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ROTATION AND IMPURITY TRANSPORT
IN A TOKAMAK PLASMA WITH
DIRECTED NEUTRAL-BEAM INJECTION

W.M. STACEY, Jr., A.W. BAILEY
Georgia Institute of Technology,
Atlanta, Georgia

D.J. SIGMAR, K.C. SHAING
Oak Ridge National Laboratory,
Oak Ridge, Tennessee

United States of America

ABSTRACT. The authors have extended their previous collisional-regime theory for rotation and
impurity transport in a tokamak plasma with strong, directed NBI and strong rotation (v^ « vth) to the
plateau regime. The paper gives a summary of a kinetic theory derivation of the parallel viscous force in
the strong rotation ordering and a self-consistent formalism for calculating ion and impurity rotation
velocities and radial transport fluxes, as well as the radial electric field and the poloidal variation of the
impurity density upon which the former strongly depend. Calculations for model problems representative
of ISX-B and PLT are presented. The predicted impurity transport exhibits features that are in agreement
with experimental observations.

1. INTRODUCTION

There is a long-standing interest in the possibility
of using directed neutral-beam injection (NBI) to
reverse the normal inward diffusion of impurities in
tokamak plasmas. Ohkawa [ 1 ] noted that the direct
momentum exchange of injected beam particles and
impurities via collisions would produce a radial
impurity transport flux and predicted that counter-
injection would produce an outward impurity transport
flux.

Stacey and Sigmar [2] noted that the injected beam
momentum must be balanced by a radial transfer of
momentum, or drag, and that this allowed a unique
determination of the radial electric field. They pre-
dicted that when the effect of the momentum input
and drag on the particle flows was taken into account
and when the effect of the radial electric field on
transport was treated self-consistently, then co-injection
would produce an outward impurity flux.

Burrell et al. [3] pointed out that the large toroidal
rotation velocities associated with directed NBI could
produce poloidal non-uniformity in the impurity
density over the flux surface, which in turn could
produce a radial impurity transport flux. This effect
becomes significant when the impurity rotation velo-
city becomes comparable with its thermal velocity.

They predicted that co-injection would produce an
outward impurity flux due to this rotation, or inertial,
effect. However, this theory was not self-consistent
with respect to the ambipolar electric field.

Recently, Stacey and Sigmar [4] extended their
previous formalism [2] to include this rotation effect
in a self-consistent theory for particle flows in the
flux surface, the radial electric field and radial
particle transport in a tokamak plasma in the col-
lisional regime with directed NBI. A more extensive
discussion of relevant previous work is also given in
Ref. [4].

Experimentally, it has been observed in PLT [5, 6]
and ISX-B [7,8] that the central accumulation of
edge-introduced impurities is much greater with
counter-injection than with co-injection, in qualitative
agreement with the more recent theory. Attempts
[8, 9] to quantitatively interpret some of the experi-
mental results with earlier, incomplete versions [2,3]
of the theory have been encouraging, although they
have been unable to explain all features of both the
co-injected and counter-injected results.

The purpose of this paper is to extend our previous
theory [4] for the collisional regime to the plateau
regime. This extension accommodates the important
case of the main ion species being nearly collisionless
and the impurity species being collisional, which we
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refer to as the mixed regime. This extension requires
a kinetic theory solution for the parallel viscous
force, B • V • 1t, in the presence of large rotation
velocities and an incorporation of this viscous force
into the fluid theory. We find that in the mixed
collisionality regime the mechanisms dominating the
transport processes are quite different from those in
the collisional regime.

The theory described in this paper provides a
self-consistent (non-linear) model, based upon particle
and momentum conservation and charge neutrality,
for calculating toroidal and poloidal rotation velocities,
the radial electric field and radial particle fluxes in a
two-species (ion-impurity) tokamak plasma with strong,
directed neutral-beam injection, and the resulting
large rotation velocities. The theory relies upon neo-
classical theory for specification of the parallel viscous
force (including the plateau resonance) but allows for
an anomalous viscous radial transfer of toroidal
momentum as indicated by experimental data [7, 10].
Prescriptions are given for determining the anomalous
radial momentum transfer rates from measured rota-
tion velocities for the ions and impurities.

The paper is organized as follows. In Section 2, the
derivation of the parallel viscous force for plateau
regime ions from kinetic theory is briefly outlined,
for a strongly rotating (v^ «* v^) plasma, including
the density variation over the flux surface. With this
constitutive relation for the viscous force in hand, a
fluid formalism is developed in Section 3 for the
rotation velocities and particle transport in a two-
species (ion-impurity) plasma in the strong rotation
ordering. In Section 4, the formalism is applied to
plasmas with the gross features of ISX-B and PLT in
order to predict certain features that are observed in
the experiments.

