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Abstract

A low-confinement mode discharge which optimizes the capability of the new main-ion charge-exchange-recombination
spectroscopy system on DIII-D (Luxon 2002 Nucl. Fusion 42 614) to measure deuterium toroidal velocity is interpretted
in comparison with the predictions of neoclassical theory, with an emphasis on the plasma edge region. The observed peaking
in the deuterium toroidal velocity near the separatrix is shown to be consistent with intrinsic co-rotation due to ion orbit loss. In
general, the standard neoclassical toroidal and poloidal momentum transport rates are found to be smaller than those inferred

from experiment.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding rotation in tokamaks is important both for
basic knowledge of momentum transport in tokamak plasmas
and for the practical knowledge of effects of rotation on
confinement and in stabilizing magnetohydrodynamic (MHD)
instabilities. There is experimental evidence of the relationship
between rotation and energy confinement (e.g. [1] and [2])
and theoretical evidence for the relation of rotation to particle
pinches and diffusion coefficients (e.g. [3]). There are both
theoretical (e.g. [4]) and experimental (e.g. [5]) evidence that
MHD resistive wall modes are stabilized by rotation.

Measurement of the toroidal and poloidal rotation
velocities of impurity ions (in particular carbon) by charge-
exchange-recombination (CER) spectroscopy (e.g. [6]) has
provided a widely available tool for the study of impurity ion
rotation for a number of years, but until recently there has been
no direct measurement of the main deuterium ion rotation,
and there are reasons to believe the deuterium rotation might
differ from the measured carbon rotation. However, recently
the CER methodology has been extended [7, 8] on DIII-D [9]
to enable experimental determination of deuterium toroidal
rotation, providing an important new experimental capability
for the investigation of rotation in tokamaks.

There also have been parallel theory and modelling
applications [10-17] of neoclassical rotation theory to predict
the measured toroidal carbon rotation and the previously
unmeasured deuterium toroidal rotation, in DIII-D and
elsewhere, over the past decade. For axisymmetric toroidal
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geometry, gyroviscosity is the leading neoclassical candidate.
A version of extended neoclassical theory, based on a
calculation of poloidal asymmetries in densities, flows, etc.
in a ‘circular’ flux surface geometry [10, 12], was found to
predict the order of magnitude (over-prediction by factors of
2-3,) of measured carbon toroidal velocities. However, a
recent extension [15] of this methodology to an elongated flux
surface geometry representation brought the agreement with
carbon toroidal and poloidal rotation measurements to within
10-20%, except in the plasma edge.

Comparisons [16-19] of neoclassical poloidal velocity
with experiment show mixed results. The NCLASS code [14]
was found to systematically underpredict measured carbon
rotation velocities [14], and similar results were found [13]
using a slightly different theory that also included poloidal
asymmetries. However, related theories, but extended to
include heat flux terms in the viscosity and the V. x B
force, found somewhat better agreement with experiment [13],
and neoclassical poloidal velocity calculations that include
poloidal asymmetries and an elongated flux surface geometry
representation [15] are in good agreement with experiment
for two DIII-D H-mode discharges, except in the edge. Drift-
kinetic calculations of probe flow measurements in DIII-D [18]
are also showing reasonable agreement.

Now that the ability exists to measure toroidal rotation
for the main deuterium ions as well as the primary impurity
carbons ions, and an extended neoclassical theory which
includes poloidal asymmetries and an elongated flux surface
representation is available, it seems appropriate to undertake

© 2014 IAEA, Vienna Printed in the UK
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Figure 1. Toroidal velocity of (a) carbon, (b) deuterium and (c) both carbon and deuterium, fit with error bars from Monte-Carlo uncertainty
error estimates. (on denotes the square root of the fraction of the enclosed toroidal flux, normalized to the value at the boundary.)

a new comparison of neoclassical rotation theory with
experiment. On the theory comparison side, it seems logical
to first sort out the various versions of neoclassical theory
and separately compare them with experiment, in order to
establish just what disagreement remains to be accounted for
by turbulent and other transport mechanisms. Since there are
more complicating factors in the edge—steep gradients, ion
orbit loss, neutral recycling, strong structure in the rotation
velocity and radial electric field profiles, etc—than in the core,
this region requires special attention.

The purpose of this paper is to contribute to the
comparison of neoclassical theory with rotation measurements
now possible with the new CER experimental capability.
A comparison of rotation measurements for both carbon
and deuterium with the predictions of various versions of
neoclassical theory is presented for a DIII-D discharge chosen
to take advantage of the new experimental capability. We
first present the rotation measurements and their comparison
with the standard neoclassical analysis code NCLASS [14]
in section 2, and then turn to a more detailed investigation
of rotation in the tokamak plasma edge with theory. In
section 3, the observed intrinsic co-rotation is compared with
the prediction of ion-orbit-loss theory, and in section 4 the
effects of ion orbit loss on the radial particle and energy
fluxes transported outward in the plasma are calculated. In
section 5, experimental toroidal angular momentum transport
frequencies are interpreted from the measured toroidal rotation
velocities and compared with predictions based on atomic
physics and neoclassical momentum transfer mechanisms.
In section 6, the measured poloidal carbon and inferred
deuterium poloidal rotation velocities are compared with
neoclassical predictions. Finally, we briefly discuss the
extended neoclassical rotation methodology based on an
elongated flux surface representation and taking into account
poloidal asymmetries in particle and flow distributions [15],
which would be expected to be important in plasmas with high
flow rates and elongated divertor geometry.

