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 SUMMARY 

 

 The presence of a large pinch velocity in the edge pedestal of high confinement 

(H-mode) tokamak plasmas implies that particle transport in the plasma edge must be 

treated by a pinch-diffusion theory, rather than a pure diffusion theory.  Momentum 

balance also requires the inclusion of a pinch term in descriptions of edge particle 

transport.  A numerical investigation of solving generalized pinch-diffusion theory using 

methods extended from the numerical solution methodology of pure diffusion theory has 

been carried out.  The generalized diffusion equation has been numerically integrated 

using the central finite-difference approximation for the diffusion term and three finite 

difference approximations of the pinch term, and then solved using Gauss reduction.  The 

pinch-diffusion relation for the radial particle flux was solved directly and used as a 

benchmark for the finite-difference algorithm solutions to the generalized diffusion 

equation.  Both equations are solved using several mesh spacings, and it is found that a 

finer mesh spacing will be required in the edge pedestal, where the inward pinch velocity 

is large in H-mode plasmas, than is necessary for similar accuracy further inward where 

the pinch velocity diminishes.  An expression for the numerical error of various finite-

differencing algorithms is presented. 
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CHAPTER 1 

MAGNETIC CONFINEMENT FUSION BASICS 

 

 When two atoms have sufficient kinetic energy to overcome the Coulomb barrier 

and fuse during a collision instead of scattering, the reaction is known as fusion.  This 

process powers the stars, and the replication of this reaction for power production 

purposes has been the focus of a major research initiative since the mid-twentieth 

century. 

 

1.1 

Fusion in the Stars 

 

 In astral energy production, gravity confines and compresses hydrogen to form a 

sphere with a core at high pressure and central temperatures of around 15,700,000 K
1
.  

The kinetic energy of plasma particles (mostly hydrogen atoms) in the core is sufficient 

to ensure that some of the hydrogen atoms that physically interact with other atoms 

undergo fusion instead of scattering.  An analogy would be a billiards player striking the 

cue ball with sufficient force to cause it to fuse with the target ball.  Fusion of hydrogen 

atoms begins the proton-proton fusion chain
2
 that both releases energy to maintain core 

temperatures and produces fuel for further fusion reactions. 
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1.2  

Fusion on Earth 

 

 The quest to replicate the functionality of the stars and harness fusion to generate 

power on Earth began early in the nuclear age.  In order to create the conditions 

necessary for fusion to occur without the benefit of gravitational compression, gaseous 

hydrogen must be heated into a hundred-million Kelvin plasma state and maintained at 

that temperature while also being effectively confined to a limited space.  This 

confinement maximizes plasma density (to increase the fusion reaction rate) and 

minimizes the energy loss from the plasma due to escaping particles (to maintain high 

temperatures).  The high plasma temperatures preclude the use of any known materials to 

confine the plasma, but fortunately the ionized state of the plasma particles allows direct 

electromagnetic manipulation.  This property is utilized by employing powerful magnetic 

fields to compress and contain the plasma while simultaneously preventing any 

significant plasma-material interaction except in specially-designated areas.  

 Beginning in the 1950s, various magnetic confinement devices were built and 

found to be ineffective.  However, in the 1960s, Soviet scientists designed a device they 

called a “tokamak” (a Russian acronym
3
) that confined the plasma in a toroidal (roughly 

doughnut shaped) plasma chamber using a helical magnetic field.  After many years of 

studying methods of magnetic confinement, most scientists in the fusion field agreed that 

the tokamak design was a good candidate for a successful magnetic fusion reactor.  The 

final tokamak research iteration before commercial power generation with these reactors 

is realized is currently under construction in Cadarache, France.  The ITER device is 
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scheduled
4
 for first plasma in 2019.   

 

1.3  

Tokamak Magnetic Confinement Fusion 

 

 When attempting to cause two elements to fuse, scientists have determined that 

the reaction having the lowest energy threshold for a reasonable reaction rate (and 

therefore requiring the lowest temperatures, which eases the demands on the magnetic 

fields confining a hundred million degree plasma) is a fusion reaction between the tritium 

and deuterium isotopes of hydrogen (
3
H and 

2
H).  Figure 1.1

5
shows the reactivities of 

different reactions as a function of particle energy (temperature).  Because tritium (
3
H) is 

difficult to produce and too expensive to regularly utilize in research reactors, scientists 

generally use a reactor plasma composed of deuterium (
2
H) ions, and extrapolate the 

results to what would be expected using a 50/50 deuterium-tritium mix. 

 In tokamak devices, two main magnetic fields are employed to effect the helical 

magnetic field that provides most of the plasma confinement.  These two fields are shown 

in Figure 1.2 and called the poloidal and toroidal magnetic fields.  Figure 1.2 also shows 

several important plasma regions and tokamak features and geometries.  The plasma 

particles generally follow the helical field lines and orbit them at a distance on the order 

of 10
-4

 meters.  The toroidal, radial, and poloidal directions comprise the toroidal 

coordinate system.   

 In a tokamak, the separatrix is the effective boundary of the plasma, and it is 

located just inside the first wall.  The minor radius is a horizontal radius of the cross-  



 4 

  

 
Figure 1.1 : Energy-Dependent Reactivities for Several Fusion Reactions (Ref. 5) 
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Figure 1.2 : Magnetic Fields, Directions, Regions, and Geometries of a Tokamak Plasma. 
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section of the plasma.  The plasma does not actually have a circular cross-section, but a 

much more complex geometry.  Scientists use the circular plasma cross-section 

approximation to more easily model plasmas for study.  The conversion of the plasma 

geometry to an effective circular model will be discussed in Chapter 4. 