2. PARALLEL VISCOUS FORCE
IN THE PLATEAU REGIME

An essential step in extending our previous col-
lisional regime theory to the mixed regime is the
calculation of the parallel viscous force in the presence
of large toroidal rotation velocities, which derivation
we briefly outline. Following Shaing and Callen [11]
we write

-V- f = / d3v i mv2 (ft • VB)fi (1)

where n = B/B, and the perturbed distribution func-
tion fj is the solution of

E,M\JB
(2)

where D is the streaming operator, C is the collision
operator, J is the Jacobian, I = RB^, £1 is the gyro-
radius, and f0 is the Maxwellian distribution function
which is shifted owing to rotation. Shaing and
Sigmar [12] solved Eq.(2) and showed that in the
strong rotation case

3/2

e x p

m

2T 2TU

(3)
Here, n and T are the density and temperature com-
ponents which are uniform over the flux surface,
v'n = v|| - u, <J> is the electrostatic potential,

u = - - (4)

is the parallel flow due to the radial electric field, and
the poloidally varying components are

$ = <*>-<<!>> u 2 = u 2 - < u 2 > (5)

where < > denotes a flux surface average. Note that
this expression for f0 contains the term (m/2T/u2,
which corresponds to the inertial term of the fluid
theory (presented in Section 3).

To solve Eq.(2), let

Iv'll df0 , v'n B
f « +

where S is a smooth function of energy, and hj is a
localized function of pitch angle, which is due to the
plateau resonance D-C = 0. For a given S, the
equation for hj is

(7)

For circular flux surfaces, with minor radius r and
major radius R, where Bp = B°(r)/(1 4- ecos0), and
ft -V B = (Bp7r)e sin 0 (e = r/R), Eq.(7) has the solution

/ \~1/3
 R r°

ht = \ e S ( — ) - 7 = = f0 / sin(0-pr) exp(-r3 /6)dr

(8)
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where the resonance integral has the property

dX' (9)

- 1

Here, X is the pitch-angle variable, d3 v = 2irv2 dvdX;
vs is the collisional pitch-angle scattering frequency;
w t = Vth/^Q *s *n e transit frequency; q is the safety
factor; and p = 0>s/cot)~

1/3(vj|/v') is normalized such
that p = 1 for resonant particles.

Finally, the driving term S(i//, v') can be determined
self-consistently from the V||L0 and vyl^ moments
of Eq.(6), using the expansion

— (A0L0
vth

(10)

= f ~where the Sonine polynomials Lo = 1,
etc. In this case, the term h1? which is localized in
pitch angle, can be neglected. We thus obtain expres-
sions for Ao and A2 in terms of vy and qy, the parallel
particle and heat flows. These flows are related through
the fluid equations to the radial pressure gradient [11].

Using Eqs (3), (6), (8) and (10) in Eq.(l) yields
the final result for the parallel viscous force

The flux surface averaged viscous force is

(11)

(12)

where, for species j ,

(13)

and the strong rotation correction factor is

«.-§ (14)

with the pressure Pj = njTj = \ njmjV2 ,̂ ej being the
charge, nij being the mass, v^ = v^qR/e3'2 v^j, and

- l
(15)

J j

For circular flux surfaces

<(n-VB)2> = ±(e/Rq)2(B0)2 (16)

We will see in the next section that the parallel
viscous force of Eq.(l 1) enters into the determination
of the poloidal variation of the densities over the flux
surface, and the flux surface averaged parallel viscous
force of Eq.(12) enters into the determination of
the rotation velocities. We now examine the con-
ditions under which the unaveraged force of Eq.(l 1)
must be retained in the calculation, in the plateau
regime, i.e. when it is significant relative to the parallel
pressure gradient.

(17)

_». Bp 9
or, with B -V = - , and the ordering

L *H
rij 30 thj

Making use of Eq.(l 1), this becomes

'thj

(18)

where the factor in square brackets is 0(2) in the
strong rotation ordering.

We note that in a strongly beam-driven plasma,
Eq.(18) is essentially a condition on the beam
momentum input (see Eqs (26) and (28)).

We find that the condition (18) is satisfied only at
the largest magnitudes of rotation (vl J£ v2^) (as can
be seen from Fig. 1, noting that for ISX-B,
vthi ^ 1-5 X 10s m • s"1). When this condition is
satisfied, the cos 20 viscosity-driven variation of
Eq.(l 1) is important in driving the poloidal variation
in the main ion density and the electrostatic potential.

In contrast, the centrifugal-driven variation is
proportional to (see Eq.(3))

exp
m „.

— u '
2T = exp

vth/ B2

where the geometrical dependence is e cos 0. Note
that even for (v^/v^)2 ^ 1 and e < 1, this expansion'
has rapidly decaying higher harmonics.
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3. FLUID THEORY

3.1. Outline of the derivation

The construction of the expressions for the radial
electric field, the particle flows within the flux
surface, the poloidal variation of the particle densities
over the flux surface and the transport fluxes across
the flux surfaces closely parallels that of Ref. [4]
(treating the collisional regime) to which we refer the
reader interested in details. In this section, we outline
the derivation, and in subsequent sections we present
and discuss the new results for the mixed regime.

