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Neoclassical calculation of poloidal rotation and poloidal density
asymmetries in tokamaks
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A previous model for the calculation of poloidal velocities and poloidal density asymmetries in the
core of a tokamak plasma is refined and extended by the inclusion of terms which are important for
the calculation of these quantities in the plasma edge. Agreement of predictions of the model with
experiment is demonstrated. The effects of edge pressure gradient, collisionality, neutral density and
up—down flux surface asymmetry on the edge poloidal rotation velocities are illustrated by a series
of model problem calculations. @002 American Institute of Physic$DOI: 10.1063/1.1497371

I. INTRODUCTION the flux surface in tokamaks and its application to investigate

i o poloidal rotation in tokamak plasmas.
Several years ago, we developeal “first-principles”

neoclassical calculation of the poloidal rotation and poloidal
density asymmetries over the flux surface in a multi-specie§ caLCULATION MODEL
tokamak plasma, based on solution of the particle and poloi- . .
dal momentum balance equations. When toroidal rotatio™ Basic equations
speeddand densities and temperaturegere taken from ex- The calculation model is derived from the basic particle
periment, the calculation predicted poloidal rotation speedgalance
and density asymmetries which, when used to evaluate the
neoclassical gyroviscous momentum transport 7des to V-(nvj) =S @
the prediction of momentum confinement times and centrahnd momentum balance equations
toroidal rotation speeds in agreement with measured values -
for a number of digferent tokgmaﬁs. NyMy(v;- V)V + Ve + Vi en VO +njepv; X B

More recently, this calculation of poloidal velocities and =M;+R;—m;Sv;, 2)
density asymmetrieswhich requires toroidal velocities as
input, has been coupled with a neoclassical calculation of th

toroidal velocities. The coupling is via a neoclassical gyro-, . . ) .
j.” R; and M; are the interspecies collisional momentum

viscous modél for radial momentum transport, which re- h dth ‘ | h ik f
quires the poloidal velocities and density asymmetries as inx¢ a_n”ge andthe external momentum source O.r,f'n or spe-
and S; is the particle source for specieg

put. The iterative coupling of these three models provides &'es s
self-contained and self-consistent neoclassical calculation of
poloidal and toroidal rotatidhthat requires only the external
momentum input(and plasma density and temperajuas
input. This combined calculation has been successful in pre- We use a right hand ¢ 6- ¢) toroidal coordinate system,
dicting toroidal rotation velocities and momentum confine-wherer is the minor radiusg is the poloidal angle measured
ment times in agreement with a wide range of DIII-D from the outboard midplane, anglis the toroidal angle. The
experiment3® and in predicting the measured poloidal rota- positive ¢-direction is defined to be the direction of the
tion in the one DIII-D shot for which a comparison has beenplasma current, so th&, is always positive. When the tor-
made to date. oidal field is parallel to the plasma curreBt,>0 and when
Given this measure of confirmation of the theory and thethe toroidal field is opposite to the plasma curredj,<O0.
growing importance of poloidal rotatiofe.g., the observa- When the toroidal component of the beam injection direction
tion of changes in poloidal rotation at thé—H is parallel to the plasma curremd, , andv , are positive, and
transitiof ™%, we have undertaken to refine the existingwhen it is opposite to the current direction they are negative.
model for the calculation of poloidal rotation and density Noncircular plasma geometries are represented by
asymmetries in the plasma core and to extend its applicabikequivalent circular geometries; e.g., a plasma with minor ra-
ity to the edge region, where ionization sources, chargedius “a” and elongationk is represented by a circle with an
exchange momentum sinks, pressure gradients and up—dowequivalent minor radiugeq,=a((1+ «?)12)Y? that conserves
asymmetries in both the flux surface geometry and the ionsurface area and an equivalent radial coordinater((1
ization sources become important. The purpose of this paper «2)/2).
is to report this development of a refined and extended cal- The in—out asymmetry introduced by the toroidal geom-
culation of poloidal rotation and density asymmetries overetry is represented by writindR=Ry(1+ e cosd) and B,

@/herenj, vj, m;, €, p;, and; are the particle density,
velocity, mass, pressure, and viscosity tensor of ion species

