (1.8 MW/1.8 MW),
330LT (2.6/2.6 MW) 330LT (1.1 MW/2.2 MW),

330RT (1.3 MW/2.2 MW)

Figure 2. Equilibrium flux surfaces of two DIII-D shots.

by the energy dependent cross-section [46–48], as well as
extensions to the circular model theory since the earlier
comparison [30]. Comparison of the calculated velocities from
the new plasma rotation theory against these measurements
are presented in the following section. Although only two
shots were analysed in this study, a good combination of
co- and counter-injection, different directions of Bθ and Ip,
and the different extent of poloidal dependences of upper
and lower divertors (as will be shown in the next section)
enables a good test of the theory and the numerical algorithm.
Efforts to identify more suitable shots are underway, especially
shots which take advantage of the recent advances in the
measurement of deuterium velocity and analysis [49].

6. Comparison of theory with experiment

Figures 3 and 4 show the calculated rotation velocities
compared to the experimental measurement for both shots.
For all the figures in this paper, ‘t’ represents ‘toroidal’,
‘p’ for ‘poloidal’, ‘D’ or ‘i’ for deuterium, and ‘C’ or

‘I’ for carbon. In these figures V t
computed
D and Vp

computed
D

(blue diamonds) are the calculated, thus predicted, toroidal
and poloidal deuterium velocities respectively for which no
measurements are available. ρ = r/a on the x-axis is the
normalized distance from the centre of plasma to the flux
surface. Overall, these two sets of the calculated results show
that the new neoclassical plasma rotation theory based on
the Miller equilibrium flux surface geometry predicts carbon
toroidal and poloidal rotation velocities which agree quite
well with measured values, generally to within approximately
<10%. The notable exception of a significant under-prediction
of the poloidal velocity in the edge region of the co-injected
shot #142020 is probably attributable to not taking into account
charge-exchange damping, the effect of divertor on poloidal
asymmetry in the prediction, use of Braginskii’s strong rotation
ordering in the edge where rotation is much weaker, and ill-
conditioning of the numerical calculation model in the edge.
Overall this is a significant improvement relative to the earlier
studies with the circular model [30], in which the measured
carbon toroidal velocities were overpredicted by roughly a
factor of 2 and the disagreement in predicted and measured
carbon poloidal velocities was much larger.

Figure 5 shows the calculated density asymmetries (nc,s
i,I ),

which are relatively small (less than 10% everywhere except
in the very edge). These asymmetries are larger for
carbon than for deuterium. Note that a positive/negative
sine component indicates an upward/downward asymmetry
in the density distribution, while a positive/negative cosine
component indicates an outward/inward asymmetry in the
density distribution. The velocity asymmetries (V c,s

i,I ) are
coupled with n

c,s
i,I by equations (39), (40), (44) and (45), thus

can be easily computed from these density asymmetries.
The inertial and gyroviscous toroidal angular momentum

transport frequencies are strong functions of poloidal
asymmetries as shown in equation (31) and (33)–(37).
These transport frequencies are calculated with the density
asymmetries shown in figure 5 and plotted in figures 6 and 7 for
the range in which neglected edge phenomena are unimportant.
Since the gyroviscous transport frequency is generally much
larger than the inertial transport frequency and the deuterium
density is much larger than the carbon density, the total toroidal
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Figure 3. Calculated velocities for carbon and deuterium for counter-injected upper SN shot #138639.
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Figure 4. Calculated velocities for carbon and deuterium for co-injected lower SN shot 142020.
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(a) Inertial transport frequency
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Figure 6. Toroidal angular momentum transport frequencies for counter-injected shot #138639.
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Figure 7. Toroidal angular momentum transport frequencies for co-injected shot #142020.

angular momentum transport frequency (neglecting charge-
exchange) is essentially the gyroviscous toroidal angular
momentum transfer frequency of deuterium, i.e. νj ≈ νdj

where νj is the total transport rate of species j . Note that this
significant neoclassical gyroviscous transport would vanish in
a poloidal rotation theory that does not account for density and
velocity asymmetries. It is notable that figures 6 and 7 imply
both inward (νnj , νdj < 0) and outward (νnj , νdj > 0) angular
momentum transport for both deuterium and carbon. Although
the larger transfer frequencies in the plasma edge may be due
in part to the Vφj ∼ Vthj ordering of the Braginskii formalism
and the neglect of charge-exchange, the profiles clearly imply
both inward and outward momentum transport.

