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Neoclassical theory for rotation and impurity transport in tokamaks
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A self-consistent, first-principles neoclassical theory for rotation and impurity transport in tokamaks
is presented. The implications of this theory for impurity transport in a tokamak are illustrated by
a model problem calculation. @001 American Institute of Physic§DOI: 10.1063/1.1324664

I. INTRODUCTION source of particles and predicts the diminishment of this cen-
_ _ _ tral accumulation in the presence of the usual negative radial
Wh|le transport in tokamaks is gent_arally tho‘_Jght to betemperature gradierit.e., temperature screeningddhkawa
dominated by anomalous effects, there is a growing body o\‘;vas the first to point out the importance of taking into ac-

evidence that under certain conditions neoclassical theor?,(ount the interaction of the plasma with external sources

can account for many aspects of ion transport. For exampl.%oting that the momentum exchange with fast ions produced

in enhanced reverse shear plasmas in the Tokamak Fu5|%r)1/ neutral beam injectioiNBI) could drive a radial trans-

Test Reactdr? (TFTR) and negative central shear plasmas in

. ort flux of plasma ions which was inward when the mag-
DIII-D 3 turbulence is suppressed and the standard neoclasﬁ P g

. . . _netic field, current, and beam directions were parallel, and
cal expressions predict the measured ion thermal conductiv- Lo .
. . . .~ outward when one of these directions was antiparallel to the
ity rather well. Calculations of momentum confinement time

. . dother two. Stacey and Signfaroted that the saturation of the
based on neoclassical gyroviscous theory have adree

rather well with measurements in several tokamaks. In|’otat|on velocity in beam injected experiments implied a ra-

H-mode(high confinement modeplasmas in the Joint Euro- 9|al t,r,ansport of m_omentum across flux _surfaces, or a
pean TorugJET), the measured value of radial impurity flow drag” force proportlona_\l o the velocity acting to saturate
has been showrio be in agreement with neoclassical theory,the bulk rotation of parycles on a flux surface. The)_/ found
and neoclassical temperature gradient screening may expla'ﬂat the presence of this drag force enabled a leading order

the expulsion of carbon from the core in JET hot ion rnodecalculation of the radial electric field, that the momentum

dischargeé. exchange betyveen beam ions and plasmq ions alt-ere.d the
This apparent applicability of neoclassical theory to to-Plasma flows in the flux surface anq the radial electric flgld,
kamak ion transport encourages us to assemble from pre\,efgnd that these effects produced radial tranqurt fIL_Jxes of ions.
ous work an internally self-consistent, first-principles neo-Burrell, Ohkawa, and Wor?gshowed that an inertial effect -
classical model for the investigation of impurity transport Produced by the beam-induced plasma rotation produced in
and plasma rotation. By “internally self-consistent” and tUrn & r.adla'l ion transport flux. These various effects were all
“first principles” we mean that, within the context of the €mbodied n the rotation and impurity transport theory of
multifiuid description of the plasma and the constitutive re-Stacey et al,*® which is internally self-consistent but re-
lations which we use, the various particle transport fluxegluires external specification of the “drag” force which rep-
and flows, momentum transport fluxes, electric fields, andesents cross-field transport of toroidal momentum. This
density asymmetries are all calculated on a consistent basiéeory predicted that the net effect on impurity transport of
without the need for external specification of any of theNBI in model problems representative of then current toka-
quantities involved. Internally self-consistent “components” Maks was to produce an outward impurity flux when the
for a neoclassical calculation of rotation and impurity trans-P€am, magnetic field, and current directions were in parallel
port have been developed in a series of papers; howeveand an inward impurity flux when one of the directions was
each of these component calculations requires external spedntiparallel to the other two.
fication of some rotation velocity or cross-field momentum  In the meantime, a number of experiments were per-
transport rate, and so is not fully “first principles.” Our ob- formed in ISX-B**? (Impurity Studies Experiment Band
jective in this paper is to assemble these various componefrinceton Large Tord&' to investigate the effect of NBI
calculations into a first-principles, internally self-consistentdirection on central impurity accumulation. These experi-
neoclassical calculation of rotation and impurity transport inmental results confirmed the qualitative theoretical predic-
tokamak plasmas. First, we will review the development oftion that accumulation of impurities in the center of these
the component calculations. plasmas was substantially smaller when the magnetic field,
The original neoclassical theorie.g., Ref. 6, which  beam, and plasma current were parallel than when one was
treats the plasma as an isolated system with no external imntiparallel to the other two. These experiments were
teractions, predicts the central accumulation of impurity ionsnterpreted® in terms of the theory of Ref. 10.
in the absence of a radial temperature gradient or external The next step in the development of this extended neo-
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classical theory for rotation and impurity transport was the F] v 4R™Y
L . 2 3 ¢