 The plasma edge is the region of the plasma near the separatrix, and it contains 

the edge pedestal, a region of sharp density and temperature gradients whose presence 

characterizes an H-mode (high confinement) plasma.  The edge pedestal begins at about 

94% of the normalized radius and extends to the separatrix.  This “pedestal” behaviour by 

the temperature and density profiles of the plasma particles is shown in Figure 1.3.   

 Particle transport and plasma behaviour in the edge pedestal region are very 

important factors in tokamak performance, but they are not well understood.  This work 

concerns plasma transport in the edge pedestal region, and is conducted using data 

collected from the edge region just above the outboard horizontal midplane (the minor 

radius that is horizontal and situated from the plasma center to the separatrix on the outer 

side of the plasma chamber).  The data is from the General Atomics DIII-D research 

tokamak located in San Diego, California. 
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Chapter 2 

Introduction 

 

 The H-mode edge pedestal, a steep-gradient region just inside the separatrix over 

which the plasma pressure increases rapidly, is an area of intense research interest
6
 

because of experimental
7,8,9

 and theoretical
10,11 

evidence indicating that the performance 

of future tokamaks may be strongly linked to the values of the temperatures and densities 

at the top of the pedestal.  An important extension of these studies is the development of a 

predictive capability for more accurate modeling of ion transport in the edge.  Currently, 

these computational efforts center around 1.5-D and 2-D codes (e.g. ONETWO
12

, 

GTEDGE
13

, ASTRA
14

, SOLPS
15

, UEDGE
16,17

) which solve the plasma fluid balance 

equations for particle, momentum, and energy balance in one or two geometric 

dimensions, utilizing 1-D or 2-D calculations of recycling neutrals density.   

 The plasma particle transport analysis in these types of codes is usually based on a 

purely diffusive model of particle transport, D n    , where Γ is the particle flux, n is 

the particle density, and D represents the diffusion coefficient.  In these codes, the 

diffusion coefficients are adjusted to provide a match of measured density profiles in a 

few locations.  The use of this “diffusion theory methodology” to interpret diffusion 

coefficients from experimental density profiles often produces unrealistically small 

values
18

.  This result prompted an investigation into the form of the particle transport flux 

required by particle and momentum balance
19

, which determined that the ion radial 

transport flux must satisfy a pinch-diffusion relationship, pinch

rD n nV     , where 

pinch

rV  is the pinch velocity, and not a purely diffusive relationship, D n    .   



 9 

 Substitution of this pinch-diffusion relation into the continuity equation leads to a 

generalized diffusion equation including diffusive second-derivative terms and 

convective first-derivative terms incorporating the pinch velocity
20

.  This raises the 

question of modifying the existing codes mentioned above, most of which are based on a 

pure diffusion relation for the radial particle flux, to solve the generalized diffusion 

equations, which contain an additive first derivative term involving the pinch velocity.   

 The purpose of this thesis is to report on a first numerical investigation into the 

adaptation and extension of a purely diffusive numerical solution method to the pinch-

diffusion formalism. 
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Chapter 3 

Force Balance, Particle Transport, the Pinch-Diffusion Model, and the 

Generalized Diffusion Equation 

 

 The idea that the centrally-peaked density profiles observed in edge-fueled 

tokamaks are evidence of an inward particle pinch is as old as tokamak research 

itself
21,22

, and many researchers represent the total radial particle flux as a diffusive 

component plus a convective component (e.g. Ref. 23). 

 pinch

rD n nV      (1) 

 Detailed numerical modeling exercises
24

 of DIII-D
25

 discharges were found to 

require the use of such a pinch term in order to obtain reasonable agreement with 

experiment.  More recent interpretive calculations
26

 of DIII-D have inferred an inward 

particle flux early in the H-mode phase, which would require a particle pinch.  The 

experimental observations of pedestal density
27

 and electron density barrier width 

expansions in time between ELMs
28

 in DIII-D can be attributed to an inward pinch. Two-

dimensional modeling of JET discharges in a configuration optimized for edge 

diagnostics also demonstrated that either a pinch velocity or a spatially-varying diffusion 

coefficient is required to explain the observed density profiles and calculated particle 

source profiles
29

.  These findings motivate the present work. 
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3.1  

Force Balance and Particle Transport 

 

 The time-independent momentum balance equation for ion species “j” is 

     j

j j j j j j j j j j j j j j j elcxj jn m V V p n e V B n e E F M n m v V          (2) 

where nj is the ion density, mj is the ion mass, the vector Vj is the ion velocity vector, pj is 

the ion pressure, the tensor πj respresents the ion viscous momentum flux, ej is the ion 

charge, the vector B is the magnetic field, the vector E represents the electric field, the 

vector Fj represents the interspecies collisional friction, the vector Mj represents the 

external momentum input rate to the ions, and j

elcxjv  is the ion momentum loss rate due to 

elastic scattering and charge exchange with neutrals of all ion species „k‟ (impurities).  

The flux surface average (FSA) radial component of Eq. (2) may be written to leading 

order as 

 0 0 0 0 0

0

1 j

r j j

j j

p
E V B V B

n e r
   


  


 (3) 

where rE is the radial electric field, jV  is the ion toroidal rotation velocity, jV  is the ion 

poloidal rotation velocity, B  is the toroidal magnetic field, and B  is the poloidal 

magnetic field.  The FSA toroidal component can be written to leading order as
20

  

   0 0 0 0 0 0 01 A

j j jk j j k j j j rj jn m v V V n e E e B M           (4) 

where 
0

dj

j

jk

v

v
  , kV  is the impurity toroidal rotation velocity, jM  is the external 

toroidal momentum input rate to the ions, AE is the electromagnetically induced toroidal 
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electric field, and rj  is the radial ion flux.   The term vjk represents the interspecies 

collision frequency (a sum over all other species k j  is implied).  The term djv  

represents the experimental rate of radial transfer of toroidal angular momentum, and is 

further discussed in Chapter 5. 

