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The presence of a large pinch velocity in the edge
pedestal of high-confinement (H-mode) tokamak plas-
mas implies that particle transport in the plasma edge
must be treated by a generalized pinch-diffusion theory,
rather than a pure diffusion theory. An investigation of
extending the numerical solution methodology of the stan-
dard diffusion theory to the solution of the generalized
pinch-diffusion theory has been carried out. It is found
that in the edge pedestal, where the inward pinch velocity

I. INTRODUCTION

The high-confinement (H-mode) edge pedestal, a
steep-gradient region just inside the separatrix over which
the plasma pressure increases rapidly, is an area of in-
tense research interest! because of experimental>~* and
theoretical>® evidence indicating that the performance
of future tokamaks may be strongly linked to the values
of the temperatures and densities at the top of the pedes-
tal. An important aspect of these studies is the develop-
ment of predictive and interpretive capabilities for accurate
modeling of ion transport in the edge. Currently, these
computational efforts center around 1.5-dimensional
(1.5-D) and 2-dimensional (2-D) codes [e.g., ONE-TWO
(Ref. 7), GTEDGE (Ref. 8), ASTRA (Ref. 9), SOLPS
(Ref. 10), and UEDGE (Refs. 11 and 12)], which solve
the plasma fluid balance equations for particle, momen-
tum, and energy balance in one or two geometric dimen-
sions, utilizing 1-dimensional (1-D) or 2-D calculations
of recycling neutral density.

The plasma particle transport analysis in these types
of codes is often based on a purely diffusive model of
particle transport, I' = —DVn, although some codes
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is large in H-mode plasmas, a finer mesh spacing will be
required than is necessary for similar accuracy farther
inward, where the pinch velocity diminishes. An expres-
sion for the numerical error in various finite-differencing
algorithms is presented.

KEYWORDS: pinch-diffusion, edge transport, generalized dif-
fusion equation

have a capability to also represent convective transport.
Here, D is the diffusion coefficient, n is the particle
density, and I is the particle flux. The use of diffusion
theory methodology to interpret diffusion coefficients
from experimental density profiles often produces un-
realistically small values.!® This result prompted an in-
vestigation into the form of the particle transport flux
required by particle and momentum balance,'* which
determined that momentum balance required the ion
radial transport flux to satisfy a pinch-diffusion relation-
ship, I' = —DVn + nV.?"" and not a purely diffusive
relationship, I' = —DVn. Here, V,”"“" is the radial par-
ticle pinch velocity, which is produced by the V X B
force, the radial electric field, and other forces.'* These
investigations'* also found that the convective term
(which includes the particle pinch velocity) in the pinch-
diffusion formalism nearly balances the diffusion term.

Substitution of the pinch-diffusion relation into the
continuity equation leads to a generalized diffusion equa-
tion including diffusive, second-derivative terms and
convective, first-derivative terms incorporating the
pinch velocity.'® This raises the question of modifying
the existing codes mentioned above, most of which are
based on a pure diffusion relation for the radial particle
flux, to solve the generalized diffusion equations for the
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situation in which the nondiffusive “pinch” term is com-
parable to the diffusive term.

The purpose of this paper is to report on a first nu-
merical investigation into the adaptation and extension
of solution methodology that has been developed for the
diffusion equation to solve the generalized diffusion equa-
tion in the situation when the convective pinch term is
comparable with the diffusive term. This 1-D analysis is
relevant to 1.5-D codes directly and provides insight into
the numerics and accuracy for 2-D codes.

1. GENERALIZED PINCH-DIFFUSION EQUATION

The idea that the centrally peaked density profiles
observed in edge-fueled tokamaks are evidence of an
inward particle pinch is as old as tokamak research it-
self,'®!7 and many researchers represent the total radial
particle flux as a diffusive component plus a convective
component (e.g., Ref. 18), using the pinch-diffusion
relation

I' = —DVn + nVpneh (1)

Detailed numerical modeling,'® recent interpretive cal-
culations,?® experimental observations of pedestal den-
sity?! and electron density barrier width expansions in
time between edge-localized modes?? (ELMs) in DIII-D
discharges, and 2-D modeling of edge-diagnostics-
optimized Joint European Torus (JET) discharges?? all
seem to require a strong pinch term to explain. These
findings motivate the present work.

