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Introduction 
 

 Modern tokamak design requires an in depth understanding of the theory and 

application behind the interaction of RF waves and the ionized particles in a plasma. 

Plasma wave interaction in a tokamak is normally divided into three main categories; RF 

heating, current drive, and plasma diagnostics.  

In RF heating, wave energy is transferred to particle motion exploiting the wave-

particle resonances in a plasma, selectively heating electrons or ions. By providing 

external heating the Hugill disruption limit (Stacey fig. 18.1) may be extended allowing 

for higher densities and fusion rates.  

Rf current drive transfers organized momentum to the plasma in order to induce 

toroidal currents that generate the poloidal containment field. In modern tokamaks, the 

requirement of sustaining continuous currents without continuously increasing the current 

through the central solenoid, can be accomplished by using RF waves to induce currents 

in the plasma. This can be accomplished by landau damping or by selectively heating 

electrons or ions traveling an a specific direction, reducing their cross section and 

inducing a net current. 

The temperature and density of a given plasma can be determined by probing the 

plasma with RF waves, and subsequently determining resonances, cutoffs and phase shift, 

or by passively observing the emitted RF radiation due to oscillations in the plasma.  

 While it is possible to solve the standard problems of plasma physics with the 

boxed equations, a thorough understanding of the subject requires the understanding of 

the basic physics behind the interactions between electromagnetic waves and particles. 

Such an understanding can be gained by working the derivations to gain insight into the 

fundamental nature of plasma waves and understanding the limits of resonance and cutoff 

for each type of wave. Such derivations and analysis are covered in the following paper. 
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a) Electromagnetic Waves 
 

From Maxwell’s Equations we have the following curl identities: 

(1.1)  0 2

1 E
B j

c t
µ

∂
∇× = +

∂
 

(1.2)  
B

E
t

∂
∇× = −

∂
 

Differentiating on both sides of the magnetic field curl equation: 

(1.3)  [ ]
2

0 2 2

1B j E
B

t t t c t
µ

∂ ∂ ∂ ∂
∇× = ∇× = +

∂ ∂ ∂ ∂
 

Substituting in 
B

t

∂

∂
 from the electric field curl equation: 

(1.4)  
2

0 2 2

1j E
E

t c t
µ

∂ ∂
−∇×∇× = +

∂ ∂
 

Using the double curl identity ( )2
E E E∇×∇× = ∇ − ∇ ∇i  

(1.5)  ( )
2

2

0 2 2

1j E
E E

t c t
µ

∂ ∂
∇ ∇ − ∇ = − −

∂ ∂
i  

 

Defining current generated by a species in a plasma as: 

(1.6)  j v n e vσ σ σ σ σ
σ

ρ= =∑  

 

The plasma force balance equation is then used to solve for vσ  

(1.7)  ( )m n v v p n e E v B
t

σ σ σ σ σ σ σ σ

∂ 
+ ∇ = −∇ + + × 

∂ 
i  

Using the cold plasma approximation there are no net particle flows, since electrons 

scatter off ions and travel around them with out imparting significant momentum, we 

consider there to be no pressure gradients. Since the plasma is unmagnetized, there is 

no Lorenz force. 

(1.8)  m n v
t

σ σ σ

∂
+ ∇

∂
i v pσ σ

 
= − ∇ 

 
n e E v Bσ σ σ+ + ×( )  

The force balance equation reduces to 

(1.9)  
v e

E
t m

σ σ

σ

∂
=

∂
 

 

Now 
j

t

∂

∂
 can be found from the force balance 

(1.10)  
2

v n ej
n e E

t t m

σ σ σ
σ σ

σ σ σ

∂∂
= =

∂ ∂
∑ ∑  

 



 4 

Plugging 
j

t

∂

∂
 into the dispersion relation 

(1.11)  ( )
2 2

2

0 2 2

1n e E
E E E

m c t

σ σ

σ σ

µ
  ∂

∇ ∇ − ∇ = − − 
∂ 

∑i  

 

Assuming waves of the form 

(1.12)  ( )exp i k r tω−  i  

The Helmholtz wave equation can be used to specify 

(1.13)  2 2
E k E∇ = −  

(1.14)  ( ) ( )E k k E∇ ∇ = −i i  

and solving for 

(1.15)  
2

2

2

E
E

t
ω

∂
= −

∂
 

 

The general form of the plasma dispersion relation is found to be 

(1.16)  ( )
22

2

02

n e
k k E k E E E

c m

σ σ

σ σ

ω
µ
 

− + = −  
 
∑i  

 

Simplifying the dispersion relation for several cases 

 

For a longitudinal wave, k E�  

(1.17)  ( ) 2
k k E k E=i  

(1.18)  
22

02

n e
E E

c m

σ σ

σ σ

ω
µ
 

=  
 
∑  

(1.19)  
2

2 2

0

1
p

n e

m

σ σ

σ σ

ω ω
ε

 
= ≡ 

 
∑  

 

A longitudinal plasma wave oscillates at the fundamental electron plasma frequency 

and propagates by the electrostatic interactions of the plasma electrons. The longitudinal 

wave is carried by electron density fluctuations and is at higher frequency then the ion 

sound wave. In this limit, the ions appear virtually stationary to the electrons, and no 

pressure gradients are induced. The longitudinal plasma wave has no resonances or 

cutoffs. 
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For a transverse wave, k E⊥  

(1.20)  k k E− i( )
22

2

02

n e
k E E E

c m

σ σ

σ σ

ω
µ
 

+ = −  
 
∑  

(1.21)  
2

2 2 2

0

1 n e
c k

m

σ σ

σ σ

ω
ε

 
= −  

 
∑  

(1.22)  2 2 2 2

pc kω ω= +   

 

A transverse electromagnetic wave propagates through a plasma like a light wave through 

free space, however the presence of the plasma imposed a correction on wavelength 

based on plasma density. 