B. Coordinate system and flux surface geometry
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=BY(1+ecosh). We represent the up—down asymmetry in E. Form of the toroidal velocity
the poloidal magnetic field associated with a single null di-

- The radial component of the momentum balance equa-
vertor by writing

tion, Eg.(2), yields a relationship among the toroidal veloc-

BY(r) ity and the density, poloidal velocity, electrostatic potential,
1+ ecoso+ £sinoHT SN and magnetic field
By(r,0)= Bo(1) , 3 B,
4 LSN v gi(r,0)= ( )v(,,(r 0)—d'(r,0)— P (r,0), (8)
1+ ecosf— £ singH="
where USN and LSN refer to “upper single null” and “lower where
single null,” respectively, andH is the Heaviside function. , 1
Hg=1 in the interval 8=4<m and vanishes in the interval P'= T By ar’
T<0<2 to approximate the effect of an upper single null (9)
divertor in weakening the poloidal field in the upper part of p/— 1 @
the plasma. SimilaryH2™=1 for < ¢<2 and vanishes for I Bynjey ar

O=#=1rto represent the effect of a lower single null divertor

. . . . . In th nt development, we will A
in weakening the poloidal field in the lower part of the e subsequent development, we use &).to

represent the poloidal dependence of the toroidal velocity in

plasma. terms of the poloidal dependence of the other quantities ap-
pearing in that equation, then use the flux surface average of
C. Ordering this equation
We consider an ordering that is appropriate for a strongly By o —
rotating plasme(v¢~vth, E~B,) with sharp gradientsl( q"(f)Egvaj(r)—v(bj(r)—Pj’(f), (10

=((—p)aplar) t=~p,=mv/eB,) and make the usual
tokamak assumptions about the ratio of the poloidal and toto replace@’ with v(m , vgl and pressure gradient terms in
roidal magnetic fieldsg=B,/B,<1) and the magnitude of the final result.
the minor to major radii é=r/R<1). We further restrict the
up-down asymmetry factor to the range§<1.
F. Form of the poloidal velocity

D. Constitutive relations Taking the flux surface averagdenoted by )) of Eq.
(1), noting that the lowest order particle fluxes are within the
flux surface and assuming axisymmetry yiel(&-n;v;)
=(S§;)=S;, which may be subtracted from E(.) to obtain
Rj:_njmj% ij(V]'_Vk). (4) 1

F%((1+60056)njvgj)=(1+60030)(Sj—§j), (11

We use the simple Lorentz model for the collisional mo-
mentum exchange

We use the neoclassical parallel viscosity tensor obtained

by extending the classical rate-of-strain tensor formalism td" n toroidal geometry. This equation can be integrated to ob-

toroidal geometry and use a neoclassical parallel viscositytf'iln a "surface function of integration,K;(¢), and a par-

coefficient? that takes banana-plateau collisionality ef'fectstICUIar solution arising from_the mhomogeneous partl_c le
into account source termK; can be determined by flux surface averaging

the resulting equation and setting it equal to the average
njmjunqRe 2y vii value over the flux surface of the poloidal velocity;

; =nmuvyuqRE (V) 5
o= (I+e 2y Laoty) 0 ndRG(), G )
whereq=|rB,,/RBy|=€/| 8] is the safety factor and the nor- nJ(r)vg,(r)+ffg(1+6COS¢9 IS(r,6")— S(f)]dﬂ'
malized collision frequency iaj*k= v qR/v ;. The poloidal 1+ ecoso
component of the divergence of the parallel viscosity tensor,
which is the only component that we will need, can be 12
writter? Thus, theg-dependence of the poloidal velocity depends on

the 6-dependence of the density and ionization source and on
}, (6)  the toroidal geometry metritl+ e cosé).

We will develop equations for the determination of the
where vy in a later section.