association of the “drag” force, or cross-field transport of ~ (R°V$-V-mj)=— Rh 1 | Rohoma—

toroidal momentum, with the neoclassical gyroviscous stress 0T v

by Stacey and Sigmaf. Evaluation of this gyroviscous 1. nmT; vy

stress requires calculation of the poloidal flows of impurities ) 0;G; eB FER”J' M Vajv j »
and main ions within the flux surface and calculation of the

poloidal variation of the main ion and impurity densities over )

the flux surface. Stacé{y developed an internally self- : .
consistent model for theglcalculat?on of poloidal flz)/ws andWher?l‘ﬂ and_lg are thg length elements |n_tl(md|ab ¥ and
P (poloida) 6 directions in flux surface coordinates. A standard

density variations over the flux surface, but this model re<iqni hand coordinate system in flux surfa@es,d) or toroi-

quired external specification of the toroidal rotation. Staceyyg (r,0,¢) coordinates is used in this paper, where the posi-
a_md Jacksg”napplleq this mod_el to calculate momentL_Jm CON"tive ¢ direction is in the direction of the toroidal magnetic
finement times which were in good agre_ement with ME3field, the positived direction is in the direction of the poloi-
sured values for a range of tokamak experimeAymmet- 4o magnetic field created by a toroidal current in the same

ric Divertor Experiment, DIII, ISX-B, JET, and TFTR direction as the toroidal magnetic field, and the positive
Thus, the pieces of an interally self-consistent neoclasgjrection is in the direction of the outward normal to the flux

sical model for rotation and impurity transport have beensurfaces. The toroidal geometry approximation has been
developed and individually tested by comparison with eX-made in writing the last form of Eq(5).

periment, F“tft“e I‘f’,Odel has r|10t”heretofore' beein aslfembled Assuming a low order Fourier expansion of the density,
into a single, fully “first-principles” computational package. velocity, and potential variation over the flux surface, the

Th? primary purpose of this Paper Is to do just that_. Appll'poloidal asymmetry factor and the radial gradient factor on a
cations of the resulting computational package to |Ilustrategiven flux surface are given in the toroidal geometry ap-
its predictions under typical experimental conditions are aproximation by

secondary purpose of the paper.
We note that a similar neoclassical computational model

; : b.=(4+175, +R(1—7C,
has been the subject of a parallel development by Hirshman ! ( Dog L —Tg)

and co-workerge.g., Refs. 18 and 19 =(4+ﬁj°)[—60j(6¢j)‘1(5>s+ ﬁjs)+§,s]
IIl. THEORETICAL NEOCLASSICAL MODEL FTITD 4B gj)~H(2+ DO+TI) — D) ©®)
A. Multifluid equations and
The theoretical model is developed within the context of
the multifluid particle and momentum balance equations G(r)=— rd ’741%1), @
V-nv;j=0 (1) 740 ¢ o
and wherev 4 =v 4 lv and 74j=n;m;T; /e;B.

_ In deriving Eq.(5) for the “drag force” acting over a
nym;(vj-V)vj+ Vpj+Vem=—n;g VO +n;e(v;XB) flux surface, the poloidal variation of the density over the
+Rj+M;, (20  flux surface was expanded,

whereM is any external momentum inp(.g., from NB) ny(r g)znj(r)(lJrE(ﬁ_c cosf+RSsing)) )
: o : ' j i '
and the other symbols are standard. This multifluid model is

supplemented by constitutive relations from kinetic theorywith a similar expansion for the toroidal velocity and the

for the collisional interspecies momentum exchange electrostatic potentiab. This type of low order expansion is
sufficient to describe the type of in—out and up—down asym-
Rj=—n;m, 2 Nvj(Vj— Vi) (3)  metries which we believe to be of the greatest importance for
k] the development of this paper. The expansion could be ex-

and for the neoclassical parallel viscous fdfce tended to higher order in an obvious manner to treat higher

. asymmetries, but this is not felt to be necessary.
qumjvtth j Vj'Bﬁ

(1+v+))(1+€52+))| B2

B-V-7;=3((A-VB)?)