 

3.2  

The Pinch-Diffusion Equation 

 

 Solving Eq. (3) for the ion and impurity toroidal rotation velocities  

 

1

1

j jr
j

j j

kkr
k

k k

p V BE
V

B n e B r B

V BpE
V

B n e B r B

 



  

 



  


  




  



 (5) 

and substituting them into Eq. (4), then splitting pressure into density and temperature via  

 j j jp n T  (6) 

results in a multi-species pinch-diffusion relation for the radial ion flux 

    1 1 1 1 pinch

rj j jj nj Tj j jk nk Tk j rjn D L L n D L L n V          (7) 

where the gradient scale lengths of ion and impurity density and temperature are defined 

as  1 1
x

x
L

x r

  
  

 
.  The “diffusion coefficients” Djj and Djk are  

 
 

   
2 2

,
j j dj jk j k jk

jj jk

j kj

m T v v m T v
D D

e e Be B 


   (8) 

where jT  and kT  are the ion and impurity temperatures, and ke  is the impurity charge. 
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The radial ion pinch velocity Vrj
pinch

 is  

   2 2

A

j j dj r jpinch

rj jk dj j jk k

j j j j

M m v E m BE
V v v V v V

n e B B e B e B

 

 

   

        (9) 

 To avoid introducing uncertainty into these calculations by relying on 

approximate models of impurity density and charge state, several assumptions
20

 have 

been made about the impurity ions in the edge.  These assumptions are: 1. that 
12

C is the 

only impurity species present, 2. it is fully ionized (+6 charge), 3. it has the same edge 

density profile shape as the main ions, 4. it has the same local temperature as the main 

ions, and 5. the 
12

C (6+) density is 4% of the main ion density.   

 Using these assumptions about the carbon impurity (k) distribution, Eq. (7) can be 

rewritten to obtain
30

 a pressure pinch-diffusion relation for the main ion (j) radial particle 

flux  

 
j j j pinch

j j rj j rj

j

n D p
n V n V

p r


    


 (10) 

Throughout the remainder of this text, when a reference to the pinch-diffusion relation is 

made, it refers to Eq. (10).  Equation (10) provides insight into the physical effects and 

the various forces involved in plasma ion transport.   

 These carbon assumptions allow the diffusion coefficients of Eq. (8) can be 

reduced to  

 

 

*

2
1

j j jk dj j

j

jk kj

m T v v Z
D

v Ze B

 
   

  

 (11) 

instead of two coefficients with slightly different coefficients proportional to the carbon 

density and temperature gradients.  In Eq. (11), Zj and Zk represent the atomic number of 

the “j” and “k” species, in this case deuterium and carbon.   
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            The pinch velocity from Eq. (9) becomes 

 
  *

2

A
j jk dj j rj j jk kpinch

rj

j j j j

m v v B V EM m v VE
V

n e B B e B e B

  

   

 
     (12) 

 These simplifying assumptions will also preclude the need for a second 

generalized diffusion equation for the carbon density
20

. 

   

3.3  

The Generalized Diffusion Equation 

 

 The pinch-diffusion relation for the radial particle flux [Eq. (10)], can be 

substituted into the time-independent particle continuity equation for ion species j 

 j j j jn V S     (13) 

resulting in 

 
j j j pinch

j j rj j

j

n D p
n V S

p r

 
        

 (14) 

where Sj is the ionization source rate. 

 By using Eq. (6), it is possible to obtain from Eq. (14) a generalized diffusion 

equation for the pressure
20

   

 

pinch

j j j rj

j

j j

D p p V
S

r T r r T

    
             

 (15) 
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Chapter 4 

Measured and Calculated Data from DIII-D H-Mode Shot 98889 

 

 The DIII-D shot used in this research is discharge 98889, which has been well 

characterized.    Selected parameters of shot 98889 are shown in Table 4.1. 

 

 

Time Range 3.75-4.11s Divertor Configuration Lower Single Null 

Plasma Current Ip 1.2 MA Poloidal Field  0.22 T 

Toroidal Field  2.01 T Toroidal Electric Field .04 V/m 

Major Radius R 1.75 m Triangularity δ .135 

Minor Radius 0.60 m Elongation κ 1.75 

 

 

1.77 meters 

 

 The non-circular geometry of the plasma flux surfaces was modeled by an 

effective circular model, which is an approximate flux-surface average model that 

conserves flux surface area and is shown in Figure 4.1.  

 The experimental data used in this paper were taken just above the outboard 

horizontal midplane (shown in Figure 1.2).  The Miller equilibrium model
31

 was used to 

map the measured data to the flux surfaces, and the data was averaged over each flux 

surface to obtain flux surface averaged values.  These values were then plotted as a 

function of the normalized radius for analysis.  The radius of the effective circular model 

is  20.5 1r r    which leads to an effective minor radius of a = .86 m.  The 

normalized radius is /r a  .  The measurement and data preparation techniques used    

Table 4.1: The Parameters of Shot 98889, an H-Mode Discharge on DIII-D. 
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Figure 4.1 : An Illustration of the Geometric Manipulation to Obtain Data Points for the DIII-D Shot 98889.   
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to obtain and process the data are further described in Ref. 18. 

 Values for the parameters with radial dependence were taken at 25 points between 

the separatrix at 1.0   ( .86r a m  ) and the inside of the H-mode edge pedestal at 

.86   ( .74r m ) at intervals of .005r m
32

.  Calculations using a finer mesh spacing 

were enabled by assuming a linear interpoint parameter profile. 