Since the circular model is just a special case of the Miller
geometry (i.e. κ = 1 and δ = 0 with no Shafranov shift),
the same numerical algorithm can be used to calculate the
velocities for the circular model theory. The predictions of
the circular and Miller model theories are compared with the
measured carbon velocities in figures 8 and 9. The Miller
model predictions are in significantly better agreement with
experiment than are the circular model predictions, due to the

better representation of the poloidal dependence of the flux
surfaces, which leads to a more accurate calculation of poloidal
asymmetries and poloidal rotation velocities.

7. Relation to other work on neoclassical viscosity

The literature related to neoclassical viscosity is somewhat
confusing. There are at least two versions of gyroviscosity in
the literature, originating from the work of Braginskii [14] and
from the work of Mikhailovskii and Tsypin [17], respectively,
and there are other developments of viscosity (e.g. [19, 20])
that do not include gyroviscosity at all. In this section we
briefly outline the relation of the gyroviscosity of this paper to
the literature on neoclassical viscosity.

Most developments of viscosity for tokamak plasmas are
based, directly or indirectly, on the methods of Chapman
and Enskog [50]. Braginskii [14] was among the first to
develop a model for viscosity in a plasma by partitioning
the viscous stress tensor (in x–y–z geometry) into three
components—parallel, perpendicular and gyro viscosity, with
viscosity coefficients that differed by orders of magnitude
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(a) Vθ (positive upward at outer mid-plane) (b) Vφ   (CCW positive) 
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Figure 8. Comparison of predicted carbon velocities with the circular and Miller models with measurements for ctr-injected shot 138639.
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Figure 9. Comparison of predicted carbon velocities with the circular and Miller models with measurements for co-injected shot 142020.

(η‖ � η� � η⊥). The flux surface average of the parallel
viscous force vanishes identically in toroidal flux surface
geometry (so it does not contribute to toroidal momentum
damping), and the perpendicular viscous force was found to
be much too small to explain the toroidal angular momentum
damping rate observed in tokamaks, leading to the (premature)
conclusion that neoclassical viscosity could not account for
observed toroidal momentum damping in tokamaks.

Stacey and Sigmar [18] extended the Braginskii formalism
to toroidal flux surface geometry and showed that small
up–down poloidal asymmetries in density, such as those
measured for impurity ions in several tokamaks, could
produce gyroviscous momentum damping rates comparable
to those observed in tokamaks. Stacey [21] subsequently
calculated (by solving the low order Fourier moments of the
poloidal momentum balance equation numerically) the density
asymmetries in several tokamaks and evaluated the resulting
gyroviscous momentum damping rates that agreed reasonably
well with observed damping rates. Similar calculations, based
on a simple ‘circular’ model for the poloidal dependence of

the flux surface geometry, were later made for several DIII-
D discharges with widely different plasma parameters, with
the general result that the measured momentum damping rates
were under-predicted by only about a factor of two by the
gyroviscous theory. This result motivated the work reported in
this paper in which the poloidal dependence in the gyroviscous
theory is represented by the more realistic Miller model [34]
and the agreement between prediction and measurement is
generally to within 10%.

Shortly after Braginskii’s original paper, Mikhailovskii
and Tsypin [17] noted that the strong rotation ordering used
by Braginskii was inappropriate for tokamaks of that day (but
not those of today) in which the rotation velocity was well
below the thermal velocity, and these authors developed an
alternative formalism in a weak rotation ordering. This line of
theoretical development has been extended by several authors
including Catto and Simikov [27, 29] and Ramos [28]. This
development also yields a gyroviscous tensor similar to that
obtained by Braginskii plus an additional gyroviscous tensor
proportional to the thermal flux.

