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Neoclassical theory for rotation and impurity transport in tokamaks
with neutral beam injection
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A self-consistent, first-principles neoclassical theory for rotation and impurity transport in tokamaks
is presented. The implications of this theory for impurity transport in a tokamak are illustrated by
a model problem calculation. ©2001 American Institute of Physics.@DOI: 10.1063/1.1324664#
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I. INTRODUCTION

While transport in tokamaks is generally thought to
dominated by anomalous effects, there is a growing bod
evidence that under certain conditions neoclassical the
can account for many aspects of ion transport. For exam
in enhanced reverse shear plasmas in the Tokamak Fu
Test Reactor1,2 ~TFTR! and negative central shear plasmas
DIII-D 3 turbulence is suppressed and the standard neocl
cal expressions predict the measured ion thermal condu
ity rather well. Calculations of momentum confinement tim
based on neoclassical gyroviscous theory have agre4

rather well with measurements in several tokamaks.
H-mode~high confinement mode! plasmas in the Joint Euro
pean Torus~JET!, the measured value of radial impurity flo
has been shown5 to be in agreement with neoclassical theo
and neoclassical temperature gradient screening may ex
the expulsion of carbon from the core in JET hot ion mo
discharges.5

This apparent applicability of neoclassical theory to
kamak ion transport encourages us to assemble from p
ous work an internally self-consistent, first-principles ne
classical model for the investigation of impurity transpo
and plasma rotation. By ‘‘internally self-consistent’’ an
‘‘first principles’’ we mean that, within the context of th
multifluid description of the plasma and the constitutive
lations which we use, the various particle transport flux
and flows, momentum transport fluxes, electric fields, a
density asymmetries are all calculated on a consistent b
without the need for external specification of any of t
quantities involved. Internally self-consistent ‘‘component
for a neoclassical calculation of rotation and impurity tran
port have been developed in a series of papers; howe
each of these component calculations requires external s
fication of some rotation velocity or cross-field momentu
transport rate, and so is not fully ‘‘first principles.’’ Our ob
jective in this paper is to assemble these various compo
calculations into a first-principles, internally self-consiste
neoclassical calculation of rotation and impurity transport
tokamak plasmas. First, we will review the development
the component calculations.

The original neoclassical theory~e.g., Ref. 6!, which
treats the plasma as an isolated system with no externa
teractions, predicts the central accumulation of impurity io
in the absence of a radial temperature gradient or exte
1581070-664X/2001/8(1)/158/9/$18.00
of
ry
le,
ion

si-
iv-

d,
n

,
ain
e

-
vi-
-
t

-
s
d
is,

’
-
er,
ci-

nt
t

f

in-
s
al

source of particles and predicts the diminishment of this c
tral accumulation in the presence of the usual negative ra
temperature gradient~i.e., temperature screening!. Ohkawa7

was the first to point out the importance of taking into a
count the interaction of the plasma with external sourc
noting that the momentum exchange with fast ions produ
by neutral beam injection~NBI! could drive a radial trans-
port flux of plasma ions which was inward when the ma
netic field, current, and beam directions were parallel, a
outward when one of these directions was antiparallel to
other two. Stacey and Sigmar8 noted that the saturation of th
rotation velocity in beam injected experiments implied a
dial transport of momentum across flux surfaces, or
‘‘drag’’ force proportional to the velocity acting to satura
the bulk rotation of particles on a flux surface. They fou
that the presence of this drag force enabled a leading o
calculation of the radial electric field, that the momentu
exchange between beam ions and plasma ions altered
plasma flows in the flux surface and the radial electric fie
and that these effects produced radial transport fluxes of i
Burrell, Ohkawa, and Wong9 showed that an inertial effec
produced by the beam-induced plasma rotation produce
turn a radial ion transport flux. These various effects were
embodied in the rotation and impurity transport theory
Stacey et al.,10 which is internally self-consistent but re
quires external specification of the ‘‘drag’’ force which re
resents cross-field transport of toroidal momentum. T
theory predicted that the net effect on impurity transport
NBI in model problems representative of then current to
maks was to produce an outward impurity flux when t
beam, magnetic field, and current directions were in para
and an inward impurity flux when one of the directions w
antiparallel to the other two.