 
 

The transverse plasma wave has no resonances but has a cutoff when the wave 

frequency is below the plasma frequency. As the wave propagates into higher density 

region, the wavelength increases until propagation vector 2 /k π λ=  is forced to zero, 

thereby reflecting the wave back out of the plasma. If the cutoff region is sufficiently thin, 

it is possible that part of the wave will evanescently couple through the cutoff region and 

resume in an area of lower density, however, part of the wave will still be reflected. 
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b) Ion sound waves 
 

To find the effect of propagating pressure waves in a plasma, we take waves to be of the 

form 

(1.23)  ( )exp i k r tω−  i  

Expanding the position variable about its equilibrium position 

(1.24)  ( ) ( ) ( )0 1, ,x r t x r x r t= +  

 

The pressure balance equation now is approximated as 

(1.25)  
i i i i i i im n v v v n eE p

t

∂ 
+ ∇ = − ∇ 

∂ 
i  

Taking 

(1.26)  ( ) ( )0 1 0, exp
i

v r t v v v A i k r wt= + = + −  i  

 

Using the cold plasma approximation there are no net particle flows, however in this 

case the ions carry the momentum of the wave and oscillate generating pressure gradients. 

Using poisons equation to equate E to the potential  

(1.27)  
i i i i im n v v v

t

∂
+ ∇

∂
i i in e pφ

 
= − ∇ − ∇ 

 
 

(1.28)  0 1 0 1i i i i i
i m n v n eik ikpω φ− = − −  

 

Using the adiabatic gas relation 

(1.29)  
0 0

p n

p n
γ=  

(1.30)  0 0
1 1

0 0

i i i J

p p
p n kT T

n n
γ= ⇒ = =  

 

The pressure balance equation is now 
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(1.31)  0 1 0 1i i i i i i i
i m n v n eik T iknω φ γ− = − −  

 

Solving the pressure equation, we need to know potential as a function of density and 

temperature. 

For electrons assume a Boltzman distribution 

(1.32)  0 expe e

e

e
n n

T

φ 
=  

 
 

Using he Taylor expansion for exp() 

(1.33)  1
0 1e e

e

e
n n

T

φ 
= + 

 
 

(1.34)  1
1 0e e

e

e
n n

T

φ 
=  

 
 

 

From Poisson’s equation 

(1.35)  ( ) 2

0 0 1 0 1E ik kε ρ ε φ ε φ∇ = = − ∇ =i i  

(1.36)  ( )2

0 1 1 1i ek e n nε φ ρ= = −  

Substituting in electron density 

(1.37)  
2

0 1 1
1 0i e

e

k e
n n

e T

ε φ φ 
= −  

 
 

and solving for 1in  

(1.38)  
2

0
1 0 1i e

e

ke
n n

T e

ε
φ

  
= +  

  
 

 

Solving the ion continuity equation 

(1.39)  ( ) 0i
i i

n
n v

t

∂
+ ∇ =

∂
i  

and linearizing by removing higher order terms  

(1.40)  0 1 1 1
i

i i i i

n
n v n v

t

∂
+ ∇ +

∂
i( ) 0=  

(1.41)  0 1 0 1
i

i i i i

n
n v v n

t

∂
+ ∇ + ∇

∂
i i 0= v 

(1.42)  1 0 1i n n ikvω =  

 

Now substituting in the expressions for second order terms and canceling out like terms 

(1.43)  i− 0i im nω
i 1inω

0in i

0ien i

k
= −

1ik n

2

0
0

i i

e

e

T i
ke

n
T e

γ
ε

−
  

+  
  

1ik n  
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(1.44)  
2

0

2 2

0
0

i i i i

i

e

e

en m T

k mke
n

T e

γω

ε
= +
  

+  
  

 

(1.45)  

2

2 0

2

0

1

e i i i

ie

i

T m T

k mT
k

n e

γω

ε

 
= + 
  

+ 
 

 

 

Ion sound wave dispersion relation 

(1.46)  

2

21

e i i i

id

T m T

k mk

γω

λ

 
= + 
 +   

  

(1.47)  2 2 2 2

21

e i i i
s

id

T m T
k k v

mk

γ
ω

λ

 
 = + =
 +   

 where Vs is the ion sound speed 

The ion sound wave is a longitudinal plasma wave that travels at the ion sound speed Vs 

by means of electrostatic interactions between plasma ions. The ion sound wave exists at 

much lower frequency then the longitudinal plasma  wave. In this limit electrons move 

around ions much faster then the wave speed, thereby reestablishing electrostatic 

equilibrium. The ion sound wave travels by pressure waves, with ions contributing the 

majority of available mass and momentum. The ion sound wave has no resonances 

however at sufficiently high frequencies ion sound waves will not propagate due to 

the ions high mass. 

