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Abstract
There are (at least) two classical mechanisms for non-diffusive transport in the edge plasma: (i) particle ‘pinch’
velocities due to forces such as V × B and Er ; and (ii) outward drifts due to ion-orbit loss and X-transport. A
theoretical development for the treatment of these non-diffusive transport mechanisms within the context of fluid
theory is assembled and applied to several DIII-D discharges in order to investigate the importance of these non-
diffusive transport mechanisms in the edge pedestal. Several interesting insights emerge from this investigation.

(Some figures may appear in colour only in the online journal)

1. Introduction

It has long been recognized that an understanding of the physics
of the tokamak edge plasma was important to achieving an
understanding of tokamak performance, and tokamak edge
pedestal physics has long been (e.g. [1]) and remains (e.g. [2])
an active area of tokamak physics research. The reason that it
is important to understand the pedestal physics and to develop
a predictive capability for the edge pedestal is that this physics
seems to determine the performance of future tokamaks [3, 4],
such as ITER.

A relationship between changes in the radial electric field
Er and in the poloidal rotation velocity Vθ in the plasma edge,
on one hand, and changes in the edge pressure, temperature
and density gradients in the plasma edge, on the other hand,
was one of the earliest experimental H-mode observations [5],
suggesting that an understanding of the causes of the rotation
velocities and the radial electric field may provide insight to an
understanding of edge pedestal physics. Recently it has been
demonstrated that changes in these various experimentally
observed quantities are correlated by momentum balance
requirements [6–8].

Although there is a growing consensus that the
limiting values of pedestal pressure and pressure gradients
are determined by magnetohydrodynamic (MHD) peeling-
ballooning mode instabilities [9] (edge localized modes or
ELMs), the causes of the pedestal structure (pressure, density
and temperature profiles) in the absence of ELMs or between
ELMs remain an open question. One widely held school
of thought (e.g. [10–12]) postulates that the stabilization
of electromagnetic micro-instabilities and the corresponding

reduction in fluctuation-driven transport coefficients produce
the observed steepening in temperature and density gradients in
order for diffusive heat and particle fluxes to remove the input
heat and particles. Another school of thought (e.g. [13–28])
postulates that the physics of the edge plasma is determined,
at least in part, by the free-streaming ion-orbit loss and drift
loss of thermal ions trapped poloidally in the region near the
X-point that drift across the separatrix and into the divertor.
Ionization of recycling neutral atoms [29, 30] and small-scale
kinetic ballooning mode MHD instabilities [31] also have been
suggested as causes of the observed structure in the density and
temperature profiles in the edge pedestal of tokamak plasmas.

There are a large number of people worldwide working
to understand edge pedestal physics and to test these various
postulated causes of the edge pedestal structure against
experimental data. Much of this work consists of comparing
measured temperature and density profiles in the edge pedestal
with the predictions of 1D or 2D fluid transport codes
which incorporate various theoretical models for the transport
coefficients, or using such codes to calculate particle and
heat fluxes that can be used to interpret experimental values
of the transport coefficients from the measured density and
temperature profiles. For example, the National H-Mode Edge
Pedestal (HEP) Group [32] has compared DIII-D edge data
with 1D codes such as ONETWO [33], ASTRA [34] and
GTEDGE [35], and with 2D codes such as UEDGE [36]
and SOLPS [37]; and extensive tests of theoretical models
against experimental data have been reported in the literature
(e.g. [32, 38]).

However, such analyses usually do not take into account
the non-diffusive transport effects of forces due the electric
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fields and V × B forces (which produce a particle pinch),
nor do they usually take into account non-diffusive ion-orbit
losses and drift X-transport. Thus, we have been motivated
to assemble a fluid transport theory for the edge plasma
that systematically incorporates these non-diffusive transport
processes. Another purpose of this paper is to illustrate the
importance of taking into account these non-diffusive transport
mechanisms by application of this extended fluid transport
theory to the interpretation of the edge plasma physics in
several different types of DIII-D [39] discharges.

2. A moments equation formulation of plasma fluid
theory in a tokamak

In this section, plasma fluid theory is formulated systematically
from the first four velocity moments of the Boltzman transport
equation [40], with appropriately determined constitutive
relations (transport coefficients). In order to simplify
the formalism, one-dimensional radial transport in a slab
approximation is used.

The first velocity moment is the particle density, and the
first velocity moment equation is the continuity, or particle
balance, equation for the main ion species ‘j ’:

∂(njVrj )

∂r
= −∂nj

∂t
+ neno〈συ〉ion + Snb, (1)

which includes also the second velocity moment, Vrj , the
average radial ion fluid velocity, in the form of the radial
particle flux �j = njVrj . The second term on the right is
the ionization of recycling neutrals and the last term is the
neutral beam source. Similar equations obtain for other ion
species ‘k’ present in the plasma, and the electron density is
constrained by quasi-neutrality.

The toroidal and radial components of the second velocity
moment, or momentum balance, equation may be written for
any ion species ‘j ’:

njmj [(νjk + νdj )Vφj − νjkVφk]

= njejE
A
φ + njejBθVrj + Mφj (2)

and

Vφj = 1

Bθ

[
Er + VθjBφ − 1

njej

∂pj

∂r

]
, (3)

where ‘k’ in general refers to a sum over other ion species. In
this paper ‘j ’ will refer to the main ion (deuterium) and ‘k’
to the impurity ion (carbon) in a two-species model. These
equations contain the third velocity moment of the distribution
function, the pressure (or equivalently the temperature).

The quantity νdj is a toroidal angular momentum transfer
frequency which represents the combined effect of viscosity,
inertia, atomic physics and other ‘anomalous’ processes.
Justification for representing the toroidal momentum transfer
processes in this form is discussed in appendix A and in
[41]. Mφj is the toroidal momentum input, ej refers to the
charge of species ‘j ’ and the other symbols have their usual
meaning.

Subject to the assumption that there is a single impurity
species ‘k’ with the same logarithmic density derivative and
the same local temperature as the main ions ‘j ’, equations (2)

and (3) can be combined to arrive at a constraint on the main
ion pressure gradient

− 1

pj

∂pj

∂r
= Vrj − V

pinch
rj

Dj

, (4)

where the ‘diffusion coefficient’ is

Dj ≡ mjTjνjk

(ejBθ )2

(
1 +

νdj

νjk

− ej

ek

)
(5)

and the ‘pinch velocity’

V
pinch
rj = [−Mφj − njejE

A
φ + njmj (νjk + νdj )

×(f −1
p Vθj + Er/Bθ) − njmjνjkVφk][njejBθ ]−1 (6)

is a collection of normalized forces associated with the
electric field, V × B forces and beam momentum input.
The fundamental transport coefficients that determine the
main ion diffusion coefficient are the momentum exchange
frequencies with impurities (νjk) and with neutrals (νcx),
and the momentum exchange frequencies across flux surfaces
due to viscosity and inertia, and any anomalous momentum
exchange processes (included in νdj ).

Experimental values of the toroidal angular momentum
transfer frequencies νdj and νdk can be inferred from
equations (2) and (3) by using the measured carbon toroidal
rotation velocity and making a perturbation analysis to estimate
the main ion toroidal rotation velocity [42, 43].