In the meantime, a number of experiments were p
formed in ISX-B11,12 ~Impurity Studies Experiment B! and
Princeton Large Torus13,14 to investigate the effect of NBI
direction on central impurity accumulation. These expe
mental results confirmed the qualitative theoretical pred
tion that accumulation of impurities in the center of the
plasmas was substantially smaller when the magnetic fi
beam, and plasma current were parallel than when one
antiparallel to the other two. These experiments w
interpreted15 in terms of the theory of Ref. 10.

The next step in the development of this extended n
© 2001 American Institute of Physics
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classical theory for rotation and impurity transport was
association of the ‘‘drag’’ force, or cross-field transport
toroidal momentum, with the neoclassical gyroviscous str
by Stacey and Sigmar.16 Evaluation of this gyroviscous
stress requires calculation of the poloidal flows of impurit
and main ions within the flux surface and calculation of t
poloidal variation of the main ion and impurity densities ov
the flux surface. Stacey17 developed an internally self
consistent model for the calculation of poloidal flows a
density variations over the flux surface, but this model
quired external specification of the toroidal rotation. Stac
and Jackson4 applied this model to calculate momentum co
finement times which were in good agreement with m
sured values for a range of tokamak experiments~Asymmet-
ric Divertor Experiment, DIII, ISX-B, JET, and TFTR!.

Thus, the pieces of an internally self-consistent neoc
sical model for rotation and impurity transport have be
developed and individually tested by comparison with e
periment, but the model has not heretofore been assem
into a single, fully ‘‘first-principles’’ computational package
The primary purpose of this paper is to do just that. App
cations of the resulting computational package to illustr
its predictions under typical experimental conditions are
secondary purpose of the paper.

We note that a similar neoclassical computational mo
has been the subject of a parallel development by Hirshm
and co-workers~e.g., Refs. 18 and 19!.

II. THEORETICAL NEOCLASSICAL MODEL

A. Multifluid equations

The theoretical model is developed within the context
the multifluid particle and momentum balance equations

“"njvj50 ~1!

and

njmj~vj "“ !vj1“pj1“"p j52njej“F1njej~vjÃB!

1Rj1M j , ~2!

whereM is any external momentum input~e.g., from NBI!
and the other symbols are standard. This multifluid mode
supplemented by constitutive relations from kinetic theo
for the collisional interspecies momentum exchange

Rj52njmj(
kÞ j

nn jk~vj2vk! ~3!

and for the neoclassical parallel viscous force10

B"“"p j53^~ n̂"“B!2&F Rqnjmjv thjn* j

~11n* j !~11e3/2n* j !
G vj "Bu

Bu
2 ,

~4!

where n* j[n i j qR/e3/2v thj . In the toroidal geometry ap
proximation ^(n"“B)2&5 1

2(e/qR)2B2, where e5r /R. The
flux surface averaged toroidal component of the neoclass
viscous force consists of ‘‘perpendicular’’ and gyrovisco
parts, with the latter being much larger in toroidal geome
The first-principles neoclassical gyroviscous force acting
a given flux surface is16
e
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^R2
“f"“"p j&52 K 1

Rhu

]

] l c
S R3huh4 j

]~vf jR
21!

] l u
D L

5
1

2
ũ jGj

njmjTj

ejB

vf j

R
[Rnjmjnd jvf j ,

~5!

wherel c and l u are the length elements in the~radial! c and
~poloidal! u directions in flux surface coordinates. A standa
right-hand coordinate system in flux surface~c,u,f! or toroi-
dal (r ,u,f) coordinates is used in this paper, where the po
tive f direction is in the direction of the toroidal magnet
field, the positiveu direction is in the direction of the poloi
dal magnetic field created by a toroidal current in the sa
direction as the toroidal magnetic field, and the positivec
direction is in the direction of the outward normal to the flu
surfaces. The toroidal geometry approximation has b
made in writing the last form of Eq.~5!.