 

4.1 

Minimization of Error from Edge Localized Mode (ELM) Activity 

 

 ELMs in H-mode tokamak discharges are phenomena that periodically cause 

partial collapses of the temperature and density gradients that characterize the edge 

pedestal.  These gradients are then rebuilt before the occurrence of the next ELM 

disruption.  In order to minimize random error associated with inadvertent data collection 

during ELMs, data was collected during the intervals between sequential ELMs, and 

averaged over several of these intervals
32

.   

 

4.2 

Measured and Explicitly Calculated Variables: , , , , , ,A

j j jk jm e v E B B M     

 

 The mass of a deuterium atom mj is 3.343x10
-27

 kg.  The charge ej is 1.6022x10
-19 

C.  The collision frequency between ions and impurities in the plasma jkv  can be 

calculated from the experimentally known density and temperature profiles
30

 and is 

shown in Figure 4.2.  The electromagnetically induced toroidal electric field AE  is a     
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small term with a value of 0.04 V/m, and is determined from the measured loop voltage.  

The poloidal magnetic field Bθ is 0.2242 T and the toroidal magnetic field Bφ is -2.01 T; 

these are both readily measured.  The external toroidal momentum input rate from the 

neutral beam heating system Mφj is another small term near the separatrix, and it can be 

calculated from the known beam geometry and power input.  This profile is shown in 

Figure 4.3. 

 

4.3 

The DIII-D Charge Exchange Recombination (CER) Spectroscopy system : 

 , , ,j r k kT E V V   

 

 The CER system installed on DIII-D allows for the temporal and spatial 

resolution of the ion temperature Tj, the radial electric field Er, and the impurity poloidal 

and toroidal rotation velocities Vθk and Vφk through detection of the spectral lines from 

charge exchange recombination between neutral atoms and fully-stripped ions
33

.   

 The ion temperature profile, show in Figure 1.3, is characteristic of an H-mode 

discharge.  The radial electric field, shown in Figure 4.4, sharply drops toward the 

separatrix to values of less than -1.0x10
5
 V/m, and is active in the edge at large 

magnitudes, making it a major contributor to the pinch velocity. 

 Carbon toroidal and poloidal rotation velocities, which are used in calculating the 

poloidal and toroidal rotation speeds of the deuterium ions, were obtained using the CER 

spectroscopy system.  Figure 4.5 shows a fit to the measured toroidal and poloidal 

rotation velocities for the 
12

C
6+

 impurity. 



 20 

 

Normalized Radius

E
x

te
rn

a
l
T

o
ro

id
a

l
M

o
m

e
n

tu
m

In
p

u
t

R
a

te
,
k

g
m

/s
^

2

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0 0

0.01 0.01

0.02 0.02

0.03 0.03

0.04 0.04

0.05 0.05

0.06 0.06

0.07 0.07

0.08 0.08

0.09 0.09

 Figure 4.3 : The External Toroidal Momentum Input Rate. 

 

 



 21 

Normalized Radius

R
a

d
ia

l
E

le
c

tr
ic

F
ie

ld
,
V

/m

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
-20000 -20000

-15000 -15000

-10000 -10000

-5000 -5000

0 0

5000 5000

10000 10000

15000 15000

20000 20000

25000 25000

 
Figure 4.4 : The Radial Electric Field 



 22 

Normalized Radius

C
a

rb
o

n
R

o
ta

ti
o

n
V

e
lo

c
it

y
,
m

/s

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
10

2
10

2

10
3

10
3

10
4

10
4

10
5

10
5

Toroidal

Poloidal

Figure 4.5 : Carbon Toroidal and Poloidal Rotation Velocities 



 23 

4.4 

The Thomson Scattering Diagnostics System: , ,e e jn T n  

 

 The electron temperature Te and electron density ne profiles were experimentally 

measured by the 40 spatial channel Thomson scattering diagnostics system installed in 

DIII-D
34

.  The electron temperature and density are both shown in Figure 1.3.  The ion 

density nj is a slightly smaller, nearly scaled version of the electron density which is 

calculated using the electron density and the carbon density assumptions.  All three 

profiles exhibit classic H-mode behaviour in the edge pedestal. 

 

4.5 

Deuterium Ionization Source Rate: jS  

 

 The deuterium ionization source rate jS  is the rate at which neutral deuterium 

atoms are ionized.  These neutral atoms are mostly plasma ions that have escaped 

confinement, collided with the first wall, gained electrons to become neutral, and 

returned to the plasma to be re-ionized.  Equation (13) defines the relationship between 

the radial ion flux ( rj ) and the deuterium ionization source rate.  This source rate is 

defined as 0j e ion
S n n v , where n0 is the recycling neutrals density, and the last term is 

the reactivity.  jS  was calculated with the GTEDGE integrated modeling code
13

 using a 

2D neutral transport calculation coupled to a two-point divertor model and a core global 

particle and power balance.  The deuterium ionization source rate is shown in Figure 4.6. 
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Chapter 5 

Derived and Calculated Parameters, and the Pinch Velocity and 

Diffusion Coefficient 

 

5.1 

Experimental Rate of Radial Transfer of Toroidal Angular Momentum : 
djv  

 

 The term 
djv  represents an aggregation of the momentum transfer frequencies of 

various phenomena 

 dj gvj j anomj nj elcxj ionjv v v v v v v       (16) 

including the gyroviscous gvjv  and perpendicular jv  components of the neoclassical 

viscous torque, the turbulent (anomalous) toroidal viscous torque anomjv , the two 

components of the inertial term, 
njv  and an ionization term

ionjv , and the ion momentum 

loss rate associated with elastic scattering and charge exchange 
elcxjv  between the ions 

and neutral impurities
20

.  