 

 

 

 

II. Waves in a uniformly magnetized plasma 
 

I. Electromagnetic waves 
With a uniform magnetic field directed along the Z axis the pressure balance equation is 

(2.1)  m n v
t

σ σ σ

∂
+ ∇

∂
i v pσ σ

 
= − ∇ 

 
( )n e E v Bσ σ σ+ + ×  

(2.2)  ( )
v

m e E v B
t

σ
σ σ σ

∂
= + ×

∂
 

(2.3)  
e e

E i v v B
m m

σ σ
σ σ

σ σ

ω= − − ×  

 

Defining 

(2.4)  ˆB Bz B Bδ= ⇒ =U UZ

�
 

(2.5)  
eB

m
σ

σ

Ω =  
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Using Einstein implicit summation, a general form of the wave equations may be found. 

Given that: 

(2.6)  [ ]v B ijk j ki
v Bε× =  

(2.7)  
1

0
ij

i j

i j
δ

→ =
= 

→ ≠
 

(2.8)  

1 ijk=xyz, yzx, zxy

1 ijk=yxz, zyx, xzy

0 for repeated index

ijkε

→


= − →
 →

 

 

 

In a general form, using indices STU: 

(2.9)  
e e

E i v v B
m m

σ σ

σ σ

ω ε δ= − −
S STU T U UZs

 

 

The individual components may now be written as 

(2.10)  
x x y z x y

e e
E i v v B i v v

m m

σ σ

σ σ

ω ω= − − × = − − Ω  

(2.11)  
y y x z y x

e e
E i v v B i v v

m m

σ σ

σ σ

ω ω= − + × = − + Ω  

(2.12)  
z z

e
E i v

m

σ

σ

ω= −  

 

Solving for velocity components to find currents 

Solving for Vy 

(2.13)  

y x

y

e
E v

m
v

i

σ

σ

ω

− Ω

= −  

And substituting it into the Vx relation 

(2.14)  

y x

x x

e
E v

e m
E i v

m i

σ

σ σ

σ

ω
ω

− Ω

− = − Ω  

(2.15)  
2

yx
x x

e Ev e
i v E

i m m i

σσ

σ σ

ω
ω ω

−
Ω

− − = Ω  

(2.16)  
2

y

x x

Ee
v i E

i m i

σ

σ

ω
ω ω

−
Ω  Ω

− − =   
   

 

(2.17)  
2 2 2

y

x
x y

x

E
E i E Ee eiiv

m i m
i

i

σ σ

σ σ

ωωω
ω ω

ω
ω

−
−

Ω 
  Ω  

= =    
Ω − Ω    − − 
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Now solving for jx 

Current Density 

(2.18)  
2

2 2

x y

x

i E Ene
j n e v

m

σ
σ σ σ

σ σ σ

ω

ω

− Ω 
= =  

− Ω 
∑ ∑  

Likewise 

(2.19)  
2

2 2

y x

y

i E Ene
j n e v

m

σ
σ σ σ

σ σ σ

ω

ω

− Ω 
= =  

− Ω 
∑ ∑  

(2.20)  
2

z
z

ne E
j n e v

m i

σ
σ σ σ

σ σ σ ω
= =∑ ∑  

 

Knowing j, the dispersion relation can be solved from Maxwell’s equations 

(2.21)  ( )
2

2

0 2 2

1j E
E E

t c t
µ

∂ ∂
∇ ∇ − ∇ = − −

∂ ∂
i  

(2.22)  ( )
22

2

02 2 2

x y
i E Ene

k k E k E E
c t m

σ

σ σ

ωω
µ

ω

− Ω  ∂
− + = −   

∂ − Ω  
∑i  

(2.23)  ( )
22 2

2

0 2 2 2

x y
iE Ene

E k k E k E
m c

σσ

σ σ σ

ωω ω
µ

ω

+ Ω
− = −  − Ω 

∑ i  

(2.24)  ( )
2 2 2

2

2 2 2 2 2 2

0

1
x y

ine
E E E k k E k E

c m c

σ σ

σ σ σ σ

ωω ω

ε ω ω
+

 Ω
− = − 

− Ω − Ω 
∑ i  

(2.25)  ( )
2 2

2 2 2

2 2 2 2

0

x y

ine
E E E c k k E k E

m

σ σ

σ σ σ σ

ωω
ω

ε ω ω
+

 Ω
 − = −   − Ω − Ω 

∑ i  

(2.26)  ( )
2 2 2

2 2 2

2 2 2 2

p p

x y
iE E E c k k E k E

σ

σ σσ σ

ωω ω ω
ω

ω ω

Ω
 + − = − − Ω − Ω

∑ ∑ i  

(2.27)  ( )
2 2 2

2 2 2 2

2 2 2 2
0

p p

z x y x z zic k E E c k k E
σ

σ σσ σ

ωω ω ω
ω

ω ω

   Ω
− + + − =      − Ω − Ω   

∑ ∑  

Likewise for the other components 

(2.28)  

2 2 2

2 2 2

2 2 2 2
0

p p

x yi E c k E
σ

σ σσ σ

ωω ω ω
ω

ω ω

   Ω
− + − + =      − Ω − Ω   
∑ ∑  

(2.29)  ( )2 2 2 2 2 0
x z x x p z

c k k E c k Eσ
σ

ω ω
 

− + − + = 
 

∑  

 

For waves with k B⊥ , E B�  and 0
x y

k k= =  

(2.30)  2

x
c k− ( ) 2 2

z x x
k E c k+ 2 2 0

p z
Eσ

σ

ω ω
 

− + = 
 

∑  

 

O-mode resonance 
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(2.31)  2 2

pσ
σ

ω ω=∑  O-mode resonance for linearly polarized waves 

 

The O mode resonance occurs for a linearly polarized wave traveling 

perpendicular to the magnetic field with electric field parallel to the magnetic field. In 

this mode, the plasma ions or electrons are excited along the field line at their 

fundamental oscillation frequency. This excitation is exactly the same as in an 

unmagnetized plasma since the particle motion is parallel to the magnetic field, 

eliminating any Lorenz force interaction. 