The basic equations are the particle continuity
equation for species j

(19)

the momentum balance equation for species j

njmj(vj-V)vj + V P j +V-7Tj

= -njej V* + rijej(Vj X 3) + R"j + fij

and charge neutrality

(20)

(21)

In Eq.(20), Rj is the interspecies friction, which is
represented by

(22)

and

(23)

represents 'external' momentum exchange of particles
of species j , which is due to momentum input from
collisions with fast ions from neutral-beam injection
Mj and to the 'radial' transfer of momentum across
the flux surface (due to anomalous viscous effects, as
suggested by experiment [7, 10]), represented by a
drag frequency, v^. Stacey and Sigmar [13] have
recently shown that the toroidal neoclassical viscous
force on each species can be represented in this form
in terms of a drag frequency. The parallel neoclassical
viscous forces are contained in the term V • TTJ.

In these equations, n, m, e and v refer to the
particle density, mass, charge and flow velocity of
particle species j ; p is the pressure and ir is the
anisotropic stress tensor discussed in Section 2; $ is
the electrostatic potential; B is the magnetic field;
i>jk is the collision frequency between particle species
j and k.

Equation (19) and the perpendicular (in the flux
surface) component of Eq.(20) for each species can
be solved, to within a constant of integration (which
is proportional to the poloidal flow velocity), for the
lowest-order (in the gyroradius) particle flows, which
lie in the flux surface. The equation obtained by
summing over the species in the flux surface averaged
toroidal component of Eq.(20) can then be solved for
the 'radial' electric field. The constants of integration
mentioned previously can be found by solving
simultaneously the flux surface averaged parallel
components of Eq.(20) for all species. The 'poloidal'
variation of the particle densities and electrostatic
potential can then be obtained by solving the parallel
(to B) components of Eq.(20), subject to the constraint
of Eq.(21). Finally, the transport flux of particles
across the flux surface can be obtained by combining
the parallel and normal (to the flux surface) components
of Eq.(20).

At this point, we specialize our results to a plasma
constituted of a main ion species (i), an impurity
species (I) and electrons (e), in which ion/impurity
collisions are dominant over ion/electron or impurity/
electron collisions in determining the transport of
ions and impurities (a = njz2 /nj > y/mjm^). Actually,
a > y/mjm^ is only a limit on the regime of validity
for the theory for the main ion species. The theory
is valid for the impurity species down to trace impurity
concentrations (a -• 0). For the plasma equilibrium,
we make the large-aspect-ratio, circular-\p, low-beta
approximation. We use the subscripts <j> and p to refer
to toroidal and poloidal components, and we use the
subscript 0 to denote the component that is uniform
over the flux surface. A number of parameters which
arise in the derivation are now defined:

pi = 3r

vthj =
m;

466 NUCLEAR FUSION, Vol.25. No.4 (1985)



TOKAMAK PLASMA ROTATION AND IMPURITY TRANSPORT

The normalized drag frequencies are

_ ^di _ "di

(where nxmxv^ = n i m ^ from momentum conservation).
The normalized viscosities are

where

f , s

_ n f ;

(2-1)

'thl

that was previously given [4] for the case where the
bulk ions and impurities are in the collisional regime.
An explicit expression for the radial electric field
(Eq.(25)) is obtained when the main ion viscous force
term is present, whereas a coupled set of non-linear
equations, with multiple roots, must be solved to
obtain the radial electric field and the poloidal density
variation in the collisional regime (Eqs (23)-(26) and
(29)—(31) of Ref. [4]). This result obtains because
the viscous force is of lower order in e than the inertial
force. The presence of the parallel viscous force
modifies the expressions for the toroidal rotation
velocities and alters fundamentally the relationship
between the impurity and main ion poloidal rotation
velocities (compare Eq.(29) with Eqs (37) and (38)
of Ref. [4]). The presence of the parallel viscous force
leads to a new component of the radial transport flux
(labelled NC in Eq.(39)) and modifies significantly
the other components of the transport flux (there are
now terms ~ju from the viscous force term, whereas
in Ref. [4] all terms are ~e 2 ) .

3.3. Radial electric field

The component of the radial electric field (Er)
which is constant over the flux surface is obtained
self-consistently from the flux surface averaged toroidal
momentum balance equations summed over species.

Aid
M xj = n j = i, I (24)

In the above definitions, Ro is the major radius,
e = r/R0 is the inverse aspect ratio, T is the temperature,
q is the safety factor, v^ is the self-collision frequency,
Cy is the Fokker-Planck collision operator, and nx is
the unit vector in the x-direction (e.g. parallel,
toroidal). Throughout the paper, the 'hat' notation
will signify either a unit vector or the normalization

Ai =

3.2. Comparison with collisional regime formalism

The formalism presented in this section differs in
several significant ways from the analogous formalism

- i
(25)

This result is the same as the one obtained [2] in the
weak rotation (v^ <̂  v^) ordering.