IILA. The Pinch-Diffusion Relation

The pinch-diffusion relation'> used in this work to
describe edge transport was derived in response to the
nonphysical diffusion coefficients inferred from some
experiments with the use of pure diffusion theory. It is a
common practice to determine the values of the diffusion
coefficient by fitting radial density profiles with the purely
diffusive model, resulting in a spatially varying diffusion
coefficient profile. While such a fitting procedure has
provided some insight in the past, it has on occasion led
to nonphysically small values of the inferred diffusion
coefficients and is now recognized as being inconsistent
with momentum balance. Momentum balance require-
ments on the form of an edge transport model mandate
that the particle flux satisfy a pinch-diffusion model.?*

For completeness, we summarize here the develop-
ment of the pinch-diffusion relation and the generalized
diffusion theory.!> Using some simplifying assumptions
about the carbon ion impurity (k) distribution, the toroi-
dal and radial momentum balance equations

nmi (v +va )V ;= Vi Vol

=ne;Ey +ne;ByV, ;+ M, 2)
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and

% 1[E V, .B ! apj] (3)
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can be rearranged to obtain?® a pinch-diffusion relation
for the main ion ( j) radial particle flux:

I'=nV, -

J ALY

b o G ®
J

where

subscripts j, k, e = properties of deuterium, carbon,
and electrons, respectively

m = particle mass

V, = particle toroidal rotation velocity
e = particle charge

By = poloidal magnetic field

B, = toroidal magnetic field

V, = radial particle velocity

Vo

particle poloidal rotation velocity

p = pressure (p = nT)

E, = radial electric field.

The quantity v, ; is a toroidal angular momentum
transfer frequency, which represents the combined effect
of viscosity, inertia, atomic physics, and other “anoma-
lous” processes. Justification for representing these to-
roidal momentum transfer processes in this form is
discussed in Ref. 15. Also, v; 4 is the collisional momen-
tum transfer frequency between deuterium and carbon
ions, which can be calculated using the measured density
and temperature; E, Q is the induced toroidal electric field,
a small term near the separatrix that can be determined
from the measured loop voltage; and My, is the external
momentum input rate, another small term in the edge that
can be calculated using the neutral beam geometry and
power input.

The diffusion coefficient D; and pinch velocity

V,f’;”m terms shown in Eq. (4) are a result of the above

force balance and are defined as such:

m;Tv; Vg e;
/EL’Z<1+_J__’> (5)
' (ejBe)
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The quantity 7 is the particle temperature.

I1.B. Generalized Pinch-Diffusion Equation

Equation (4) for the pinch-diffusive radial particle
flux can be substituted into the time-independent particle
continuity equation for ion species J,

V-IL=V.n,V, =5, , (7)
where S; is the deuterium (j) ionization source rate, to
obtain a generalized pressure diffusion equation'’:

9 [ D; dp; 9 pAVrf’fA"Ch
i B A - S; . (8)
Jar 7} Jar Jar T

J

In these formulations, it has been assumed that the
carbon impurity pressure gradient scale length is the same
as the one for the deuterium main ions. Without this
assumption, there would be diffusive terms with slightly
different coefficients proportional to the carbon density
and temperature gradients present in Eq. (8), and a sec-
ond generalized diffusion equation for the carbon density
would also be required.'>

Equation (8) will be solved numerically for the deu-
terium ion density, using various finite-difference approx-
imations used with diffusion equations and employing
experimental data to evaluate the various terms. We will
then solve Eq. (8) by numerical integration to obtain an
“exact” solution with which to compare, using the same
evaluation of the various terms.