 
 

For waves propagating along B, v B� and 0
x

k =  

(2.32)  

2 2 2

2 2 2 2

2 2 2 2

p p

z x y xic k E E c k
σ

σ σσ σ

ωω ω ω
ω

ω ω

   Ω
− + + −      − Ω − Ω   

∑ ∑ ( ) 0z zk E =  

(2.33)  

2 2
2 2 2

2 2 2

2 2 2 2
0

p p

z
c k

σ

σ σσ σ

ωω ω ω
ω

ω ω

   Ω
− + − =      − Ω − Ω   

∑ ∑  

(2.34)  

2 2 2

2 2 2

2 2 2 2
0

p p

z
c k

σ

σ σσ σ

ωω ω ω
ω

ω ω

Ω
− + ± =

− Ω − Ω
∑ ∑  

(2.35)  

( )( )

( )
2

2 2 2

2 2
0

p

zc k

σ σ

σ
σ σ

ω ω

ω ω
ω ω

ω

+Ω −Ω

− + ± Ω =
− Ω

∑
�����

 

 

X-mode resonance 

 

(2.36)  
( )

2

2 2 2 0
p

zc k
σ σ

ω ω
ω

ω
− + =

± Ω
∑   X-mode resonance for CP wave 

The X mode resonance occurs for a circularly polarized wave traveling along the 

magnetic field. At resonance the rotating electric field accelerates the electrons or ions at 

their gyro frequency as they are guided in a circular path around the magnetic field lines.. 
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For 
x y

iE E= ±  this corresponds to the x-mode cyclotron resonance for a circularly 

polarized wave. The CP wave will penetrate the plasma for  k>0 given by 

(2.37)  
( )

2

2 p

σ σ

ω ω
ω

ω
>

± Ω
∑  

 

For waves with k B⊥  and 0
x y

E E= =  the dispersion relations are 

(2.38)  2 2 2 2

x p
c k σ

σ

ω ω= +∑  

 

Transverse wave with k B⊥  and 0
x y

E E= =  

 
 

 

II. Hybrid Waves 
 

Hybrid waves are combinations of longitudinal and transverse waves with k B⊥ . 

They are a hybrid of two frequencies, one relating to the ion cyclotron frequency and one 

relating to the fundamental plasma frequency. 
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(2.39)  

2
2

2 22 2

2 2 2

2 2 2

2 2

0

1

p

p

p

c k

σ

σ σ

σ σ

σ σ

ω

ωω ω
ω

ω ω

ω

 Ω
  − Ω = − − =

− Ω  
−  − Ω 

∑
∑

∑
 

Which has resonances at 

(2.40)  

2

2 2
1 0

p

σ σ

ω

ω
− =

− Ω
∑  

The upper hybrid resonances are given by 

(2.41)  2 2 2

pe σω ω= + Ω  

and the lower hybrid resonances 

(2.42)  

2

2

2 2

pi

pe e

σω
ω

ω

Ω
=

+ Ω
 

If 
pe e

ω Ω≫  the lower hybrid resonance is approximately 

(2.43)  2

LH e iω ≈ Ω Ω  

 

III. Heating and Current Drive 

a) Fast Ions 

Neutral beam injection involves the shooting of a high energy beam of neutral atoms into 

the plasma to ionize the neutrals, and cause the resulting fast ions lose their energy to the 

plasma through kinetic and electromagnetic interaction.   

i. Collisions with Plasma Electrons 

The momentum balance between the fast ions and electrons, assuming a Maxwellian 

distribution, is  

(3.1)  ( ) υυ
υ 3

df
dt

d
m

dt

d
Mn eebb ∫−=

V
      

The equation of motion for the average electron velocity is  

(3.2)  ( )V−−= υυ
υ

eb
dt

d
        

where  

(3.3)  322

0

42

4

ln

V−

Λ
=

υπε
υ

e

bb
eb

m

eZn
       

Substituting 41 into 39 yields 42 
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(3.4)  
V

I

V

VV

∂

∂Λ
−=

−

−Λ
= ∫

be

b
e

be

b

Mm

eZ
df

Mm

eZ

dt

d
2

0

42
3

32

0

42

4

ln

4

ln

πε
υ

υ

υ

πε
  

with  

(3.5)  ∫ −
−=

V
V

υ

υ3
)(

df
I e         

    

This integral is evaluated using a isotropic velocity space distribution to show 

(3.6)  V
V

2

3

2

0

42

12

ln2

eb

ebe

TM

meZn

dt

d

εππ

Λ
−=       

Because the frictional drag of the electrons on the fast ions varies as 2

3
−

eT , taking the 

scalar product of 45 with MbV gives the fast ion energy reduction rate. 