Examination of this expression reveals several
points. The radial electric field scales as Er «M//3«M/t
the ratio of the NBI momentum input to the radial
momentum transport or 'drag' frequency, and is rela-
tively insensitive to the parallel neoclassical viscosity
coefficients Aj- Neutral-beam co-injection (M > 0)
contributes a positive component to the radial electric
field ( E r > 0), and neutral-beam counter-injection
contributes a negative component. The normal
negative main ion pressure gradient (P[ < 0) produces
a negative contribution (AEr < 0) to the radial electric
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field, and similarly for the impurity pressure gradient,
although the latter is usually unimportant because

3.4. Rotation velocities

10 VI

(27)

Equation (19) and the perpendicular and flux
surface averaged parallel components of Eq.(20) can
be used to determine the toroidal and poloidal
rotation velocities.

The toroidal component of the impurity rotation
velocity is

(26)

This equation provides a prescription for determining
the radial electric field, Er, from the measured impurity
rotation velocity, measured pressure gradients and
calculated NBI momentum inputs. Equation (25)
can be used to eliminate the radial electric field,
leading to

(26')

The toroidal component of the main ion rotation
velocity is obtained by exchanging the i and I
subscripts.

Examination of these expressions reveals several
interesting points. The magnitude of the toroidal
rotation velocity scales as v^ « M//3 « M/^d and is
relatively insensitive to the parallel neoclassical vis-
cosity coefficients jCt. The toroidal rotation is in the
direction of the NBI momentum injection, except for
the effect of the radial pressure gradients. The usual
negative main ion pressure gradient (Pj < 0) produces
a negative contribution to the impurity toroidal rota-
tion (Avj0 > 0) and a positive contribution to the
main ion toroidal rotation (Av^ < 0), which persist
even in the absence of NBI. (v^ > 0 corresponds to
rotation in the positive 0-direction in a i//-p-0 co-
ordinate system in which the toroidal magnetic field
is in the positive 0-direction.)

In general, the main ions and impurities do not have
a common toroidal rotation velocity, because of the
different momentum input rates and radial momentum
transfer rates. The difference in rotation velocities is
given by

In general, both the main ions and impurities will
rotate toroidally in the direction of the NBI momentum
input, but the main ions will rotate faster because
ft = ft and |Mj| > |Mj|, as discussed later. The usual
negative main ion pressure gradient (P- < 0) produces
a positive contribution to v^ - v ^ , which increases
the difference in toroidal rotation for co-injection and
decreases it for counter-injection.

Physically, the difference between ion and impurity
rotation velocities may be understood as follows.
Momentum is input to each species from the beam,
which accelerates each species. Momentum is trans-
ferred between species (friction) and across flux
surfaces (drag). Friction tends to reduce the velocity
difference between species. However, if the drag
force is larger on the impurities than on the main ions
(see Section 3.5) then the main ions will accelerate
to a larger velocity than the impurities.

The poloidal rotation velocity of the impurities is
given, to leading order, by

Kl Aitft +ft(l+*!)}+AiKft+ftd+Si)}

(28)

and the poloidal rotation velocity of the main ions
is obtained by exchanging the i and I subscripts. It is
interesting to note that

o (29)

which result can be obtained directly by summing the
parallel components of Eq.(20) over species and using

Examination of Eq.(28) reveals that usually the
poloidal rotation of the main ions will be positive and
the poloidal rotation of the impurities will be negative
for co-injection, and conversely for counter-injection.
(Here, 'positive' means the positive 0-direction in a
right-hand r-0-0 toroidal co-ordinate system in which
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B is in the positive 0-direction.) The usual negative
main ion pressure gradient (Pj < 0) produces a negative
contribution to the main ion poloidal rotation and a
positive contribution to the impurity poloidal rotation,
which persist in the absence of neutral-beam injection.
This result of oppositely directed poloidal rotation
velocities arises because viscous forces dominate the
parallel momentum balance; this is quite different
from the result [4] in the collisional regime, where the
viscous forces are subdominant.