1 [ 110y 114R 11 1B,
2797 T3 g TV 38,1 a0

1\ [1an(7eA0) 3sing
Ay V= 7"’J(ZA l)(? 90 R

Rr a6 3B,r 6

(Bﬁ) R d(v 4 /R)
| =—|—— .
By 1 00

G. Form of the inertial term

Taking into account that the particle fluxes in the flux
surface are much greater than the particle flux across the flux

()
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surface to drop, terms, we can write the poloidal compo- Thus, we represent the ionization source for specjés “
nent of the inertial term, which is the only one that we will as

need, as
S(r,0)=n;(r,0)Nne;(r,0){ov ion

. . A S o Cc -
ﬁg-(vj-V)vj:%%%Jr%sinﬁ. 13 =n;(r)(1+n7sinf+nf cosf+---)ny;(r)
X (1+ng;sin6+ng; cosf+-+)(av)ion
H. Representation of poloidal density asymmetry Eﬁj(r)vion(r)(1+(njs+ nf)j)sin 0
We represent the poloidal asymmetry over the flux sur- e e
face of the particle density by a low order Fourier series +(nj+ngy)cosf+--). (17
expansion

We note that the accuracy of a low-order Fourier repre-
sentation of the poloidal distribution of the ion source arising
nj(r,0)=(1+ njc(r)cos 0+ nf(r)sin O+--- . (14)  from pellet fueling is questionable, and it may be necessary
to go to a higher order representation.

We will develop equations to solve for thnf’s.

We expect that a low-order Fourier expansion will be
adequate because the flux surface geometry and the neutdalAsymmetric radial particle flux
ionization source(see subsequent discussidioth have a

) ; We allow for the possibility of a poloidally asymmetric
low-order Fourier asymmetrgsin # and cos).

radial particle flux by writing

v,(r,0)=v,(r)(L+v;sing+v;cosf+---), (18)

I. lonization and neutral beam ion sources

The source of ions in the edge plasma is due to thavhere the Fourier coefficients’s must be determined from
ionization of recycling and fueling neutrals. Although fueling other calculations.
neutrals are introduced into the plasma chamber at poloidally
localized sites, by the time they have diffused inward across
the separatrix into the edge plasma they will have spre
poloidally. Similarly, recycling neutrals in diverted plasma
will originate at the divertor plate, which constitutes a source ~ The poloidal dependence of the electrostatic potential is
that is highly localized at the top or bottom of the plasma,represented as
but this source will spread poloidally by the time the neutrals — .
have diffused across the separatrix into the edge plasma. D(r,0)=P(r)(1+P3(r)sing+P(r)cosf+---), (19

Thus, we represent the distributipn of such' neutrals in th%md the poloidal component of the electron momentum bal-
edge plasma as a low-order Fourier expansion ance is used to relate the Fourier coefficients for the electro-

:%. Electrostatic potential representation

Noj(r,6) zﬁoj(r)(H ngj(r)cose+ ngj(r)sin O+--), static potential to the Fourier coefficients of the ion densities
(15) ed ions F
where the coefficients must be determined by evaluating the | — | ®/s=n%s=>" 7z 1n%s, (20
e € i Jne !

Fourier components of the calculated or measured neutral
density,ny(r, 6)

o L. Moments equations
ng(r)zf no(r,0)cosédéin,m,

o We develop equations for determining tF@j and the

(16) njc’s by taking moments of the poloidal component of E).
nS(r) = fzwn (r. 6)sind 6/ weighted by 1, cos, siné,... and flux surface averaging. To

0 o o simplify the subsequent evaluation of the moments equa-
ions, we divide Eq(2) by njm;(1+ e cos#) before taking

Fast ions formed by the ionization or charge-exchange O}he flux surface average

neutral beams will be initially created along the path of the
beam. However, by the time these fast ions have slowed
down to become a source of thermal ions they will have been <
spread over the flux surface. For example, a beam injected
horizontally at the outboard midplane will produce a source

of fast ions localized poloidally a#=0, but by the time these After considerable algebraic reduction, retaining terms
ions slow down to thermal their poloidal asymmetry can bethrough guadratic in the small guantities