4
. B. Poloidal rotation and density asymmetries
where v*;=v;;qR/e¥%y,. In the toroidal geometry ap- v asy
proximation ((n-VB)?) = 1(e/qR)?B?, wheree=r/R. The Equations for the normalized poloidal rotation velocities

flux surface averaged toroidal component of the neoclassic&in the flux surface; ) =v ./ Buwm, (B=B,/By), and the cos
viscous force consists of “perpendicular” and gyroviscousand sin components of the density variations over the flux
parts, with the latter being much larger in toroidal geometry surface are develop&dby using Eq.(8) in the poloidal pro-
The first-principles neoclassical gyroviscous force acting onection of the momentum balance E(®) and integrating

a given flux surface 1§ over 6, with the weighting functiong=1, cos6, and sing,
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2 T~cC =S| T =S\2_, — =C\2, T HS3S
{q f; 1+6nj+2nj+3(nj) +3(nj) +2<I) n;

1~
+ 5 D5+

* 28 (=S, 3HS) |4
+k2#1 ij_q U¢](n]+q)) Ugl'

~ H ~
B . N . 25 32
=My +0,+ E Vj*k _kvgk_q (D)) [ON

=
— 3021 5[ DT+ DE(5+T0)], (9)
—_f.— 22 * |~ ~s_l~c
3117 B & Vi Ve T 5N
(0 4j) +§q>]q)c_1322&:j Vi oMk s (10
and
Zf— 22 T+ £~s
3B Vi oo Mt oM,
toe La S o ™
= Tjvyj 2] B <, Vik| Ugj mkvok
B2 Vi o B0y, (19)
wherev,; is the radial velocity,
A ~ ~ Urj
Vo=V g/ Botnjs 0=V gjlvm, 00 B
12
g = Ma =82 v "2
o nymw; Bu J mju_tfj’ I gR’
and
B eV
fi= (13

(e %) (140

Note that the normalized collision frequencies;,
=vjk/(qQR/vyy) differ from the normalized collision fre-
quency v*;=v;; //(qR/vy;)e¥? defined and used previ-
ously.

C. Radial electric field

The component of the radial electric field which is con-
stant over the flux surface is obtained self-consistently from

Weston M. Stacey

whereM 4; is the normalized toroidal projection of the neu-
tral beam(or othe) momentum input on the given flux sur-
face,Pj’ is the normalized radial pressure gradient across the
given flux surface, and

Mj_(1+v*j)(1+83/21/*j)1 j_njeng ar’
1
B:E &=+ B M _:M 9
A HiTPj» A nmiry

D. Toroidal rotation

Equation(2) can now be solved for the impurity toroidal
velocity on the flux surfacé®

Mg+ (1+ &Myt — {1+ &P+ P}

E,
B_H / [&(1+&E)+&],
0

(16)

and for the(smal) difference in main ion and impurity toroi-
dal velocities,

U¢i_U¢|:[(ﬁﬁﬁl)(ﬁlmlﬂ_ﬁimlu)

— i (Bi+ B)(P{—P))].

U¢|:

1+ &)+ i}

17

E. Solution of rotation problem

Equations(9)—(11), (14), (16), and(17) must be solved
simultaneously(or iteratively for the poloidal and toroidal
rotation velocities, the poloidal density asymmetries, and the
radial electric field. Within the context of the two-species,
multifluid equations and the constitutive relations of Egs.
(3)—(5), this set of equations defines a “first-principles” and
internally self-consistent neoclassical calculation.