 To obtain a profile for this term 
djv , measured rotation velocities are used as an 

input to solve Eq. (4) backwards and infer the value of this momentum transfer 

frequency
30

.  First, Eq. (4) is rearranged into an expression for 
djv  

 1

A

j j j rj j k

dj jk

j j jk j j

n e E e B M V
v v

n m v V V

   

 

    
     

   

 (17) 

which defines a relationship that djv  must satisfy in order to produce the measured 
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rotation velocities.  A similar expression can be obtained for the k species with the j‟s and 

k‟s interchanged in the two-ion model.  All the values on the right side of the equation 

can be measured or calculated with the exception of the deuterium toroidal rotation 

velocity.  In order to find a profile for the deuterium toroidal rotation velocity, a 

perturbation analysis is used to obtain an estimate of the difference between the 

measurable carbon toroidal rotation velocity and the problematic deuterium toroidal 

rotation velocity.   

 In the perturbation analysis, a separate Eq. (4) for each species j and k are added 

to eliminate the 
jkv  friction terms, and a definition for the effective 

djv  is derived 

 
     

 

j j dj k k dkeff

d

j j k k

A A

j j j rj j k k k rk j j j dj j k

j j k k k

n n v n m v
v

n m n m

n e E e B M n e E e B M n m v V V

n m n m V

       








         
 



 (18) 

       The last term in the numerator is set to zero to obtain a zeroth order 

approximation of eff

dv  

 
   

 
0

A A

j j j rj j k k k rk j

d

j j k k k

n e E e B M n e E e B M
v

n m n m V

     



      



 (19) 

Along with the measured carbon toroidal rotation velocity, Eq. (19) is used in Eq. (4) for 

the ion species “k” to obtain a zeroth order approximation for the difference between the 

carbon and deuterium toroidal rotation velocities. 

  
 

0 exp

00

A

j j j rj j j j d k

j k

j j jk d

n e E e B M n m v V
V V

n m v v

   

 

   
 


 (20) 

This approximation is then used in Eq. (4) for the k species to solve for dkv . 
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   

0

exp

A

k k k rk j k k kj j k

dk

k k k

n e E e B M n m v V V
v

n m V

    



    
  (21) 

The deuterium experimental rate of radial transfer of toroidal angular momentum is then 

calculated from Eq. (19) using 0eff

d dv v , which yields that 0

d djv v .  The deuterium 

experimental rate of radial transfer of toroidal angular momentum calculated using this 

process is show in Figure 5.1. 

 The difference between the carbon and deuterium toroidal rotation velocities was 

calculated using Eq. (20) and added to the measured carbon toroidal rotation velocity to 

approximate the deuterium toroidal rotation velocity.  This exercise, which only effected 

minute changes on the carbon toroidal rotation velocity profile, confirmed the validity of 

assuming a small difference between the carbon and deuterium toroidal rotation 

velocities.  This confirmation supports the validity of the entire perturbation analysis and 

the accuracy of the djv  profile.    

 

5.2 

Deuterium Toroidal Rotation Velocity: 
jV  

 

 The perturbation analysis employed to derive an expression for 
djv  in the previous 

subsection centered on the lack of an appreciable difference between the toroidal rotation 

velocities of the carbon and deuterium ions.  In confirming that this assumption is 

accurate
30

, it is justifiable to represent the deuterium toroidal rotation velocity as 

approximately equal to the measurable carbon toroidal rotation velocity, which was 

shown in Fig. 4.5.   
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5.3 

Deuterium Poloidal Rotation Velocity: 
jV  

 

 The currently unmeasurable deuterium poloidal rotation velocity was calculated 

from poloidal momentum balance using Stacey-Sigmar poloidal rotation theory
30,35

.  The 

equation for the deuterium poloidal velocity 

 

1

2

j

thj j j rj thj j j Tj thj r

jk atomj j jk k

j j

qv f e V B v f q B K T L v E
v v V v V

R m R e B B

 

 



  
          

   

 (22) 

was evaluated using the measured experimental carbon poloidal rotation velocity, the 

major radius, the safety factor q, the atomic physics momentum transfer rate vatomj, and 

the thermal deuterium velocity vthj.  The term 
*

0 ( )j j j thj j jjn m v qRf v  is Shaing‟s 

neoclassical viscosity coefficient
36

, and K
j
 is a ratio of Hirshman-Sigmar coefficients 

defined in Ref. 35.  The quantity 

3/ 2 *

3/ 2 * *[(1 )(1 )]

jj

j

jj jj

v
f

v v










 
 is an interpolation formula 

connecting the collisional result 
*

1
j

jj

f
v

 (where * j

jj

thj

v qR
v

V
 ) to the collisionless banana-

plateau regime results. 

 This model does not take into account any viscously driven torques in the edge 

plasma due to scrape-off layer (SOL) flows, ion orbit loss, nor other poorly understood 

phenomena thought to affect rotation in the plasma edge.  The possibility of such 

phenomena contribute uncertainty to this calculation.  

  In order to attempt to account for these factors, an expression for the carbon 

poloidal rotation velocity, which is measurable and shown in Fig. 4.5, was derived using 
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Stacey-Sigmar poloidal rotation theory.  The same theory was then utilized to find an 

expression for the deuterium poloidal rotation velocity [Eq. (22)].  The difference 

between the measured and calculated carbon poloidal rotation velocity profiles was taken 

to be an approximation of the difference between the actual deuterium poloidal rotation 

velocity profile and the one calculated using Eq. (22).  The difference between the carbon 

poloidal rotation velocity profiles was then added to the deuterium poloidal rotation 

velocity profile calculated using Eq. (22) to arrive at a “correct” profile for the deuterium 

poloidal rotation velocity.  Figure 5.2 shows the profiles of the “correct” and calculated 

deuterium, and measured and calculated carbon poloidal rotation velocities.   

5.4 

The Pinch Velocity and Diffusion Coefficient 

 

The deuterium pinch velocity was evaluated from Eq. (12) and the deuterium 

diffusion coefficient was evaluated from Eq. (11), using the “correct” deuterium poloidal 

rotation velocity calculated as discussed and the other inputs from Chapters 4 and 5.  