Assuming a low order Fourier expansion of the dens
velocity, and potential variation over the flux surface, t
poloidal asymmetry factor and the radial gradient factor o
given flux surface are given in the toroidal geometry a
proximation by

ũ j[~41ñ j
c!ṽf j

s 1ñ j
s~12 ṽf j

c !

5~41ñ j
c!@2 v̂u j~ v̂f j !

21~F̃s1n̂ j
s!1F̃s#

1ñ j
s@ v̂u j~ v̂f j !

21~21F̃c1ñ j
c!2F̃c# ~6!

and

Gj~r ![2
r

h4 jvf j

]~h4 jvf j !

]r
, ~7!

wherev̂f j[vf j /v thj andh4 j5njmjTj /ejB.
In deriving Eq.~5! for the ‘‘drag force’’ acting over a

flux surface, the poloidal variation of the density over t
flux surface was expanded,

nj~r ,u!5nj~r !~11e~ ñ j
c cosu1ñ j

s sinu!!, ~8!

with a similar expansion for the toroidal velocity and th
electrostatic potentialF. This type of low order expansion i
sufficient to describe the type of in–out and up–down asy
metries which we believe to be of the greatest importance
the development of this paper. The expansion could be
tended to higher order in an obvious manner to treat highem
asymmetries, but this is not felt to be necessary.

B. Poloidal rotation and density asymmetries

Equations for the normalized poloidal rotation velociti
on the flux surface,v̂u j

[vu j
/bv thj

(b[Bu /Bf), and the cos
and sin components of the density variations over the fl
surface are developed17 by using Eq.~8! in the poloidal pro-
jection of the momentum balance Eq.~2! and integrating
over u, with the weighting functionsj51, cosu, and sinu,
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Fq2f j H 11
5

6
ñ j

c12ñ j
s1

1

3
~ ñ j

s!21
1

3
~ ñ j

c!21
1

2
F̃sñj

s

1
1

2
F̃c~51ñ j

c!J 1(
kÞ j

n jk* 2q2v̂f j~ ñ j
s1F̃s!G v̂u j

5M̂ u j1 v̂ r j 1(
kÞ j

n jk*Amj

mk
v̂uk2q2~ v̂f j !

2F̃s

2 1
2 q2f j v̂f j@F̃sñj

s1F̃c~51ñ j
c!#, ~9!

F S 2

3
f j2b2(

kÞ j
n jk* D v̂u j G ñ j

s2
1

2
ñ j

c

52~ v̂f j !
21

1

2
F̂ jF̃

c2b2(
kÞ j

n jk* v̂u j ñk
s , ~10!

and

F S 2

3
f j2b2(

kÞ j
n jk* D v̂u j G ñ j

c1
1

2
ñ j

s

52 f j v̂u j2
1

2
F̂ jF̄

s1b2(
kÞ j

n jk* S v̂u j2Amj

mk
v̂ukD

2b2(
kÞ j

n jk* v̂u j ñk
c2b2v̂ r j , ~11!

wherev r j is the radial velocity,

v̂u j[vu j /bv thj , v̂f j[vf j /v thj , v̂ r j 5
v r j

bduv thj
,

~12!

M̂ u j[
M u j

njmjv jbv thj
, F̂ j[

ej

mj

F

v thj
2 , v j[

v thj

qR
,

and

f j[
«23/2n j j*

~11«23/2n j j* !~11n j j* !
. ~13!

Note that the normalized collision frequenciesn jk*
5n jk /(qR/v thj ) differ from the normalized collision fre-
quency n* j5n j j //(qR/v thj )«

3/2 defined and used previ
ously.