νdj =
(nj ejE

A
φ + ejBθ�j + Mφj) + (nkekE

A
φ + ekBθ�k + Mφk)

(njmj + nkmk)V
exp
φk

(7)

and for the carbon impurity ion

νdk = (nkekE
A
φ + ekBθ�k + Mφk) + njmjνjk(Vφj − Vφk)0

nkmkV
exp
φk

,

(8)

where

(Vφj − Vφk)0 = (nj ejE
A
φ + ejBθ�j + Mφj) − njmjνdjV

exp
φk

njmj (νjk + νdj )

(9)

is the first order perturbation estimate of the difference in
deuterium and carbon toroidal rotation velocities.

The momentum balance requirement of equation (4) can
be rearranged into a form that clearly exhibits the diffusive and
the non-diffusive components of the radial particle flux

�j ≡ njVrj = −njDj

pj

∂pj

∂r
+ njV

pinch
rj

= −Dj

∂nj

∂r
− Dj

nj

Tj

∂Tj

∂r
+ njV

pinch
rj . (10)

The more general case when the assumption made above about
the impurity distribution is not made is treated in appendix B.

The third velocity moment, or energy balance, equations
for the main ion and electron species

∂Qj

∂r
≡ ∂

∂r

(
qj +

3

2
�jTj

)
= − ∂

∂t

(
3

2
njTj

)
+ qnbj − qje

−nen
c
o〈συ〉cx

3

2
(Tj − T c

o ) (11)
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and
∂Qe

∂r
≡ ∂

∂r

(
qe +

3

2
�eTe

)

= − ∂

∂t

(
3

2
neTe

)
+ qnbe + qje − nenkLk(Te) (12)

determine the main ion and electron total energy fluxes Qj,e.
The qnb terms represent neutral beam (or other) heating, qje

is the ion-to-electron collisional energy transfer, and the last
terms in equations (11) and (12) represent charge-exchange
cooling of the ions and radiation cooling of the electrons,
respectively. These equations contain the fourth velocity
moment of the distribution function, the conductive heat
fluxes qj,e.

In principle, the fourth moment equations could be solved
for the conductive heat fluxes, qj,e, but these equations are
rather formidable [40], involving complex tensor differential
relations among the lower velocity moments and the next
higher, fifth order velocity moment of the distribution function.
In practice, these fourth order velocity moment equations are
replaced by the surrogate equations

qj,e = −nj,eχj,e
∂Tj,e

∂r
, (13)

which can be used to determine the temperature profiles, thus
closing the set of four moments equations.

It should be recognized that replacing the actual fourth
velocity moment equation by equation (13) is equivalent (in
a sense) to neglecting the last two (temperature gradient and
pinch) terms in the second velocity moment equation (10),
which would close the first two moments equations and lead
to the familiar particle diffusion theory upon such truncation
of equation (10) and substitution into the continuity equation.
Thus, we might expect that using equation (13) instead of the
fourth velocity moment equation ignores some ‘energy pinch’
terms as well as some differential relations involving a fifth
velocity moment of the distribution function as well as other
velocity moments. Investigation of the retention of such terms
would be of great interest, however, development of such an
extended formalism is well beyond the scope of the present
investigation or the present state of the art.

In an interpretive analysis, the experimental values of the
thermal diffusivities can be inferred [38] from the respective
density and temperature profiles

χ
exp
j,e = − q

exp
j,e

n
exp
j,e (∂T

exp
j,e /∂r)

= − (Q
exp
j,e − 1.5�

exp
j,e T

exp
j,e )

n
exp
j,e (∂T

exp
j,e /∂r)

(14)

when Q
exp
j,e is obtained by solving equation (11) or (12) for

the total heat flux, �
exp
j is obtained by solving equation (1) for

the total radial particle flux and �
exp
e is constructed therefrom

taking into account impurities.

3. Non-diffusive particle transport (pinch) effects in
DIII-D experiments

The above equations can be used to investigate the importance
of theV ×B andEr ‘pinch’ forces that appear in the momentum
balance requirement of equation (10) in various types of
discharges.
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Figure 1. Ion particle flux evaluated from equation (1) for DIII-D
shot #98889.

Figure 2. Experimental electron density in DIII-D shot #98889.

3.1. Evolution of H-mode edge pedestal between ELMs

Experimental data were averaged over the same sub-intervals
between ELMs for successive ELMs to develop data that
characterize the evolution of density, temperature, rotation
velocities, radial electric field, etc over the interval between
ELMs in DIII-D shot #98889. These data [7] provide an
experimental confirmation of an inward particle pinch.

The ion particle fluxes at several times after an ELM,
obtained by solving equation (1) using experimental values
to evaluate the parameters, are shown in figure 1. Immediately
following the ELM (0–10%), the net radial particle flux is
inward over the edge plasma, but recovers to an outward flux
by midway (40–60%) between ELMs. The deuterium ion
density radial distribution was calculated to be very close to
the measured electron density distribution shown in figure 2,
and the evolution of the radial temperature distributions for
ions and electrons were similar to that of the electron density
shown in figure 2.
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Figure 3. Pinch velocity of equation (6) evaluated with
experimental parameters.
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Figure 4. Diffusion coefficient of equation (5) evaluated with
experimental data.

With respect to the momentum balance requirement on
the radial ion particle flux given by equation (10), it is clear
that the outward diffusive fluxes (both the density gradient and
temperature gradient terms) cannot account for the inferred
inward particle flux immediately following the ELM (0–10%)
but that an inward pinch term is required. The pinch velocity
inferred by using experimental data to evaluate equation (6)
is shown in figure 3. Unfortunately, the averaging period
for the CER data used to evaluate rotation and radial electric
field terms in equation (6) is longer than the (0–10%) interval
between ELMs, which means that this interval contains some
pre-ELM and ELM CER data, which is probably the cause
of the outward pinch velocity predicted by equation (6) in the
(0–10%) interval. More likely the pinch velocity just after the
ELM is small but inward. (We intend to revisit this issue on a
shot with better resolved CER data.)

The diffusion coefficient of equation (5) evaluated with
experimental parameters, shown in figure 4, increases with
time between ELMs. Since the density gradient of figure 2
is also increasing with time, we conclude that the outward
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Figure 5. Comparison of measured and calculated ion density
profile in edge pedestal.

diffusive component of the radial particle flux increases
significantly from just after an ELM to just before the next
ELM, while figure 3 indicates that the inward (pinch velocity)
non-diffusive radial particle flux also increases significantly
between ELMs. The relatively smaller net particle flux of
figure 1 is the difference between larger outward diffusive and
inward non-diffusive fluxes.

3.2. Consistency check

If the viscous component of the angular momentum transfer
frequencies νdj,k and the thermal diffusivities χj,e were known,
from kinetic theory or fluctuation theory or experiment,
it should be possible to solve equation (4) for the ion
pressure distribution and equation (13) for the ion temperature
distribution, then construct the ion distribution from nj =
pj/Tj . As a surrogate for knowing the transport coefficients,
we have inferred νdj,k from experiment using equations (7)–
(9) and used the measured ion temperature. Then equation (4)
was integrated to obtain pj (r), which was then divided by
the experimental Tj and corrected for impurities to obtain the
electron density distribution shown by the square symbols in
figure 5. The result is very close to the measured (Thomson
scattering) electron density in the outer part of the edge pedestal
where the slab geometry approximation used in the integration
of equation (4) is valid.