represented by cas (e,g,nf’s,ng’js,<b°’s), these equations can be written

(ny-Eq.(2))X

m> X=1, siné, cosd..... (2]
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X=1
S 2 3 3~C 1 c\2 1 S S Cc C
gl — 0 U"”IBI{@ +1%} - afj) 5 Enj+§( $)24 = (n) + SO 5 (n +3)d ——gn +2 Vit Vi
vrJ m; . J U PV B
B +M0J+;gelj Rvek—qzvd,i U(z,j{q)s_z +P {(I)S} | |V|0n]{ﬁ +n0J}
2 B - B’ 1~S~s 1. Hel -1 1 RS 1.
—afj g (e TP g MO 5 (N3P —% i€ | = vions| T+ 3G — 5T || (22
X=sin#
_J(2 4'¢e ) .2 R 1 2 _
”?{(5”(1‘5?)‘52% ”fk)”‘”‘ﬁz“”“ 3lgl P | 2+”'°”J<3f'_ﬁ2(k§j +m
R 86% B .
_ 2
= T Uy 1+3— +fj W(vd)]'i‘P )CI)
1:+~ x =S~ m; 2N1 MS L% 2
+§(qu) UrJUr] B 2 ijn U gk Fk—i_ﬁ MﬁjM0j+Vionj:8
* mj —c ~c ~s ~ % ~c
X l;] ij Hk(nk+nok)_2n0jvaj_Vionjnoj (23)
X=cos#
(2 48\ - Jr o (2, _
nf{(§fj(1+§?)—ﬂl§jvrk Vit B My — 3|B|fJU¢'7T +nf§+vi’;nj(§f1—,8 l;jvj*k-f-vi’;nj
) ~ 8Ee| 2 _ 1 2¢
—fj{v,gj 1+<bc+§?]+§7ignjn§j} [|B| (Ud,]"r‘P )(I) +U¢J§<+E+? }
1- s ~ ~c 2 x| m; ~c\n 261 MAC
_E(I)Jq) +Bvr](1—v”)+ﬂ k2¢J ij U@j_ Fk(l'f'nk)vgk +B MGJMal
* 2 * m —% ~s
_Vionjﬁ l;] Vik m, (nk+nok)+( 01 1)00] |onj oj | (24)
|
The terms in Eqs(22)—(24) are . M 6
P I MHJE 2 ]
Vo A _ Uy Vi
Vo= s Vygpi=—), . o —
¢ |:3|Uthj /) U thj nym; qR |r8|
: o B,
T[T, |() ey 1 i, o ed
] - : - e e
e]B?, B qR P’:O_—ﬁ, b, = J :J—_
Benjejvthj ar 1 P T
ne/s cls ne’s 2 M;Uth;
Rels= 1 ('i')c/sE ~cls__0j
] € e’ o] e’
~ & ZIS A set of Egs.(22)—(24) obtains for each ion species in
fz;, M%S: EJ , (250  the plasma. These equations are explicitly coupled among
ion species through the collisional momentum excha
ols — terms and through the electrostatic potential, as indicated by
pels= Yrj . k= Vik — _ Vionj Eq. (20). The upper symbol=+) is taken for USN divertor
€

configurations, and the lower symbol for LSN, in the above
equations.
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M. Discussion The neoclassical gyroviscous thebdiy used to calculate
the toroidal component of the divergence of the anisotropic

Equationg22) determine the average poloidal velocities,
Stress tensor

v_gj . The terms on the right may be regarded as driving th - -
poloidal velocity. We can trace through the effect of these . - 1~ nmT; v,

terms on the direction of the poloidal velocity, assuming for ~ (RNy-V-7j)= %G s R (28)
the moment that the term in square brackets on the left is 1=e

positive. An outward(positive radial particle flux drives a Where

negative poloidal rotation: A positivg/pegative poloidal 'exter— EJE(4+F‘}:)1~)3)1 +ﬁjs(1_52/;j)

nal momentum source drives a positive/negative poloidal ro-

tation. The collisional momentum exchange with other spe- :(4+ﬁf)[—69j8;jl(@+ﬁf)+&>S]

cies drives a poloidal rotation in the direction of the poloidal o -~ o~

rotation of the other species. The inertial forces and viscous RS0 40 4 (2+ DO+TF) — D], (29
forces can drive positive or negative poloidal rotation, de- F (a0

pending on direction of the beam injection and the toroidal Gj(r)=- ——"”, (30)
magnetic field relative to the direction of the plasma current, najvg O

the poloidal location of fueling sources, and the sign of theandﬁg_zﬁjijj /eng.

density Fourier coefficients determined from E¢23) and If v is written as the product of a knowifrom experi-