2. Rotation measurements

The discharge chosen for the measurement and calculation of
edge plasma rotational velocities is an L-mode plasma with
heating from neutral beam injection (NBI). DIII-D discharge
#149468 was designed specifically for rotation physics studies
using the CER spectroscopy systems, whereby modulated NBI

from both co-current and counter-current beams were used
for toroidal rotation measurements of impurities and main-
ions, and a third beam was used for carbon poloidal rotation
measurements using vertically viewing CER sightlines [7, 8].

Some parameters for this discharge are plasma current
and toroidal field of I, = 1.19MA and B, = —2.0T. Here
the sign convention is positive current corresponds to the
counter-clockwise direction when the tokamak is viewed from
above (same direction as six of the eight NBI sources), and
negative toroidal magnetic field is clockwise when viewed
from above. In the right-handed coordinate system R, ¢, Z,
the plasma current direction defines the +¢ direction, and Z
is the elevation. In the right-handed coordinate system of the
plasma cross-section r, 6, ¢, the + poloidal direction is down
(—Z) on the outboard midplane. The + poloidal direction is
also the direction of the poloidal field and the ion diamagnetic
velocity direction.

This discharge positioned the plasma in the vacuum vessel
with a large midplane gap between the equilibrium separatrix
and the vessel wall. This plasma shape aligned the plasma
edge with the outer-most sightlines of the main-ion CER (MI-
CER) system and permitted a measurement of the deuterium
toroidal velocity at the plasma edge. The L-mode edge makes
the MI-CER measurements near the separatrix more feasible
because the gradients are less steep than H-mode conditions
and the measurement will suffer less from the spatial smearing
which may occur near sharp changes in plasma profiles.

Presented in figure 1 are the profiles of carbon and
deuterium toroidal velocity measured by the impurity (CER)
and main-ion (MI-CER) CER systems. Both profiles are
centrally peaked in this discharge with dominant co-current
NBI. Carbon toroidal rotation measurements display a smooth
decrease in velocity towards the plasma edge to approximately
35kms~! at p = 1.0, however the deuterium measurements
display a clear increase in the toroidal rotation at the plasma
separatrix near 80—110km s~'. Although the spatial resolution
is insufficient to resolve the width of the co-current rotation
feature very near the separatrix, and there is significant scatter,
itcan still be seen that the toroidal velocity of deuterium is more
co-current than for carbon by approximately 45-75kms™!
near the separatrix. (There is a finite spot size for the optical
system of about 2cm, so the last ‘point’, which appears
outside the separatrix, should be regarded as an average over
this increment.) Similar observations have been made using
plunging Mach probes and appear to be a robust feature at the
plasma boundary [18].



Nucl. Fusion 54 (2014) 073021

W.M. Stacey et al

Densities
30— - -
25}

20
15
1.0f

0.5
0.0
0.0

n(10° m°)

02 04 06 08
Pn

1.0

Temperatures

5 T T T T

T
4t T
S 3t :

2

- 2f ;
1_ E

0 1 1 1 1
00 02 04 06 08 10

PN

Figure 2. Profiles of (a) the electron density (upper) and deuterium (middle) and carbon (lower) ion densities and (b) electron (upper) and
ion (lower) temperatures. (on denotes the square root of the fraction of the enclosed toroidal flux, normalized to the value at the boundary.)
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Figure 3. Toroidal velocity of carbon and deuterium (a), poloidal velocity of carbon (b) and poloidal velocity of deuterium (c). Overlayed
are the predicted flow velocities from NCLASS (solid lines without error bars). (py denotes the enclosed fraction of the flux surface, or the

‘normalized radius’.)

In order to assess the expected difference in the toroidal
rotation of carbon and deuterium, we will use the radial force
balance relation and calculations from neoclassical theory.
Evaluation of the radial force balance relation and neoclassical
calculations require the radial profiles of election and ion
densities and temperatures, which are presented in figure 2.
Electron density is measured by Thomson scattering and a
multichannel CO, interferometer, carbon density is calculated
from CER, and deuterium ion density is inferred from charge
quasi-neutrality. Thomson scattering and ECE are used for
electron temperature, and ion temperature is from CER. As
described in [8] and [11], we can infer the deuterium ion
poloidal velocity from the measured ion pressures, toroidal
velocities (figure 3(a)), and the carbon poloidal velocity
(figure 3(b)) arriving at a radially resolved main-ion poloidal
flow (figure 3(c)).

Neoclassical theory from the NCLASS [14] model
provides a calculation of the ion poloidal velocities of carbon
and deuterium using the experimental equilibrium and profiles,
and by using the ion radial force balance relation can therefore
provide an expected deuterium ion toroidal velocity. Also
displayed in figure 3 are the results of the NCLASS model
using the experimental conditions. NCLASS predicts a larger
toroidal flow for the main-ions than for carbon across the entire
profile, but experimentally the main ion rotation is greater than
the carbon ion rotation only at larger radii p > 0.6. The
experimental carbon and deuterium poloidal flow velocities are
more positive than NCLASS nearer the magnetic axis, but are

of the same magnitude at larger radii. This result is consistent
with previous observations [11] on DIII-D that (i) the poloidal
flow is anomalous near steep gradients of the ion temperature
and in the hot core where the collisionality is lower and (ii) that
the flows are closer to NCLASS where the ion collisionality is
higher atlarger radii where the plasma is much cooler (figure 4),
although the large error bars on the CER measurement of the
carbon poloidal velocity are noted. The interfaces between
the collisionality regimes are indicated by the dash line. We
neglect to include the NCLASS evaluation for p > 0.9 because
the evaluation of the flow velocities using the experimental
loop voltage and neoclassical resistivity produces spurious
results due to the large inductive parallel electric field term
from < E x B >.