12
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Over this same timeframe there were several other
derivations of neoclassical viscosity (e.g. the work of Hinton
and Wong [19] and of Conner, Cowley, Hastie and Pan [20])
that did not have a gyroviscous contribution. However, this
work was based on a gyroradius ordering scheme which
only retained leading (zero) order terms in the gyroradius
parameter, and the poloidal asymmetries (and the poloidal
velocity) enter these schemes at first order. Estimates of
these first order terms made for some DIII-D discharges were
comparable to values calculated numerically and observed
experimentally [30], so such ordering schemes would also find
gyroviscous contributions when carried to higher (first) order,
as is necessary in order to touch base with experiment.

8. Conclusions

An extended neoclassical rotation and momentum plasma
transport theory based on the Stacey–Sigmar model with
the more accurate Miller equilibrium flux surface geometry
was presented in this paper. It was also shown that the
gyroviscous contribution to viscous transport, (R2∇φ · ∇ ·
↔
Π)gv, accounts for most of the neoclassical toroidal angular
momentum damping in this model. Comparisons of the
predictions of this new theory with experiment for two DIII-D
discharges indicate that the new theory of this paper predicts
the measured carbon poloidal and toroidal rotation very well
(<10%) everywhere except in the very edge, for the co-
injected shot, where the neglect of recycling neutrals and of
the divertor and the assumption of strong rotation ordering
may be expected to cause difficulty. It is shown that the
more accurate poloidal representation of the flux surfaces
provided by the Miller equilibrium model is responsible for
a significantly more accurate prediction than is possible with
the similar neoclassical rotation theory based on the circular
model [30].

The good agreement of prediction with experiment found
on the two shots examined in this paper leads us to tentatively
conclude that the extended neoclassical theory, when all
important terms are retained and properly evaluated, is capable
of accounting for most of the rotation and momentum transport
in tokamaks. Such a conclusion must, of course, be confirmed
by a more extensive comparison of prediction with experiment.
Also, improved accuracy in the plasma edge requires extending
the model further to represent charge-exchange of recycling
neutrals, the effect of the divertor on poloidal asymmetries,
and the weak rotation ordering of Mikhailovskii.

9. Future work

The derivations of this paper have been carried out in
toroidal geometry with the primary intention of utilizing the
Miller model to provide a better representation of poloidal
asymmetries in the flux surface geometry, while retaining a
tractable calculation model for toroidal rotation that could
be compared with experimental results, in order to further
the evaluation of the ability of a neoclassical gyroviscosity
model to represent the radial transport of toroidal momentum
in tokamak experiments. A necessary secondary purpose was
to further develop a self-consistent model for the calculation
of poloidal rotation and poloidal density asymmetries. While

the comparisons with experiments are quite encouraging, there
remain many minor and major refinements that could be made
to the present calculation model.

The extended neoclassical rotation theory in this research
is based on Braginskii’s strong rotation ordering, Vφj � Vthj

and does not include neutral recycling and the associated
atomic physics in the edge. It is straightforward to extend the
continuity equation to include all the atomic physics effects
and to include a neutral recycling calculation, as was done in
one of the previous circular model studies [45].

Developing a weak rotation theory based on
Mikhailovskii’s weak rotation ordering, Vφj 
 Vthj , would
extend the applicability of the plasma rotation theory based on
the model of this paper to a wider range of weaker plasma ro-
tation, such as might be found in the plasma edge and in future
larger tokamaks. Mikhailovskii’s viscosity formalism [17] has
been revised by other researchers and most recently by Catto
and Simakov [27, 29] and Ramos [28]. A simple way of pre-
senting Catto and Simakov’s viscosity formalism to show its
relation to Braginskii’s is

↔
Π

Mikhailovskii

j = ↔
Π

Braginskii

j +
↔
Π

Heat

j , (56)

which indicates that the current rotation theory can be modified

by adding
↔
Π

Heat

j to the formalism, thus making the current
theory a special case of the more general theory based on
Mikhailovskii’s ordering. In doing so, selectively adding
some important terms with significant contribution from the
heat equation terms may simplify the modification of the
current theory and numerical algorithm. In this regard, use
of Braginskii’s formalism in this research can be considered
as an intermediate step toward developing a more general
neoclassical rotation theory for both strong and weak rotation
orderings.

