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1 Introduction

We have previously derived [1,2] a generalized pinch-diffusion relation in the plasma edge region from momen-
tum and particle balance. This pinch-diffusion relation was used to explain the steep pressure gradients in the
edge of high confinement (H-mode) plasmas in terms of the requirements of momentum and particle conservation
in the presence of recycling neutrals. The requirements of momentum and particle balance were manifest in the
radial electric field and rotation velocity profiles acting through the pinch velocity term. While the implications
of these previous results for particle transport in the plasma edge are implicit, they have not heretofore been
explicitly set forth, which is thus the purpose of this paper.

2 Particle and Momentum Balance

The time-independent particle continuity equation for ion species ’j’ is

∇ · Γj ≡ ∇ · njυj = Sj (1)

where Sj(r,θ) = ne(r,θ)nj0(r,θ) < συ >ion ≡ ne(r,θ)νion(r,θ) is the ionization source rate of ion species ’j’ and
nj0 is the local concentration of neutrals of species ’j’. The time-independent momentum balance equation for
ion species ”j” is

∇ · (njmjυjυj) + ∇pj + ∇ · πj = njej (υj × B) + njejE + F j + M j − njmjν
j
elcxjυj (2)

where E represents the electric field, Fj represents the interspecies collisional friction, Mj represents the external
momentum input rate, and the last term represent the momentum loss rate due to elastic scattering and charge
exchange with neutrals of all ion species ’k’[νatj = Σknc

k0(< συ >el+< συ >cx)jk].
The FSA radial component of Eq. (2) may be written to leading order as

E0
r =

1
n0

jej

∂p0
j

∂r
+ υ0

φjB
0
θ − υ0

θjB
0
φ (3)
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3 Torque Representations

In order to evaluate the FSA (flux surface average) toroidal component of Eq. (2) it is necessary to evaluate the
FSA toroidal viscous torque and inertial terms in that equation. The neoclassical viscous torque can be written
as the sum of ”parallel”, ”gyroviscous”, and ”perpendicular” components [3,4]. Since the flux surface average
of the ”parallel” component of the toroidal viscous torque vanishes identically, the flux surface averaged toroidal
viscous torque may be written as the sum of the ”gyroviscous” and ”perpendicular” components

〈
R2∇φ · ∇ · Π〉

=
〈
R2∇φ · ∇ ·Π〉

gv
+

〈
R2∇φ · ∇ ·Π〉

⊥ (4)

where

〈
R2∇φ · ∇ · Π〉

gv
= −

〈
1

Rhp

∂

∂lψ

(
R3hpη4

∂

∂lp
(υφ/R)

)〉
(5)

and

〈
R2∇φ · ∇ · Π〉

⊥ = −
〈

1
Rhp

∂

∂lψ

(
R3hpη2

∂

∂lψ
(υφ/R)

)〉
(6)

in a right-hand (ψ, p, φ) toroidal flux surface coordinate system, where η2 = nTτ/ (Ωτ)2and η4 ≈ (Ωτ)η2 ≈
(103 − 104)η2, where Ω ≡ ZeB/m and τ is the collision time, so that the “gyroviscous” toroidal torque is
generally a couple of orders of magnitude larger than the ”perpendicular” toroidal viscous torque. Approxi-
mating the flux surface geometry by toroidal geometery and making a low order Fourier expansion X (r, θ) =
X0 (r) [1 + Xc cos θ + Xs sin θ]for the densities and rotation velocities allows Eqs. (3) and (4) to be written in
a form exhibiting an explicit momentum transfer frequency

〈
R2∇φ · ∇ ·Π〉

gvj
≈ 1

2
η4j

r

R0

(
L−1

n + L−1
T + L−1

υφ

) [(
4 + ñc

j

)
υ̃s

φj + ñs
j

(
1 − υ̃c

φj

)]
υφj ≡ R0n

0
jmjνgvjυφj

(7)

and

〈
R2∇φ · ∇ · Π〉

⊥j
≈ R0η2j

[
L−1

υφ

(
1
r
− L−1

η2

)
− 1

υφj

∂2υφj

∂r2

]
υφj ≡ R0n

0
jmjν⊥jυφj (8)

where the poloidal asymmetry coefficients ñc
j ≡ nc

j/ε, etc. can be determined by solving the low order Fourier
moments of the poloidal component of the momentum balance [4].