3. Intrinsic co-rotation caused by ion orbit loss

An unique aspect of the measured rotation in the edge plasma
is the strong peaking of the deuterium toroidal velocity at the
separatrix, or co-current intrinsic rotation. There is rather
strong recent evidence (e.g. [20-23] of intrinsic co-rotation
in DIII-D and that it is produced by ion orbit loss [21-23]
and not Reynold’s stress [20]. We believe that the peaking in
the measured deuterium toroidal rotation near the separatrix
shown in figure 1(b) is an indication of intrinsic rotation, and
we show in this section that ion orbit loss can produce this type
of co-rotation peaking in the edge plasma rotation.
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Figure 4. Normalized collision frequencies v} = vjrg R/ Vin; for
carbon (upper curve) and deuterium (lower curve). (oy denotes the
enclosed fraction of the flux surface, or the ‘normalized radius’.)

A calculation methodology has been developed [24-26]
(based on the conservation of canonical angular momentum,
energy and magnetic moment) which leads to an orbit
constraint equation for the determination of the minimum
speed for which an ion at some location on an internal flux
surface, 19, with initial speed V{) and direction cosine ¢, with
respect to the toroidal magnetic field can access a drift orbit
which passes through some point on the separatrix i and be

lost from the plasma
B
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where f, = |B,/B]|, R is the major radius, ¢ is the electrostatic
potential and v is the flux surface value.

Equation (1) is quite general with respect to flux surface
geometry representation of R, B and the flux surfaces . By
specifying an initial ‘0’ location for an ion with initial direction
cosine ¢y, and specifying a final location on the flux surface
¥, equation (1) can be used to determine if an ion with speed
Vo(Zo) can cross the separatrix at that final location on the
flux surface ¥ (i.e. if equation (1) has a physically reasonable
solution).

Thus, equation (1) can be solved repeatedly to determine
the minimum ion energy necessary for an ion located on an
internal flux surface at many different points (1, 6y) to cross
the last closed flux surface at any location. All of the ions
at this location (v, 6p) with this value of ¢, and with speeds
greater than this Vjmin (Y0, £o, 6p) are able to cross the last
closed flux surface. Because ions move over the flux surface
many times as they flow radially across it, the minimum value
for any 6, is the minimum speed associated with the flux surface
Vomin (Y0, $o). We will assume in this work that a fraction Rl‘glS
of these ions crossing the last closed flux surface strike the
chamber or divertor wall, interact with plasma or neutrals in

the scrape-off layer, etc. such as not to return back across the
last closed flux surface into the confined plasma.

For the usual DIII-D anti-parallel current/magnetic field
configuration in shot #149468, the quantity Vomin(&o) is very
large for particles with parallel velocity components opposite
to the direction of the toroidal magnetic field (¢, < 0), which
execute banana orbits inside the flux surface, but becomes
smaller with increasing ¢, > 0 (i.e. as the particle velocity
becomes more nearly aligned with the toroidal magnetic field
direction). (Some detailed calculations for a DIII-D shot are
discussed in [25] and [26]).

The GTEDGE code used to make the calculations dis-
cussed in this paper calculates Vjmin(Zo) using the electro-
static potential calculated by integrating the (experimental
or other) input radial electric field, an approximate ‘circu-
lar’ representation of the magnetic flux surface geometry de-
scribed by [R(r,0) = Rh(r,0), By ,(r,0) = By ,/h(r,0),
h(r,0) = (1+ (r/R)cos#)], and an approximate flux surface
representation ¥ (p) = RA, = 2(2‘;‘;’ )Ra p2 which follows
from Ampere’s law and the assumption of uniform current
density. Experimental data used in the calculation are mapped
from the pn(normalized enclosed magnetic flux) of the EFIT
flux surface calculated for the experiment to the correspond-
ing normalized radius of the circular model, and the geometric
radii of the circular flux surfaces are constructed to conserve
the corresponding experimental flux surface areas.

In the ‘standard’ DIII-D anti-parallel current/toroidal
field configuration (the configuration of shot #149468) the
preferential loss of ¢y > 0 (counter-current) ions causes a
residual ¢y < O (co-current) intrinsic rotation in the edge
plasma due to the preferential retention of co-current direction
ions. The net co-current rotation velocity at any flux surface is
determined by the cumulative net counter-current directed ion
orbit loss that has taken place in the outflowing plasma at all
inner radii out to that flux surface in question. Determining the
minimum loss speed Viin(,) as described above allows writing
an expression for the equivalent net parallel counter-current
momentum loss rate (or co-current momentum gain rate) due
toion orbit loss AM“’1 | By /B|nmvg; AV (vy; is the toroidal
momentum transport frequency discussed in section 6), which
can be used to compute the intrinsic co-rotation caused by ion
orbit loss, where [25,26]

1 00

Rulgsszﬂfdfo / (Vogo) Vi f (Vo)dVo

-1 Vinin ($0)

AV (p) =

P

= 47 Mo, (p) f (Vo) Vg f (Vo)dVy

p

2 [ 2k Tion
/ orb (:0) (/O)
m

(©))
and an initially Maxwellian distribution of ions flowing
outward through the edge has been assumed, to obtain

Mw RS0 (mVod0) Vi (Vo)dVe ] dey
ob = = %)
2057 Vo) Vi £ (Vo)dVo

MlOt
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I'(n, x) is the incomplete gamma function, and I'(n) is
the gamma function. The reduced energy emin(lo) =
mV02min (¢0)/2kT has been defined. @ When the current
and toroidal field are anti-parallel, this net counter-current
momentum loss (reduction) rate produces an intrinsic co-
current rotation given by equation (2). Although ion species
with the same charge-to-mass ratio Ze/m (e.g. deuterium and
carbon) will have the same Vi,;,(), the intrinsic rotation
will decrease with ion mass both because M, (because
the minimum energy corresponding to the minimum loss
speed scales with ion mass) and because the thermal velocity
decreases with ion mass, for the same ion temperature, with the
result that ion orbit loss and intrinsic rotation are significantly
stronger for deuterium than carbon ions.