We have found that extension of the poloidal geometry
representation from the simple ‘circular’ model [R = R0(1 +
r/R0 cos θ), B = B0/(1 + r/R0 cos θ)] to the Miller model
resulted in significant improvement in the agreement between
predicted and measured rotation velocities. However, even
the Miller model does not represent up–down asymmetries in
flux surface geometry nor the effect of divertors. Extension
of the Miller flux surface geometry model to explicitly
represent up–down asymmetries and the divertor should
be possible.

In a similar vein, the representation of further poloidal
asymmetries over the Miller model flux surfaces in flows and
densities by a first-order Fourier series may not be capable of
fully representing more extremely asymmetric distributions.
If experimental or other evidence of the need for a more
extreme asymmetric representation of the density flow arises
in future applications, then there may be a need to extend the
formalism to include a higher order Fourier representation
of poloidal asymmetries in flow and density in future
work.

In the longer term, it would be useful to repeat the
derivations of this paper in more general representations, such
as the coordinate-free representation of Ramos [28], and to
investigate any effect on the resulting model of explicitly using
the ‘gyroviscous cancellation’.
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Finally, we note that a rotation theory such as presented
in this paper, which represents the effects of elongated and
triangulated flux surface geometry and further takes into
account poloidal variations of flows and densities over the
flux surface, should enable an interesting study of the use of
axisymmetric flux surface shaping to optimize flow properties,
in particular after the representation is extended to incorporate
vertical asymmetries and divertors.
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Appendix A. Inertial and viscosity terms in
curvilinear geometry

(1) Inertial terms in curvilinear geometry:

[( �V · ∇) �V ]r = Vrj

hr

∂Vrj

∂r
+

[
Vθj

hθ

∂Vrj

∂θ

+
VrjVθj

hrhθ

(
∂hr

∂θ
− ∂hθ

∂r

)]
− VrjVφj

hrhφ

∂hφ

∂r
, (A1)

[( �V · ∇) �V ]θ =
[
Vrj

hr

∂Vθj

∂r
+

VθjVrj

hθhr

(
∂hθ

∂r
− ∂hr

∂θ

)]
+

Vθj

hθ

∂Vθj

∂θ
− VθjVφj

hθhφ

∂hφ

∂θ
, (A2)

[( �V · ∇) �V ]φ =
(

Vrj

hr

∂Vφj

∂r
+

VφjVrj

hφhr

∂hφ

∂r

)
+

(
Vθj

hθ

∂Vφj

∂θ
+

VφjVθj

hφhθ

∂hφ

∂θ

)
. (A3)

(2) Viscosity terms in curvilinear geometry:
The rate-of-stress tensor elements in the viscous stress

tensor is decomposed into

	αβ = 	0
αβ + 	12

αβ + 	34
αβ, (A4)

where

	0
αβ = −η0W

0
αβ, 	12

αβ = −(η1W
1
αβ + η2W

2
αβ) and

	34
αβ = η3W

3
αβ + η4W

4
αβ. (A5)

The elements of the traceless rate-of-strain tensor are

W 0
αβ ≡ 3

2 (fαfβ − 1
3δαβ)(fµfν − 1

3δµν)Wµν,

W 1
αβ ≡ (δ⊥

αµδ⊥
βν + 1

2δ⊥
αβfµfν)Wµν,

W 2
αβ ≡ (δ⊥

αµfβfν + δ⊥
βνfαfµ)Wµν,

W 3
αβ ≡ 1

2 (δ⊥
αµεβγ ν + δ⊥

βνεαγµ)fγ Wµν,

W 4
αβ ≡ 1

2 (fαfµεβγ ν + fβfνεαγµ)fγ Wµν,

(A6)

where δ⊥
αβ ≡ δαβ −fαfβ , δαβ the Kronecker delta function and

εαβγ the antisymmetric unit tensor. The Einstein summation
convention is also assumed. For tokamak plasmas, we
can assume

fr = |Br |/|B| ≈ 0, fp = |Bθ |/|B| ≈ 0,

fφ = |Bφ|/|B| ≈ 1. (A7)