Both quantities are shown in Figure 5.3.  The main contributions to the pinch velocity are 

from the deuterium poloidal rotation velocity and radial electric field terms, both of 

which have large magnitudes in the edge. 
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Chapter 6  

Numerical Methods 

       

6.1 

Numerical Algorithms for Solving the Generalized Diffusion Equation 

 

 Numerous sophisticated and well-tested methods of solving the neutron diffusion 

equation have been developed and adapted to calculate particle transport in plasmas.  The 

major edge-transport codes, such as UEDGE and SOLPS, utilize such pure diffusion 

theory solution methods and are structured around them.  Given this situation, it makes 

sense to investigate if the well-developed methods for solving the pure diffusion equation 

can be adapted to solve the generalized diffusion equation.   

 In this first investigation of the matter, the radial, one-dimensional generalized 

diffusion equation is considered in the slab geometry approximation.  Standard finite-

difference approximations are used in the discretization of Eq. (15); the widely used 

central-difference approximation is always used with the diffusive term and the central, 

backward, and forward difference approximations are used to evaluate the pinch term.  

After these approximations have been implemented, Gauss reduction
37

, or forward 

elimination/backward substitution, is employed to solve the set of equations for the 

pressure at each point, and the known experimental temperatures are then used to 

calculate the density profiles through Eq. (6).  These density profiles are then compared 

to the “exact” calculated density profiles to investigate the accuracy of the finite-

difference algorithms used to numerically solve the generalized diffusion equation.   
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6.2 

“Exact” Numerical Evaluation of Density Profile 

 

 The “exact” solution of Eq. (10) is useful as a benchmark solution for comparison 

with the solutions to the generalized diffusion equation.  Dividing the second and third 

terms by the ion density in Eq. (10) results in  

 
1

pinch

j rj rj

j j

p V V

p r D

 



 (23) 

which is solved for the ion pressure by numerical integration between mesh points i and 

i+1 
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  (24) 

where ∆ represents the interpoint interval width (mesh spacing), to obtain the “exact” 

pressure relation  

 
   1 1

1

1

exp^
2

pinch pinch

rji rji rji rji

ji ji
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D D

 
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 (25) 

The experimental deuterium ion temperature is then used to solve Eq. (6) for the density.   

 In order to evaluate Eq. (25), experimental and calculated data are used to 

determine rjV from Eq. (13), 
pinch

rjV from Eq. (12), and jD  from Eq. (11).  This algorithm 

was used to advance the pressure inward from the value at the separatrix, which was 
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taken from experiment ( exp

25 25j jp p ). 

 The main purpose of this paper is to investigate the differences between the 

“exact” numerical solutions of Eq. (25) and the finite-difference algorithm solutions to 

the generalized diffusion equation [Eq. (15)], using the same data to evaluate both 

equations.  A secondary purpose is to compare these solutions with the independently 

measured experimental density profile. 

 

6.3 

Data Treatment and Mesh Spacing in the Numerical Solution 

 

 The measured and calculated plasma parameter profiles used for this study are 

flux surface averaged values plotted against the normalized radius at twenty-five points in 

the edge of the plasma ranging from 1.0   inwards, with a separation of r  .005 m 

between points.  In deriving the finite-difference approximations, the data values were 

assumed to be constant over the interval including the data point i as the midpoint. 

 

6.4 

Discretization of the Generalized Diffusion Equation 

 

 The discretization of Eq. (15), the generalized diffusion equation, is considered.  

This equation can be integrated over the interval 0.5 0.5i r i      .    

 
2 2 2

2 2 2

i i i
pinch

j j j rj
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j j
i i i

p p VD
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r T r r T
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    (26) 
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The diffusion term is a perfect differential, and this integration leads to the well-known 

and widely used central difference approximation. 
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 (27) 

 The integral of the pinch term  
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was evaluated at point i in three different ways.  In the forward difference approximation, 

the pinch term was evaluated by representing the derivative at point i with the forward 

difference approximation.  
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 (29) 

The backward difference approximation was implemented by representing the derivative 

of the pinch term at point i with the backward difference approximation.   
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 (30) 

In the central difference approximation, the derivative of the pinch term was evaluated 

with the central difference approximation. 
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 Since the ionization source rate is constant over the interval of integration in Eq. 

(26), the integral of the right hand side is simply SjΔ. 

 Combining the two terms on the left of Eq. (26) in each case, the finite-

differenced representation of Eq. (15) takes the form of the set of equations 

      * * * *

1 1 1 1ii i ii i ii i ia p a p a p S       (32) 

where the definitions of the anm coefficients and the source term are given by 

1 1 1 1* * * *

1 1

1 1 1 1

; ; ;
2 2 2 2 2 2

ji ji ji ji ji ji ji

ii ii ii j ji

ji ji ji ji ji ji ji

D D D D D D D
a a a S S

T T T T T T T
  

   

 

   

   
           

      

 (33) 

The α, β, and γ terms in Eq. (33) depend on the type of finite difference approximation 

used for the pinch term and are displayed in Table 6.1.  
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 Gauss Reduction
37

 (“forward elimination backward substitution”), can be used to 

solve the set of Eqs. (32) exactly.  Using this method
38

, 1

1 1

ii

i i

a

a



 

is multiplied by the (i-1)-th 

Table 6.1 : Definitions of the Varying Terms Used in Eq. (33) 

Grouped by Finite-Difference Algorithm. 
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equation, and this term is then subtracted from the i-th equation to eliminate the 

1iia 
element in the i-th equation.  The i-th equation (now missing the 

1iia 
 term) is then 

divided by 
iia .  This process is repeated successively for i=1 through i=I-1.  Then the set 

of equations is solved backwards by substitution using the formulae 

 

1 1

2 2 1 2

1 1

I I

I I I I

i i i i

A

A

 

  

  

 

   

 



  

  

 (34) 

where the values for the parameters 
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11 1 1

;

;
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ii ii i

aa
A A

a a a A

S aS

a a a A


 



 

 

 

 



 



 (35) 

are calculated during the forward sweep.  A known density boundary condition at the 

separatrix ( exp

25 25p p ) and a zero current inner boundary condition ( 1 2p p ) are used.  