This methodology was applied to DIII-D discharge
149468 to calculate the intrinsic co-rotation profiles of ion
orbit loss of thermal deuterium and carbon ions, and the
resulting co-rotation is shown in figure 5. As the radius
increases near the edge the cumulative loss of counter-rotating
ions from the outward flowing plasma increases, leaving
a plasma with a cumulatively increasing net co-rotation.
However, sufficiently close to the separatrix, most of the
counter-direction ions have been lost and it becomes possible
for co-rotating ions to be lost, thus reducing the cumulative net
co-rotation of the remaining ions in the outward flowing plasma
and resulting in a peak in the intrinsic co-rotation just inside the
separatrix. The intrinsic co-rotation shown in figure 5 is very
similar in magnitude to the experimental co-rotation peaking
(above the extrapolated core rotation profiles) for deuterium
shown in figure 1. We note that a similar phenomenon has
been observed in DIII-D probe measurements of the deuterium
velocity in the edge plasma [18]. The experimental uncertainty
in the location of the separatrix probably accounts for the
somewhat more outward location of the peak in figure 1 than
in figure 5.

The intrinsic rotation calculated from equation (2) and
plotted in figure 5 is a flux-surface averaged value [25, 26] for
the purpose of comparison with the experimental measurement

shown in figure 1. However, the intrinsic rotation produced by
ion orbit loss is poloidally asymmetric [26].

We note that the ion orbit loss calculation discussed above
and used previously to interpret probe measurement of intrinsic
deuterium rotation in DIII-D [23] is based on the same set of
conservation equations [24] as the similar model by deGrassie
[20-22] used to interpret probe measurements of intrinsic
rotation in a different DIII-D discharge [18], although the
computational implementation differs. In the model used in
this paper the outward flowing plasma encounters a larger
‘loss cone’ at successive radii and the differential loss cone at
any radius is replenished primarily by plasma flow from inner
radii, not by in-scattering, which would increase the calculated
loss. From figure 4, we would expect the rate at which ions
are scattered into the differentially increased loss region at
any radius to be small compared to the rate at which they are
flowing in from smaller radii. This neglect of additional loss
by scattering is compensated by the assumption that all ions
which cross the separatrix are lost (i.e. R}g;s = 1.0) and none
re-enter the plasma; refinements to these two aspects of the ion
orbit loss calculation are being developed.

4. Radial ion flux

The radial ion flux appears as a V x B force in the toroidal and
poloidal momentum balance equations, hence in the theoretical
expressions for the rotation velocities. Integration of the
steady-state particle continuity equation for species ‘j’

V.n;V, =V .TI'; =8y +nejne <(7i0nU>j

= Oppj +NeVionj = Sj “4)

determines the flux-surface averaged radial component of the
ion particle flux, which is denoted I',; and is usually outward.
The first term on the right is the neutral beam or pellet particle
source rate of ions of species j’ and the second term is the ion
particle source rate due to ionization of recycling or fuelling
neutral atoms of species ‘j’. A similar equation is obtained for
all ion species present in the plasma, in particular for the main
ion and impurity species with which we will be concerned in
this paper.

A cumulative (with radius) fraction Fy;(r) of this total
particle flux I',; resulting from external sources is lost from
the edge region across the separatrix by ion-orbit-loss and
by gradB drifting outward through the X-region (X-loss)
[27,28] of the thermalized plasma ions and the fast beam ions,
thereby reducing the actual flux of particles being transported
radially outward from the value calculated from equation (4)
to ,j = (1 — Foj)I'T,j. The quantity Fyn,;(r) is calculated
by a formula similar to equation (3) but without the (m V&)
term in the integrands and with the arguments of the gamma
functions n = 3/2.

In order to maintain charge neutrality, the loss of both
thermalized plasma ions and fast beam ions by ion-orbit-
loss and X-loss must be compensated by an inward current.
Since the electrons are generally more effectively tied to
field lines than are the ions, this current must be primarily
carried by the ions [29]. The ion orbit loss is assumed to
be balanced by an inward return current with a divergence at
each radius that offsets the ion orbit loss, and this current is
included in the calculation of the net radial particle flux flowing
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in the plasma. This total inward current must compensate
the ion-orbit-loss from both the ‘thermalized’ plasma ions
(main ion and impurities) and the fast neutral beam ions,
jr = ji°'+ j™ (In this paper we neglect the beam ion loss
contribution to this current). Because the ion orbit loss for the
main (deuterium) ion species ‘j’ is much greater than for the
impurity (carbon) ion species ‘k’, we make the approximation
jriOl(r) = _ejForbjFrj — e For T = _ejForbj(r)Frj (r). In
this paper we will be concerned with the ion orbit loss of
thermalized plasma ions, which we consider to be likely to
affect the edge plasma structure, but note that in general the
loss of fast neutral beam ions should also be taken into account.

Assuming that the inward compensating current is carried
by the main ion species, the net outward particle flux of the
main ion species in the plasma due to loss of ‘thermalized’
plasma ions (taking into account ion-orbit-loss and any X-
loss of outward flowing ions and the compensating inward
current of main ions from the scrape-off layer) is then T, ;o
(1 — Forbj)Frj — F(,rbjf‘,j = (1 — 2F0rbj)F,j, where again Frj
would be the outward main ion flux due to the neutral beam and
recycling neutral sources in the absence of any ion-orbit-loss
or X-loss of ions or compensating inward current. A negative
value of F, j» as will occur in the edge when Fuyp; > 0.5,
indicates a net inward flux of the main ions flowing in the
plasma. Since it is assumed that the compensating return
current is carried by ions of the main species ‘j’ and that
ion orbit loss of the impurity species ‘k’ is negligible, the
ion orbit loss can be taken into account by replacing I',; with
F,j = (I — 2F,w,;)T,; for the main ions, but using the value
of I';,calculated from the continuity equation for the impurity
ion species.

