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A “first-principles” model for the structure of the edge density pedestal in tokamaks between or in
the absence of edge localized magnetohydrodynamic instabilities is derived from ion momentum
and particle conservation and from the transport theory of recycling neutral atoms. A calculation for
(high) H-mode tokamak discharge parameters indicates that the equations have a self-consistent
solution which has an edge pedestal in the ion density profile and sharp negative spikes in the
poloidal velocity and radial electric field profiles in the edge pedestal, features characteristic of
H-mode edge profiles. These sharp negative spikes in radial electric field and poloidal rotation
produce a peak in the inward ion pinch velocity in the sharp gradient(pedestal) region which
produces an edge particle transport barrier. The calculated magnitude of the density at the top of the
pedestal and the density gradient scale length and radial electric field in the pedestal region are
comparable to measured values. ©2004 American Institute of Physics. [DOI: 10.1063/1.1777590]

I. INTRODUCTION

The importance of the edge pedestal in determining the
enhanced performance ofH-mode (high-mode) tokamak
plasmas is now widely recognized. A correlation between a
pronounced steep-gradient region in the edge and enhanced
plasma performance has been documented in numerous ex-
perimental studies. In addition, both experiments and nu-
merical calculations using the more recent transport models
indicate a stiff temperature profile in the plasma core, imply-
ing that the achievable central temperature depends directly
on the edge pedestal temperature.

Despite more than a decade of research(see Ref. 1 for a
review), the understanding of the physics that determines the
structure of the edge temperature and density pedestals(i.e.,
the steepness of the gradients and the widths over which the
steep gradients extend) is still incomplete. Although correla-
tions (e.g., Refs. 2–6) of the experimental edge pedestal da-
tabase have identified a number of apparent relationships, a
first-principles prediction of edge density and temperature
gradients and widths remains elusive.

The coincidence of the steep edge gradients in density
and temperature with regions of strongly sheared poloidal
rotation and radial electric field hints that the physics that
determines the structure of the edge pedestal is complex. A
number of possible physics mechanisms have been sug-
gested.

Previously, the pressure gradient limit for the onset of
ideal, infinite-n magnetohydrodynamics(MHD) ballooning
modes was thought to constrain the maximum edge pressure
gradient, and measured edge pressure gradients were ob-
served to be roughly in agreement with this prediction in a
number of tokamak discharges. However, in recent years
many discharges with edge pressure gradients several times
larger than the ideal ballooning mode limit have been ob-
served. These observations have prompted more sophisti-
cated MHD analyses which predict the possibility of access-
ing a second stability regime in which the edge pressure
gradient can be much larger than the infinite-n ideal balloon-

ing mode value without the onset of instability. There is
strong experimental evidence that the dominant MHD insta-
bilities that limit the edge pressure gradient are the
intermediate-n peeling–ballooning modes driven by the edge
pressure gradient and the associated bootstrap current(e.g.,
Refs. 7–11). It has also been proposed(e.g., Ref. 12) that a
MHD stability limit on the pressure, instead of the pressure
gradient, limits the pressure in the edge pedestal. Since a
MHD stability pressure gradient or pressure limit imposes an
upper limit on the pressure gradient or pressure but cannot,
in itself, determine the individual temperature and density
gradients nor the corresponding widths of the strong gradient
regions, other mechanisms have been investigated.

The observation that the sharp density buildup in the
edge occurs over a distance that is comparable to the ioniza-
tion mean free path has led to the hypothesis that the struc-
ture of the density profile in the edge is determined by neu-
tral penetration(e.g., Refs. 13–16). However, this density
buildup distance is also comparable to the ion poloidal gyro-
radius, which has led to the prediction that the density ped-
estal width in the edge is determined by orbit loss(e.g., Ref.
17).

It has been proposed(e.g., Ref. 18) that the heat conduc-
tion relation determines the local temperature gradient in the
edge in terms of the conductive heat flux passing through the
edge and the local value of thermal conductivity. This rela-
tion has been used to infer values for the thermal conductiv-
ity in the plasma edge(e.g., Refs. 16 and 19). Similarly, it
has been proposed that the local density gradient in the edge
pedestal is determined by the diffusive particle flux passing
through the edge and the local values of the particle diffu-
sivity and the convective “pinch” velocity.18

A “framework” for incorporating these various physics
mechanisms in a predictive model for the temperature and
density gradients and widths in the plasma edge has been
proposed.16 However, a better understanding of the basic
physics mechanisms that determine the structure of the edge
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pedestal is required before such a predictive model can be
fully implemented.