(3.7)  
eb

b
b

b

ebeb W
W

M

meZn

dt

dW

τεππ
−≡

Λ
−=

2

0

42

6

ln2
      

The same process is followed to find the rate at which fast ion energy is reduced due to 

plasma ions.  These terms can be combined to show the slowing down of the fast ions by 

plasma electrons and ions (12.33) 

(3.8)  
















+
Λ

−=
2

1

2

32

0

42

6

ln2

be

b

b

ebeb

W

C

T

W

M

meZn

dt

dW

εππ
     

where  

(3.9)  

ie

b

mm

ZM
C

2

1

2

3

2

1

4

3π
=           

The two terms are equal when the fast ion energy has a “critical” value (12.34) 

(3.10)  193

2

, ≈= C
T

W

e

critb          

 

b) Electromagnetic Waves 

i. Wave Propagation 
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The plasma model based on the cold plasma approximation as detailed previously can be 

used to discuss in-plasma propagation of the electromagnetic waves used for heating and 

current drive.  Based on Maxwell’s equations and the usual exponential wave field 

representation, we arrive at a representation for the dielectric tensor 

(3.11)  EjEEkk •=







+=××− ε

ω

ω

εω 	
2

2

0

2
c

i

c
      

which is detailed in-depth in the section on the dispersion matrix representation.  Using 

0

2

0 εµ =c , we can represent the refractive index as [ ]wcn /k= , allowing the cold plasma 

dispersion relation to be written as 

(3.12)  ( )( )[ ] ( )[ ] 0222224 =+−+++−− ⊥⊥⊥⊥⊥⊥ xyllllxyllll nnnn εεεεεεεε    

where B0 is in the z-direction and x and y are normal to z (in a tokamak, x, y, and z refer 

to the radial, poloidal, and toroidal directions in a tokamak. The perpendicular and 

parallel refractive indexes are defined with respect to the z-direction of the equilibrium 

magnetic field, ω/// llcll kn ⊥⊥ =  

   

The wave will only propagate in the plasma (and therefore be useful for heating and 

current drive) if 02 >⊥n .  Using this, we solve the dispersion relation for 2

⊥n at various 

radii of the plasma using the local parameter values.  For certain values of plasma 

parameters density and magnetic field, and the wave frequency being injected, ∞→⊥n , 

indicating a wave frequency absorption by the plasma.  At other values, 0→⊥n , 

indicating a cutoff region where the wave is reflected.  Beyond the cutoff surface is the 

evanescent region where the wave will decay exponentially with radial position.  

However, if conditions support wave propagation beyond the evanescent region, the 

wave will “tunnel through” the region, and continue propagating.   

ii. Wave Heating Physics 

x. n┴ 

y 
z, Bo, nll 
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Resonance frequencies, corresponding with the frequencies found above in Eqs. 31, 36, 

and 37 include the Ion Cyclotron resonance (ICRH), the Lower Hybrid resonance(LH), 

and the Electron Cyclotron resonance (ECRH).  

The ICRH is the ion-ion resonance with wave frequencies in the 30 MHz to 120 MHz 

range.  A density limit makes the outer plasma regions evanescent for the ICRH wave, 

but upon “tunneling through” the evanescent region, it propagates well in the plasma 

interior.  The Lower Hybrid is the combination ion and electron cyclotron frequency 

resonance with wave frequencies in the 1 GHz to 8 GHz range.  The ECRH resonance is 

the upper hybrid frequency with frequencies in the 100 GHz to 200 GHz range.  The 

ECRH wave has complicated requirements for propagation dependent on factors 

including the side from which the wave is launched and the mode of the wave, either X or 

O. 

iii. Current Drive 

While LH waves are not very successful at plasma heating, they have proven excellent at 

driving plasma current.  In order to drive this current, the LH waves are launched with a 

well defined phase velocity along the magnetic field chosen to resonate with 100 keV 

electrons.  When the electrons’ energy is increased by absorbing wave energy via Landau 

damping, they become less collisional and lose momentum at a reduced rate.  This drives 

current because the electrons are no longer in equilibrium because of the lower 

momentum loss.  The same effect occurs in electrons heated by the ECRH wave, but with 

a lower effectiveness.  A figure of merit for current drive efficiency is  

(3.13)  ( )12

2010

−−= AWm
n

P

RI e
CDγ         

So far, LH current drive is the most efficient method. 

 

IV. Dispersion matrix for a magnetized plasma 
 

The current densities in a plasma can be represented in an alternate notation by using 

Ohm’s law to represent the current densities in matrix notation. 

 

(4.1)  j qvn Eσ= =  

(4.2)  
j

E
σ =  

In a magnetized plasma with ˆB Bz=
	

: 
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Splitting up the x,y,z components of the electric field we can represent the current 

in the form of the conductivity tensor. Note that the X and Y components of the current 

densities(orthogonal to the magnetic field) represent the cyclotron motion, while the Z 

component(parallel to the magnetic field) represents linear oscillations at the fundamental 

plasma frequency. 
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This can be modified into the dielectric tensor using the definition of susceptibility 

(4.7)  ( )01/ iχ ωε σ= −    

and that of the dielectric constant 

(4.8)  1ε χ= +  

(4.9)  
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the dielectric tensor can be written as 
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Defining the fundamental plasma frequency as 
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(4.12)  
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Defining 
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The dielectric tensor (Stacey Sect. 12.4.1.1) can now be simplified to 

(4.16)  
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where S and D stand for sum and difference of the R and L hand circular polarizations 
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The cold dispersion relation is written in terms of the refractive index terms 

(2.64)  
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The plasma is assumed homogenous in the parallel direction. 
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Assuming the plasma conductivity is infinite in the parallel direction, or taking the zero 

electron mass limit implies that the parallel electric field cannot penetrate the plasma.  