3.3. Relative importance of recycling neutrals and ‘pinch’
forces in determining edge pedestal density profile

The effect of the V × B, Er and other ‘pinch’ forces on
the determination of the pressure profile from equation (4)
enters through the term V

pinch
rj , which was evaluated mostly

from experimental data. The effect of recycling neutrals on
the determination of the pressure profile from equation (4)
enters through the term Vrj , which is evaluated by solving the
continuity equation (1) using the experimental density profile.
(The recycling neutrals also affect the diffusion coefficient
in the denominator of equation (4) via the charge-exchange
contribution to νdj , but this charge-exchange contribution
generally has been found to be less than 10% just inside the
separatrix and even less further in.) Thus, comparing these
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Figure 6. Comparison of the importance of recycling neutrals (Vr)
and V × B and Erad (Vpinch) in determining the pressure gradient in
the edge pedestal.
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Figure 7. Radial electric in L-mode and H-mode phases of DIII-D
shot #118897.

two terms in figure 6 provides an appreciation of the relative
importance of (i) recycling neutrals and (ii) V ×B, Er and other
‘pinch’ forces on the determination of the pressure profile.
Similar results have been found for other DIII-D discharges,
indicating that the pinch velocity effects generally dominate
the neutral recycling effects in the determination of the edge
pressure and density profiles.

3.4. Differences in L-mode and H-mode edge plasmas

It has long been noted that, in addition to differences in the
temperature and density distributions, there was a difference
in the radial electric field distributions between L-mode and
H-mode plasmas [5]. The radial electric fields in the L-mode
and early (pre-ELM) H-mode phases of DIII-D shot #118897
are markedly different, as shown in figure 7. This difference in
radial electric fields, and lesser differences in poloidal rotation
velocities, lead to dramatically different non-diffusive radial
pinch velocities, as shown in figure 8. In the L-mode phase
the principal non-diffusive radial particle flux (pinch velocity)
components due to the radial electric field and due to the
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Figure 8. Comparison of pinch velocities in L-mode and H-mode
phases of DIII-D shot #118897.
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Figure 9. Main ion diffusion coefficients in L- and H-mode phases
of DIII-D. Shot #118897.

poloidal rotation velocity are of opposite signs and tend to
cancel each other, resulting in a small outward non-diffusive
(pinch) radial particle flux. On the other hand, for the H-mode
phase the poloidal velocity and radial electric field components
are both inward and reinforce one another to produce a strong
inward non-diffusive (pinch) radial particle flux component.
(The deuterium poloidal velocity needed for this evaluation
was calculated from poloidal momentum balance, using the
measured carbon rotation velocity.)

The diffusion coefficients of equation (5), evaluated from
experimental data as described above for shot #98889, are
plotted for the L-mode and H-mode phases of shot #118897
in figure 9. These diffusion coefficients are comparable in the
steep-gradient region, indicating that the diffusive component
of the radial particle flux through the steep-gradient region
is actually larger for the H-mode phase (because of the
steeper density gradient) than for the L-mode phase. Thus,
relative to the L-mode phase, the steeper density (and pressure)
gradient in the H-mode phase would appear to be required by
momentum balance in order to offset the larger inward non-
diffusive particle flux and enable the net outward particle flux
required by particle balance to be achieved.
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3.5. The effects of resonant magnetic perturbations on the
edge plasma

Resonant magnetic perturbations (RMPs) appear to suppress
ELMs by reducing edge particle density below the pressure
limit for ballooning-peeling modes. We have investigated
the role of non-diffusive particle transport in this RMP ELM-
suppression by evaluating differences in the pinch velocity of
equation (6) and in the diffusion coefficient of equation (5)
from the experimental data [8] for a matched pair of H-mode
and RMP shots in DIII-D. Except for the RMP, these shots had
identical operating parameters. The edge density in the RMP
shot was about half that in the H-mode shot, the ion temperature
in the RMP shot was about twice that in the H-mode shot, and
the electron temperatures were very similar.

Another interesting difference between these two
discharges was in the radial electric field profiles shown in
figure 10. The H-mode radial electric field is negative in the
steep-gradient region with the characteristic deep well just
inside the separatrix. The radial electric field in the RMP
discharge has not quite as deep a negative dip and becomes
positive in the outermost pedestal inside the separatrix.

These different radial electric fields (and poloidal rotation
velocities) produce rather different non-diffusive particle
fluxes, as indicated by the pinch velocities shown in figure 11.
The strongly inward non-diffusive pinch velocity in the steep-
gradient region of the H-mode shot is reduced in the RMP shot.

The diffusion coefficients of equation (5) are comparable
for the RMP and H-mode shots, except at the separatrix, as
shown in figure 12. Since the density gradients are steeper in
the edge for the H-mode shot, the outward diffusive particle
fluxes over most of the edge are larger for the H-mode shot
than for the RMP shot.

Thus, it would seem that a significant contributing
mechanism for edge density reduction with RMP is the
reduction of the large inward non-diffusive (pinch) particle
flux in the edge relative to H-mode.

4. Generalized diffusion theory

If the momentum balance constraint of equation (10) is
substituted into the continuity equation (1), a generalized
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Figure 11. Non-diffusive radial pinch velocities of equation (6) for
the RMP and H-mode shots.

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

D
eu

te
riu

m
 D

iff
us

io
n 

C
oe

ffi
ci

en
t (

m
2 /.s

)

Normalized Radius

 RMP
 H-mode

123301 & 123302 @ 2800ms

Figure 12. Diffusion coefficients of equation (5) for the RMP and
H-mode shots.

diffusion equation is obtained.

− ∂

∂r

(
Dj

∂nj

∂r

)
− ∂

∂r

(
Dj

nj

Tj

∂Tj

∂r

)
+

∂(njV
pinch
rj )

∂r

= −∂nj

∂t
+ Sj ≡ −∂nj

∂t
+ neno〈συ〉ion + Snb (15)

under the same assumption used above that the logarithmic
derivatives of the impurity and main ion density profiles are
the same. (The more general case is treated in [41] and
appendix C.) Solving equations (1) and (15) for the density
and radial velocity profiles should result in the same profiles
that would be obtained by solving equation (1) and equation (4)
or (10) (the relative accuracy of numerical approximations to
equations (4) and (15) is discussed in [44]).

It is common practice in many codes used for edge plasma
analysis to use equations (1) and (15), but with the second
‘temperature diffusion’ term and the third ‘pinch velocity’
term omitted in the latter, and with a diffusion coefficient
that is adjusted to match experimental density profiles. This

6
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is equivalent to representing the particle flux by only the
first diffusive term on the left-hand side of equation (10)
and adjusting the diffusion coefficient to compensate for the
omission of the last two (temperature gradient and pinch)
terms on the left-hand side. Such a process can lead to
extremely small and physically meaningless adjusted diffusion
coefficients (e.g. [32]) in the presence of the large inward pinch
velocities found in the edge plasma in the previous section 3.
These small values of the adjusted diffusion coefficients have
been interpreted as an ‘edge particle transport barrier’, but it
is clear that they are just an artefact of the non-physical fitting
procedure. The better particle confinement in H-mode would
seem to be associated with a larger inward particle pinch,
not with a reduced diffusion coefficient, in the discharges
investigated.