F. Transport fluxes

The toroidal component of the momentum balance equa-
tion for each species can be flux surface averaged to obtain
an expression for the cross fie(dadia) transport fluxI;
=NjVi s
[=(R?V¢-Vp)+(R?V¢ -V 7)) —(R*V-M))

—(R*V¢-R)). (18

the flux surface averaged toroidal projection of the momen{sing the previous expressions for the toroidal rotation ve-

tum balance equation summed over spetiest this point,
we specialize the formalism to a main ion speci€sénd an
impurity species 1 in order to simplify. With this special-
ization, the radial electric field may be written

r

B, =LA (L EIM g+ {jar+ (14 E0IM

H{Bi+ B+ &N Py H{Bi+ Bi(1+ &) i P 1/

[ai{Bi+ Bi(L+ &)+ i Bi+ Bi(1+ &)}, (14

locity, this expression for the radial impurity flux may be
written in a form that associates various terms with conven-
tional neoclassical fluxes or with one of the various effects
discussed previously:

(19

Explicit expressions for the various terms in Efy9) are
given in the following in the “two-species” approximation.
The value ofB, is positive or negative depending on whether
the toroidal current is parallel or antiparallel, respectively,

Ty=TS+ T+ TV +T+TF +T7 .
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with the toroidal magnetic field, and the valueMf; or M,

is positive or negative depending on whether the beam injec-
tion direction is parallel or antiparallel, respectively, to the

toroidal magnetic field.

The first two terms correspond to the Pfirsch—Schluter

and “neoclassical” fluxes of conventional neoclassical
theory
nmyv;e?[ [ 1+ 292
ps_ TP ~C '
I'y== eB, 7 +h; P
1+29% _. ,
7 +07 1 (1+8)P, (20)
and
nimy vy . e~ ,
I g B,d LA T o*f( (1+ BT =TI} P;
—{ &+ Bi(1+ &) + 2 (TE-N)IP/], (2D
where
d=&+§(1+§). (22

For a negative main ion pressure gradieR{ €0), these

fluxes are generally inward for impurities and outward for
main ions. The corresponding main ion transport fluxes are :

given by similar expressions with theand| subscripts in-
terchanged.
The third flux component in Eq19) is the contribution
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and
5= (a/Z|) 1 &p| T
" (1+(alz))eBy|n, ar (1+(alz))
y 1 an| 1 on 26
z/)n o noar |l (263
5 1 1 ap; T
27 (1+(alz))eBy|n; ar (1+(alz))
« 1 §n| 1 4n; 26b
o e (26D
and
w=P)— " (27)

The expression fo{G,) is obtained from Eq(25) by inter-
changing andl subscripts and interchangi®y andé,. The
corresponding transport flux component for main ions is ob-
tained by interchangingand! in Eq. (24).

The fifth term describes the radial impurity flux that is
driven directly by the radial electric field

nm; vy
e By

o 1+2q

ni+e? Bl —a—

resulting directly from momentum exchange between bean)ere

ions and plasma and impurity ions,

nymy vy

M_ _
= eB,d

X[M¢|{I£L|(1+gi)+82(d+(1+d)’ﬁf—(l+ gl)'ﬁIC)}

+ M¢|{M| +e?((1+ 3(Bi+&))Rf 1)) }H.

The corresponding main ion flux component is given by
similar expression with and| interchanged. Both the impu-
rity and main ion fluxes are generally inward for co-injection
(M,>0) and outward for counterinjectior(,<0), when

(23

) o o by
the toroidal current is in the same direction as the tormda&e flux surface, is 00(a/Z,), and can usually be neglected.

magnetic field, and conversely when the toroidal current an
magnetic field are antiparallel.

The fourth flux component in Eq19) results from the
inertial (hm(v-V)v) term in the momentum balance equa-
tion, which produce®(&?) terms in the rotation velocities
which in turn contribute a®(&?) flux component

rl=— O 2O g 81+ £))(G) — (G,
W i+B(1L+¢ D= (Gi)
(24)
where
n 1/ B B 2
<G|>=_(qR(Z“) {(B_(va +W2+251WJﬁf
+{2 52W}T1is (25)

E,
+(B1+y)h— 7|ﬁic] (B_o) (28)
Bt BI(1+E)
NS e R E) @9

The corresponding main ion flux component is obtained by
interchangingl andi. This flux component will generally
have the same sign as the radial electric figlel., outward

for E;>0). SinceE, tends to be positive for injection paral-
lel to the toroidal current and negative for injection antipar-

3llel to the toroidal current, this flux component would be

expected to have a corresponding behavior.
The last term in Eq(19) is the impurity transport driven
the poloidal variation in the electrostatic potential over

n explicit expression for this term is given in Ref. 10.
The net impurity flux depends upon a competition
among different flux components and may be inward or out-

ward, depending on the specific operating conditions.