Neglecting Vr since Vr 
 Vθ < Vφ ∼ Vth, assuming
axisymmetry (∂/∂φ ≈ 0), and with A0 defined as

A0 = −1

3
(Wrr + Wθθ) +

2

3
Wφφ + 2fpWθφ

= 2

[
− 1

3hθ

∂Vθj

∂θ
+

(
1

Rhθ

∂R

∂θ
+

1

3Bθhθ

∂Bθ

∂θ

)
Vθj

+ fpR
1

hθ

∂(VφjR
−1)

∂θ

]
, (A8)

the elements of the viscous stress tensors are given by

	rr = 1

2
η0A0 + η1

[
(RBθ)

−1 1

hθ

∂(RBθVθj )

∂θ

−fp

R

hθ

∂(VφjR
−1)

∂θ

]
−η3

[
hθ

hr

∂(Vθjh
−1
θ )

∂r
− fp

R

hr

∂(VφjR
−1)

∂r

]
, (A9)

	rθ = 	θr

= −η1
hθ

hr

∂(Vθjh
−1
θ )

∂r
− (η2 − η1)fp

R

hr

∂(VφjR
−1)

∂r

−η3(RBθ)
−1 1

hθ

∂(RBθVθj )

∂θ

−(η4 − η3)fp

R

hθ

∂(VφjR
−1)

∂θ
, (A10)

	rφ = 	φr = −η2R
1

hr

∂(VφjR
−1)

∂r
− η4R

1

hθ

∂(VφjR
−1)

∂θ
,

(A11)

	θθ = 1

2
η0A0 + η3

hθ

hr

∂(Vθjh
−1
θ )

∂r

+(2η4 − η3)fp

R

hr
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	θφ = 	φθ = −3

2
η0fpA0 − η2R

1

hθ

∂(VφjR
−1)

∂θ

+η4R
1

hr

∂(VφjR
−1)

∂r
, (A13)

	φφ = −η0A0 + 2η2fp

R

hθ

∂(VφjR
−1)

∂θ

−2η4fp

R

hr

∂(VφjR
−1)

∂r
. (A14)
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With these, the viscous force terms in general curvilinear
geometry are given by

(∇ · ↔
Π)φ =

[
1

Rhθhr

∂

∂r
(Rhθ	rφ) +

1

Rhr

∂R

∂r
	rφ

]
+

[
Bθ

hθ

∂

∂θ

(
	θφ

Bθ

)
+

1

Rhθ

∂R

∂θ
	θφ

]
, (A15)

(∇ · ↔
Π)θ = 1

H

∂

∂r
(Rhθ	rθ ) +

1

H

∂

∂θ
(hrhφ	θθ )

− 1

hθhr

∂hr

∂θ
	rr +

1

hθhr

∂hθ

∂r
	θr − 1

Rhθ

∂R

∂θ
	φφ, (A16)

(∇ · ↔
Π)r = 1

H

∂

∂r
(Rhθ	rr) +

1

H

∂

∂θ
(hrhφ	θr)

+
1

hθhr

∂hr

∂θ
	rθ − 1

hθhr

∂hθ

∂r
	θθ − 1

Rhr

∂R

∂r
	φφ, (A17)

where H ≡ hrhθhφ .
We note that we are retaining and representing explicitly

all of the terms in both the inertial and gyroviscous tensors,
rather than taking advantage of any cancellations. In fact,
the derivations of ‘gyroviscous cancellation’ (e.g. [28]) do not
seem to allow for poloidal asymmetries in flows and densities,
while the gyroviscosity of this paper are caused almost entirely
by these poloidal asymmetries.