5. Non-diffusive ion transport due to ion-orbit loss
and X-transport

There are (at least) two other classical mechanisms for non-
diffusive ion transport in the edge plasma. The most familiar
is the case of ions on passing or banana-trapped orbits that
leave the plasma by drifting outward across the last closed flux
surface (e.g. [14, 19, 20, 27, 45, 46]), where they are assumed
either to be charge-exchanged or to intersect a material surface
and not re-enter the plasma. Both thermal plasma ions and
energetic neutral beam ions (and fusion alpha particles) can be
lost in this manner.

A second ion transport loss mechanism, more recently
elaborated by Chang and colleagues [21–26] and one of us [28],
is an outward drift transport through the region near the X-point
in diverted plasmas. Ions on spiraling orbits that pass near the
X-point where the poloidal magnetic field is very small have
a very small poloidal displacement in time and are essentially
trapped in the poloidal vicinity of the X-point, where they are
subject to vertical curvature and grad-B drifts which take them
outward until they either drift out across the separatrix near
the X-point or Er ×Bφ drift poloidally out of the low poloidal
field region. The poloidal motion of the electrons is sufficient
that they are not affected by this trapping mechanism, so there
is effectively a radially outward ion current which builds up
an inward-directed radial electric field. This radial electric
field interacts with the toroidal magnetic field to produce a
Er × Bφ poloidal drift that de-traps the ions by allowing them
to drift poloidally onto spiraling field lines that are not trapped
in the vicinity of the X-point. Thus, this X-transport rate is
determined by the relative values of the vertical curvature and
grad-B drift loss rate and of the de-trapping Er × Bφ poloidal
drift rate. (Note that X-transport will be treated in the fluid
theory as a convection from one radius to a larger one; only if
the X-transport carries the ion across the separatrix is it lost.)

Both of these mechanisms are essentially kinetic, non-
diffusive transport mechanisms. Computationally tractable
models for their evaluation and incorporation into the above
fluid transport calculation are set out in the following.

5.1. Ion-orbit loss model and application to DIII-D

We make use of the conservation of canonical toroidal angular
momentum

RmV‖fϕ + eψ = const = R0mV‖0fϕ0 + eψ0 (16)

to write the orbit constraint for an ion introduced at a location
‘0’ on flux surface ψ0 with parallel velocity V‖0,where fϕ =
|Bϕ/B|, R is the major radius and ψ is the flux surface value.
The conservation of energy and of poloidal angular momentum

1

2
m(V 2

‖ + V 2
⊥) + eφ = const = 1

2
m(V 2

‖0 + V 2
⊥0) + eφ0

≡ 1

2
mV 2

0 + eφ0

mV 2
⊥

2B
= const = mV 2

⊥0

2B0
(17)

further require

V‖ = ±V0

[
1 −

∣∣∣∣ B

B0

∣∣∣∣ (1 − ζ 2
0 ) +

2e

mV 2
0

(φ − φ0)

]1/2

, (18)

where φ is the electrostatic potential. The quantity ζ0 =
V‖0/V0 is the cosine of the initial guiding centre velocity
relative to the toroidal magnetic field direction.

Using equation (18) in equation (16) and squaring leads
to a quadratic equation in the initial ion velocity V0 =√

V 2
‖0 + V 2

⊥0:

V 2
0

[(∣∣∣∣ B

B0

∣∣∣∣ fϕ0

fϕ

ζ0

)2

− 1 + (1 − ζ 2
0 )

∣∣∣∣ B

B0

∣∣∣∣
]

+V0

[
2e (ψo − ψ)

Rmfϕ

(∣∣∣∣ B

B0

∣∣∣∣ fϕ0

fϕ

ζ0

)]

+

[(
e(ψ0 − ψ)

Rmfϕ

)2

− 2e(φ0 − φ)

m

]
= 0. (19)

Note that equation (19) is quite general with respect to flux
surface geometry representation of R, B and the flux surfaces
ψ . By specifying an initial ‘0’ location for an ion with initial
direction cosine ζ0, and specifying a final location on flux
surface ψ , equation (19) can be solved for the minimum initial
ion speed V0 that is required in order for the ion orbit to
reach the final location. Thus, equation (19) can be solved
for the minimum ion energy necessary for an ion located on
an internal flux surface to cross the last closed flux surface
at a given location or to strike the chamber wall at a given
location, etc. All of the particles with energy greater than
this V0 min(ζ0) are lost across the last closed flux surface (and
assumed in this work not to return) or strike the chamber wall.
The quantity V0 min(ζ0) is very large for particles with parallel
velocity opposite to the direction of the toroidal magnetic
field (ζ0 < 0), which execute banana orbits inside the flux
surface, but becomes smaller with increasing ζ0 > 0 (i.e. as
the particle velocity becomes more nearly aligned with the
toroidal magnetic field direction).

Since V0 min(ζ0) decreases with radius, cumulative (with
increasing radius) particle, momentum and energy loss
fractions can be defined

Forb ≡ Nloss

Ntot
=

∫ 1
−1

[∫ ∞
V0 min(ζ0)

V 2
0 f (V0) dV0

]
dζ0

2
∫ ∞

0 V 2
0 f (V0) dV0

=
∫ 1
−1 �( 3

2 , εmin(ζ0)) dζ0

2�( 3
2 )

, (20)
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Figure 13. Angular particle and energy ion-orbit loss fractions for
RMP discharge.

Morb ≡ Mloss

Mtot
=

∫ 1
−1

[∫ ∞
V0 min(ζ0)

(mV0)V
2

0 f (V0) dV0

]
dζ0

2
∫ ∞

0 (mV0)V
2

0 f (V0) dV0

=
∫ 1
−1 �(2, εmin(ζ0)) dζ0

2�(2)
(21)

and

Eorb ≡ Eloss

Etotal
=

∫ 1
−1

[∫ ∞
V0 min(ζ0)

(
1
2mV 2

0

)
V 2

0 f (V0) dV0

]
dζ0∫ 1

−1

[∫ ∞
0

(
1
2mV 2

0

)
V 2

0 f (V0) dV0
]

dζ0

=
∫ 1
−1 �

(
5/2, εmin(ζ0)

)
dζ0

2�( 5
2 )

, (22)

where εmin(ζ0) = mV 2
0 min(ζ0)/2kT is the reduced energy

corresponding to the minimum velocity for which ion-orbit
loss is possible, and an initially Maxwellian ion distribution
has been assumed. The quantities �(n) and �(n, x) are the
gamma function and incomplete gamma function.

The particle and energy angular loss fractions,
�(3/2, εmin(ζ0))/2�(3/2) and �(5/2, εmin(ζ0))/2�(5/2), are
plotted as a function of the direction cosine of the particle
velocity with respect to the toroidal magnetic field in figure 13.
(The momentum loss fraction, �(2, εmin(ζ0))/2�(2), is inter-
mediate.) Clearly, it is the particles with velocities along the
toroidal magnetic field direction (which execute banana orbits
outside the flux surface) that are preferentially lost. The loss
fractions for the H-mode discharge were similar but somewhat
different quantitatively.