(24). If the term in square brackets on the left is negative, thenent or assumedradial profile function and an amplitude
directions of the poloidal velocity would be just the opposite.factor,v¢0, and the poloidal velocities and density asymme-
The contribution of collisional effects to the term on the left tries are calculated as discussed in the previous sections, then
are positive, and the contribution of inertial and viscous ef-the above equations can be solvedufgp, andu_(/)(r) can be
fects can be positive or negative, depending on the factorsonstructed by multiplying the known profile function by the
discussed just above. calculatedv 4.
Equations(23) and (24) determine the density Fourier
coefficients,njcls. Other than noting that they depend on the|||. ROTATION IN THE CORE PLASMA
mean poloidal velocities determined from E¢§82), on the ) ) ,
ng's for other ion species, and on the same factors discussdtt COmPparison with experiment
in the above paragraph, it is difficult to gain any physical  The above calculation model was applied to calculate the
insight from their examination. poloidal and toroidal rotation in the core of a L-mode DIII-D
The effects of the new physidselative to Ref. 1that  shot(#98777 @ 1600 mswith 4.5 MW co-injected neutral
has been added can be identified from the symb@,l,]%(par- beam power and a principal carbon impurity concentration of
ticle sourcey M; (external poloidal momentum sources or 1.1%. The poloidal rotation calculation was made for carbon
sinks), Pj’ (pressure gradientsandé (up—down flux surface at r/a=1/2 where the up—down asymmetry and the radial
asymmetry. When these new effects are suppressed, Eqgressure gradient were negligiblé~0, Pj’wO) and the ra-
(22—(24) reduce to the corresponding equations in Ref. 1dial particle fluxes were smallv¢(=~0), and for horizontal
except for a couple of sign and subscript typos in Ref. 1 andeam injection for which the poloidal beam momentum input
some additional terms arising from a better representation akas zero ¥, =0). The calculated ionization source;{,)
the poloidal dependence of, in this paper. The effect @,  due to beam injection was included but was negligible. The
being paralle(3>0) or oppositg 8<0) to the plasma current results are compared with the measured carbon rotation and
is explicitly represented in Eq$22)—(24). experimental quantities constructed therefrom in Table I. Re-
sults of a previous calculation using the original poloidal
rotation calculation model and the same toroidal rotation cal-
culation are also given in the last column of Table I. Taking
into account the numerical approximatiofsee Ref. §and
In order to calculate the toroidal rotation in this paper,that the uncertainty in the measured poloidal velocity is of
we use a volume-integrated momentum balance model  order unity!! the calculated values are in good agreement
a ions with the measure values. Comparing the last two columns of
_ (2aR)[o(RE™nmjv 4)2arrdr (26)  Calculated results, it is clear that the refinements and correc-
¢ rt(z‘ ' tions to the calculation model do not make a significant dif-

) ) ) ference in the calculated results for the rotation in the plasma
and the assumption of a common toroidal rotation for all.gre ynder the conditions described above.

species. We have previously found this simple model to yield
results in good agreement with experim%ﬁHere,F¢ is the
toroidal torque inpute.g., from neutral beam injectiprand

N. Toroidal rotation calculation

B. Directionality effects

' However, the refinements to the calculation model now
2 T(Rymyu g )rdr allow an unambiguous calculation of the effect of the relative
Toi = SO fARN, V- amyrdr (27 directions of the toroidal field, the plasma current and the
. : neutral beam injection. In shot #98777, the plasma current
is the toroidal momentum confinement time. and the beam injection were in tlipositive counterclock-
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TABLE |. Comparison of calculated and measured quantities related to rotation in DIII-D shot #98777 at 1600
ms.(R=1.7m,a=0.6 m, k=1.7,B,=—1.6T,|=1.2 MA, P,;=4.5 MW,

Quantity Experiment Calculated CalculaterRief. 6
v,@rla=1/2 (m/s) —1.7x10° —0.7x10° -1.9x10°
v,@r=0 (m/s) 1.5x10° 1.38x 10° 1.52<10°
E,@r/a=1/2 (VIm) 2.3x10% 2.1x10*
74 (MS) 73 83 80
wise direction looking down on the tokamak, and the toroi-  In order to investigate the effect of collisionality, we

dal field was in thgnegative clockwise direction. To inves- used the same parameters as discussed above for DIII-D shot

tigate directionality effects, we made two other calculations#98777 at 1600 ms, but varied the temperature to alter col-