Turbulent, or ”anomalous”, toroidal viscous torque is usually assumed to be of the form of Eq. (6) with an
enhanced viscosity coefficient ηanom, leading to

〈
R2∇φ · ∇ · Π〉

anomj
≈ R0ηanomj

[
L−1

υφ

(
1
r
− L−1

η2

)
− 1

υφj

∂2υφj

∂r2

]
υφj ≡ R0n

0
jmjνanomjυφj (9)

Equation (1) can be used to write the inertial term in the FSA toroidal component of Eq. (2) as〈
R2∇φ · ∇ · (njmjυjυ j)

〉
=

〈
R2∇φ · njmj (υ j · ∇)υj

〉
+ R0njmjνionjυφj (10)

and the same set of approximations can be used to write the first term on the right as
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〉 � 1
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φj (11)
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4 Pinch-Diffusion Transport Relation

The above results may be used to write the FSA toroidal component of Eq. (2) as

n0
jmjν

0
jk

(
(1 + βj) υ0

φj − υ0
φk

)
= n0

jejE
A
φ + ejB

0
θΓrj + M0

φj, (12)

where

βj ≡ ν0
gvj + ν0

⊥j + ν0
anomj + ν0

nj + ν0
elcxj + νionj

ν0
jk

≡ ν∗
dj

ν0
jk

(13)

Now, combining the radial and toroidal components of the FSA momentum balance equations—Eqs. (3) and
(12)–yields a generalized pinch-diffusion relation [7] for the radial particle flux

Γrj ≡ 〈njυrj〉 = njDjj

(
L−1

nj + L−1
Tj

)
− njDjk

(
L−1

nk + L−1
Tk

)
+ njυpj (14)

where the ”diffusion coefficients” are given by

Djj ≡
mjTj

(
ν∗

dj + νjk

)
(ejBθ)

2 , Djk ≡ mjTkνjk

ejek(Bθ)2
(15)

and the pinch velocity is given by

njυpj ≡ − Mφj

ejBθ
− njE

A
φ

Bθ
+

njmjν
∗
dj

ejBθ

(
Er

Bθ

)
+

njmjf
−1
p

ejBθ

((
νjk + ν∗

dj

)
υθj − νjkυθk

)
(16)

A sum over the ’k’ terms is understood when more than two ion species are present. The quantity f−1
p ≡ Bφ/Bθ .

Subject to the assumption that there in a single impurity species (I) distributed with the same radial distribution
and the same local temperature as the main ions (i), Eq. (14) can be written as a constraint on the main ion pressure
gradient [1,2]

L−1
pi ≡ − 1

pi

dpi

dr
=

υri − υpi

Di
(17)

and momentum balance can be used to reduce Eq. (16) to

υpi =

[
−Mφi − nieiE

A
φ + nimi (νiI + ν∗

di)
(
f−1

p υθi + Er/Bθ

)
− nimiνiIυφI

]
nieiBθ

(18)

where the effective main ion diffusion coefficient in this approximation is

Di =
miTiνiI

(eiBθ)
2

[
1 +

ν∗
di

νiI
− Zi

ZI

]
(19)

We have previously found [1,2] that when the pinch velocity of Eq. (18) was evaluated from experiment, the
radial particle flux was determined by solving the continuity Eq. (1) in the presence of recycling neutrals, and
LTi was taken from experiment, that

−1
ni

∂ni

∂r
≡ L−1

ni = L−1
pi − L−1

Ti =
υri − υpi

Di
− L−1

Ti (20)

could be integrated inward from an experimental separatrix boundary condition to obtain a density profile with
a pedestal structure that was in good agreement with the edge density profile obtained from Thomson scattering
(when corrected for the presence of impurities). The pinch velocity term, determined primarily by the measured
rotation velocity and radial electric field profiles, was found to be the dominant factor in determining the density
profile.
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5 Generalized Radial Diffusion Theory

Since diffusion theory is generally used to describe ion particle transport in plasma edge codes [5,6], it is of
interest to compare the radial transport theory implied by the above relations with the form of diffusion theory
commonly used in the plasma edge codes. Using the generalized pinch-diffusion relation of Eq. (17) in the
continuity Eq. (1), which governs Γrj , yields the coupled set of generalized diffusion equations that determine
the particle distribution in the edge plasma for ion species ”j”, ∇ · Γ=

j Sj , the radial component of which can be
written for each species in the slab limit appropriate in the plasma edge

− ∂

∂r

(
Djj

∂nj

∂r

)
− ∂

∂r

(
Djk

∂nk

∂r

)
− ∂
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(
Djj

nj

Tj

∂Tj
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)
−

∂

∂r

(
Djk

nj

Tk

∂Tk

∂r

)
+

∂ (njυpj)
∂r

= Sj (21)

Again, the ”jk” subscript indicates a sum over ”k”. Note that the ’self-diffusion’ coefficient Djj involves all
the momentum transport rates for species ”j” (i.e. atomic physics, viscous, anomalous, etc. as well as the
interspecies collisional momentum exchange frequency for species ”j”). There is an Eq. (21) for each ion species
in the plasma, and they are coupled.