These cumulative particle and energy loss fractions,
obtained by integrating the angular loss fractions of figure 13
over angle, are plotted in figure 14 for the matched pair of
RMP (#123301) and H-mode (#123302) shots discussed above
(the momentum loss fractions are intermediate between the
particle and energy loss fractions). The difference in the radial
electric fields shown in figure 10 and the larger ion temperature
(by a factor of 2) in the RMP shot accounts for the much
larger cumulative ion-orbit loss for the RMP shot than for
the otherwise similar H-mode shot. These loss fractions do
not change the total particle and ion heat fluxes calculated
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Figure 14. Ion particle and energy cumulative loss fractions for
ion-orbit loss in DIII-D RMP and otherwise similar H-mode
discharges.
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Figure 15. Ion-orbit particle and energy cumulative loss fractions
for the L- and H-mode phases of DIII-D shot 118897.

by the fluid model, but rather represent the fraction of these
total particle and energy fluxes at each radial position that
are in the form of free-streaming ions that escape across the
separatrix without being involved in other plasma conductive
and convective transport processes.

The ion-orbit loss calculation was repeated for the L-mode
and early (ELM-free) H-mode phases of DIII-D shot 118897,
using the corresponding experimental density and temperature
data and the measured radial electric fields of figure 7 in solving
equation (19). The resulting particle and energy ion-orbit loss
fractions shown in figure 15 are rather similar for the L- and
H-mode phases, indicating a smaller effect of the radial electric
field profile than was found in the RMP and H-mode shot
comparison above.

5.2. X-transport model and application to DIII-D

In a region about the X-point the poloidal field is very small,
Bθ � εBφ , and the field lines are almost purely toroidal and do
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Figure 16. Idealized X-region for DIII-D lower single-null divertor
configuration with Bφ out of the page and the plasma current into
the page. Ions with V · Bφ > 0 will spiral poloidally
counter-clockwise about the plasma centre (dot); ions with
V · Bφ < 0 will spiral clockwise.

not spiral about the tokamak to provide the usual neoclassical
cancellation of drift effects. Whereas ions quite rapidly move
poloidally over the remainder of the flux surface outside of
this ‘X-region’ by following along spiraling field lines, as the
ions approach the X-point their poloidal motion is provided
only by the slower poloidal Er × Bφ drift due to the radial
electric field. If this Er × Bφ drift is in the same direction
as the poloidal motion of the spiral along the field lines, then
the ion will drift into the X-region. For the standard DIII-
D configuration of current in the counter-clockwise direction
and toroidal field in the clockwise direction, looking down
from above the tokamak, co-current ions will drift into the
X-region (depicted in figure 16) when Er > 0, and counter-
current ions will drift into the X-region when Er < 0. This
poloidal Er ×Bφ drift will then move the ions poloidally across
the null-Bθ region near the X-point until they again enter a
plasma region in which Bθ ≈ εBφ , where they once again can
move rapidly poloidally over the flux surface by following the
spiraling field lines.

More generally, when the toroidal magnetic field and the
toroidal current are anti-parallel, the counter-current ions will
drift into the X-region when Er < 0, and the co-current ions
will drift into the X-region when Er > 0. When the toroidal
magnetic field and plasma current are parallel, the counter-
current ions will drift into the X-region when Er > 0, and the
co-current ions will drift into the X-region when Er < 0.

However, while the ions are slowly drifting poloidally
across the null-Bθ X-region near the X-point, they are also
drifting vertically due to curvature and grad-B drifts. In
the usual DIII-D configuration with the toroidal field in the
clockwise direction (looking down from above) and the plasma
current in the counter-clockwise direction, and with a lower
single-null divertor, this vertical drift is downward towards
the divertor. If the time required for the ion to grad-B and
curvature drift downward across the separatrix is less than the

time required for the ion to Er ×Bφ drift across the Bθ � εBφ

X-region near the X-point, the ion will be lost across the
separatrix. Even if the ion is not lost across the separatrix,
it will be displaced radially outward while it is traversing the
null-Bθ region.

The poloidal magnetic field vanishes at the X-point,
Bθ = 0, and slowly increases to Bθ ≈ εBφ over a poloidal
arc distance rsep(θx)(
θx/2) on either side of θ = θx ;
i.e. (1/rsep(θx))(∂Bθ/∂θ) × rsep(θx)(
θx/2) ≈ εBφ . The
poloidal field also increases away from the X-point in the
radial direction to Bθ ≈ εBφ over a distance 
rx , i.e.
(∂Bθ/∂r) × 
rx ≈ εBφ . The solenoidal law 0 = ∇ · Bθ ≈
(∂Bθ/∂r) + (1/r)(∂Bθ/∂r) relates the radial and poloidal
variations of Bθ in the vicinity of the X-point. Combining
these results leads to (
rx/rsep(θx)

1
2
θx) ≈ 1.

We represent the X-region as a tall wedge, or trapezoidal-
shaped, region with its based centred on the X-point and
extending radially inward (upward) a distance 
rx with width
r(θx)
θx , as depicted in figure 16. Within this region
the motion of ions is determined by the radially outward
(downward) curvature and grad-B drifts and by the poloidal
Er × Bφ drift. While the ion is Er × Bφ drifting across the
null-Bθ region it is also grad-B and curvature drifting radially
outward (downward). The time required for an ion entering
the plasma at radius r to grad-B and curvature drift downward
a distance 
r is

τ∇B = 
r

V∇B,c

= 
r

(W⊥ + 2W‖)/eRB
= eRB

W(1 + ζ 2)

r, (23)

where ζ is the average cosine of ion direction with respect to
the magnetic field and W denotes the ion energy. During this
time the ion is also Er × Bφ drifting through a poloidal arc
distance

r(θx)
θ = VE×Bτ∇B = Er(r)

Bφ

eRB

W(1 + ζ 2)

r. (24)

Note that when the radial electric field changes sign the
directions of the poloidal Er × Bφ drift and of the angular
displacement both reverse.

We calculate the X-transport for an ion that Er ×Bφ drifts
into the X-region at a given radial location r < rsep by dividing
the radius from the centre of the plasma to the separatrix into
increments 
rn over each of which the plasma properties are
approximated as constant, which allows the calculation of the
change


θn 
 
rn

rn

eRErn

W(1 + ζ 2)
(25)

in 
θ that will take place while the ion grad-B drifts radially
downward (outward) a distance 
rn.

Thus, the determination of the radial transport of an ion
that enters the X-region is just a matter of calculating 
θn

successively for all regions between the radius of entry and the
separatrix and summing. If the calculated sum becomes greater
than 
θx , then the ion has drifted out of the X-region back
into the plasma at that radius. Note that if an ion poloidally
Er × Bφ drifts into the X-region in one direction and then
grad-B drifts into a region in which the electric field changes
sign, then the Er × Bφ drift direction also changes poloidal
direction. A change in sign of the summed 
θn indicates that

9
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the ion has drifted out of the X-loss region on the same side
on which it entered. Because 
θn is inversely proportional to
the ion energy, the amount of X-transport is greater for higher
energy ions.

The times required for ions to spiral poloidally around
the flux surface by following along the field lines and to then
Er × Bφ drift into the X-regions are short compared with the
time required for the ions to flow radially outward (at about
1 m s−1) across the flux surfaces. This implies that as the
plasma flows radially outward across the flux surfaces the
ion population is repeatedly swept through the X-region as
the radial location increases, so that those ions entering the
X-region at radius r with energies equal to the energy needed
for X-drift transport to radius r ′ are immediately transferred to
radius r ′, where they drift poloidally out of the X-region back
into the plasma at that radius r ′.