G. Temperature screening correction

Up to this point, the formalism is internally self-
consistent and “first principles” within the context of the
multifluid Egs.(1) and(2), the constitutive relations of Egs.
(3) and(4), and the neoclassical expression for the gyrovis-
cosity of Eq.(5). However, the constitutive relation of Eq.
(3) neglects thermal friction, which makes an important con-
tribution to “temperature screening” of impurities, i.e., to
reducing or reversing the inwalef>andI"['°. Since there is
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evidence of temperature screening in recent DIII-D r\ 2\ ex
experiment£® we will correct these two components of the x(r):(xo_xped)( 1- g) + Xped- (39
transport flux to account for thermal friction.
Rutherford’s expressich for the neoclassical Pfirsch— Specifying the radial shape in this manner allows the
Schluter impurity flux in a collisional plasma is toroidal rotation velocity to be calculated from an overall
5 5 > angular momentum balance on the pladéma
ps 1+2g°\ nimyyje c5 , , '
=== —%p, |Gt/ PP (27R) [§(RE L™ myv 4y 27T dr
Ly= 7 , (36)
5¢, 1 4T ¢
2cgeB, ar 0" \yhere the beam torque is given in terms of beam power
where (Pp), particle energy Ep), and massrty,) by
c5 0.35 Y AL P .
C|+C—3—0.47+ m, ¢ Eb btan ( 7)
5¢, 0.41 z\2n, (3D whereRy, is the beam tangency radius, and the theoretical
= —=0.30+ ————, ,=(—) —. (gyroviscous angular momentum confinement time is de-
2 C3 0584' a Zi ni fined
Since Rutherford did not consider the effect of poloidal den- ionsra
sity asymmetries, we correct our expression for the Pfirsch—  _ P o(Rymyu )1 dr
Schluter flux by multiplying Eq.(20) by the factor ¢, ¢ SRV ¢V - am)rdr
+cC,,/c3) and adding a term o [ions
s 1+29%\ nymyv;e2 5 ¢, 9T 32 fo R(; n—ij)nev¢rdr
b q2 eBy 2cgoar’ (32 = fons -
) ) ) al 1 T nj mj~
We use the Hinton—Hazeltine res(lfsr a two-species J’ §R e_B( 2 n GJGJ)neU(N dr
plasma with both species in the plateau regime to construct 0 I Teq
an additive correction to Eq21) to account for thermal R2%eB (g
friction =( To )(h—m)
nym, v ( 281/2K|11) 1 ( 5 Ki12> ions
ATe=— o e n,
Z|Bg F” Z; 2 Kll (2 n_mj)
J e
15 Kllz dl NS i M~ 1 1 1 9
z2\2 Ky/|ar 33 2 Ly +L”"’j)>av
where In going from the first to second expression in Eg88) a
 _ 0.731+0.53k) common temperature and toroidal rotation velocity were as-
194 1.26v. ,(1+0.53k,)’ sumed for all ions, and in going to the final expression the ()
terms in numerator and denominator were replaced with av-
. 0.731+0.71k) erage valuegobtained in this paper by evaluating the expres-
127140.3%,,(1+0.71k,) ' sions atr/a=13), which enabled the radial integrals to be
o (34) performed analytically. The quantitiés,, andh,,t are nor-
Eo=1+ ﬂ) K' J K malized radial volume integrals of the products of the radial
. i 1L profiles of the quantities indicated by the subscrisese Eq.
(16) of Ref. 4] and are given by
, \/fl’B Vi , Zi 2 v* /|
V*ungv—thiss/z: *i:<z_| Vi hp=1+anta,,