3.5. Determination of drag frequencies

Equation (26) and the corresponding equation for
the main ions (which is obtained by exchanging i and
I subscripts) provide a means for experimentally
determining the anomalous viscous drag coefficients
Pdi and v^i in terms of measured toroidal rotation
velocities of the main ions and impurities. Equation (28)
and the corresponding equation for the main ions could
also be used to determine the drag coefficients in
terms of measured poloidal rotation velocities for the
two species

"fl

"Ii

MS

- 1 (31)

Note that measurements of the toroidal and poloidal
rotation velocities for one species do not serve to
determine the drag coefficients for both species
because the toroidal and poloidal rotation velocities
are uniquely related by the radial momentum balance
(i.e. the radial component of Eq.(20))

V?P =
E°

£ (32)

and a similar equation for vip, with I replaced by i.
The definition of j3 leads to

ft "di "n

Although the process which produces the anomalous
radial transfer of viscosity is not understood, it is
plausible that the actual transfer of momentum
involves collisions. This leads us to assume

NUCLEAR FUSION, Vol.25, No.4 (1985)

1 'WaVm i J In At

l + a > / T / lnAj

from which we obtain the relation

ft = a'

where we have used n^mj^j
balance.

(33)

j from momentum

3.6. Density and potential variation
over the flux surface

The parallel components of the momentum
balance of Eq.(20) for the main ions, impurities and
electrons and the charge neutrality condition of
Eq.(21) can be solved for the poloidal variation of
nj, nj, ne and 3> over the flux surface. The solution is
carried out by expanding each of these variables in the
form

x(r,0) = x c cos0 + xssin0)

and then taking the sin0 and cos0 moments (over 0)
of the above-mentioned equations to obtain algebraic
equations for the unknowns, nf, nf, etc. Since the
sin0 and cos0 moments of ^- V -Evanish (see
Eq.(l 1)), the resulting equations are exactly the same
as those given previously [4] for the collisional case.
We note that

"ft = 4 v non k

In most plasmas of interest, n ^ / ^ = a/z < 1, in
which case the sin 0 and cos 0 moment equations can
be reduced and solved directly for nj and nj

(34)

(35)
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where

E°
= P' - — =

P Bp

VIP
(36)

Equations (34) and (35) reveal several noteworthy
points. The sin-component nf « Y « Vjp in the
absence of pressure gradients, in which case n| would
be negative for co-injection, positive for counter-
injection and an antisymmetric function of beam
power. The usual negative main ion pressure gradient
(P- < 0) produces a positive contribution to nf, which
would increase the magnitude of the positive nf for
counter-injection and decrease the magnitude of the
negative nf for co-injection. In our co-ordinate
system, 0 is measured counter-clockwise from the
outboard midplane, so a positive nf corresponds to an
upward shift of the impurity density and a negative
nf corresponds to a downward shift. Thus, we expect
an upward shift to be produced by counter-injection
and a downward shift to be produced by co-injection,
and we expect a negative main ion pressure gradient
to produce an upward shift which persists even in the
absence of NBI.

The cos-component nf is positive and is a symmetric
function of beam power (independent of beam
direction) in the absence of pressure gradients. A
negative main ion pressure gradient produces a positive
contribution (Anf > 0) for co-injection, which adds
to the contribution due to NBI, and produces a nega-
tive contribution (Anf < 0) for counter-injection,
which subtracts from the contribution due to NBI.
A positive nf corresponds to an outward shift of the
impurity density and a negative nf corresponds to an
inward shift. Thus, in a tokamak plasma with the
usual negative main ion pressure gradient, we would
expect to see an outward shift of the impurities with
strong co-injection, an inward shift with weak co- or
counter-injection, and a reduction of the inward shift
and finally an outward shift with increasing strength
of counter-injection.

The above expressions for nf and nf differ from
the corresponding results in the collisional regime via
the expression used to evaluate vjp, hence Y.
Equation (28) is quite different from the corresponding
result [4] in the collisional regime.

The variations in nA and ne over the flux surface are
of order a/z and can be neglected when a/z <€ 1.

3.7. Transport fluxes

The parallel and normal (radial) components of
Eq.(20) can be combined to obtain an expression for
particle transport across flux surfaces

j j > =

Our previous results for the rotation velocities may
be used to evaluate this expression for the large-aspect-
ratio, low-beta equilibrium. It is important to retain
O(e2) terms that were neglected in writing Eqs (26)
and (28). (These terms are given in Ref. [4].) We
write the radial impurity flux as a sum of contributions
arising from different effects

<njVIr>NC + <njvIr>M + <nIvIr>I

(37)

<njvlr> =

The first two components correspond to the
Pfirsch-Schliiter and neoclassical fluxes of the usual
transport theory, but now modified to account for
the radial transfer of momentum and for the variation
of the impurity and ion densities over the flux surface.

<nIvIr>PS =

X
l + 2 q 2 l+2q 2

(38)

m ^
<nIvIr>NC =

p;

where

(39)

(40)
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For a negative main-ion density gradient (P-< 0),
both of these flux components will be inward.

The third term in Eq.(37) is the transport flux
resulting directly from the interaction of the beam ions
with the main ions and impurities.

<nIvIr>M =

M
n i

(41)

This contribution to the impurity flux is inward for
co-injection and outward for counter-injection.