As shown in Figure 1.3, the electron density and ion temperature profiles are relatively 

constant towards the plasma core, allowing this inner boundary condition to be used 

confidently.   

 

6.5 

“Characteristic Diffusion Length” and Error Determination 

 

 Solving the source-free pinch-diffusion relation 
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1

pinch

j rj

j j

p V

p r D





 (36) 

by using the forward difference approximation for the derivative results in the solution 

 
/

1

pinch
rj jV D

ji jip p e


   (37) 

The “characteristic diffusion length”  is     

 / pinch

j rjL D V  (38) 

and generally, L  is desired for accuracy. 

 Due to the sharply increasing pinch velocity magnitude in the edge, the 

“characteristic diffusion length” drops sharply near the separatrix, as shown in Figure 6.1. 

 It is instructive to investigate the intrinsic accuracy of the different finite-

difference algorithms used to solve the generalized diffusion equation by comparing them 

with the exact solution of Eq. (15). 

 To obtain an approximate expression for the error inherent in using the forward 

finite-difference algorithm to solve the generalized diffusion equation (the error sought 

here is the error in calculating the value of the pressure at each point from the adjacent 

points using the forward finite-difference approximation algorithm), a source-free version 

of Eq. (15)  

 

2

2
0

pinch

j rj j

j

p V p

r D r

 
 

 
 (39) 

is discretized using the forward difference approximation on the pinch term, and (always) 

the central difference approximation on the diffusion term.   
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1
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rj ji rj ji
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D D



 

 
     (40) 

 A further approximation is made in deriving these expressions for the error in that 

the diffusion coefficient and pinch velocity are taken out of the derivatives, and assumed 

constant over the interval.   

 Equation (37) is used to generate an expression to replace the pressure ratios when Eq. 

(40) is rearranged, and 

 
1 1 1

2 1

pinch

ji ji rj ji

ji j ji

p p V p

p D p

  
  

    
 

 (41) 

becomes 

 
1 1

2 1 2 1
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Dji ji rj L
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p p V
e e

p D L
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 

                      

 (42) 

while from Eq. (37) 

 
1 1ji ji L L
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p p
e e

p

 
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 
   

 

 (43) 

The subscript “for diff” represents the forward finite-difference algorithm for solving the 

source-free generalized diffusion equation, and the “exact” subscript refers to Eq. (37).  

The difference between the two expressions obtained from the two equations for the same 

value is taken to be the error inherent in using the forward finite-difference algorithm to 

numerically solve the source-free generalized diffusion equation.   
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 (44) 



 42 

The exponentials are expanded to obtain 

 
2 3 2 3 2 3

2 3 2 3 2 3
2 1 1 1 1

2 6 2 6 2 6
error

L L L L L L L L L L

               
                   

      

 (45) 

After simplification, the error is found to be proportional to the mesh spacing over the 

“characteristic diffusion length”, all cubed.  A similar method is used to determine the 

expressions for the error resulting from the use of the backward and central finite-

difference algorithm.  The expressions for the error are 

 

3

1
1 ...

3
1

1
2

1
1 ...

3

backward difference
L

error central difference
L

forward difference
L


 

 
  

   
  


 (46) 

when the forward, backward, and central finite-difference algorithms are used to solve 

the source-free generalized diffusion equation.  These expressions are meant to 

approximate the error resulting from solving the normal generalized diffusion equation 

[Eq. (15)] using the finite-difference algorithms.    

 The error is very sensitive to the mesh spacing size and to the local value of the 

“characteristic diffusion length”, L, as can be seen by comparing Figs. 6.1 and 6.2a.  

Figure 6.2a displays the error of using the backwards finite-difference algorithm to solve 

the source-free generalized diffusion equation as a function of mesh spacing.  Clearly, a 

small value of L   is required for precision when solving the generalized diffusion 

equation using finite-difference approximations.  The error is not sensitive to the specific 

finite-difference algorithm except when L  approaches unity, which happens for the 

larger mesh spacings just inside the separatrix.  This sensitivity is shown in detail in 
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Figure 6.2b.  From Eq. (46), the backward difference algorithm should be the most 

accurate, then the central difference algorithm.  The errors predicted by Eqs. (46) are 

plotted in Fig. 6.2b for different choices of the finite-difference algorithm and mesh 

spacing; the error of the backward difference is the lowest, then the central difference, 

then the forward difference.  At smaller mesh spacings below 0.25 cm, the solution 

sensitivity to the three finite-difference algorithms is small, and the error at these mesh 

spacings is not shown in Figure 6.2b.  The backwards finite-difference algorithm error 

shown in Figure 6.2a can be taken as roughly representative of the error of the central and 

forward finite-difference algorithms for these smaller mesh spacings.  The implication is 

that for a fixed mesh spacing, the error becomes larger in the edge where the pinch 

velocity becomes large.  This suggests the use of a variable mesh algorithm with finer 

spacing in the edge in order to maintain an acceptable upper bound on the error at all 

locations while minimizing computing costs.  
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Chapter 7 

Numerical Results 

 

 The generalized diffusion equation was solved using the three finite-difference 

approximation algorithms for four different mesh sizes, which were the original mesh of 