C. Radial electric field

The component of the radial electric field which is co
stant over the flux surface is obtained self-consistently fr
the flux surface averaged toroidal projection of the mom
tum balance equation summed over species.10 At this point,
we specialize the formalism to a main ion species ‘‘i’’ and an
impurity species ‘‘I’’ in order to simplify. With this special-
ization, the radial electric field may be written

Er

Bu
5@$m̂ i1m̂ I~11j i !%M̂fI1$m̂ I1m̂ i~11j I !%M̂f i

1$b i1b I~11j i !%m̂ I PI81$b I1b i~11j I !%m̂ i PI8#/

@m̂ i$b I1b i~11j I !%1m̂ I$b i1b I~11j i !%#, ~14!
-

whereMf j is the normalized toroidal projection of the ne
tral beam~or other! momentum input on the given flux sur
face,Pj8 is the normalized radial pressure gradient across
given flux surface, and

m̂ j[
3/2A«~n j j /n jk!

~11n* j !~11«3/2n* j !
, Pj8[

1

njejBu

]pj

]r
,

~15!

b j[
nd j

n jk
, j j[m̂ j1b j , M̂f j[

Mf j

njmjn jk
.

D. Toroidal rotation

Equation~2! can now be solved for the impurity toroida
velocity on the flux surface,10

vfI5F $M11i1~11j i !M11I%2$m̂ I~11j i !PI81m̂ i Pi8%

1$m̂ I~11j i !1m̂ i%S Er

Bu
D G Y @j i~11j I !1j I #,

~16!

and for the~small! difference in main ion and impurity toroi
dal velocities,

vf i2vfI5@~m̂ i1m̂ I !~b I M̂11i2b i M̂11I !

2m̂ im̂ I~b i1b I !~Pi82PI8!#. ~17!

E. Solution of rotation problem

Equations~9!–~11!, ~14!, ~16!, and~17! must be solved
simultaneously~or iteratively! for the poloidal and toroidal
rotation velocities, the poloidal density asymmetries, and
radial electric field. Within the context of the two-specie
multifluid equations and the constitutive relations of Eq
~3!–~5!, this set of equations defines a ‘‘first-principles’’ an
internally self-consistent neoclassical calculation.

F. Transport fluxes

The toroidal component of the momentum balance eq
tion for each species can be flux surface averaged to ob
an expression for the cross field~radial! transport fluxG r j

[njvr j ,

G j5^R2
“f•“pj&1^R2

“f•“•p j&2^R2
“f•M j&

1^R2
“f•~njmj~vj•“ !vj !&1^R2

“f•njej“F&

2^R2
“f•Rj&. ~18!

Using the previous expressions for the toroidal rotation
locity, this expression for the radial impurity flux may b
written in a form that associates various terms with conv
tional neoclassical fluxes or with one of the various effe
discussed previously:

G I[G I
PS1G I

nc1G I
M1G I

I1G I
F81G I

F̃ . ~19!

Explicit expressions for the various terms in Eq.~19! are
given in the following in the ‘‘two-species’’ approximation
The value ofBu is positive or negative depending on wheth
the toroidal current is parallel or antiparallel, respective
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with the toroidal magnetic field, and the value ofMf or M i

is positive or negative depending on whether the beam in
tion direction is parallel or antiparallel, respectively, to t
toroidal magnetic field.

The first two terms correspond to the Pfirsch–Schlu
and ‘‘neoclassical’’ fluxes of conventional neoclassic
theory

G I
PS5

nImIn I i «
2

eIBu
F H S 112q2

q2 D1ñi
cJ Pi8

2H S 112q2

q2 D1ñI
cJ ~11b I !PI8G ~20!

and

G I
nc5

nImIn I i

eIBud
@$m̂ im̂ I1«2m̂ i~~11b I !ñI

c2ñi
c!%Pi8

2$m̂ I~j i1b I~11j i !!1«2m̂ I~ ñi
c2ñI

c!%PI8#, ~21!

where

d[j i1j I~11j i !. ~22!

For a negative main ion pressure gradient (Pi8,0), these
fluxes are generally inward for impurities and outward
main ions. The corresponding main ion transport fluxes
given by similar expressions with thei and I subscripts in-
terchanged.

The third flux component in Eq.~19! is the contribution
resulting directly from momentum exchange between be
ions and plasma and impurity ions,

G I
M52

nImIn I i

eIBud

3@M̂fI$m̂ I~11j i !1«2~d1~11d!ñI
c2~11j i !ñi

c!%

1M̂f i$m̂ I1«2~~11 1
2 ~b I1j I !!ñI

c2ñi
c!%#. ~23!