The values of the Fyy;(r) ion particle loss fraction and
a similar ion energy loss fraction Eyy;(r) (calculated from
equation (3), but with the (mVjy¢y) term in the integrands
replaced by (1/2m V) and with the arguments of the gamma
functions changed to n = 5/2) are shown in figure 6. These
calculations indicate that most of the deuterium particle and
energy fluxes in the very edge is due to ion orbit loss.

While I',; is calculated [25] for the main deuterium ions
by integrating the continuity equation with neutral beam and
recycling neutral ionization sources, in the absence of a multi-
charge state model for calculating the carbon influx, we treat
carbon as a single impurity species with a density which
is a constant fraction of the deuterium density and that has
the same density and temperature gradient scale lengths as
deuterium, and calculate an average charge state which varies
with radius from a fit to a coronal equilibrium calculation.
For the equilibrium condition of this discharge at 1900 ms, the
absence of an internal carbon source in the plasma implies
[y = 0 in the plasma edge.

5. lon toroidal rotation velocities

The continuity equation (4) can be combined with the
momentum balance equation to obtain a balance among the
inertial, pressure, viscous, electric field, V x B, collisional
friction and external source force terms [30]

njmj (Vi V)Vi+Vp;+V-II;
=nje; (E+V; x B) +R} +(S; —m;V;S)) 6))

where R} and S! are the first velocity moments of the collision
operator and the particle source.

Neglecting ion orbit loss effects for the moment, in a two-
ion-species plasma (‘j” and ‘k’), the toroidal component of the
momentum balance equation for species ‘j’ can be written
Bgejl",j = njmj(vdj + Ujk)V¢j — anjUjkV¢k

—(Myj +nje; Ef) ©)
and the equation for the other ion species ‘k’ is obtained by
interchanging the ‘j’ and ‘k’ subscripts. (This formalism is
readily generalized to multiple species by summing over ‘k’.)
The quantity vy; = vff’is ¢j T Vinertj T Vanomj T Vaij 1S @ composite
toroidal momentum exchange frequency due to toroidal
viscosity, toroidal inertia (Reynold’s stress), ‘anomalous’
viscosity (e.g. due to turbulence, non-axisymmetric toroidal
magnetic field, etc.), respectively, and vy ; = Vionj + Velexj
is an atomic physics momentum exchange term involving
ionization, elastic scattering and charge-exchange. The
quantity vy; + vj; represents the total toroidal momentum
exchange, or ‘transport’, frequency for ions of species ‘j’ by
transport processes and by momentum exchange with other ion
and neutral species present in the plasma edge. Justification for
writing the viscous and inertial momentum transfer in this form
is discussed in [31] and [15]. My; = MY + AMY + M3 ™is
the toroidal momentum input from neutral beams (calculated),
from ion orbit loss (AM5} = |By/B|n;jm jve;AVy;) and from
other sources (e.g. E g is the induced toroidal electric field
(measured)), and the other quantities have their universally
understood meaning.

Equation (6) and the corresponding equation for species
‘k’ can be solved for the unknown viscous + inertial + atomic +
anomalous toroidal momentum transport frequency (ion orbit
loss terms are now included)

VP — 1 |:Bﬁejrrj (1 = 2Fy)
dj = s iol m
(Vg™ — AV, njm;
(M? + AMY)) +nje Ep
+ Ujk(vql;llceag _ g;"1;6218)
njm;

)
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Figure 7. Deuterium toroidal momentum transport frequency vy;
(IOL Loss fraction R = 0.5). (p denotes the enclosed fraction of

loss

the magnetic flux, or the ‘normalized radius’.)

where A V;gl is the toroidal component of the intrinsic rotation,

and there is a similar equation for vszp with the subscripts ‘j’
and ‘k’ interchanged. Flux surface averaged quantities are
implied in equation (7). Thus, the magnitude and profile of the
momentum transport frequencies that are required to produce
the measured toroidal rotation velocities can be determined
and compared with the predictions of various theories. A plot
of equation (7), evaluated using the data given in section 2, is
shown by the solid squares in figure 7, and a plot of the same
equation with the ion orbit loss terms ((Fo, A\/;;?l, AM;‘_’].I)
suppressed is shown by the empty squares. Taking ion orbit
loss into account clearly affects the determination of the
experimental toroidal momentum transport frequency in the
edge region.

Also shown in figure 7 are the toroidal momentum
transport frequencies (i) estimated from a perturbation theory
that can be used in the absence of deuterium velocity
measurements, (ii) calculated from neoclassical gyroviscosity
and (iii) due to atomic physics processes (charge-exchange
and ionization). The perturbation theory and the neoclassical
gyroviscosity are briefly summarized below.