In one, the current, toroidal field and beam injection were allisionality without altering the plasma massee Table ).

in the (positive counterclockwise direction, and in the other The deuterium and carbon poloidal rotation velocities are

the current and the toroidal field were in ttpositive) coun-  identical at the highest collisionality considered but vary by

terclockwise direction but the beam injection was in thealmost a factor of 2 at the lowest collisionality, and are of the

(negative clockwise direction. We note that it is whether the same sign over the entire range of collisionality. This result

various components are parallel or anti-parallel, not whetheis consistent with the result found previously in Ref. 12. The

they are clockwise or counterclockwise, that matters in thesariation of the magnitude of the poloidal velocities and of

formalism. the pobidal density asymmetries with collisionality causes a
The calculated results for these different directionalitieslarge variation in the momentum confinement time and cen-

are compared in Table Il, where/— indicates parallel/anti- tral toroidal rotation velocity calculated from Eq26)—(29).

parallel to the plasma current. The calculated rotation velocitn general, momentum confinement is predicted to improve

ties (poloidal and toroidalare quite different when the beam with decreasing collisionality.

injection is parallel or anti-parallel to the current. This dif-

ference arose from a difference in the sin component of the

density asymmetry for beam injection parallel and anti-1V- ROTATION IN THE EDGE PLASMA

parallel to the plasma current. In the edge plasma the pressure gradid?t)( the ion-
ization source ﬂ;nj), the charge-exchange momentum sink
(My;) and(in the case of single null divertor configurations
the up—down asymmeti¢) terms that were neglected in the
Collisionality enters the calculation of poloidal velocities core plasma calculations can become important. We use the
and density asymmetries through the friction termﬁXand same DIII-D model parameters as above, and fix the edge
the viscosity termsf([ v} ]) in Egs.(22—(24). The friction  toroidal rotation velocity at the measured value of 1.75
terms tend to force the poloidal velocities of all species tox 10* m/s, to investigate the effect of these terms on the
take on the same value, as may be seen in(E). On the  calculation of poloidal rotation velocities in the plasma edge.
other hand, the viscosity terms tend to drive the poIoidaIA Ef f od i 4 collisionali
velocities of the two specid# a two species modgelo be of - Effect of edge pressure gradient and collisionality
opposite sign, a result which is not obvious from Ef) but We calculated the poloidal rotation velocities and density
which is found explicitly in early modelge.g., Ref. 19 in asymmetries for the deuterium main ions and the carbon
which the poloidal velocity was calculated fro(B-V - ) impurity ions for edge temperature and density gradient scale
=0. Thus, the relationship between the poloidal velocities olengths over the range<llL ,=L;<10cm. We carried out
the main ion and impurity species can be of the same othe calculation for the measured edge density of 0.75
opposite signs, depending on the relative importance of thex 101m? and temperature of 100 eV, corresponding to col-
poloidal friction and viscous forces, both of which depend onlisionalities (v§;=0.14, v}, = 1.78), for a lower temperature
collisionality. The viscosity functiorf; defined by Eq(5) is  corresponding to collisionalities’y,=0.51, v,,,=6.57), and
plotted against/}‘j in Fig. 1. for a higher temperature corresponding to collisionalities

C. Collisionality effects

TABLE Il. Comparison of calculated rotation for different directions of current, toroidal field and beam injec-
tion in a model problem with the parameters of DIII-D shot #98777 at 160QRs1.7 m,a=0.6 m, k=1.7,
[By|=1.6T,1=1.2MA, P,,=4.5 MW,

By Pobi v go (M/S) vop (MIsF U gearn (M/S)? E/ (VIm)# 74 (S)
- + 1.38x 10° —6.8X 107 —7.4x107 2.1x 10 80
+ + 1.27x10° 7.4x 107 8.2x 107 1.9x10 76
+ - 6.20x 10 2.2x10° 5.3x 107 -1.3x10* 37

At r/a=1/2.
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8.E-01
viscosity function f(ep,nu*)
7.E-01 / \
6.E-01 / \
5.E-01
*g —f(ep=0.1) / \
g 4E01 +— .. f(ep=0.3)
2 / \ FIG. 1. The viscosity functior; (v ,€).
3.E-01 / - \
2E-01 / - - .\
1.E-01
OE+00 ................ T T T
1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
nu*