I1l. EXPERIMENTAL DATA

Experimental data were utilized from a DIII-D shot
(#98889) that has been previously investigated (e.g.,
Refs. 13 and 24) in edge pedestal studies. As with any
measured data, there can be both statistical (random)
and/or systematic error in the variable profiles shown
here. Steps have been taken to minimize both types of
error in the data processing that produced the numbers
used in this analysis. To minimize the first type of error,
data values were taken from the same time slot between
consecutive ELMs and averaged. For a detailed discus-
sion of additional error minimization steps, the reader is
directed to Refs. 24 and 25 for an overview of error
mitigation steps and Ref. 26, which details an extensive
FUSION SCIENCE AND TECHNOLOGY
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TABLE 1

Parameters from Shot 98889, an H-Mode
Discharge on DIII-D

Time range 375t04.11 s
Divertor Lower single null
Plasma current 1.2 MA
Toroidal field 201T

Major radius 1.75 m

Minor radius 0.60 m

Beam power 3.1 MW
Electron density 0.4 X 1020 m~3
Poloidal field 022T

Loop voltage 0.04 V/m
Triangularity & 0.135
Elongation « 1.75

error analysis for a DIII-D shot similar to 98889. We
further note that the main comparison of this paper is
between the results obtained with two different numeri-
cal methods, “exact” integration and solution of the gen-
eralized diffusion equation, using the same experimental
data to evaluate parameters, so that any error in experi-
mental data is of secondary importance. The shot param-
eters of shot 98889 utilized for this research are shown in
Table I.

The noncircular geometry of the plasma flux sur-
faces was modeled by an effective circular model, con-
serving flux surface area. The measured data were mapped
poloidally to obtain flux-surface averaged values for com-
parison with calculations. The minor radius of the effec-

tive circular model is 7 = r\0.5(1 + k?), which leads to
an effective minor radius @ = 0.86 m. The circular model
was used to calculate flux-surface averaged quantities at
normalized radii p = 7/a.

The experimental data used in this paper were mea-
sured just above the outboard horizontal midplane. These
data were fitted at 25 points between the separatrix p =
1.0 (F = @ = 0.86 m) and inside of the H-mode edge
pedestal at p = 0.86 (F = 0.74 m) at intervals of 7 =
0.005 m (Ref. 27). When calculations made use of data
points on a finer mesh than this, linear interpolation was
used to define those additional data points.

The fitted density and temperature profiles are shown
in Fig. 1. The deuterium ion temperature was obtained
from the charge exchange recombination®® (CER) spec-
troscopy system installed on DIII-D. Carbon toroidal and
poloidal rotation velocities were also obtained using the
CER system. Figure 2 shows a fit to the measured toroi-
dal and poloidal rotation velocities for the C®* impurity,
along with the calculated poloidal deuterium rotation.
The ion temperature and electron density profiles were
measured by Thomson scattering.

The recycling neutral flux was calculated with the
GTEDGE integrated modeling code® using a 2-D neutral
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Fig. 1. DIII-D shot 98889—fitted temperature and electron den-
sity data between ELMs.
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Fig. 2. DIII-D shot 98889—measured rotation velocity pro-
files for carbon and calculated poloidal rotation veloc-
ity profile for deuterium.

transport calculation coupled to a two-point divertor model
and a core global particle and power balance.

The pinch velocity of deuterium ions was evaluated
from Eq. (6) and the deuterium diffusion coefficient was
evaluated from Eq. (5), using the experimental data and
the calculated deuterium poloidal rotation velocity. The
calculation of the deuterium poloidal rotation velocity is
discussed in Ref. 24. Both quantities are shown in Fig. 3.
The main contributions to the pinch velocity were from
the poloidal deuterium rotation velocity and the radial
electric field terms.
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Diffusion Coefficient and Pinch Velocity
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Fig. 3. DII-D shot 98889—diffusion coefficient and pinch ve-
locity profiles for deuterium calculated from Egs. (5)
and (6).

IV. COMPARISON OF NUMERICAL METHODS

IV.A. Numerical Algorithms for Generalized
Pinch-Diffusion Equation

Numerous sophisticated and well-tested methods of
solving the diffusion equation have been developed and
adapted to calculate particle transport in plasmas. The
major edge-transport codes, such as ONE-TWO, UEDGE,
and SOLPS, have implemented such solution methods
and are structured around them. Given this situation, it
makes sense to investigate if the well-developed meth-
ods for solving the diffusion equation can be adapted to
solve the generalized diffusion equation.