0.5 cm, and the finer meshes of 0.25 cm, 0.125 cm, and 0.0625 cm.  The pinch-diffusion 

relation was also solved for the “exact” profile at these same mesh sizes.  The data for the 

three finer meshes was obtained by interpolating the 0.5 cm data to a finer scale 

 Figures 7.1 compare the solutions obtained by numerically solving the 

generalized diffusion equation [Eq. (15)] using the finite-difference approximation 

algorithms with both the “exact” numerical integration solution of Eq. (23) and the 

measured ion density for different choices of mesh spacing.  It is clear that reducing the 

mesh spacing improves the agreement between the generalized diffusion equation 

solutions and the “exact” solution of Eq. (23), as would be expected from fact that the 

error 3( )L   of the finite-difference algorithms is strongly dependent on the mesh 

spacing.  The differences among the solutions corresponding to the three finite-difference 

algorithms also decrease with finer mesh spacing, as predicted by Eqs. (46).  The 

differences between the solutions of the generalized diffusion equation and the “exact” 

solution are consistent with the error analysis displayed in Fig. 6.2b.  

It should be noted that the generalized diffusion equation is always solved with a 

known separatrix boundary condition at 1.0   on the right and that there is a large error 

(up to ~60% with a 0.5 cm mesh spacing and the forward-difference algorithm) in the 

generalized diffusion equation solution just inside the separatrix, as shown in Figs. 6.2a 
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and 7.1.  This error causes an over-prediction of the solution just inside the separatrix.  

This over-prediction is then propagated inward (quite accurately, due to the increased 

accuracy of the solution algorithm at the points towards the core) by the solution 

algorithm, which calculates the pressure values at i based on the values of the pressure at 

the adjacent mesh points.  This links the over-predicted edge pressure values in the edge 

to the inner values, causing them to be over-predicted as well.  This results in a 

discrepancy between the finite-difference algorithm solutions to the generalized diffusion 

equation and the “exact” solution that is present across the entire range, despite most 

contributions to the error being limited to the outer third of the range.  The effect of the 

larger error magnitude just inside the separatrix on the solution over the entire pedestal is 

illustrated in Figs. 7.1 and 7.2.  

 Although it is not the purpose of this paper to analyze the differences between 

prediction and experiment, the experimental ion densities (electron densities measured by 

Thomson scattering and corrected for the measured carbon impurity density) have been 

included in Figs. 7.1 and 7.2.   

 The differences between the “exact” solution and the experimental density are 

attributable to imprecision in the measurement and calculation of the parameters used to 

solve Eq. (23) and weaknesses in the slab model used in this study.   

 The only parameter that is very likely to be imprecise is the deuterium poloidal 

rotation velocity, due to the lack of reliable theoretical models and the current 

impossibility of measuring it.  This inaccuracy is thought to be a major contributor to the 

discrepancy between the measured and “exact” solution profiles.  Results from simple 

experimentation have shown that the solutions to the generalized diffusion equation are
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very sensitive to any manipulation of the “correct” deuterium poloidal rotation velocity, 

further supporting this hypothesis.  The assumptions made in deriving Eq. (23) that take 

the carbon and deuterium logarithmic pressure gradients to be the same are not thought to 

contribute significantly to the error.  

 Another major contributor to the difference between the “exact” and measured 

profiles, especially in the inner part of the range, is the limitations of the slab model used 

in this work.  The measured data uses a cylindrical model, and the distinct discrepancy 

between the “exact” solution and measured density profiles can be explained by a lack of 

radially inward particle flows at poloidal locations above and below the outboard 

horizontal midplane that would be present in a cylindrical model, but are not taken into 

account in the slab model.  
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Chapter 8 

Summary and Conclusions 

 

 The large pinch velocity in the plasma edge of H-mode tokamak discharges 

requires that a pinch-diffusion relation for the particle flux be used in order to satisfy 

momentum balance; this leads to a generalized diffusion theory that includes a pinch 

term. A numerical investigation has been completed into the possibility of representing 

and solving this generalized diffusion equation by using the same type of finite-difference 

approximations and solution algorithms that are utilized with pure diffusion theory and 

employed in major plasma edge codes.  The error of the finite-difference algorithm 

solutions of the generalized diffusion equation was shown to be approximately 

proportional to 3( )L , where   is the mesh spacing and pinch

j rjL D V is the 

“characteristic diffusion length”.  This error was shown to be quite large just inside the 

separatrix, where L becomes small due to a large pinch velocity.  This may cause an error 

in the density solution that propagates into the pedestal region unless the mesh spacing is 

quite small just inside the separatrix.  The implication is that a variable mesh spacing 

should be used for solving the generalized diffusion equation in the plasma edge, with the 

mesh being finely spaced just inside the separatrix where the pinch velocity is large.  By 

making use of such a variable mesh spacing, it should be possible to extend existing 

diffusion theory codes to solve the generalized diffusion equation and correctly represent 

particle transport in the edge pedestal in a way that satisfies momentum balance. 

 Several research avenues for further exploration of the conclusions reached by 

this work can be readily identified.  Since it has been shown that it is possible to 
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accurately solve the generalized diffusion equation using the finite-difference 

methodology that is associated with the pure diffusion model, the next logical step would 

be a study of implementing the generalized diffusion equation into the major edge 

transport codes.  To improve the accuracy of the calculations, a variable mesh could be 

used, and more sophisticated assumptions about the parameter profiles between data 

points, such as a finite-element analysis, could be employed.  Additionally, using a 

cylindrical model instead of a slab model would likely improve agreement with 

experiment in the inner part of the analyzed range. 

 Advancements in the theoretical understanding of the deuterium poloidal rotation 

velocity or the development of tools to measure it would be invaluable in conducting a 

definitive analysis of the pinch-diffusion model and the generalized diffusion equation.     
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