(v5=0.036, v*,,=0.48. These three collisionalities are re- of different concentrations of neutral particles in the plasma
ferred to below as “medium,” *high,” and “low,” respec- edge on the edge poloidal rotation. The results are shown in
tively. ’ ’ ’ Fig. 3 for the medium collisionality case. As anticipated from

The calculated “ion” (deuterium and “impurity” (car- the above phys_ical considerations, an increasing cor)centra—
bor) edge poloidal rotation velocities are plotted versus edgdi©n Of neutrals in the plasma edge reduces the magnitude of
gradient scale length in Fig. 2. At high collisionalitsircle), ~ the €dge poloidal rotation of both ions and impurities and
the deuterium and carbon poloidal rotation velocities are ed?"nNgs these two velocities closer together.
sentially identical and vary from slightly positive with weak
gradients to significantly negative as the edge gradients inc- Effect of edge up-down asymmetry
creasggradient scale lengths decreadeor the medium and A lower single null (LSN) or upper single nul{USN)
low collisionality cases, the deuterium and carbon rotationdivertor configuration introduces an up—down asymmédry
velocities are of opposite sign and increase in magnitude &gto the flux surface geometry in the edge plasma. A series of
the gradient scale lengths decrease. Of particular note is thgalculations were made for USN and LSN configurations
very strong increase in the positive carbon rotation with dewith the asymmetry factor varying over the range fe<1.
creasing gradient scale length for the medium case, for whiclrhe results are shown in Fig. 4. The effect of edge up—down
vea=1.78 falls near the peak of the viscosity functibp  asymmetry is to reduce the magnitude of the edge poloidal
plotted in Fig. 1. This strong increase in poloidal rotationrotation, and there is little difference between the USN and
velocity with steepening pressure gradient is consistent with SN configurations in this respect.
the results of Ref. 12.

V. COMPARISON WITH OTHER NEOCLASSICAL
B. Effect of edge neutral density POLOIDAL ROTATION MODELS

The flux of fueling and recycling neutral atoms that pen-  There argat least two other neoclassical modéfs=2in
etrate into the edge plasma provides an ionization particlgeneral use for the calculation of poloidal rotation, both
ion source (/i’;nj) and a charge-exchange and elastic scatterbased on the Hirsman—Sigm&tS) fluid formulation of neo-
ing momentum sinkM ;) for the main ion species. We have classical thery? as is the model of this paper and Ref. 4. In
made a series of calculations, using the same basic mod#ie HS fluid formalism, kinetic theory effects enter through

parameters as in the previous section, to investigate the effetite constitutive relations. In the constitutive relations used in

TABLE IIl. Variation of rotation with collisionality in a model with the parameters of DIII-D shot #98777 at
1600 ms(R=1.7m,a=0.6 m, k=1.7,|B,|=1.6 T, | =1.2 MA, P,,=4.5 MW)

VEa Vgarba VgD (mls)a v flcarb(m/s)el U 40 (m/s) Er (V/m)a Tg: (ms)
0.75 9.5 -0.38x10° -0.38x10° 0.47xX10° 0.95x 10* 28
0.036 0.475 —0.43x10° —0.55x 10° 0.84x 10° 1.4x10% 51
0.009 0.12 —0.68x10° —0.74x10° 1.38x10° 2.1x 10 83
0.003 0.033 -1.19x10° —1.48x10° 2.30x10° 3.2x 10 138
0.001 0.015 —-1.72x10° —2.36x10° 3.05x 10° 3.9x 10 183
0.0004 0.006 —2.6x10° —4.29x 10° 4.65x< 10° 5.6x 10* 279

@At r/la=1/2.
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this paper and Ref. 4, the interspecies collisional friction issolvable by the same general procedure. We note the exis-
linearly related to the bulk flow velocities, and the paralleltence of even more complete models for the parallel viscous
viscous force is linearly related to the bulk flow velocities force that include such effects as the poloidal variation of the
and their gradientsiwith a viscosity coefficient due to viscous force?® orbit squeezing’ etc., which are not in-
Shaing®). References 12 and 13 use more complete constieluded in the poloidal rotation models of this paper and Ref.
tutive expressions which relate the friction to both the bulk4 or the models of Refs. 12 and 13.