Taking this limit in 69 we arrive at   
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The other components of the fast wave field follow from Maxwell’s equation 

EB ×∇=ωi . Eliminating Ex from 12, we obtain the fast wave equation 71 and 72 
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V. Antenna Arrays 
 

c) Use of arrays 
In a tokamak Plasma is heated by launching an RF wave into the plasma at the given 

polarization, direction, and frequency. The RF wave is transferred to the tokamak from a 

generator using coaxial cable or waveguides, however to launch the wave, an antenna 

must be used to effectively couple the cable or waveguide to free space or the plasma 

within the reactor. 

For high frequencies, a feed horn is used at the end of the waveguide to launch and 

direct the wave. While the horn antenna is capable of easily directing an RF wave at an 

angle, lower frequency antennas such as a dipole or inductive strap(loop) radiate omni 

directionally, preventing efficient current drive.  

A strap antenna, is positioned near the surface of the first wall of the tokamak, near 

the plasma vacuum interface, however this type of antenna would normally radiate omni 

directionally. At any given point in space, the phases of the RF wave emitted from each 

element in the antenna array will interfere, either constructively or destructively, 

governing the intensity of the RF power radiated in a given direction. By properly 

adjusting the spacing and drive phases of the individual elements, the array can launch an 

RF wave at any required angle. 

 

d) Array factor calculations 
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For a set of elements with spacing |R-Rn| 
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For a given element: 
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Summing over all elements 
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where ( )' , ,E r θ φ  is the radiation pattern of a single element. 
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where 

2
k

π

λ
=  

ζ = phase shift between elements 

d= element spacing 

θ = polar angle about array length 
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Using the identity 
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(5.9)  
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Array factor magnitude 
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Azimuthal array factor pattern 

 

The radiation pattern generated is the product of the array factor and the individual 

element pattern.  

 

 



 22 

NTSX strap antenna array; 6 elements (Courtesy of Dept of Phys, Princeton 

University) 

 

In this case a set of 3 strap antennas on the wall of a tokamak can direct the RF 

into a narrower beam pointing directly inward, or by adjusting the phases of the array 

elements, can direct the beam at an angle with respect to the wall. 

 
Single element pattern vs array pattern 

 

VI. Ion Cyclotron, Lower Hybrid and Alfven Wave 

Heating Methods 

 
a) Ion Cyclotron Heating 

 
i. Introduction 

 

Collisional frequencies of plasma are small, and for a JET type machine, the gyration 

time for a cyclotron gyration is very short.  The gyroradii of the ions and electrons is 

small compared to the plasma size.  This implies that the plasma is nearly non-collisional 

 

Parameter  

Electron coll. Freq. ve 10kHz 

Ion coll. Freq. vi 100 Hz 

  

Parameter Value in JET-like plasma  

R0 3 m 

ap 1.5 m 

Electron gyroradius .05 mm 

Ion gyroradius 3 mm 

Electron MFP/toroidal rev. 3 

km/150 

Ion MFP/ toroidal rev. 5 
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km/250 

 

Typical ICH system parameters  

Frequency 10-100 MHz 

Power 2 MW/strap 

Voltage 10-50 kV 

Central Conductor dimensions W=.2 m, L=1 m, dist. to 

plasma/wall=5 cm/20 cm 

 

Typical ICH system parameters are shown above. ICH antennas are often built as boxes 

containing several “central conductor” straps to which the voltage is applied.   

 

ii. Linearity 

 

The RF only causes a small perturbation of the particle trajectory because the RF 

magnetic field is much smaller than the static field, and the electric field is much smaller 

than the vxb field associated with charged particle thermal motion.  The perturbation of 

the parallel motion is also small, as shown below. 

 

The equation of motion of a particle in a RF field, v=v0+v (thermal plus perturbed) 
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subtracting the unperturbed part describing the unperturbed cyclotron motion 
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leaves the perturbed equation of motion 
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assuming the vxB term is negligible, we arrive at a equation linear in the perturbed field 

amplitude 
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We can now estimate the correction to the parallel uniform motion due to the RF field.  

Taking the parallel component of 3 and ci
dt

d
ω= , for an ion we get  
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this implies that the RF-induced perturbation is small compared to the thermal ion 

velocity, which implies that linearization is justified. 

 

Although 4 is linear in the fields, it is not for r and v.  For r, we see that the RF fields 

causes little perturbation in the particle trajectories, enabling us to neglect the 

perturbations, and write 

 

(6.6)  )()(),()( 00 rBrBrErE ≈≈         

 

this implies that the equation governing the velocity perturbation is  
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which is a linear equation that can be solved explicitly.  By going through the Small 

Larmor Radius Expansion, the general resonance condition is found. 

 

(6.8)  ,...2,1,0;0 ±±==−− nvkn llllcωω        

 
iii. Cyclotron Absorption Mechanisms 

 

For n=0, (in 80) 

The absorption mechanisms in the plasma in this case are Transit Time Magnetic 

Pumping and Landau Damping.  They correspond to parallel acceleration, and are 

important to current drive applications. 

For n>0�n=1,2,… 

This corresponds to the resonances due to the left handed component of the field.  For 

n=1, we have the fundamental cyclotron resonance lllle k νωω += .  The wave accelerates 

the particles when it is in phase with their frequency.  At higher harmonics (n=2,3,…), 

the wave accelerates the particles based on its propagation and being in phase with the 

particles.   