(39
The corrections for the main ion fluxes are obtained by ~ hnot=1+anta, +ar,

interchanging thé and| subscripts. when Nye= v ped™= Tpes=0 and by somewhat more compli-

cated expressions when the pedestal values are finite. Using
the same type of approximation, E@6) can be solved for

IIl. COMPUTATIONAL MODEL the central toroidal rotation frequency

Certain simplifications are made in implementing the th _vg;o_ F¢Tt£hnv 40
theoretical model of Sec. Il for computations. Toroidal ge- 0 R ions - : (40
ometry is assumed, and radial profiles are assumed to be 2m%a?R% 2 —my| ne
representable by a parabola to a power on a pedestal. I Te av
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Q +-5pE-0+ FIG. 1. Poloidal density asymmetries
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{5 10 et [ B | AEEERE [ TP, 'Y 15
e
m-C 5:00E-02
+-00E-0+
PBEAM (MW)

Conversely, if the central toroidal rotation frequency is ~ We note that the simplifications of this section are made
measured, then the experimental angular momentum core obtain a more tractable computational model for our
finement time can be constructed from present purposes and are not an intrinsic part of the theoret-

ions ical model described in Sec. II.

n.
J ex|
2 —m; ) Neo(2 </>0p
av

] e

2m%a’R®

IV. MODEL PROBLEM CALCULATIONS

exp__

;

‘ L ohny In this section we present the results of some model

In the same spirit, the radial electric field can be calcu-problem calculations intended to illustrate the features of the

lated directly from momentum balance using the toroidal rotheory presented in previous sections. For this purpose, we
tation velocity obtained from solving Eq36) using the ra- choose a model problem typical of DII-OR=1.7 m,

(41)

dial shapes of Eq(35), a=0.60m, k=17, Z,z=1.5 with carbon, ngo=5E19,
£ To=125keV, a,=0.1, a7=2.2, «,=2.9, B=2.1T,
B_': P/ +v 4~ B_"’voj ) (420 1=1.3MA) and carry out a series of calculations for differ-
4 4

ent injected beam power levels and directions and current
In order to evaluate the transport fluxes on a given ﬂuxdirections.(we will denote injection and current directions

surface, it is necessary to calculate the beam toroibig))( ~ aligned withB, as positive and directions opposite Be as

and parallel ¥1,) momentum deposition rate densities on thenegative) Note that the temperature and density were held

flux surface. For our purposes in this paper, we use th&onstantas the beam injection power changed in these model

simple model problems, contrary to the situation that would obtain in an
4 actual experiment. The results of these calculations are given
JoMyp e lviocosy; in Figs. 1-5.
My(r)= (277r))\0j21 27R, ' (43 The sine and cosine components of the poloidal density
asymmetries for carbon impuriti€€OSIMP, SINIMB and
where deuterium main ion§COSION, SINION and the poloidal
P, 5.5x 10'E,, rotation velocities for the impurities and main ions are shown
JO:E_b' Mp=v2myEy, ?\0=W/ﬁ2—, (44)  in Figs. 1 and 2 as a function of neutral beam injection
€

power. These results are for the current antiparalleB(d
wherePy, E,, andA, are the beam power, energy per par-<0). Clearly, the density asymmetries and the poloidal ro-
ticle, and atomic mass of the beam particle. tation velocities increase in magnitude as the magnitude of
The beam may cross the flux surface at minor radias  the injected beam powdand the magnitude of the toroidal
many as four times. Thig,; are the distances along the beamrotation velocity increases. The results for the current par-
trajectory from where it enters the plasma to jkiecrossing allel to B,(1>0) differed only slightly from those shown in
of the flux surface at,y; is the angle between the beam Figs. 1 and 2, except that the sine component of the impurity
direction and the positive toroidal direction at tfta cross-  density is positive and the sine component of the main ion
ing, andR;=Ry=r is the value ofR at thejth crossing. density is negative whei>0—ijust the opposite of the situ-
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POLOIDAL VELOCITIES