The inclusion of poloidal asymmetries in flow and velocity
and their calculation, and the use of the Miller equilibrium
model, requires a different of type of ‘ordering’, because some
terms must be evaluated numerically and because there is no
single ‘small parameter’ applicable to all terms in all equations.
We instead chose a three-step ordering process. In step #1,
each individual term in a given equation was ordered using the
appropriate ordering parameter for that term, in order to ensure
that the largest contributions to that term were retained. In
step #2, the various terms in a given equation were compared
and smaller terms were dropped, if appropriate. Finally, in
step #3, the different equations were normalized and terms with
higher order nonlinearities in small unknowns were initially
suppressed in order to avoid numerical difficulties in solving
the coupled set of eight nonlinear equations. We have found
that this approach both is necessary to obtain solutions to
the coupled non-linear equations and leads to better accuracy
(lower residuals) than attempting a common ordering of all
terms in all equations using a generic small parameter (i.e.
assuming that all small parameters are the ‘same degree of
small’).

Appendix B. Revised circular model formalism

Continuity equation (cosine and sine moments):

Ṽ s
θj = −ñs

j , (B1)

Ṽ c
θj = −(1 + ñc

j ). (B2)

Electron poloidal momentum balance equation (cosine and

sine moments):
�̃c,s = Teñ

c,s
e /�e. (B3)

Radial momentum balance equation (1, cosine and sine
moments):

�̂
′
j = �

′

Vthj

≡ 1

VthjBθ

∂�

∂r
= − Er

VthjBθ

= V̂θj − V̂φj − P̂
′
j ,

(B4)

Ṽ c
φj = 1 − V̂θj

V̂φj

(�̃c + 2 + ñc
j ) + �̃c

(
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)
, (B5)

Ṽ s
φj = − V̂θj

V̂φj

(̃ns
j + �̃s) +

(
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V̂φj
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Poloidal momentum balance equation (1 moment):
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Poloidal momentum balance equation (cosine moment):
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Poloidal momentum balance equation (sine moment):
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Angular inertial torque (moment):

〈njmjR
2∇φ · ( �Vj · ∇) �Vj 〉 = R0njmjνnjV φj , (B10)

15



Nucl. Fusion 53 (2013) 043011 C. Bae et al

where

νnj ≡ 1

2

V rj
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[ε(1 + ñc

j + Ṽ c
φj ) − 2R0L

−1
V φj

]

= 1

2

V rj

R0

{
ε

[
2 + ñc

j − V̂θj

V̂φj

(�̃c + 2 + ñc
j )

+ �̃c

(
1 +

P̂
′
j

V̂φj

)]
− 2R0L

−1
V φj

}
. (B11)

Angular viscous torque (1 moment):

〈R2∇φ · ∇ · ↔
Π〉 ≈ 〈(R2∇φ · ∇ · ↔

Π)gv〉

= −
〈

1

Rhθhr

∂

∂r

(
R3η4

∂(VφjR
−1)

∂θ

)〉
≡ R0njmjνdjV φj , (B12)

where

νdj = −1

2

Tj

R2
0ejBφ

(4Ṽ s
φj + ñs

j ) +
1

2

θ̃jGjTj

R2
0ejBφ

= 1

2

Tj

R2
0ejBφ

[
4
V̂θj

V̂φj

(̃ns
j + �̃s)

−4

(
1 +

P̂
′
j

V̂φj

)
�̃s − ñs

j

]
+

1

2

Gj θ̃jTj

R2
0ejBφ

, (B13)

Gj ≡ r(L−1
nj

+ L−1
Tj

+ L−1
V φ

), (B14)

θ̃j ≡ Ṽ s
φj (4 + ñc

j ) + ñs
j (1 − Ṽ c

φj )

= (4 + ñc
j )

[
− V̂θj

V̂φj

(̃ns
j + �̃s) +

(
1 +

P̂
′
j

V̂φj

)
�̃s

]
+ ñs

j

[
V̂θj

V̂φj

(�̃c + 2 + ñc
j ) − �̃c

(
1 +

P̂
′
j

V̂φj

)]
. (B15)

Toroidal angular momentum balance equation (1 moment):

njmj

∑
j �=k

νjk

[(
1 +

νnj + νdj + Snbj /nj∑
j �=k νjk

)
V φj − V φk

]
= njejE

A
φ + ej�rjBθ + Mφj . (B16)