In this first investigation of the matter, the simple
1-D radial generalized pinch-diffusion equation is con-
sidered (in the slab geometry approximation). Equation
(8) is integrated to solve for the density (after dividing
the pressure by the experimental ion temperature), using
three different numerical approximations for the pinch
term as well as using different mesh spacings. Standard
finite-difference approximations are used in the discret-
ization of Eq. (8); the widely used central-difference ap-
proximation is always used with the diffusive term, and
central-, backward-, and forward-difference approxima-
tions are used to evaluate the pinch term. After these
approximations have been implemented, a tridiagonal
matrix solution (Gauss reduction?® or forward elimination /
backward substitution) is employed to solve for the pres-
sure at each point, and the known experimental
temperatures are then used to calculate the density pro-
files. These density profiles are then compared to the
“exact” calculated density profiles to investigate the
FUSION SCIENCE AND TECHNOLOGY
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accuracy of the discretization approximations for the pinch
term.
IV.B. “Exact” Numerical Evaluation of Density Profile

Rearranging Eq. (4) results in an equation that de-
fines the deuterium ion pressure profile,

—1 dp Vi~ Vr{:‘imh
p or B D,

J

: ©)

which may be integrated numerically to obtain the “exact”
density profile when the experimental deuterium ion tem-
perature is used to evaluate n; = p;/T;. To carry out this
calculation, experimental data are used to determine V,;
from Eq. (7), V,f’;"Ch from Eq. (6), and D; from Eq. (5).
Then Eq. (9) is integrated numerically between mesh
points j and j + 1 to obtain the “exact” relation for ad-
vancing the pressure solution between mesh points:

pinch
R A (Vr,j,i+l Vr,j,i+])
Pjiv1 = P i XPT T D
i+ 1

2
(Vrfj,niCh - Vr, j,i) )]
+—| . (10)

D;;
This is termed the “exact” solution because it is the nu-
merical integration of the pinch-diffusion relation. This
solution is the benchmark used in this paper to compare
with the finite-difference methodology solution. Here the
new subscript i indicates the mesh point. This algorithm
was used to advance the pressure inward from the value
at the separatrix, which was taken from experiment, and
the density was then calculated at each point from n; =
p;/T;. The quantity A is the mesh spacing.

IV.C. Data Treatment and Mesh Spacing in the
Numerical Solution

The main purpose of this paper is to investigate the
differences between the “exact” numerical solutions of
Eq. (10) and the solutions of the conventional finite-
difference approximations of the generalized diffusion
equation of Eq. (8), using the same data to evaluate both.
A secondary purpose is to compare both of these solu-
tions with the independently measured density profile.

The data used for this study consist of both measured
and calculated plasma properties averaged over flux sur-
faces at 25 points in the edge of the plasma, ranging from
p = 1.0 inward with a separation of ¥ = 0.005 m between
points. The widely used finite-difference approximations
may be derived from Eq. (8) by making different assump-
tions about the data variation between mesh points.

IV.D. Discretization of the Generalized Diffusion Equation

The central-difference approximation can be derived
by integrating over the interval i — 0.5A <r <i+ 0.5A,
FUSION SCIENCE AND TECHNOLOGY
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treating the data as constant over this interval. The dif-
fusion term is a perfect differential, and this integration
leads to the well-known and widely used central-difference
approximation. Other choices of integration interval lead
to the “forward” and “backward” difference approxima-
tions to the diffusion term.

The pinch term was evaluated at point i in three
different ways. In the forward-difference approxima-
tion, the pinch term was evaluated by representing the
derivative at point i with the forward-difference approx-
imation. The backward-difference approximation was
implemented by representing the derivative of the pinch
term at point i with the backward-difference approx-
imation. In the central-difference approximation, the
derivative of the pinch term was evaluated with the
central-difference approximation.

In each case, the discretized finite-difference repre-
sentation of Eq. (8) is of the form

(aj‘jifl)pifl + (a?ji)pi + (a;k,i+1)pi+l = Si* > (11)

where the definitions of the a), coefficients and the
source term are given by

N _Dj,i _Dj,i—l
-1~ + ’
’ 2A]}’i 2AT,~},~,1
) D; v D;; D; i

a;; = + + +8 ;
20T, ;1 AT, 24T,
_Dj,i+1 + _Dj,i n

i,i+1 2A7}’i+1 ZAY}J Y

S; = Sud - (12)

The «, B, and 7y terms in Eq. (12) depend on the type of
finite-difference approximation used for the pinch term
and are displayed in Table II.