This X-transport can be incorporated into the fluid
calculations of ion particle and energy fluxes from
equations (1) and (11) in two different ways. Particle and
energy loss terms can be constructed to represent the particles
and energy that have been X-transported from radius r to all
larger radii r ′. Similarly, particle and energy sources can be
calculated to represent the particles and energy that have been
X-transported to radius r ′ from all lesser radii r . These sources
and sinks can be included directly in the particle and energy flux
calculations. Alternatively, radially cumulative particle (Fx)

and energy (Ex) loss fractions to account for those ions which
have drifted across the separatrix can be defined similarly to
the ion-orbit loss fractions discuss previously [27].

Summarizing, an ion in the plasma at any location other
than the ‘X-region’ is assumed to spiral poloidally towards the
‘X-region’ (that small region extending radially inward from
the X-point in which Bθ � εBφ). When this ion arrives at the
boundary of the X-region it will Er × Bφ drift either into the
X-region or back into the plasma, depending on the direction of
Er . If the ion drifts into the X-region, it will Er×Bφ drift across
it, while grad-B and curvature drifting downward (radially
outward). If the ion reaches the other side of the X-region
or, because of Er sign reversal, returns to the side on which
it entered before it can drift across the separatrix, it returns to
the plasma region at a larger radius—is ‘X-transported’. If,
on the other hand, the ion drifts across the separatrix at the
X-point before it Er ×Bφ drifts across the X-region to re-enter
the plasma, it is ‘X-lost’ through the X-point into the divertor.
The ions in the X-region are considered to be collisionless, in
the present model. Once the ions return to the plasma, they
are assumed to have collisions and equilibrate to a Maxwellian
with the local (radial) ion temperature; then return to the X-
region, etc. The ions in the plasma outside the X-region are
considered to participate in neoclassical and other transport,
and to undergo ion-orbit loss.

5.3. Effect of ion-orbit loss and X-transport on the
interpretation of experimental heat diffusivities

As an illustrative example of the importance of ion-orbit
loss and X-loss, their effect on the ion thermal diffusivity
interpreted from experimental data using equation (14) has
been evaluated for the DIII-D RMP shot #123301 discussed
previously. The total ion radial particle flux was evaluated
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Figure 17. Convective and diffusive ion particle fluxes calculated
from the ion particle balance equation, with and without correction
for ion-orbit loss and X-loss.
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Figure 18. Total ion conductive and convective heat fluxes
calculated from the ion heat balance equation, with and without
correction for ion-orbit and X-loss.

by solving equation (1), using experimental data, for �j ; the
total ion heat flux was evaluated by solving equation (11)
for Qj (and equation (12) for Qe); then using the ion-orbit
loss fractions Forb and Eorb shown in figure 14 to reduce the
ion particle and energy fluxes; and finally using similarly
calculated X-drift loss fractions Fx and Qx discussed in the
previous section to further reduce the ion particle and energy
fluxes to the level that must be accounted for by other transport
processes taking place in the plasma.

The total radial particle flux, �j ; the total radial particle
flux reduced by the fraction carried by free-streaming ions
lost across the separatrix, �j (1 − Forb); and the latter quantity
also reduced by ions that X-drifted across the separatrix,
�j (1 − Forb)(1 − Fx); are all shown in figure 17. Similar
quantities related to the total ion energy are shown in figure 18.

Finally, the experimental ion thermal diffusivity that
would be inferred from equation (14) using these different total
particle and energy fluxes and the measured ion temperature
and electron density profiles were calculated. Figure 19 shows
the values of the ion thermal diffusivity that would be inferred
(i) if ion-orbit loss and X-drift loss were ignored and only
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Figure 19. Ion thermal diffusivities interpreted from the measured
ion temperature profile given in figure 3 using equation (24) and the
heat fluxes of figure 5 with and without ion-orbit loss.

ion conductive and convective transport were assumed to be
involved (solid square symbols); (ii) if the total ion fluxes were
reduced to take into account ion-orbit loss to determine the
conductive and convective ion fluxes to be used in equation
(14) (solid circle symbols); and (iii) if the ion fluxes were
further reduced to also take into account X-loss (solid triangle
symbols). Taking into account the ions that are loss due to
ion-orbit effects dramatically reduces the inferred ion thermal
diffusivity in the steep-gradient region. (We note that these
estimates are upper limits because some of the ions that cross
the separatrix will return into the plasma.) Further taking
into account ions that are lost due to X-drift causes a small
further reduction in the ion thermal diffusivity in this DIII-D
shot. Clearly, ion-orbit loss is a significant particle and energy
transport mechanism in the DIII-D edge plasma.

Orbit loss fractions also have been calculated for the
L-mode and H-mode phases of shot 118897 and used to
correct the total ion heat and particle fluxes used to interpret
the ion thermal diffusivities from the measured densities and
temperatures using equation (14). The inferred experimental
thermal diffusivities are shown in figure 20. The ion-orbit
loss corrections are clearly important in the edge for the L-
mode phase, completely changing the conclusion to be drawn
about how the thermal diffusivity changes as the separatrix
is approached, but have only a small effect on the H-mode
interpretation. The relatively flat ion thermal diffusivity
inferred in this early (ELM-free) H-mode phase is interesting
in showing no evidence of an edge ‘transport barrier’.

5.4. Effect of X-transport on the composition of the radial ion
flux

For the H-mode discharge 123302, the minimum energy
required for X-transport (i.e. the minimum energy required
to make 
θn (or the sum of several successive 
θn’s) less than
the angular width 
θx of the X-region was proportional to the
magnitude of the radial electric field at that radial location (see
equation (25)). The radial electric field (shown in figure 10)
was negative over almost the entire X-region, except just inside
the separatrix, so the ions had to Er ×Bφ drift across the entire
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Figure 20. Inferred experimental ion thermal diffusivities with and
without making ion-orbit loss corrections to the ion particle and heat
fluxes.
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Figure 21. Ion particle fluxes with and without reduction to account
for X-transport and ion-orbit loss.

angular width 
θx of the X-region in order to re-enter the
plasma.

The ion particle and heat fluxes for the H-mode discharge
123302 were evaluated using experimental data. Three cases
were considered: (i) the X-transport ignored; (ii) X-transport
source and sink terms [28] were evaluated and included in the
particle and energy balance equations; and (iii) the X-transport
terms source and sink terms were included in the balance
equations and ‘standard’ ion-orbit loss fractions [27] Forb and
Eorb were used to further reduce the fluxes calculated by fluid
theory. These results are shown for the ion particle flux in
figure 21. (Note that the ‘X-transport’ from inward to outer
flux surfaces is used in the calculation of the particle flux,
as discussed following equation (25), in this figure, whereas
in figures 17–19 the ‘X-loss’ fraction calculated in a manner
similar to equations (20)–(22) was used.) The curve indicated
by the square symbols shows the total outward particle flux;
the curve indicated by the circles shows this total particle
flux reduced by the particles that are being X-transported and
therefore are not available to participate in other transport
processes in the plasma; and the curve indicated by triangle
symbols indicates the particle flux available to participate in
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transport processes in the plasma after taking into account both
X-transport and ion-orbit loss. With reference to figure 10,
there is a large increase in X-transport where the radial electric
field becomes negative between ρ = 0.92 and 0.93, and
there is a large increase in ion-orbit loss beyond ρ = 0.95,
both of which reduce the fraction of the particle flux that is
being transported radially outward by conductive and other
convective transport processes in the plasma.