0-00E+00-
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FIG. 2. Poloidal rotation velocities at
r/a=0.5 in model problem calcula-
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/ / tion.
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ation shown in Fig. 1. This difference in the sine componentsesults in a difference in the sign &, which results in a
of the densities leads to a difference in the gyroviscous modifference in direction of the momentum and inertial trans-
mentum transfer, which leads to a difference in the magniport fluxes of Eqs(23) and (24).
tude of the toroidal rotation velocity. The slight difference in The various components of the transport flux for the
toroidal rotation velocities fot>0 and1<0 is shown in  main ions and impurities are shown for the cas& in Figs.
Fig. 3. 4 and 5. The total transport fluxes are shown for bottO
The radial electric field is reversed when the current di-and 1>0. The total transport fluxes are essentially the
rection is reversed, as shown in Fig. 3. This difference inPfirsh—Schluter flux for the impurities’f; =0.026) and the
sign of the radial electric field causes a difference in sign oheoclassical flux for the main ions’{=0.0011), in both
the radial electric field component of the transport flux givencases modified somewhat by the other transport fluxes,
by Eg. (28). In addition, the difference in current direction which tended to cancel each other out. In the0 case, the
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. FIG. 3. Toroidal rotation velocities
T,; and radial electric field at/a=0.5 in
E model problem calculation.
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inertial impurity flux of Eq.(24) was large and negative for sical fluxes by the other “rotational” flux components would
large negativeP,, and became positive for positii®,, ac- be expected if Mach-one conditions were approached or ex-
counting for the reduction in the magnitude of the inwardceeded.

(negative impurity flux as the beam injected power changed

from strongly negative to strongly positive, reminiscent of
the previous findinf that P,<0 led to greater central im-
purity accumulation thaR,>0. The impurity toroidal Mach

V. COMPARISON WITH EXPERIMENT

It is not our purpose in this paper to provide a broad

number <0.75 at ther/a=0.5 location where the fluxes application of the theory to interpretation of experiment. An
were calculated in this model problem. More dramatic modi-investigation of this topic is in progress and will be the sub-

fication of the pressure-driven Pfirsh—Schluter and neoclagect of future papers.
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FIG. 5. Deuterium radial transport
fluxes atr/a=0.5 in model problem
calculation.
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However, it is useful to at least touch base with experi-lowed by a calculation of the radial electric field and the
ment in order to provide some measure of confidence in theeoclassical particle fluxes for main ions and an impurity
theoretical formalism. Since a central feature of the formal-species. The calculation of particle fluxes takes into account
ism is the self-consistent neoclassical calculation of rotationinertial and radial electric field effects, direct beam-ion mo-
we calculated the central rotation frequency in amentum exchange effects, and cross-field momentum trans-
well-documentetf?* DIII-D deuterium plasma.-mode shot  port effects, as well as the usual neoclassical collisional, par-
(No. 98777 at 1.6 )swith a carbon impurity an&.=1.5.  allel viscous, and thermal friction effects.

We used measured central valueg,/R=0.7%5/s, ngy The implications of this theory for impurity transport in
=4.3219m 3, T,,=3.5keV and fit the measured radial pro- a tokamak are illustrated by a model problem calculation.
files with Eq. (35 with Nged=Tpes=vpes=0.0. The (),  The model problem calculations illustrate the importance of
guantities were evaluated by solving for the poloidal velocitythe relative directions of the magnetic field, current, and
and poloidal density asymmetriesrda=3, using the mea- beam injection on radial particle fluxes of main ions and
sured densities and temperature and the calculated toroidmhpurities.
rotation velocity at that radial location. The calculated cen-
tral toroidal rotation frequency and angular momentum con-
finement time were 0.825/s and 75 ms, which compare well 1p. Meade and the TFTR Grouplasma Physics and Controlled Nuclear
with the corresponding experimental values of &35 and Fusion Research 1990AEA, Vienna, 199}, Vol. |, p. 9.
62 ms, respectively. The “experimental” momentum con- 2F. M. Levinton, M. C. Zarnstorff, S. H. Bathet al, Phys. Rev. Lett75,
fineme,nt time was calculated with E@1), using the above- 4417(1999.

: ) 1), 9 E. J. Strait, L. L. Lao, M. E. Mauekt al, Phys. Rev. Lett75, 4421
mentioned experimental parameters. (1995.
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this section is considered to be highly turbulent, and that SceY: A W. Bailey, D. J. Sigmar, and K. C. Shaing, Nucl. Fusibn

. i 463 (1985.
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