The corresponding main ion flux component is given by
similar expression withi andI interchanged. Both the impu
rity and main ion fluxes are generally inward for co-injecti
(Mf.0) and outward for counterinjection (Mf,0), when
the toroidal current is in the same direction as the toroi
magnetic field, and conversely when the toroidal current
magnetic field are antiparallel.

The fourth flux component in Eq.~19! results from the
inertial (nm(v"“)v) term in the momentum balance equ
tion, which producesO(«2) terms in the rotation velocities
which in turn contribute anO(«2) flux component

G I
I52

nImIn I i «
2Bf

eIBuB2d
@~j i1b I~11j i !!^ĜI&2m̂ I^Ĝi&#,

~24!

where

^ĜI&[
1

2 S Bf

qRn I i
D F H S Bf

Bu
vuI D 2

1w212d1wJ ñI
s

1$2d2w%ñi
sG ~25!
c-

r
l

r
re

m

a

l
d

and

d1[
~a/zI !

~11~a/zI !!eiBu
F 1

nI

]pI

]r
2

T

~11~a/zI !!

3H S a

zI
D 1

nI

]nI

]r
1

1

ni

]ni

]r J G , ~26a!

d2[
1

~11~a/zI !!eiBu
F 1

ni

]pi

]r
2

T

~11~a/zI !!

3H 1

nI

]nI

]r
1

1

ni

]ni

]r J G , ~26b!

and

wj[PJ82
Er

Bu
. ~27!

The expression for̂GI& is obtained from Eq.~25! by inter-
changingi andI subscripts and interchangingd1 andd2 . The
corresponding transport flux component for main ions is
tained by interchangingi and I in Eq. ~24!.

The fifth term describes the radial impurity flux that
driven directly by the radial electric field

G I
F85

nImIn I i

eIBu
F m̂ Ig I1«2H b I S 112q2

q2 D
1~b I1g I !ñI

c2g I ñi
cJ G S Er

Bu
D , ~28!

where

g I[
b i1b I~11j i !

j i1j I~11j i !
. ~29!

The corresponding main ion flux component is obtained
interchangingI and i. This flux component will generally
have the same sign as the radial electric field~i.e., outward
for Er.0!. SinceEr tends to be positive for injection para
lel to the toroidal current and negative for injection antipa
allel to the toroidal current, this flux component would b
expected to have a corresponding behavior.

The last term in Eq.~19! is the impurity transport driven
by the poloidal variation in the electrostatic potential ov
the flux surface, is ofO(a/Zl), and can usually be neglecte
An explicit expression for this term is given in Ref. 10.

The net impurity flux depends upon a competitio
among different flux components and may be inward or o
ward, depending on the specific operating conditions.

G. Temperature screening correction

Up to this point, the formalism is internally self
consistent and ‘‘first principles’’ within the context of th
multifluid Eqs.~1! and ~2!, the constitutive relations of Eqs
~3! and ~4!, and the neoclassical expression for the gyrov
cosity of Eq.~5!. However, the constitutive relation of Eq
~3! neglects thermal friction, which makes an important co
tribution to ‘‘temperature screening’’ of impurities, i.e., t
reducing or reversing the inwardG I

PS andG I
nc. Since there is
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evidence of temperature screening in recent DIII
experiments,20 we will correct these two components of th
transport flux to account for thermal friction.

Rutherford’s expression21 for the neoclassical Pfirsch
Schluter impurity flux in a collisional plasma is

G I
PS52S 112q2

q2 D nImIn I i «
2

eIBu
F S cI1

c2
2

c3
D ~PI82Pi8!

2
5

2

c2

c3

1

eIBu

]T

]r G , ~30!

where

cI1
c2

2

c3
50.471

0.35

0.661a I
,

~31!
5

2

c2

c3
50.301

0.41

0.581a I
, a I5S zI

zi
D 2 nI

ni
.