For n<0�n=-1,-2… 

This corresponds to the resonances due to the right handed component of the field.  This 

mechanism is significant only in high energy tails created by RF or NBI energy 

introduction. 

 

iv. Scenarios 

 
The most useful scenario today is the heating of a hydrogen minority in a D-(H) plasma.  

Other scenarios have been successfully used.   

 



 25 

v. Database and Applications 

 
Several high power ICH systems have been installed.  A 22 MW system was coupled to 

the plasma in JET, and ICH systems have been injected into all sorts of plasmas such as 

L-mode, and ELMy H-mode.  FW electron current drive has been tested in DIII-D and 

Tore-Supra showing good agreement with expected outcomes.  Minority-ion current 

drive has been found allow control of the sawtooth frequency, and ICH systems have 

been used to produce a plasma in the presence of a static magnetic field.   

 

An ICH system is designed for ITER coupling 50 MW through 3 ports.   

 

b) Lower Hybrid Heating 

 
Two waves coexist in the LH domain, the fast and slow waves.  For them to uncouple 

and propagate inside the plasma, they must be from a launcher designed to launch waves 

with a parallel wavelength shorter than 

 

(6.9)  ( )fNc cll /=λ           

  

Launchers designed to these specifications use an array of phased waveguides, or a grill. 

 

The slow wave is launched into the plasma at a frequency above LH resonance and is 

efficiently absorbed by the plasma electrons.  Because of an asymmetric Nll, LH is used 

as a current drive method.  The problem with LH heating is that the wave energy tends to 

propagate around the periphery of the plasma, and deposit its energy around the edge of 

the plasma, away from where it is needed. 

 

As plasma density is increased, the LH wave goes from heating electrons to ions, then 

decay activity sets in, and no heating is accomplished.  In large, hot plasmas, such as 

those planned for ITER, LH waves cannot usually reach the center. 

 

c) Alfven Wave Heating 

 
The compressional Alfven wave is launched into the plasma, and upon reaching the 

Alfven resonance, shear waves are produced which dissipate onto that magnetic surface.  

Alfven waves have been shown to produce little heating, but increase plasma density, and 

are therefore being studies for transport barrier purposes.   

 

VII. Electron Cyclotron Wave Heating 
Electron cyclotron waves heat a plasma at the fundamental electron cyclotron 

frequency, 
ce

e

eB

m
ω =  (about 100GHz to 200GHz) or a harmonic thereof, by heating 

plasma electrons which then in turn heat plasma ions due to collision heating. The ECRF 

wave is either an elliptically polarized wave at the cyclotron frequency for X-mode 
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heating or a linearly polarized wave at the fundamental plasma frequency for O-mode 

heating. Due to the field intensity in the tokamak, the ECRF resonance surface is a thin 

plane in the radial direction extending vertically. 

 

a) ECRF Generation 
The requirement of high power high frequency RF sources has led to the use and 

improvement of existing RF sources to met the increasing power output demand. 

High power ECRF is produced using a gyrotron RF source(Hoekzema Sect III.A). 

In a gyrotron, electrons spiral helically about the magnetic field produced in the oscillator 

cavity, and in the process azimuthally group into bunches,  producing a high power RF 

field as they travel down the oscillator cavity. 

 
  

b) ECRF Transport 
Due to the losses present at high frequencies in dielectric material, either small 

coaxial cables(Stacey Sect. 12.4.2.1), or waveguides(Hoekzema Sect III.B) are used to 

inject the ECRF into the tokamak. 

 

c) ECRF Launching 
ECRF is accomplished through a grilled aperture structure. By adjusting the phase 

of the wave at each sub section of the grill, the array factor can be adjusted to launch the 

RF at any given angle into the plasma. Due to the high frequency, the ECRF wave is 

rarely reflected off of the vacuum-plasma interface(Hoekzema Sect 1). 

 

d) ECRF Accessibility 
Since the fundamental frequency EC wave reaches cutoff before it reaches 

resonance when propagation into an increasing magnetic field, the wave will be reflected 

unless it is injected from the high field side. 

To allow low field side injection the second harmonic of the ECRF frequency is 

used, allowing the ECRF wave to reach the fundamental resonance surface before it 

reaches the second harmonic cutoff surface. The tradeoff is that gyrotrons for the second 

harmonic are not readily available and the absorption is weaker then that of the 

fundamental frequency.  

This weaker absorption rate causes the wave heating to be distributed over a 

larger volume of the plasma and is not as controllable. For most modern tokamaks, first 
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harmonic ECRF is used to heat the plasma in precise locations and is injected from the 

low field side. 

 

 

VIII. Current Drive 

 
Current Drive is important in a tokamak to drive the plasma current.  It is preferable to 

use RF current drive because of its ability to be used in steady-state.   

 

a) Current Drive Efficiency 

 
Theoretically, a local efficiency of a current drive method can be defined as the ratio of 

driven current density J to power density deposited in plasma to create the current Pd.  In 

an experiment, a scaled figure of merit PIRneCD /0=η .  This quantity is proportional to 

de PJn / , allowing comparison of different machines and densities.   

 

b) Current Drive by Pushing Electrons 

 
The most direct manner of driving current with RF waves is injecting a wave with set 

frequency and k that is absorbed by passing electrons.  Peaking the injected wave 

spectrum about a certain kll value causes asymmetry in the parallel velocity distribution 

causing current flow.  This current drive becomes steady with a balance between the 

driving wave effect and collisional relaxation toward a Maxwellian distribution. 