A tridiagonal Gauss reduction matrix solution?’ (for-
ward elimination/backward substitution) can be used to
solve the set of Egs. (11) exactly. A known density sep-
aratrix boundary condition and a zero current inner bound-
ary condition were used.

IV.E. Characteristic Length and Error of
Finite-Difference Approximation

It is instructive to investigate the intrinsic accuracy
of the different finite-difference algorithms by comparing
them with the “exact” solution of Eq. (8) in the absence
of a source.

Solving the source-free pinch-diffusion relation

[Eq. (4)],

1 C.)p] Vr{anh

—— = 13

p; or D; 1)
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TABLE 1T

Definitions of Terms Used in Eq. (12) Grouped by
Finite-Difference Method Used with the Pinch Term

Forward Backward Central
__yy pinch __yy pinch
0 Vr.j,i*l Vr,j,i*l
(%
T 2T,
__yy pinch pinch
B Vr, gl Vr, Jii 0
T T
pinch pinch
Vr,j,i+l 0 Vr,j,i+l
v RS GA— R A—
7}, i+1 2 7}, i+1

results in the “exact” algorithm for advancing the solu-
tion from mesh pointi to i + 1:

pinch
Pji+v1 = Pj,ieAV’{j i (14)
The characteristic length L is defined
L=|D;/V,5"" . (15)

Because of the sharply increasing pinch velocity mag-
nitude in the edge, the characteristic length sharply de-
creases near the separatrix, as shown in Fig. 4.

A source-free version of Eq. (11) can be compared
with the “exact” solution of Eq. (13) to obtain an expres-
sion for the error associated with the various finite-
difference algorithms:
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Fig. 4. DIII-D Shot 98889—deuterium characteristic length
profile [of Eq. (15)] from data in Fig. 3.

error = —| —
2\L

( 1A
1——-——+... backward difference
3L
X {1 central difference
1A
1+ —-—+... forward difference .

(16)
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(b)

Fig. 5. DIII-D Shot 98889—(a) error of backward-difference approximation [see Eq. (11) and Table II] for various mesh spacings.
(b) Enlarged variant of Fig. 5a showing the differentiation between the error profiles of the three finite-difference
approximations near the separatrix. This differentiation is difficult to discern at mesh spacings smaller than 0.25 cm.
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Equation (16) gives an approximation of the differ-
ence between the “exact” numerical integration of the
pinch-diffusion relation and the numerical solution of the
generalized diffusion equation using the finite-difference
approximations. It is meant to represent error inherent in
using the finite-difference approximations to solve the
generalized diffusion equation rather than using the
“exact” numerical integration to the pinch-diffusion re-
lation. It is not a measure of either solution method’s
deviation from experimental profiles, but a measure of
the deviation of the finite-difference method solution from
the “exact” numerical solution.

The errors predicted by Eq. (16) are plotted in Figs. 5a
and 5b for different choices of the finite-difference algo-
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rithm and mesh spacing, showing the error of the back-
ward difference as the lowest, then the central difference,
then the forward difference. The error is very sensitive to
the local value of the characteristic length L, as can be
seen by comparing Figs. 4 and 5a, and to the value of the
mesh spacing. Clearly, a small value of A/L is required
for precision when solving the generalized diffusion equa-
tion using the finite-difference approximations. The error
is not sensitive to the finite-difference algorithm except
when A/L approaches unity, which it does for the larger
mesh spacings just inside the separatrix. This depen-
dence is shown in detail in Fig. 5b. At smaller mesh
spacings, below 0.25 cm, the differences among the finite-
difference algorithm results are small, and these mesh
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Fig. 6. DIII-D Shot 98889—results of the numerical calculation showing the solutions from the three finite-difference solution
methodologies, the “exact” exponential solution, and the experimental density for reference purposes, at different mesh

spacings.
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spacings are not shown in Fig. 5b. The backward-
difference error shown in Fig. 5a can be taken as roughly
representative of the error of the central- and forward-
difference algorithms for these smaller mesh spacings.
The implication is that for a fixed mesh spacing A the
error becomes larger in the edge where the pinch velocity
becomes larger, so that a variable mesh with finer spac-
ing in the edge is required to obtain a comparable accu-
racy at all locations.