Since Rutherford did not consider the effect of poloidal de
sity asymmetries, we correct our expression for the Pfirs
Schluter flux by multiplying Eq.~20! by the factor (c1

1c22/c3) and adding a term

DG I
PS5S 112q2

q2 D nImIn I i «
2

eIBu

5

2

c2

c3

]T

]r
. ~32!

We use the Hinton–Hazeltine results6 for a two-species
plasma with both species in the plateau regime to const
an additive correction to Eq.~21! to account for therma
friction

DG I
nc52

nImIn I i

zIBu
2 S 2«1/2K11

I

FIi
D F 1

zi
S 5

2
2

K12
i

K11
i D

2
1

zI
S 5

2
2

K12
I

K11
I D G ]T

]r
, ~33!

where

K11
I 5

0.73~110.53/a I !

111.26n
*
8 I~110.53/a I !

,

K12
I 5

0.73~110.71/a I !

110.37n
*
8 I~110.71/a I !

,

~34!

FIi 511S 2mI

mi
D 1/2

K11
I /a IK11

i ,

n
*
8 I5

&rBn I i

Buv thi
«3/2, n

*
8 i5S zi

zI
D 2 n* 8I

&
.

The corrections for the main ion fluxes are obtained
interchanging thei and I subscripts.

III. COMPUTATIONAL MODEL

Certain simplifications are made in implementing t
theoretical model of Sec. II for computations. Toroidal g
ometry is assumed, and radial profiles are assumed to
representable by a parabola to a power on a pedestal.
-
–

ct

y

-
be

x~r !5~x02xped!S 12S r

aD 2D ax

1xped. ~35!

Specifying the radial shape in this manner allows t
toroidal rotation velocity to be calculated from an over
angular momentum balance on the plasma22

Gf5
~2pR!*0

a^R( j
ionsnjmjvf j&2pr dr

tf
th , ~36!

where the beam torque is given in terms of beam pow
(Pb), particle energy (Eb), and mass (mb) by

Gf5A2mb

Eb
PbRtan, ~37!

whereRtan is the beam tangency radius, and the theoret
~gyroviscous! angular momentum confinement time is d
fined

tf
th[

( j
ions*0

a^Rnjmjvf j&r dr

( j
ions*0

a^R2
“f•“•p j&r dr

5

E
0

a

RS (
j

ions
nj

ne
mj D nevfr dr

E
0

a 1

2
R21

T

eBS (
j

ions
nj

ne

mj

zj
ũ jGj D nevfr dr

5S R2eB

T0
D S hnvT

hnv
D

3

S (
j

ions
nj

ne
mj D

S (
j

ions
nj

ne

mj

zi
ũ j r ~Ln j

211LT j
211Lvf j

21 !D
av

. ~38!

In going from the first to second expression in Eq.~38! a
common temperature and toroidal rotation velocity were
sumed for all ions, and in going to the final expression the
terms in numerator and denominator were replaced with
erage values~obtained in this paper by evaluating the expre
sions atr /a5 1

2!, which enabled the radial integrals to b
performed analytically. The quantitieshnv andhnvT are nor-
malized radial volume integrals of the products of the rad
profiles of the quantities indicated by the subscripts@see Eq.
~16! of Ref. 4# and are given by

hnv511an1av ,
~39!

hnvT511an1av1aT ,

when nped5vped5Tped50 and by somewhat more compl
cated expressions when the pedestal values are finite. U
the same type of approximation, Eq.~36! can be solved for
the central toroidal rotation frequency

Vf0
th 5

vf0
th

R
5

Gftf
thhnv

2p2a2R3S (
j

ions
nj

ne
mj D

av

ne0

. ~40!
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FIG. 1. Poloidal density asymmetrie
at r /a50.5 in model problem calcula-
tion.
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Conversely, if the central toroidal rotation frequency
measured, then the experimental angular momentum
finement time can be constructed from

tf
exp5

2p2a2R3S (
j

ions
nj

ne
mj D

av

ne0Vf0
exp

Gfhnv
. ~41!