As mentioned, the ability to measure the deuterium
velocity is relatively newly developed and not widely available.
A perturbation theory procedure has been developed [32] for
estimating reasonable values of the v,4; and the ‘experimental’
velocity for deuterium using only the measured carbon
toroidal velocity. = The new capability to measure the
deuterium toroidal velocity provides an opportunity to test
this perturbation procedure, which is derived by first assuming
a common toroidal momentum transport frequency vi' =
Vgj = Vg and summing the toroidal momentum balance
equations (6) for the two ion species to obtain

vpert — [{}j + {}k]
O [ngmy (Vor + AVi) +memy V|

®)

where {}; = {Bgejl",j + My, +njejE$}. An equation for the
quantity AVy = Vy; — Vg can be determined by subtracting

9x10°*+

8x10* 1
~ ]
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Figure 8. Comparison of measured and perturbation estimates of
deuterium toroidal velocity. (Measured VtorD is shown by empty
circles and with intrinsic rotation subtracted by solid circles.
Measured carbon rotation is shown by solid squares, and the
perturbation theory estimate of VtorD obtained by adding equation
(9) to the carbon measurements is shown by solid triangles.) (IOL

Loss fraction Rligés = 0.5). (p denotes the enclosed fraction of the

magnetic flux, or the ‘normalized radius’.)

the two toroidal momentum balance equations (6)
AV, =| (1-— 0
(v +vax) ) njm; (vje + vaj)
- Vjk (e
(v +va) ) njm; (vij + vae)

-1
VjikVij

x| 1= J= ©

[ (vjk +vaj) (ij+vdk)} :

A surrogate for the experimental deuterium toroidal velocity
Vq;jeXp/ = V;}fas + AV can then be constructed from the
measured value of the carbon velocity V3™ and equation
(9) by using vg; = vz = vgo given by equation (8). We
improve the solution of the nonlinear set of equations (8)
and (9) iteratively, and find that the process converges when
[AV0/ Vq;,pr '| < 1. The converged perturbation calculation
for vg; =~ vgo. This perturbation interpretation using only
the measured carbon velocity, shown with solid leftward-
pointing triangles in figure 7, clearly agrees closely with
the interpretation of the experimental toroidal momentum
transport rate of equation (7) using both the measured carbon
and deuterium toroidal velocities.

The measured carbon toroidal velocity (VtorC) and
the perturbation estimate of the deuterium toroidal velocity
(VtorD) constructed from it using equations (8) and (9) are
compared with the measured deuterium VtorD, with and
without the intrinsic deuterium rotation of figure 5 being
subtracted, in figures 7 and 8 This result indicates that the
intrinsic rotation is a large fraction of the total measured
toroidal rotation for deuterium in the edge and that the
perturbation estimate of the deuterium toroidal velocity is
quite accurate when the experimental result is corrected for
the intrinsic rotation of deuterium. Judging from figure 1,
further taking into account the effect of the smaller intrinsic
rotation of carbon would not greatly affect the agreement of the
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perturbation estimate with the measured value. Alternatively,
instead of correcting the result of the perturbation calculation
for the intrinsic velocities due to ion orbit loss, the contributions
of ion orbit loss to the momentum input, AM&‘;',(, could be
included in the {};  terms in equations (8) and (9).

With respect to comparison with neoclassical toroidal
rotation theory, Braginskii’s strong rotation decomposition of
the flow rate-of-strain tensor [33] has been generalized [34]
to toroidal ‘circular’ flux surface (1 + & cosf) geometry and
more recently [15] to elongated ‘Miller model’ flux surface
geometry, and extended to include a neoclassical parallel
viscosity coefficient [35]. Because the flux surface average
of the toroidal component of the divergence of the parallel
viscosity tensor vanishes identically in axisymmetric geometry
and because the perpendicular viscosity coefficient is orders of
magnitude too small (even with neoclassical corrections), the
gyroviscosity is the relevant neoclassical toroidal viscosity in
toroidally axisymmetric systems.

We plan to make a comparison of the elongated flux
surface gyroviscosity calculation [15] over the full plasma
radius with measurements of the deuterium toroidal velocities
over the coming year, and this will be reported in a future paper.
For now, the gyroviscous momentum transport frequency is
calculated using the circular flux surface geometry model and
expanding the poloidal dependences in a first-order Fourier
series to obtain a set of equations to be solved for the sin and
cos components of the poloidal asymmetries in flows, densities
and electrostatic potential (the quantities with the sine (s) and
cosine (c) superscripts in equation (10)) and finally to evaluate
the flux surface average of the divergence of the gyroviscosity
tensor to obtain an expression for the toroidal momentum
transport frequency [15], which is plotted as solid circles in
figure 7.

T
gyo _ 1 _ -1 —1 —1
v 2G®e]B¢R2,G_r(Ln +L7'+ L7},
L —lox

XX or

™

o=+ (D)] )L
LG
NG () (D] (D))

(10)

It is clear from the last of equation (10) that the gyroviscous
momentum transport frequency depends on the poloidal
asymmetries in flow, density and electrostatic potential over
the flux surface, and in particular on the existence of up-down
sine asymmetries. These asymmetries were calculated using
the experimental rotation velocities as input to evaluate the
gyroviscous terms in figure 7. The calculation model used
for the evaluation of the asymmetries is known as the Stacey—
Sigmar ‘circular’ model because of the circular flux surface
representation and is described in [13, 15] and elsewhere.
Past comparisons with measurements of carbon toroidal
rotation velocities in DIII-D have shown that the circular
flux surface gyroviscosity representation over-predicted the
experimental toroidal velocities [12] (under-predicted vg;) by

a factor of 2-3, but that the elongated flux surface geometry
model [15] predicted toroidal carbon velocities within 10-20%
of the measured values except in the very edge where there was
a larger disagreement for one of the two discharges evaluated.
The predicted gyroviscosity frequency for deuterium shown
in figure 6 is about a factor of 3 below the experimentally
inferred value of the toroidal momentum transport frequency,
so based on this previous experience [15] of a factor of 2-3
larger frequencies with an elongated flux surface model we
would expect that gyroviscosity might be the proper magnitude
to account for the toroidal momentum transport. We intend to
carry out this calculation in elongated flux surface geometry
[15] in the coming year.