The generalized diffusion theory of Eq. (21), which was rigorously derived from momentum balance and the
continuity equation for each ion species in the plasma, is different in several respects from the usual ad hoc form
of diffusion theory [Eq. (21) but retaining only the first term on the left side] that is commonly used to represent
radial particle transport in plasma edge fluid codes. First, the diffusion equation for species ”j” depends not only
on the density gradient of species ”j”, but on the density gradients for all other ion species as well. Second, the
diffusion equation for species ”j” depends on the temperature gradients for all ion species. This implies that,
when used in the predictive mode, the diffusion equations for all the ion densities and the heat balance equations
for all the ion temperatures are coupled and must be solved simultaneously.

The second major difference is that there is a convection term with a pinch velocity [Eq.(16)] that depends on
the poloidal rotation velocities for all the ion species and on the radial electric field, the induced toroidal electric
field, and the neutral beam (or any other) external momentum input or torque. As discussed above, we have
previously found [1,2] that the pinch velocity was the dominant term in the pinch-diffusion relation insofar as
the determination of the edge density profile. Thus, we anticipate that the convective last term on the left in Eq.
(21) will have a major effect on the calculation of the ion particle profile in the edge plasma. This implies that
when Eq. (21) is used in the predictive mode, the rotation equations must also be solved simultaneously with the
particle and heat diffusion equations. Solution of the rotation equations in the plasma edge has been discussed
elsewhere [7], but remains to be carried out simultaneously with the particle and energy transport equations.

6 Diffusion Coefficients and Pinch Velocities

The profiles of ν∗
d (inferred from experiment [2]), νiI and νIi(nImIνIi = nimiνiI by momentum conserva-

tion) were used (together with the experimental temperature profile) to calculate the profiles of the diffusion
coefficients defined by Eqs. (15) for a DIII-D H-mode shot, as shown in Fig. 1. The sharp increase in the ex-
perimentally inferred ν∗

d just inside the separatrix results in a sharp increase in the ”self-diffusion” coefficients
Dii and DII just inside the separatrix. Because the main ion self-diffusion coefficient Dii >> DiI , the first
and third terms in Eq. (21), involving the main ion density and temperature gradients, are much more important
than the second and fourth terms involving the impurity ion density and temperature gradients, in the main ion
diffusion equation. On the other hand, since the impurity self-diffusion coefficient DII << DIi, the second and
fourth terms involving the main ion density and temperature gradients are much more important in the impurity
ion equation than are the terms involving the impurity ion density and temperature gradients.

The contributions of the various components of the deuterium pinch velocity given by Eq. (18) are shown in
Fig. 2 for a DIII-D H-mode shot. The normalized radius is in terms of poloidal flux. The inward pinch velocity
is quite large in the edge.
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Fig. 1 Generalized diffusion coefficients in the edge of
DIII-D H-mode shot 92976.
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7 Summary and Conclusions

The requirements of conservation of ion momentum and particle density lead directly to a generalized diffusion
equation for each ion species, with diffusion-like terms involving the gradients of all ion densities and tempera-
tures and a convective term involving a ”pinch velocity” consisting of rotation velocities, the radial electric field
and other terms. The definitions of the pinch velocity and of the diffusion coefficients follow directly from the
derivation from momentum balance.

These equations are quite different than the diffusion equations normally used to analyze the radial transport
of particles in tokamak edge transport codes (e.g. [5] and [6]). For example, in these references the radial particle
transport was modeled using only the first diffusion term on the left in Eq. (21) and neglecting the pinch term.
The value of the ”self-diffusion” coefficient was inferred from experiment by adjusting it to force the calculation
(with three of the diffusion terms and the pinch term of Eq. (21) set to zero) to ’match’ the experimental density
profile. It is clear from Figs. 1 and 2 that this type of diffusion approximation and fitting procedure neglects a lot
of physics.
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