In the same spirit, the radial electric field can be calc
lated directly from momentum balance using the toroidal
tation velocity obtained from solving Eq.~36! using the ra-
dial shapes of Eq.~35!,

Er

Bu
5Pj81vf j2

Bf

Bu
vu j . ~42!

In order to evaluate the transport fluxes on a given fl
surface, it is necessary to calculate the beam toroidal (Mf)
and parallel (M i) momentum deposition rate densities on t
flux surface. For our purposes in this paper, we use
simple model

Mf~r !5
J0Mb

~2pr !l0
(
j 51

4
e2 l s j /l0 cosx j

2pRj
, ~43!

where

J05
Pb

Eb
, Mb5A2mbEb, l05

5.531017Eb

Abne0Zeff
1/2 , ~44!

wherePb , Eb , andAb are the beam power, energy per pa
ticle, and atomic mass of the beam particle.

The beam may cross the flux surface at minor radiusr as
many as four times. Thel s j are the distances along the bea
trajectory from where it enters the plasma to thej th crossing
of the flux surface atr ,x j is the angle between the bea
direction and the positive toroidal direction at thej th cross-
ing, andRj5R06r is the value ofR at the j th crossing.
n-

-
-

x

e

-

We note that the simplifications of this section are ma
to obtain a more tractable computational model for o
present purposes and are not an intrinsic part of the theo
ical model described in Sec. II.

IV. MODEL PROBLEM CALCULATIONS

In this section we present the results of some mo
problem calculations intended to illustrate the features of
theory presented in previous sections. For this purpose,
choose a model problem typical of DIII-D~R51.7 m,
a50.60 m, k51.7, Zeff51.5 with carbon, ne055E19,
T0512.5 keV, an50.1, aT52.2, av52.9, Bt52.1 T,
I 51.3 MA! and carry out a series of calculations for diffe
ent injected beam power levels and directions and cur
directions.~We will denote injection and current direction
aligned withBt as positive and directions opposite toBt as
negative.! Note that the temperature and density were h
constant as the beam injection power changed in these m
problems, contrary to the situation that would obtain in
actual experiment. The results of these calculations are g
in Figs. 1–5.

The sine and cosine components of the poloidal den
asymmetries for carbon impurities~COSIMP, SINIMP! and
deuterium main ions~COSION, SINION! and the poloidal
rotation velocities for the impurities and main ions are sho
in Figs. 1 and 2 as a function of neutral beam injecti
power. These results are for the current antiparallel toBt(I
,0). Clearly, the density asymmetries and the poloidal
tation velocities increase in magnitude as the magnitude
the injected beam power~and the magnitude of the toroida
rotation velocity! increases. The results for the current pa
allel to Bt(I .0) differed only slightly from those shown in
Figs. 1 and 2, except that the sine component of the impu
density is positive and the sine component of the main
density is negative whenI .0—just the opposite of the situ
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FIG. 2. Poloidal rotation velocities a
r /a50.5 in model problem calcula-
tion.
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ation shown in Fig. 1. This difference in the sine compone
of the densities leads to a difference in the gyroviscous m
mentum transfer, which leads to a difference in the mag
tude of the toroidal rotation velocity. The slight difference
toroidal rotation velocities forI .0 and I ,0 is shown in
Fig. 3.

The radial electric field is reversed when the current
rection is reversed, as shown in Fig. 3. This difference
sign of the radial electric field causes a difference in sign
the radial electric field component of the transport flux giv
by Eq. ~28!. In addition, the difference in current directio
s
-

i-

-
n
f

results in a difference in the sign ofBu , which results in a
difference in direction of the momentum and inertial tran
port fluxes of Eqs.~23! and ~24!.