The fourth term in Eq.(37) results from retention
of the inertial term (nm(v-V)v) in the momentum
balance equations, which produces O(e2) contribu-
tions to the expressions for the toroidal and poloidal
rotation velocities, which in turn contribute O(e2)
terms in the transport flux.

(42)

where

( G T ) = X

vj, 252coKy

(43)

The quantities 8t and 52 are defined as follows:

„ _ («/z)

1

1

3p?
3r

(1 +

3pS

(a/z))eiBj

T
(l+(a/z))

1

(a/z))eiBj

T

. o i -\ C

onj l onj

3r n-* 3r

n? 3r
1 3n? 1 3n?
A •* A

n" 3r n° 3r

The expression for (G^) is obtained from Eq.(43) by
exchanging the i and I subscripts, including the expres-
sion in the definition of GO, and exchanging 8t and 52.
The quantity dx is of order a/z and may be neglected
in most cases. Note that (Gj) depends (directly and
indirectly through nf) on the radial electric field, so
that the inertial flux is actually due in large part to
the radial electric field. This inertial effect will pro-
duce an outward impurity flux when the impurity
density is shifted down (nf < 0), which occurs for
strong co-injection. Conversely, strong counter-injection
will produce an inward flux contribution via this
inertial effect.

The fifth term in Eq.(37) is the radial impurity flux
driven by the linear component of the radial electric
field.

(44)

where

^ i = 1—m—1~

This term will have the same sign as the radial electric
field. Thus, it will produce an outward contribution
to the impurity flux for strong co-injection and an
inward contribution for counter-injection and weak
co-injection (assuming ?[ < 0).

The last term in Eq.(37) is the impurity transport
flux driven by the poloidal variation of the potential
over the flux surface, or the poloidal electric field.

e

(45)

This term is of order a/z and usually may be neglected.
The main ion transport flux may be obtained by

exchanging the i and I subscripts in the above equa-
tions. In addition, in Eq.(45), §! and 52 must be
exchanged, a/z ^ z/ce and z -*- 1.

Note that Eqs (38) and (39) describe diffusive
transport fluxes, i.e. fluxes proportional to a pressure
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gradient, while Eqs (41), (42), (44) and (45) describe
convective transport fluxes arising from viscous and
inertial forces and the direct momentum input. The
diffusive impurity fluxes are inward for the normal
negative main ion density gradient. The rotational
and electric field contributions to the convective flux
are outward for strong co-injection and inward for
counter-injection. The direct momentum input
contribution of Eq.(41) to the convective flux is
inward for strong co-injection and outward for
counter-injection. Thus, with strong co-injection, the
outward impurity fluxes produced by the rotation and
radial electric field compete with the inward impurity
flux produced by the main ion pressure gradient. With
counter-injection, all three components are inward.
The other flux components tend to be less significant
(see Section 4).

We note that the inertial flux of Eq.(42) and the
flux of Eq.(45) are O(e2) and thus are only significant
when at least the impurities are collisional. We further
note that the transport fluxes of Eqs (38) and (39)
retain the principle of detailed balance [14, 15],
stating that when the impurities are collisional, the
main ion flux will also be collisional (i.e. O(e2)).
However, the flux component driven by Er does
not retain this principle. The main ion flux, obtained
by interchanging the i and I subscripts, scales with the
plateau regime viscosity (i.e. O(/ij)).

These transport fluxes differ considerably from
the results [4] obtained for the collisional regime, to
which they reduce in the limit // j , /ij -* 0. The neo-
classical flux of Eq.(39) vanishes and the other fluxes
are modified substantially in the collisional limit.

4. MODEL PROBLEMS

In order to illustrate the nature of the theoretical
results developed in the previous two sections, we now
apply the formalism to two model problems with
deuterium plasmas representative of the interior
regions of the ISX-B and PLT tokamaks. Neutral-
beam injection at 40 keV was considered in both cases.
In both of these machines the toroidal rotation velocity
with directed NBI has been measured [7,10], so that
we can partially extract the anomalous viscous drag
frequencies vdi and v^ from the experimental data.
The procedure we follow is first to calculate the
ratio 0 ^ from Eq.(33) and then to determine j3j
from the summed toroidal momentum balance, which
may be rearranged to obtain

(46)

where M^ is the total toroidal momentum input of
the beam and VA is the measured rotation velocity.
Usually, only one rotation velocity, that of an
impurity species, is measured. For the purpose of
determining /3is we take this impurity rotation velocity
approximately as a common rotation velocity for all
species. If the rotation velocities of both the ions and
impurities are measured, then Eqs (30) and (31) can
be used to determine *>di and *>dI separately.