Appendix C. Coefficients in the Miller model
formalism

Radial momentum balance equation (cosine moment):

α1S
j ≡ −

〈
sin2 θ

1

hr

〉
(

1 +
∂R0(r)

∂r

)〈
sin2 θ

(1 + ε cos ξ)

1

hr

〉
×
(

�̂
′
j

V̂φj

+
P̂

′
j

V̂φj

+ 1

)
,

α2S
j ≡ − �̂

′
j

V̂φj

�̃s

〈
sin2 θ

1

hr

〉
(

1 +
∂R0(r)

∂r

)〈
sin2 θ

(1 + ε cos ξ)

1

hr

〉 (C1)

Radial momentum balance equation (sine moment):

α1C
j ≡ −1

ε

〈
cos θ

(1 + ε cos ξ)

1

hr

〉
+ εñc

j

〈
cos2 θ

(1 + ε cos ξ)

1

hr

〉
〈

cos2 θ

(1 + ε cos ξ)

1

hr

〉 ,

α2C
j ≡ −1

ε

〈
cos θ

1

hr

〉
+ ε(̃nc

j + �̃c)

〈
cos2 θ

1

hr

〉
(

1 +
∂R0(r)

∂r

)〈
cos2 θ

(1 + ε cos ξ)

1

hr

〉 ,

α3C
j ≡ 1

ε

〈
cos θ

1 + ε cos ξ

〉
+

〈
1

R

∂R

∂θ
sin θ

1

hθ

〉
〈
sin2 θ

1

hθ

〉 〈
cos2 θ

1 + ε cos ξ

〉
(

1 +
∂R0(r)

∂r

)〈
cos2 θ

(1 + ε cos ξ)

1

hr

〉 ,

α4C
j ≡ −1

ε

〈
cos θ

1

hr

〉
+ εñc

j

〈
cos2 θ

1

hr

〉
(

1 +
∂R0(r)

∂r

)〈
cos2 θ

(1 + ε cos ξ)

1

hr

〉 . (C2)

Poloidal momentum balance equation (1 moment):

A11 = qrf 2
p ñs

j


〈

cos θ

hθ

〉
+

〈
1

R

∂R

∂θ

sin θ

hθ

〉
〈

sin2 θ

hθ

〉 〈
cos2 θ

hθ

〉  ,

A12 = −q2R2
0fpfj

×



ñc
j ε

[
− 1

3

〈
1

R

∂R

∂θ
sin θ

1

hθ

〉
〈

sin2 θ

hθ

〉 (〈
sin2 θ

(hθ )2

〉
−
〈

cos2 θ

(hθ )2

〉)

+
1

3

〈
∂hθ

∂θ

sin θ

(hθ )3

〉
−
〈

1

R

∂R

∂θ

sin θ

(hθ )2

〉
− 1

3

〈
cos θ

(hθ )2

〉]

+3〈Q〉 + 〈M〉 +

〈
1

R

∂R

∂θ
sin θ

1

hθ

〉
〈

sin2 θ

hθ

〉
×
(

− 1

3

〈
∂hθ

∂θ

sin θ

(hθ )3

〉
+

〈
1

R

∂R

∂θ

sin θ

(hθ )2

〉
+

1

3

〈
cos θ

(hθ )2

〉
+ 〈M cos θ〉 − 〈P sin θ〉

)


+ qrfpV̂φj Ṽ

s
φ

〈
1

R

∂R

∂θ

sin θ

hθ

〉
− fp

∑
j �=k

ν∗
jk − fpν∗

atomj ,

A13 = fp

∑
j �=k

ν∗
jk

√
mj

mk

,

B1 = V̂φj Ṽ
c
φjq

2R2
0fjfpε

(〈
∂hθ

∂θ

sin θ

(hθ )3

〉
−
〈

cos θ

(hθ )2

〉
−〈N cos θ〉 − 2

〈
1

R

∂R

∂θ

sin θ

(hθ )2

〉)
+V̂φj q

2R2
0fjfp

[
εñc

j

(〈
1

R

∂R

∂θ
sin θ

1

(hθ )2

〉
−〈N cos θ〉

)
− 〈N〉 − 3

〈(
1

R

∂R

∂θ

)2 1

(hθ )2

〉]
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+
1

2
qrñs

j

〈
cos θ

hθ

〉
− 〈Mθj 〉 qR0

njmjV
2
thj

+V̂rj

〈
1

(1 + ε cos ξ)