 

The choice of kll allows one to select vll,res for resonance with either slow (~vte) or fast 

electrons (several times vte) that are passing the wave.  Slow electrons are more easily 

pushed, but tend to relax collisionally towards a no-current state.  Fast electrons are 

harder to push, but are not as collisional, providing longer time period current drive.  It is 

desirable to aim for either very slow or very fast electrons, as this generates the most 

efficient current drive.  However, at the lower  limit, vll=0, only trapped electrons exist.   

 

Driving fast electrons via Landau dampening with the Lower Hybrid wave has produced 

good results, with a fraction of the high-energy electrons downshifting in velocity and 

transferring their energy to slower electrons, enabling them to gain energy from the wave.  

Figure-of-merit values of 3-4x10
19

 have been seen in large tokamaks.  However, 

penetration limits at higher densities and temperatures restrict its applicability in reactors.   

 

The fast wave, and those waves to which it converts, have been used in driving current as 

they avoid the plasma penetration difficulty.  Figures of merit from .45-.7x10
19

 have been 

realized through this method.   

 

c) Current Drive by Asymetric Electron Collisionality 
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Circularly polarized electron-cyclotron waves can be used to drive current so that the v┴ 

of the electrons is increased, making their v-value greater than the normal electrons, and 

will therefore collide less and relax more slowly towards vll=0.  This asymmetry creates a 

steady Jll current density.  It is advantageous to resonate with fast, noncollisional 

electrons.  

 

The velocities and driven currents on each side of the resonant surface are opposite in 

sign, varying continuously with a R
-1

 dependence and zero on the resonant surface.  This 

means that the asymmetry has to be significant for the currents not to cancel out.  The 

polarization and launching location is determined with this in mind. 

 

A maximum figure-of-merit of .35x10
19

 has been seen with this method.  Localization of 

absorption on the electron cyclotron frequency surface makes this a candidate for 

tailoring tokamak current profiles. 

 

d) Neutral Beam Injection Current Drive 

 
Neutral beam injection involves shooting a beam of high energy neutrals into a plasma 

tangentially, which are then ionized by collisions, and subsequently lose energy in a 

directed manner, driving current.  A figure-of-merit up to .8x10
19

 has been achieved in 

the JT-60 machine using negative ions in the beam generator to increase penetration.   

 

e) Bootstrap Current 

 
Consider a trapped electron and a fully passing electron in a plasma with r/R<<1.  

Through a kinetics analysis of conservation of angular momentum during collisions and 

constants of motion, we arrive at the equation 

 

(8.1)  llpiip ppreB δδδ =Σ−≈            

 

This equation implies that the diffusion of the trapped electron out of the plasma be 

accompanied by net negative parallel kinetic momentum flux to passing electrons, hence 

a positive current. 

 

Ambipolar diffusion outward of particles from the center of the toroidal plasma column 

contributes, through radial particle flux and the magnetic field interaction, a toroidal 

bootstrap current density.   

 

Bootstrap current is very important for the future of fusion power and tokamaks.  It 

provides for a high plasma current providing desirable plasma parameters while 

eliminating the need for direct current drive through RF or NBI systems.  Many tokamaks, 

both present day and near-term, use or plan to utilize a high bootstrap current.  Research 

is being performed on designing a fully boostrap-driven plasma current in a tokamak 
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Several combined-wave current drive systems have been proposed including Fast 

electron pushing + EC resonance, Fast wave + LH, and NBI + IC resonance.   

 

Problems with CD waves include 

 

LH: penetration 

+ NBI: penetration, low figure-of-merit 

- NBI: low figure-of-merit 

FW-high frequency: penetration 

Others: low figure-of-merit, generation difficulties 

 

IX. Selected RF Heating and Current Drive in Use Today 

 system 
frequency 
(MHz) 

maximum power 
coupled to plasma 
(MW) 

number of 
antennas (x #of 
straps)  

Fast Wave 
Asdex-
Upgrade 30-120 5.7 4(x2)  

 C-mod 80.0 3.5 2(x2)  

 DIII-D 30-120 3.6 3(x4)  

 HT-6M 14-45 0.6 1(x1)  

 JET 23-57 22.0 4(x2)  

 JT-60U 102-131 7.0 2(x2)  

 TEXTOR 25-38 3.6 2(x2)  

 TFTR 30-76 11.4 4(x2)  

 Tore-Supra 35-80 9.5 3(x2)  

 ITER*** 40-75 50.0 -  

Lower 
Hybrid system 

frequency 
(GHz) 

maximum power 
coupled to plasma 
(MW) waveguides 

Current Drive 
Efficiency (x10^20 
A/(Wm^2)) 

 COMPASS 1.3 0.6 8.0  

 FT-U 8.0 5.5 72 (6 ant.) 0.2, 0.5* 

 HT-6M 2.5 0.1 8.0  

 JET 3.7 5.0 384.0 0.35, 0.45** 

 JT-60U 1.74-2.23 10.0 24.0 0.270 

  1.74-2.23 2.0 48.0  

 PBX-M 4.6 1.3 32.0  

 TdeV 3.7 8.0 32.0  

 Tore-Supra 3.7 0.1 256 (2 ant.)  

 TRIAM-1M 2.5  4.0  

 ITER*** 5.0 50.0  0.45-.55 

    * with full current drive 

    ** with LH & ICRH hybrid 

    *** expected date 2016 
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