6. lon poloidal rotation velocities

The ‘experimental’ value of the deuterium poloidal velocity
discussed in section 2 is constructed using the radial component
of the momentum balance equation (5) for deuterium

1 1 9p;*
exp’ exp’ J
ng B¢ |:B(9V —E™P + ne.Xpej ar (11)
J

and by using the radial component of the carbon momentum
balance to evaluate the radial electric field

ESP = ByV,," — ByV,;" + L i (12)
! ok ok ny e, or
to obtain
Ty B 1 By
exp __ yexp _ K 1 0 1 exp exp
V9j = Vo By (ij Z ka) +t o B, (Vdu V¢k )

13)

The value of the poloidal velocity for deuterium shown in
figure 3(c) was obtained by using (i) CER measurements of
the C6+ carbon density, temperature and rotation velocities,
(i) MI-CER measurements of the deuterium toroidal rotation,
(iii) Thomson scattering measurements of electron density
and temperature and (iv) the charge neutrality requirement to
evaluate equation (13). This value of the rotation velocity
(plotted again in figure 9 with solid square symbols and the
label ‘exp, MI-CER meas’) is based on the implicit assumption
that the total carbon density is the measured C + 6 density.

In the theoretical developments of this paper, the local
carbon density is assumed to be a constant fraction (determined
by CER measurement in a location where carbon is 100%
C+6) of the deuterium density, which implies that all density
gradient scale lengths are the same (L =~ L_1 ~ L, "). The
deuterium ion temperature 7}is assumed to be the same as the
measured carbon temperature Tk The result of equation (13),
evaluated for (L;k1 ~ L; ~L, 'y Ly k) and shown in figure 9
with solid triangles and labelled ‘force balance equation (13)’,
is quite close to the ‘experimental’ result of the previous
paragraph.

On the other hand, the result obtained by using the CER
measurements to evaluate Lj! in equation (12) and then

using this value of E;° together with L)1 ~ L+ Ly,

in equation (11) to evaluate Vej resulted i 111 a very dlfferent
result shown in figure 9 by the solid circles and the label ‘force



Nucl. Fusion 54 (2014) 073021

W.M. Stacey et al

4x10°-
3x10°
2x10°-
1x10°-

0
-1x10°
-2x10°-
-3x10°+
-4x10°
-5x10°-
-6x10°

-7x10° +—
0.88

.“.MW

—&— exp, MI-CER meas
—e— force balance Eq 11
—A— force balance Eq 13

Deuterium Poloidal Rotation Velocity (m/s)

T T T T T T T T T ]
090 092 094 096 098 1.00

Normalized Radius, rho

Figure 9. Comparison of different force balance determinations of
the experimental deuterium poloidal rotation velocity. (p denotes the
enclosed fraction of the magnetic flux, or the ‘normalized radius’.)

balance equation (11)’. It seems that the inferred experimental
deuterium poloidal velocity is relatively insensitive to which
assumption is made about the relation of the measured C + 6
density to the total carbon density, so long as the same
assumption is made everywhere in the calculation, but that
the use of different assumptions (hence different evaluations
of the pressure gradient scale lengths) in the same calculation
can lead to the quite different results indicated by the solid
circles in figure 9.

Theoretically, the poloidal rotation velocities for the two
ion species are determined by the poloidal component of
the momentum balance equations for each species. The
poloidal momentum balance equation for ion species ‘j° may
be written [13]

(_Vviscj + Vik + Vatomj) VHj - ijVGk

gl % o KIT;L]
— — Dy nim, rj — Vviscj EIT

The quantity vyis; arises from the flux surface average of the
poloidal components of the divergence of the viscosity tensor
plus inertial (Reynold’s stress) tensor plus other ‘anomalous’
mechanisms. In writing equation (14) terms involving poloidal
asymmetries [12,15] have been suppressed. A similar
equation with the ‘j’ and ‘k’ sub/super-scripts interchanged
obtains for the ‘k’ ion species.

With the two poloidal rotation velocities determined
experimentally (carbon measured by CER, deuterium from
radial force balance using CER and Thomson measurements),
the two equations (14) can be solved for the poloidal
momentum transport frequencies vyisc; and vyisck as unknowns,
using the experimental poloidal rotation velocities V75" as
known inputs to obtain the experimental poloidal momentum
transport frequencies that produce the measured poloidal
rotation velocities

(14)

exp

Uviscj

e; exp as
By Ur (1=2Fo)+ (vjgvay) Vi —vie Vg™

B,KiT,
¢;B?

exp -1
V(,j + LTj

(15)

and a similar equation with the ‘j’ and ‘k’ sub/super-scripts
interchanged for v..",. Again, for the main ion species ‘}’,
the radial particle flux that enters the momentum balance is
corrected for ion orbit loss to F,_,- = (1-2Fy;)I";;, butfor the
impurity species ‘k’ F,k is replaced by F,k = (1 — Forpr) k.
(In the calculation presented in this paper we use I',; >~ 0.)
Alternatively, if poloidal momentum transport frequencies
Vyisck are known from theory, then equation (14) for the two

species may be solved for the poloidal rotation velocities

g, [0 0]

Vej = (16)

Voj |1 — 2
Voj Vok
where vg; = —Vys; + Vjr + va; and now {}; =
i —1
ejF,.,(l—Zthj) ) K/T;Ly; :
{T = Wisej | o The expression {}; for

impurity species ‘k’ does not have the factor of 2 because of
the assumption that the return current is carried entirely by the
main ion species.