V. COMPARISON OF NUMERICAL SOLUTIONS

The solutions obtained by solving the finite-difference
generalized diffusion Eqs. (11) are compared with the
“exact” numerical integration of Eq. (9) given by Eq. (10)
in Fig. 6, for different choices of the mesh spacing and the
finite-difference algorithm. The measured ion density is
also shown in Fig. 6. Itis clear that reducing the mesh spac-
ing improves the agreement of the solution of the gener-
alized diffusion equation with the “exact” numerical
integration of Eq. (9), as would be expected from the fact
that the error ~ (A/L)? is reduced as the mesh spacing is
reduced. This mesh spacing dependence is shown in Fig. 7.
The differences between the solutions corresponding to
the different finite-difference algorithms also decrease with
decreasing mesh spacing, as predicted by Eq. (16). These
differences in the solutions of the generalized diffusion
equation relative to the “exact” solution are consistent with
the error analysis displayed in Fig. 5b.

It should be noted that the generalized diffusion equa-
tions are solved with a fixed experimental boundary con-

Mesh Spacing Comparison
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Fig. 7. Results of the numerical calculation using the backward-
difference methodology, along with the “exact” expo-
nential solution profile and the experimental profile for
reference. This illustrates sensitivity of the numerical
results to smaller mesh spacing.
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dition at p = 1.0 on the right and that there is a large error
(up to ~50%) in the generalized diffusion solution just
inside the separatrix, as shown in Fig. 5a. This error
causes an overprediction of the solution just inside the
separatrix, which then propagates inward even though
the error in the solution propagation algorithm is much
less farther inside the separatrix. This effect of the error
magnitude just inside the separatrix on the solution over
the entire pedestal is illustrated in Figs. 5a and 7.

In this work, an investigation is carried out into the
use of finite-difference methodology to solve the gener-
alized diffusion equation. The difference between the
solution of the generalized diffusion equation using finite-
difference methodology and the solution to the pinch-
diffusion relation using “exact” exponential methodology
is the error inherent in the finite-difference numerical
methodology. Aside from the error inherent in non-
“exact” solution methodology, there are inaccuracies in
diffusion theory, assumptions made for the model, data
measurement and processing error, etc. This additional
error is what differentiates even the “exact” solution and
converged finite-difference methodology solutions from
the experimental values. However, this deviation is not
the focus of this paper, and the experimental ion density
profiles (electron densities measured by Thomson scat-
tering and corrected for the measured carbon impurity
density) are shown along with the results only to serve as
a familiar reference.

These differences between the “exact” numerical so-
lution and the experimental density must be attributed to
remaining inaccuracies in the evaluation of the experi-
mental values for the parameters used to solve Eq. (9) (most
likely the determination of deuterium poloidal velocity con-
tributes a large part of this discrepancy) and to the use of
a slab model for the calculation. The assumption that the
carbon and deuterium logarithmic pressure gradients are
the same, made in deriving Eq. (9), is not thought to con-
tribute significantly to the error shown in Fig. 6.

VI. SUMMARY AND CONCLUSIONS

The large pinch velocity in the plasma edge of H-mode
tokamak plasmas requires that a pinch-diffusion relation
for the particle flux be used in order to satisfy momentum
balance, which leads to a generalized diffusion theory
with a pinch term. The ability to represent and solve this
generalized diffusion equation, using the same type of
finite-difference approximations and solution algorithms
used with the standard diffusion theory finite-difference
algorithms employed in major plasma edge codes, has
been investigated numerically. The error in the standard
finite-difference representation of the generalized diffu-
sion equation was shown to be ~ (A/L)3, where A is
the mesh spacing and L = |D,/ V,{’;”"h\ is the character-
istic length. This error was shown to be quite large just
inside the separatrix, where L becomes small because
FUSION SCIENCE AND TECHNOLOGY
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the pinch velocity becomes large, which can cause an
error in the density solution that propagates into the
pedestal region unless the mesh spacing is sufficiently
small just inside the separatrix. The implication is that a
variable mesh spacing should be used for solving the
generalized diffusion equation in the plasma edge, with
finely spaced mesh just inside the separatrix where the
pinch velocity is large. Making use of such a variable
mesh spacing, it should be possible to extend existing
diffusion theory codes to solve the momentum balance
equation to correctly represent particle transport in the
edge pedestal so as to satisfy momentum balance.
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