5.5. Intrinsic toroidal rotation in edge pedestal due to
ion-orbit loss and X-loss

The momentum loss fraction Morb (intermediate between Forb

and Eorb in figure 14) represents a loss of particles with toroidal
velocity in the direction of the toroidal magnetic field (counter-
current in these shots, with Bφ in the clockwise direction
looking down and Iφ in the counter-clockwise direction),
which would result in a net toroidal velocity in the edge
pedestal in the direction (ζ0 < 0) of the particles which are
not lost; i.e. in a counter-Bφ or co-current direction for these
shots.

It can be shown that it is the counter-current ions which
banana orbit outside the flux surface and are preferentially lost,
independent of the direction of either the current or the toroidal
magnetic field, producing an intrinsic rotation in the co-current
direction. This result is consistent with the general finding
of a co-current intrinsic Vφ in the edge pedestal of H-mode
discharges in DIII-D [20] and other tokamaks, which supports
the suggestion of [20] that ion-orbit loss could be the cause
of the observed intrinsic toroidal rotation in the co-current
direction in H-mode discharges.

The X-loss mechanism can also induce intrinsic co-current
rotation in the edge pedestal in the standard DIII-D
configuration considered in this paper. In the standard
DIII-D configuration (current counter-clockwise and toroidal
magnetic field clockwise, looking down on the tokamak—see
figure 16) counter-current ions will spiral counter-clockwise
poloidally to approach the X-region on the inboard side; they
will drift into the X-region (and perhaps be lost) if Er <

0, thereby leaving a surplus of co-current ions that would
constitute intrinsic co-current rotation. Co-current ions, on
the other hand, will spiral clockwise poloidally to approach
the X-region on the outboard side; they will drift into the
X-region if Er > 0. For the H-mode discharges 123302
and 118897, Er < 0 over the edge pedestal region, implying
that the intrinsic rotation produced by X-loss would be in the
co-current direction. On the other hand, for the L-mode phase
of shot 118897 Er > 0, indicating that it is the co-current
ions that would be X-lost, leaving a surplus of counter-
current ions to produce an intrinsic counter-current rotation.
These results are generally consistent with experimental
observations.

More generally, when the toroidal magnetic field and
toroidal current are anti-parallel, the counter-current ions will
drift into the X-region when Er < 0, and the co-current ions
will drift into the X-region when Er > 0, resulting in intrinsic
counter current rotation. On the other hand, when the toroidal
magnetic field and current are parallel, the counter-current ions
will drift into the X-region when Er > 0, and the co-current
ions will drift into the X-region when Er < 0.

We plan to follow up on these observations in future work.

6. Summary and conclusions

There are (at least) two classical mechanisms for non-diffusive
transport in the edge plasma: (i) a particle ‘pinch’ due to
V × B, Er , etc forces and (ii) outward drifts (ion-orbit
loss, X-transport). New methods were assembled for the
treatment of these non-diffusive transport mechanisms within
fluid theory. This new theoretical formulation was applied
to interpret DIII-D experiments to provide insight as to the
importance of the various non-diffusive transport mechanisms
in DIII-D. Several important conclusions are summarized
below.

Momentum balance requires that the radial particle flux is
‘pinch-diffusive’; i.e. has a non-diffusive component produced
by the radial electric field, V ×B and lesser forces, as well as a
‘diffusive’ component produced by the pressure gradient force.
This theoretical conclusion is supported by the experimental
observation of an inward ion particle flux during the edge
density buildup after an ELM crash.

Momentum balance requirements also define the particle
diffusion coefficient in the plasma edge in terms of the
interspecies collisional momentum transfer frequency and
the toroidal angular momentum transport frequencies due
to viscosity, charge-exchange, any anomalous effects, etc.
Composite angular momentum transport frequencies can be
interpreted from experiment.

The inward particle pinch associated with V × B and
Er forces is more important than the ionization of recycling
neutrals in determining the pressure profile in the edge plasma
of several DIII-D H-mode discharges.

The particle ‘pinch’ is small and outward in the L-mode
phase, but becomes large and inward in the H-mode phase of
one DIII-D discharge, due primarily to the creation of the large
negative well in Erad in H-mode. The diffusion coefficients
in the L- and H-mode phases were similar in the steep-
gradient region, implying that the steeper density gradient
observed in H-mode is required (by momentum balance) in
order to balance the larger inward pinch velocity, relative to
L-mode, needed to provide the net outward radial particle flux
required to satisfy the continuity equation. Thus, the improved
particle confinement in H-mode relative to L-mode seems to
be associated with a reversal of the outward L-mode pinch
velocity to a strong inward H-mode pinch velocity, rather than
to a reduction in particle diffusion coefficient. In fact, previous
interpretations of a reduction in diffusion coefficients, leading
to the postulation of a ‘particle transport barrier’, would seem
to be an artefact of neglecting this pinch velocity.

RMP reduces the Er well relative to H-mode, thereby
reducing the inward particle pinch in the edge plasma with
RMP relative to an otherwise similar H-mode. Diffusion
coefficients were similar for these RMP and H-mode
discharges, so the reduction in inward pinch is apparently
a significant contributor to the ‘density pump-out’ observed
with RMP. Another significant contribution is the larger ion-
orbit loss in the RMP than in the otherwise similar H-mode
discharges because of the different electrostatic potential
profiles.

Ion-orbit loss substantially reduces the parts of the total
ion particle and energy fluxes that should be include in the
interpretation of thermal diffusivities in the steep-gradient
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region of the edge pedestal, thereby significantly reducing the
ion thermal diffusivity interpreted from measurements of ion
temperature profiles by using these total energy and particle
fluxes.

The outward curvature and grad-B drift of ions on
field lines that are trapped poloidally in the vicinity of the
X-point may be an important mechanism both for non-diffusive
transport and for determining the radial electric field in the
edge plasma. Further quantitative evaluation of this X-loss
mechanism will be performed in the future.

Preferential ion-orbit loss and X-loss of counter- or
co-current flowing ions produces an intrinsic co- or counter-
current net toroidal rotation in the edge pedestal of DIII-D
discharges, with the direction depending on whether the
plasma current and toroidal magnetic field are parallel or
anti-parallel. Further quantitative evaluation of this intrinsic
rotation mechanism will be performed in the future.