The various components of the transport flux for t
main ions and impurities are shown for the caseI ,0 in Figs.
4 and 5. The total transport fluxes are shown for bothI ,0
and I .0. The total transport fluxes are essentially t
Pfirsh–Schluter flux for the impurities (n II* 50.026) and the
neoclassical flux for the main ions (n i i* 50.0011), in both
cases modified somewhat by the other transport flux
which tended to cancel each other out. In theI .0 case, the
FIG. 3. Toroidal rotation velocities
and radial electric field atr /a50.5 in
model problem calculation.
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FIG. 4. Carbon radial transport fluxe
at r /a50.5 in model problem calcula-
tion.
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inertial impurity flux of Eq.~24! was large and negative fo
large negativePb and became positive for positivePb , ac-
counting for the reduction in the magnitude of the inwa
~negative! impurity flux as the beam injected power chang
from strongly negative to strongly positive, reminiscent
the previous finding10 that Pb,0 led to greater central im
purity accumulation thanPb.0. The impurity toroidal Mach
number ,0.75 at ther /a50.5 location where the fluxe
were calculated in this model problem. More dramatic mo
fication of the pressure-driven Pfirsh–Schluter and neoc
f

i-
s-

sical fluxes by the other ‘‘rotational’’ flux components wou
be expected if Mach-one conditions were approached or
ceeded.

V. COMPARISON WITH EXPERIMENT

It is not our purpose in this paper to provide a bro
application of the theory to interpretation of experiment. A
investigation of this topic is in progress and will be the su
ject of future papers.
t
FIG. 5. Deuterium radial transpor
fluxes at r /a50.5 in model problem
calculation.
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However, it is useful to at least touch base with expe
ment in order to provide some measure of confidence in
theoretical formalism. Since a central feature of the form
ism is the self-consistent neoclassical calculation of rotat
we calculated the central rotation frequency in
well-documented23,24 DIII-D deuterium plasmaL-mode shot
~No. 98777 at 1.6 s! with a carbon impurity andZeff51.5.
We used measured central valuesvf0 /R50.75e5/s, ne0

54.3e19 m23, Ti053.5 keV and fit the measured radial pr
files with Eq. ~35! with nped5Tped5vped50.0. The ( )av

quantities were evaluated by solving for the poloidal veloc
and poloidal density asymmetries atr /a5 1

2, using the mea-
sured densities and temperature and the calculated tor
rotation velocity at that radial location. The calculated ce
tral toroidal rotation frequency and angular momentum c
finement time were 0.84E5/s and 75 ms, which compare we
with the corresponding experimental values of 0.75E5/s and
62 ms, respectively. The ‘‘experimental’’ momentum co
finement time was calculated with Eq.~41!, using the above-
mentioned experimental parameters.

We note that momentum transport is widely regarded
be anomalous, because neoclassical perpendicular mo
tum transport has been found many times to be too sma
account for measured momentum confinement times. H
ever, the neoclassical gyroviscous momentum transport
been found4 to be of the proper magnitude to account f
measured momentum confinement times in a few tokam
experiments, and we find this once again.

We further note that the discharge that we considere
this section is considered to be highly turbulent, and t
turbulent transport mechanisms are generally considere
be responsible for the thermal and particle transport.23 It is
thus perhaps somewhat surprising that a neoclassical m
correctly predicts the momentum transport. However, m
mentum transport concerns ions exclusively, whereas
thermal transport probably has a large electron compon
Investigation of this question is beyond the intended scop
this paper, but is being pursued as a separate issue.

VI. SUMMARY

A self-consistent, first-principles neoclassical theory
rotation and impurity transport in tokamaks is presented. T
model consists of coupled calculations for the toroidal ro
tion speeds, the poloidal rotation speeds, and the asym
tries in the densities and potential over the flux surface,
-
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n,

al
-
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to
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nt.
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lowed by a calculation of the radial electric field and t
neoclassical particle fluxes for main ions and an impur
species. The calculation of particle fluxes takes into acco
inertial and radial electric field effects, direct beam-ion m
mentum exchange effects, and cross-field momentum tr
port effects, as well as the usual neoclassical collisional, p
allel viscous, and thermal friction effects.

The implications of this theory for impurity transport i
a tokamak are illustrated by a model problem calculati
The model problem calculations illustrate the importance
the relative directions of the magnetic field, current, a
beam injection on radial particle fluxes of main ions a
impurities.
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