Various theoretical poloidal momentum transport frequen-
cies can be compared against the experimental values inferred
from equation (15) or used to compute the poloidal rota-
tion velocity with equation (16) for comparison with mea-
sured rotation velocities. For example, an extension [13]
of the Hirshman—Sigmar [36] viscosity tensor (on which the
NCLASS code [14] is based) results from retaining only the
viscous and friction terms in the poloidal component of equa-
tion (5) and representing the parallel component of the viscous

stress tensor as
J
"
£00 V(;j +
By

HS
<12. v r1§> -
Using the Lorentz form for the collisional friction and
extending the original Hirshman—Sigmar theory to retain the
V: x B term, we obtain the ‘extended’” Hirshman-Sigmar
theory [13] for poloidal rotation in the form of equation (11)

B,K'T;L7!
2 JHT;

B2
e;B

a7

with v&sscj = vj;iuyoB/By. Here
Moo = g,ugo
(1.292v* g/ 1go) (1+ pagov*e*/61255)

- (1.46/c — 0.46%/%)
(1 —1.46./¢ +0.465%/2)’

oy = 0.53+a, g = 3.54,

oy = (3.02+4.250)/(2.23 + 5.32c + 2.40%),

o= nkZ,%/n_,- (18)
The quantity K/ = uél/uéo, where lt(jﬁ = 2-5%0 -
Ko and the Ky; is interpolated like po9 above but using
instead K = 071 +a, Kf = 10.63 and K} =

(12.43 +20.130) /(2.23 + 5.32a + 2.4c?). The similar Kim—
Diamond-Groebner (KDG) model [37] is a trace-impurity
approximation to the Hirshman—Sigmar model.

Stacey and Sigmar et al [34, 35] generalized Braginskii’s
[33] flow rate-of-strain tensor in the strong rotation ordering
to toroidal geometry and replaced the collisional Braginskii
parallel viscosity coefficient with the Shaing—Sigmar
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Figure 10. Comparison of neoclassical theory of equations (16) and
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neoclassical coefficient [35] o; = njm; Vg Rf; (u;fj), fi=
-3/2 -3/2 — :

g3/ v;‘.‘j/(l +e7% v}kj)(l + v;fj), v}*j = vjjqR/ Vin; to obtain

m.thhjfj (vi) <V9j N )

J R
(19)

They retained the viscous, friction and V; x B terms in the
poloidal momentum balance to obtain an equation that reduces
to equation (14) with vvsizc y qVwj fj/R when poloidal
asymmetries are suppressed. (A more general formalism
is obtained when these poloidal asymmetries are retained
[12,15], and an even more general elongated flux surface
geometry representation has recently been developed [15].)

The measured carbon and deuterium poloidal rotation
velocities are compared against the neoclassical model of
equations (16) and (19) in figure 10. The neoclassical theory
significantly over-predicts the measured rotation velocities.
A similar result was found when the neoclassical theory of
equations (17) and (18) was used. A more detailed comparison
of the theoretical predictions with experiment is given in [13].

Perhaps a more informative way to consider the difference
in theory and experiment is in terms of the poloidal momentum
transport frequencies inferred from measurements using
equation (15) and calculated from theory as described above.
As shown in figure 11, these neoclassical poloidal momentum
transport rates are too small by an order of magnitude or more
to account for the poloidal momentum transport rates inferred
from experiment. We note that poloidal asymmetries have
not been taken into account in evaluating the S-S poloidal
momentum transport rates, and doing so would be expected
to increase the S-S values [15].

At this point, we would have to conclude tentatively that
the neoclassical poloidal momentum transport rate is too small
by an order of magnitude to account for the measured poloidal
rotation velocities, but that a definite conclusion must await
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Figure 11. Comparison of experimental and theoretical deuterium
poloidal momentum transport frequencies vyis.; (IOL loss fraction
Rl‘;’ib = 0.5). (p denotes the enclosed fraction of the magnetic flux,
or the ‘normalized radius’.)

calculations with the extended neoclassical theory [15] that
takes into account poloidal asymmetries in an elongated flux
surface geometry.

7. Summary

The extension of CER spectroscopy capability in DIII-D to
measure the main deuterium ion toroidal velocity, as well as the
carbon impurity ion toroidal and poloidal velocities, provides
a valuable new tool for investigating rotation in tokamak
plasmas. This paper describes the experimental results for
an L-mode discharge positioned to take advantage of the
new diagnostic capability. A preliminary comparison of the
experimental results with neoclassical theory, in the form of a
comparison with NCLASS [14] predictions of poloidal rotation
and an in-depth analysis of toroidal and poloidal rotation in the
plasma edge, was described.

One notable result was the identification of a peaking in
the main deuterium ion toroidal co-rotation near the separatrix,
confirming previous probe measurements. The magnitude of
this rotation peaking was well-represented by the prediction of
intrinsic co-current rotation caused by ion orbit loss.

NCLASS predictions of poloidal rotation were in
reasonable agreement with measured values for 0.5 < p < 0.9
for carbon and for 0.8 < p < 0.9 for deuterium, but disagreed
significantly for smaller radii. NCLASS does not predict
toroidal velocity, but the NCLASS force balance prediction
of the difference in deuterium and carbon toroidal velocities
was of the wrong sign for p < 0.6.

The edge region p > 0.9 was investigated in some detail.
A perturbation technique for estimating the deuterium toroidal
velocity from the measured carbon velocity was shown to
be quite accurate for this discharge by comparison with the
measured deuterium toroidal velocity. Inferred experimental
toroidal angular momentum transport rates were found to
be about three times larger than the predicted gyroviscous
transport rate (based on a circular flux surface representation)
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and about an order of magnitude larger than atomic physics
momentum transport rates.

The inferred poloidal momentum transport rates (viscous+
Reynold’s stress +atomic physics) were an order of magnitude
greater than the viscous poloidal momentum transport rates
predicted by Hirshman—Sigmar [36], Stacey—Sigmar [35] and
similar neoclassical parallel viscosity theories that neglect
poloidal asymmetries, in the plasma edge.
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