We examined a deuterium plasma in ISX-B, with a
titanium impurity with a = 0.05. We chose para-
meters typical of an ISX plasma at r = 10 cm
(ne = 2.8 X 1 0 1 3 c n r 3 , T e = Ti = 4 3 0 e V , q = 1.2,
((l/pXBp/Br))"1 = - 8 . 5 cm) and computed the
toroidal momentum input of the H° beam with a
beam deposition and Fokker-Planck slowing-down
code. For this ISX plasma, the beam momentum
input was mostly to the deuterium, |Mj| > |Mj|. The
deuterium was in the banana plateau regime, with
viscosity fa * O(-y/7), and the titanium was in the
collisional regime, with /ij ^ O(e2). The anomalous
drag coefficients computed in the manner described
above led to the ratio ^/^ = 0.36, using the toroidal
rotation velocities measured at 1 MW co-injection.

The rotation velocities and the radial electric field
computed for the ISX model over a range of co- and
counter-injected beam powers are shown in Fig. 1.
The toroidal rotation velocities and their difference
scale linearly with beam power, in accordance with
Eqs (26') and (27). (In the model problems we have
not accounted for temperature differences associated
with different levels of beam power.) The poloidal
rotation velocities vary with beam power in a more
interesting manner. Since circulating ions tend to
move along the field lines, this leads to a positive
poloidal rotation with co-injection and a negative
poloidal rotation with counter-injection. However,
the Er X B^ drift of the ions leads to a negative
poloidal rotation when Er > 0 and to a positive
poloidal rotation when Er < 0. In general, Er is
negative for counter-injection and becomes positive
only when the co-injected momentum contribution
to Eq.(25) is large enough to offset the negative
pressure gradient contribution. The poloidal velocities
must satisfy the lowest-order parallel momentum
balance
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FIG.l. Rotation velocities and radial electric field for the ISX-B model problem.

Thus, vjp and vjp must be oppositely directed and,
since Mr <̂  Mis |vjp| < |vfp |. The effect of the strong-
rotation correction (« v^/v^) on fa is apparent from
the curvature in vfp. This mixed-regime result is very
different from the collisional regime result found
previously (see Ref. [4], Fig.5) for the poloidal
velocities.

The amplitudes of the sine and cosine components
of the poloidal variation of the impurity density are
shown in Fig.2. The general dependence upon beam
power is consistent with the general discussion of the
previous section. We note that there is a strong
inward and a slight upward shift with strong counter-
injection, which changes to a strong downward and a
slight outward shift with strong co-injection. We
further note that a rather dramatic change in the
poloidal distribution of impurities takes place over a
small range of co-injected beam powers about the
power for which the impurity poloidal velocity changes
sign.

The components of the radial impurity transport
flux are shown in Fig.3. Most of these flux com-
ponents are sensitive functions of the radial electric
field and of the poloidal distribution of the impurities,
which in turn is also strongly dependent upon Er.
Since a/z < 1, the poloidal variation of the main ion
density and of the electric potential can be neglected.
The neoclassical component of Eq.(39) varies with
beam power primarily as the (nj/e) term multiplying
Pj; since P- < 0, this neoclassical component has the
opposite sign of (nj/e). The Pfirsch-Schliiter com-
ponent of Eq.(38) is inward and relatively insensitive
to the beam power. The sum of these two terms is
shown as <nIvIr>v. Since |M^| > IM^I and j&i is small,
the (nj/e)M$j term is the dominant term. The inertial
component <Gj) ~ -(nf/e) and is a strong function
of the radial electric field. This component dominates
the others for strong co- or counter-injection. The
impurity flux driven by the linear component of the
radial electric field of Eq.(44) is reduced in magnitude
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BEAM POWER (MW)

FIG.2. Poloidal variation of impurity density for the ISX-B model problem.

by the negative (nf/e) term over much of the range
of beam injection considered. This result for the total
transport flux is similar to the result found in the
collisional regime [4], but now the dominant
component is ^ J V ^ I rather than (njVjj.)^,'.

The different flux components tend to add up for
counter-injection and to cancel for co-injection.
Moreover, the inertial flux component is large and
inward even for small values of counter-injected beam
power, but becomes large and outward only for large
values of co-injected beam power. The total impurity
flux is inward without neutral-beam injection,
primarily because of the pressure-gradient-driven
Pfirsch-Schluter and neoclassical fluxes but also
because of inward contributions from the inertial and
linear radial electric field components. For counter-
injection, the magnitude of the inward impurity flux
rapidly (stronger than linear) increases with increasing
beam power. On the other hand, with co-injection,
the inward impurity flux becomes only slowly reduced

in magnitude as the beam power increases, and finally
it changes to an outward flux which is a strongly
increasing function of beam power after the co-injected
beam power is increased beyond a certain value, about
1.8 MW in this ISX model problem.