〉
+

1

2
qrε�j

[
�̃s

(
1

ε

〈
cos θ

hθ

〉
+ñc

j

〈
cos2 θ

hθ

〉)
− ñs

j �̃
c

〈
sin2 θ

hθ

〉]
, (C3)

where

N ≡ −
(

1

R

∂R

∂θ

)2 1

(hθ )2
− ∂hθ

∂θ

1

R

∂R

∂θ

1

(hθ )3
+

1

R

∂2R

∂θ2

1

(hθ )2
,

M ≡ N +
1

3

[
−
(

1

Bθ

∂Bθ

∂θ

)2 1

(hθ )2
− ∂hθ

∂θ

1

Bθ

∂Bθ

∂θ

1

(hθ )3

+
1

Bθ

∂2Bθ

∂θ2

1

(hθ )2

]
P ≡ 1

R

∂R

∂θ

1

(hθ )2
+

1

3

1

Bθ

∂Bθ

∂θ

1

(hθ )2
,

Q ≡
(

1

R

∂R

∂θ

)2 1

(hθ )2
+

1

3

(
1

R

∂R

∂θ

)(
1

Bθ

∂Bθ

∂θ

)
1

(hθ )2
,

V̂rj ≡ qR0ejBφ

mjV
2
thj

V rj , and �j ≡ ej�
1
2mjV

2
thj

= ej�

Tj

= Zje�

Tj

.

Poloidal momentum balance equation (cosine moment):

AC1 = q2R0rfjfp

[
− V̂θj

1

3

(
−
〈
∂hθ

∂θ

sin θ cos θ

(hθ )3

〉
+

〈
cos2 θ

(hθ )2

〉)
− V̂φj 〈N cos2 θ〉

−
∑
j �=k

ν∗
jkεfp

√
mj

mk

V̂θk〈cos2 θ〉

−V̂rj ε

〈
cos2 θ

(1 + ε cos ξ)

〉]
,

AC2 = qr

(
−f 2

p V̂ 2
θj

〈
cos2 θ

1

hθ

〉
+

1

2

〈
cos2 θ

hθ

〉)
,

AC3 =
∑
j �=k

ν∗
jkεfpV̂θj 〈cos2 θ〉,

BC = qrfpV̂θj V̂φj Ṽ
s
φ

〈
1

R

∂R

∂θ
sin θ cos θ

1

hθ

〉

−V̂θj q
2R2

0fjfp


〈

1

R

∂R

∂θ

sin θ

hθ

〉
〈

sin2 θ

hθ

〉
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(

− 1

3

〈
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〉
+

1

3
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cos2 θ
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〉
+ 〈M cos2 θ〉 − 〈P sin θ cos θ〉

)

+〈M cos θ〉 + 3〈Q cos θ〉
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−V̂φj Ṽ

c
φjq

2R0rfjfp
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∂θ
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(hθ )3
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〈

cos2 θ

(hθ )2

〉

−〈N cos2 θ〉
)

− V̂φj q
2R2

0fjfp〈N cos θ〉

+〈cos θMθj 〉 qR0

njmjV
2

thj

−
∑
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ν∗
jkfp
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V̂θj −

√
mj

mk

V̂θk
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×
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1

R

∂R

∂θ

sin θ

hθ
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〈

sin2 θ

hθ
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(1 + ε cos ξ)
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− 1
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hθ
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atomj V̂θj

(
〈cos θ〉 +
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R
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sin θ
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〈
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 .

(C4)

Poloidal momentum balance equation (sine moment):

AS1 = qrf 2
p V̂ 2

θj

〈
sin2 θ

1

hθ

〉
− 1

2
qr

〈
sin2 θ

hθ

〉
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