flow velocities and the bulk heat flowwith the HS friction Since in early neoclassical mod&she poloidal rotation
coefficientd), and use expressions that relate the parallel viswas proportional to the temperature gradient, it might be
cous force linearly to bulk flow velocities and bulk heat expected that the absence of the thermal friction force in the
flows and their gradient@sing the HS viscosity coefficieft  considerably more sophisticated model of this paper and Ref.
in Ref. 12 and using a later viscosity coefficient due to4 is a significant deficiency. It is not possible to check this
Shaing® in Ref. 13. The main effect of these differences in directly. We can only note that the one calculation for an
constitutive relationships is to introduce temperature gradiergxperiment presented in this paper was in agreement with the
terms into the frictional and parallel viscous forces in Refs.measured value to within the error bars. Quantitative evalu-
12 and 13 that are absent in this paper and Ref. 4. Inclusioation of the effect of thermal friction on the calculation of
of these bulk heat flow terms in the friction and parallel poloidal rotation in the model of this paper must await future
viscous forces of this paper, which we intend to do, wouldextension of this model.

double the size of the coupled set of E(&2)—(24), but this On the other hand, there are two respects in which the
larger set of coupled equations presumably would still benodel of this paper and Ref. 4 is more complete than the
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models of Refs. 12 and 13. These latter models only retaiwith a neoclassical gyroviscous momentum transport model
the first poloidal angular momeifthe flux surface average and a toroidal rotation calculation model. The combined
in developing the equations for the poloidal rotation veloci-model was used to calculate toroidal and poloidal rotation
ties, while the model of this paper and Ref. 4 retains addivelocities, momentum confinement times and radial electric
tional sine and cosine angular moments to derive coupleflelds in good agreement with measurements in a DIII-D shot
equations for the poloidal rotation velocities and poloidaland to investigate the predicted directionality and collision-
density asymmetries. It is clear from E@2) that the cou- ality dependencies of these quantities.

pling to poloidal density asymmetries introduces important  We have performed a series of calculations to investigate
viscous and inertial driving and damping terms into the equathe effects of pressure gradient, neutral density, and up-—
tions for the poloidal rotation velocity that could not arise in down asymmetry on poloidal rotation in the edge plasma. We
the models of Refs. 12 and 13. Furthermore, the poloidal anfind that increasing the steepness of the edge pressure gradi-
toroidal rotation velocities are coupled via a “first prin- ent increases the magnitude of the edge poloidal rotation
ciples” neoclassical model for radial momentum transport invelocities, while increasing the edge neutral density or the
this paper(Sec. 1IN and Ref. 4, while arad hoc“anoma-  edge up—down asymmetry factor reduces the magnitude of
lous” radial momentum transport term must be input tothe poloidal rotation in the plasma edge. The edge collision-
couple the calculation of poloidal and toroidal rotation ve-ality was found to have important effects on the edge poloi-
locities in the models of Refs. 12 and 13. dal rotation.

It also appears that force terms arising from electric ~ To put this paper in perspective, we reiterate that al-
fields, beam momentum input and inertial effects are missinghough the refined and extended model for the calculation of
in the model of Ref. 12. poloidal rotation and poloidal density asymmetries presented
herein could be used in a “stand-alone” mode if the toroidal
rotation is treated as a known input quantity, this model is
intended as part of a coupled neoclassical nfbéi the
calculation of poloidal and toroidal rotation that requires

We have refined and extended our original neoclassicapnly the beam momentuitand the plasma density and tem-
calculation model for the poloidal velocities and poloidal peraturg as input.
density asymmetries in a multi-species tokamak plasma. The
refinements make more explicit in the formalism the direc- _
tions of the current, magnetic field and beam momentum,W- M. Stacey, Phys. Fluids B, 3302(1992.

. . . . W. M. Stacey and D. J. Sigmar, Phys. Flug 2800(1985.

|npu_t, and |_ntr_oduce a more rigorous represe.ntatlon. of_theswl M. Stacey and D. R. Jackson, Phys. Fluid$,BL828(1993.
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