Appendix A. Torque representation

In order to evaluate the flux surface average (FSA) toroidal
component of the momentum equation it is necessary to
evaluate the FSA toroidal viscous torque and inertial terms in
that equation. The neoclassical viscous torque can be written
as the sum of ‘parallel’, ‘gyroviscous’, and ‘perpendicular’
components. Since the FSA of the ‘parallel’ component of the
toroidal viscous torque vanishes identically, the flux surface
averaged toroidal viscous torque may be written as the sum of
the ‘gyroviscous’ and ‘perpendicular’ components

〈R2∇φ ·∇ ·�〉 = 〈R2∇φ ·∇ ·�〉gv + 〈R2∇φ ·∇ ·�〉⊥, (A1)

where

〈R2∇φ · ∇ · �〉gv = −
〈

1

Rhp

∂

∂lψ

(
R3hpη4

∂

∂lp
(Vφ/R)

)〉
(A2)

and

〈R2∇φ · ∇ · �〉⊥ = −
〈

1

Rhp

∂

∂lψ

(
R3hpη2

∂

∂lψ
(Vφ/R)

)〉
(A3)

in a right-hand (ψ, p, φ) toroidal flux surface coordinate
system, where η2 = nT τ/(�τ)2 and η4 ≈ (�τ)η2 ≈
(103–104)η2, where � ≡ ZeB/m and τ is the collision
frequency, so that the ‘gyroviscous’ toroidal torque is generally
a couple of orders of magnitude larger than the ‘perpendicular’
toroidal viscous torque. Approximating the flux surface
geometry by toroidal geometery and making a low order
Fourier expansion X(r, θ) = X0(r)[1+Xc cos θ +Xs sin θ ] for
the densities and rotation velocities allows equations (A2) and
(A3) to be written in a form exhibiting an explicit momentum
transfer frequency

〈R2∇φ · ∇ · �〉gv j ≈ 1

2
η4j

r

R0
(L−1

n + L−1
T + L−1

υφ
)

×[(4 + ñc
j )Ṽ

s
φj + ñs

j (1 − Ṽ c
φj )]Vφj ≡ R0n

0
jmjνgv jVφj

(A4)

and

〈R2∇φ · ∇ · �〉⊥j ≈ R0η2j

[
L−1

υφ

(
1

r
− L−1

η2

)
− 1

Vφj

∂2Vφj

∂2r

]
×Vφj ≡ R0n

0
jmjν⊥jVφj (A5)

where the poloidal asymmetry coefficients ñc
j ≡ nc

j /ε, etc can
be determined by solving the low order Fourier moments of
the poloidal component of the momentum balance.

Turbulent, or ‘anomalous’, toroidal viscous torque is
usually assumed to be of the form of equation (A3) with an
enhanced viscosity coefficient ηanom, leading to

〈R2∇φ · ∇ · �〉anom j ≈ R0ηanom j

[
L−1

υφ

(
1

r
− L−1

η2

)

− 1

Vφj

∂2Vφj

∂2r

]
Vφj ≡ R0n

0
jmjνanom jVφj . (A6)

Equation (1) can be used to write the inertial term in the FSA
toroidal component of the momentum balance as
〈R2∇φ · ∇ · (njmj Vj Vj )〉 = 〈R2∇φ · njmj (Vj · ∇)Vj 〉

+R0njmjνion jVφj (A7)
and the same set of approximations can be used to write the
first term on the right as

〈R2∇φ · njmj (Vj · ∇)Vj 〉 
 1

2

(
Vrj

Ro

{ε(1 + ñc
j + Ṽ c

φj )

−2RoL
−1
υφj } − ε

V 0
θj

Ro

{Ṽ s
φj (1 + ñc

j + Ṽ c
θj ) − Ṽ s

θj (1 + Ṽ c
φj )

−Ṽ c
φj ñ

s
j }

)
njmjR0V

0
φj ≡ R0njmjνnjV

0
φj . (A8)

Appendix B. Generalized diffusion theory

The results of appendix A may be used to write the FSA toroidal
component of the momentum balance (second moment)
equation as
n0

jmjν
0
jk((1 + βj )V

0
φj − V 0

φk) = n0
j ejE

A
φ + ejB

0
θ �rj + M0

φj ,

(B1)
where

βj ≡ ν0
gv j + ν0

⊥j + ν0
anom j + ν0

nj + ν0
elcxj + νion j

ν0
jk

≡ ν∗
dj

ν0
jk

. (B2)

Now, combining the radial and toroidal components of the FSA
momentum balance equations— equations (3) and (B1)–yields
a generalized pinch-diffusion relation for the radial particle flux
of species ‘j ’:
�rj ≡ 〈njVrj 〉 = njDjj (L

−1
nj + L−1

Tj )

−njDjk(L
−1
nk + L−1

T k ) + njVpj , (B3)
where the ‘diffusion coefficients’ are given by

Djj ≡ mjTj (ν
∗
dj + νjk)

(ejBθ )2
, Djk ≡ mjTkνjk

ej ek(Bθ )2
(B4)

and the ‘pinch velocity’ is given by

njVpj ≡ − Mφj

ejBθ

− njE
A
φ

Bθ

+
njmjν

∗
dj

ejBθ

(
Er

Bθ

)
+

njmjf
−1
p

ejBθ

×((νjk + ν∗
dj )Vθj − νjkVθk). (B5)

A sum over the ‘k’ terms is understood when more than two
ion species are present. The quantity f −1

p ≡ Bφ/Bθ .
Subject to the assumption that there is a single impurity

species ‘k’ distributed with the same radial distribution and the
same local temperature as the main ions (j), equation (B3) can
be written as a constraint on the main ion pressure gradient
given by equation (4).
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Appendix C. Multispecies generalized radial
diffusion theory

Since diffusion theory is generally used to describe ion particle
transport in plasma edge codes (e.g. [36, 37]), it is of interest
to compare the radial transport theory implied by the above
relations with the form of diffusion theory commonly used in
the plasma edge codes. Using the generalized pinch-diffusion
relation of equation (B3) in the continuity equation (1), which
governs �rj , yields the coupled set of generalized diffusion
equations that determine the particle distribution in the edge
plasma for ion species ‘j ’, ∇ · Γj = Sj , the radial component
of which can be written for each species in the slab limit
appropriate in the plasma edge

− ∂

∂r

(
Djj

∂nj

∂r

)
− ∂

∂r

(
Djk

∂nk

∂r

)
− ∂

∂r

(
Djj

nj

Tj

∂Tj

∂r

)

− ∂

∂r

(
Djk

nj

Tk

∂Tk

∂r

)
+

∂(njVpj )

∂r
= Sj . (C1)

Again, the ‘jk’ subscript indicates a sum over ‘k’. Note
that the ‘self-diffusion’ coefficient Djj involves all the
momentum transport rates for species ‘j ’ (i.e. atomic physics,
viscous, anomalous, etc as well as the interspecies collisional
momentum exchange frequency for species ‘j ’). There is an
equation (C1) for each ion species in the plasma, and they are
coupled.

The generalized diffusion theory of equation (C1), which
was rigorously derived from momentum balance and the
continuity equation for each ion species in the plasma, is
different in several respects from the usual ad hoc form of
diffusion theory (equation (C1) but retaining only the first
term on the left side) that is commonly used to represent
radial particle transport in plasma edge fluid codes. First,
the diffusion equation for species ‘j ’ depends not only on the
density gradient of species ‘j ’, but on the density gradients for
all other ion species as well. Second, the diffusion equation
for species ‘j ’ depends on the temperature gradients for all ion
species. This implies that, when used in the predictive mode,
the diffusion equations for all the ion densities and the heat
balance equations for all the ion temperatures are coupled and
must be solved simultaneously.

The third major difference is that there is a convection
term with a pinch velocity (equation (B5)) that depends on
the poloidal rotation velocities for all the ion species and on
the radial electric field, the induced toroidal electric field, and
the neutral beam (or any other) external momentum input or
torque. As discussed above, we have found that the pinch
velocity was the dominant term in the pinch-diffusion relation
insofar as the determination of the edge density profile. Thus,
we anticipate that the convective last term on the left in
equation (C1) will have a major effect on the calculation of
the ion particle profile in the edge plasma. This implies that
when equation (C1) is used in the predictive mode, the rotation
equations must also be solved simultaneously with the particle
and heat diffusion equations.
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