The functional dependence of the radial titanium
flux shown in Fig.3 is in reasonable agreement with
experimental observations [8] of the accumulation of
titanium in the centre of the ISX-B plasma. During
Ohmic discharges, the radiated power increases
throughout the shot, indicating an increasing central
titanium concentration and an inward titanium flux.
With 1 MW of counter-injected beam, the radiated
power increases sharply, and a disruption occurs
shortly thereafter, indicating a sharply increased central
titanium accumulation and a much larger inward
titanium flux relative to the Ohmic discharge. On the
other hand, with 1 MW of co-injected beam, the
radiated power remains almost constant during the
discharge, indicating a constant central titanium con-

474 NUCLEAR FUSION, Vol.25, No.4 (1985)



TOKAMAK PLASMA ROTATION AND IMPURITY TRANSPORT

BEAM POWER (MW)

FIG.3. Impurity transport fluxes for the ISX-B model problem.

centration and a very small titanium flux. When the
co-injected beam power is increased to 1.2 MW, the
radiated power actually decreases, indicating a
decreasing central titanium concentration and an
outward titanium flux.

As a second model problem, we chose a deuterium
plasma with parameters representative of PLT at
r = 1 0 - 2 0 c m ( n i = 3 X 1013 cm"3, Ti = T e = 1 keV,
q = 1.5, ((l/pjXaPi/ar))-1 = - 3 0 cm). We used the
previously described procedure and the experimentally
determined [10] rotation velocities to determine the
values fdi = 34 s"1,j^dI = 5100 s"1 and ft/ft = 1.5.
We considered a uniform tungsten impurity of con-
centration a = 0.1 and injection of a 40 keV D° beam,
with the momentum input calculated as described for
the first model problem. The deuterium ions are in
the banana-plateau regime and the tungsten ions are
in the collisional regime (jUj -* 0).

Our results for the impurity transport fluxes in the
PLT model problem are shown in Fig.4. The qualita-

tive results are similar to those for ISX, but the
quantitative results are quite different for the two
cases. We note that the toroidal rotation velocity is
larger in PLT than in ISX, for a given directed beam
power, but the total number of plasma particles is
greater in PLT, implying a stronger radial momentum
transfer mechanism operating in ISX than in the much
larger PLT.

We note that in the PLT model problem with no
injection the inward impurity flux due to the radial
electric field (the linear contribution of Eq.(44) plus
the non-linear, inertial contribution of Eq.(42)) is of
the same size as the inward contribution due to the
pressure gradient of Eqs (38) and (39). Thus, the
total inward impurity flux is about twice the standard
neoclassical value, and the outward deuterium flux is
about twice the neoclassical value, which is reminiscent
of the observation that the ion heat conductivity
inferred from experiment is about 2 - 4 times the
neoclassical value. Possibly, the radial electric field
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FIG.4. Impurity transport fluxes for the PL T model problem.

effects of the present theory also produce a con-
vective heat flux which, if taken into account, would
in part explain this well-known 'factor of 2 - 4 '
disparity between neoclassical predictions and
experiment.

The total tungsten fluxes in Fig.4 are in reasonable
agreement with those measured in PLT [5], The
experimental fluxes at 10 < r < 20 cm were about
(6-7) X 1015 m"2 • s"1 inward without NBI, about
(2-4) X 10ls m"2 • s"1 outward with 585 kW
co-injection, and about (25-50) X 1015 m"2 • s"1

inward with 430 kW counter-injection. The total
calculated tungsten fluxes shown in Fig.4 are about
9 X 10ls m"2 • s"1 inward without NBI, about
4 X 10ls m"2 • s"1 outward with 585 kW co-injection,
and about 50 X 1015 m"2 • s"1 inward with 430 kW
counter-injection.

While the reasonable agreement between our model
problem calculations and the experimental observa-

tions in ISX-B and PLT is encouraging, we emphasize
that these are model problem calculations, not analyses
of these specific experiments. We have not attempted
to take into account such important effects as dif-
ferences in plasma temperature for different injected
beam powers, changes in temperature profiles during
a discharge and their effect upon the parameters, etc.,
and we do not include temperature gradient effects in
our model. Such an analysis is in progress.

The implications of these model problem calcula-
tions for TFTR and subsequent tokamaks with
directed NBI are now apparent. Co-injected NBI is
predicted to produce an outward component of the
impurity flux which, for sufficiently large NBI power,
is capable of overcoming the normal inward flux
driven by the pressure gradient. Since NBI momentum
deposition would be large in the central region where
the pressure gradient is small, and NBI momentum
input would be small in the outer region where the
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pressure gradient is large, it could be anticipated that

co-injection inhibits the penetration of edge-originated

impurities to the plasma centre but cannot prevent

their entering the outer regions of the plasma. Thus,

one would expect that the impurities are confined

largely to the edge region, thereby creating a cool,

radiating edge which would reduce the sputtering

erosion of the limiter and first wall.

Moreover, since we have linked the impurity

transport to the radial electric field and shown the

effect to be substantial, our results suggest the

possibility of controlling impurities by manipulating

the radial electric field by means other than NBI.
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