The purpose of this paper is to obtain a better under-
standing of some of these basic physics mechanisms by in-
vestigating the extent to which the structure and other fea-
tures of the edge density pedestal can be accounted for by(1)
the requirements of plasma ion particle and momentum bal-
ance and(2) the penetration of recycling neutrals. We con-
sider the steady-state balance equations and do not take into
account the effect of edge-localized modes(ELMs) on par-
ticle or momentum loss, so the analysis is applicable to dis-
charges between or in the absence of ELMs.

We have previously developed from plasma ion particle
and momentum balance a first-principles “diffusive-pinch”
expression for the radial ion particle flux in the plasma edge
in which (1) the diffusion coefficients depend on interspecies
collisional momentum exchange frequencies, cross-field mo-
mentum transport frequencies and the charge-exchange, elas-
tic scattering and ionization frequencies that determine mo-
mentum exchange between ions and neutrals; and(2) the
pinch velocity is specifically identified as a collection of
terms depending on poloidal rotation velocities, the radial
electric field, and the toroidal components of any momentum
input source and induced electric field.20,21 We have also
previously developed, from momentum and particle balance,
a model for calculating the poloidal rotation velocities and
the density asymmetries over the flux surface that are needed
to evaluate the neoclassical gyroviscous cross-field momen-
tum transport frequencies,22 and we have found that these
gyroviscous frequencies agree in magnitude with measured
momentum transport frequencies in the edge of several
DIII-D discharges.20 In the present paper, we combine these
two calculation models to investigate the role of particle and
momentum balance in determining the structure of the edge
density pedestal.

In order to investigate the effect of neutral penetration on
the structure of the edge density pedestal, we solve simulta-
neously for the transport of neutrals into the plasma and for
the ion density profile in the plasma edge. The calculation
model described in the previous paragraph is used to solve
for the ion density profile in the edge plasma, taking into
account the radial electric field and poloidal rotation velocity
profiles that determine the pinch velocity profile and the ion-
ization particle source and the momentum sink due to recy-
cling neutrals. The transport of recycling neutrals across the
separatrix and inward into the edge plasma is calculated us-
ing the “interface current balance” formulation of integral
neutral particle transport theory.23

The boundary conditions for these edge profile calcula-
tions are(1) the inward neutral flux incident across the sepa-
ratrix, which is obtained from a two-dimensional(2D) cal-
culation of neutral recycling from the divertor;(2) the net
outward ion flux across the separatrix, which is obtained
from a particle balance on the core plasma; and(3) the ion
density at the separatrix, which is obtained from a “2-point”
divertor model calculation. These three “boundary condition
calculations” are iterated to consistency, as described in Ref.
24.

The outline of the paper is as follows. A self-consistent

model for the calculation of the plasma ion and neutral atom
profiles, the radial electric field and poloidal velocity pro-
files, and associated quantities is summarized in Sec. II. Re-
sults of a calculation are presented in Sec. III to illustrate the
qualitative features of the solutions and to examine the phys-
ics that determines these features of the edge density pedes-
tal. Finally, the implications of the results are discussed in
Sec. IV.

II. DENSITY PEDESTAL CALCULATION MODEL

A. Generalized “pinch-diffusion” particle flux relations

The particle continuity equation for ion speciesj is

¹ ·njv j = Sj s1d

where Sjsr ,ud=nesr ,udnj0sr ,udksvlion;nesr ,udnionsr ,ud is
the ionization source rate of ion speciesj andnj0 is the local
concentration of neutrals of speciesj . Taking the flux surface
average of this equation yieldsks¹ ·njv jdrl=kSjl because
ks¹ ·njv jdul=0 identically and ks¹ ·njv jdfl=0 by axisym-
metry, which allows Eq.(1) to be written

s¹ ·njv jdu = Sj − kSjl ; S̃j . s2d

Integration of this equation, in toroidalsr ,u ,fd coordinates,
yields

njvu j =

KjB̄u + rB̄uE
0

u

s1 + « cosudS̃jdu

1 + « cosu

; fKjsrd + I jsr,udgBusrd, s3d

whereKj =knjvu jl / B̄u< n̄jv̄u j / B̄u, I j is defined by Eq.(3), and
the overbar denotes the average value over the flux surface.

Subtractingmjv j times Eq.(1) from the momentum bal-
ance equation for ion species “j” and noting thats¹ ·njv jdr

! s¹ ·njv jdu leads to

njmjsv j ·¹dv j + ¹pj + ¹ · p j = njejsv j 3 Bd + njejE + F j

+ M j − njmjvat
j v j − mjS̃jn j ,

s4d

whereF j represents the interspecies collisional friction,M j

represents the external momentum input rate, and the last
two terms represent the momentum loss rate due to elastic
scattering and charge exchange with neutrals of all ion spe-
cieskfvatj=Sknk0

c sksvlel+ksvlcxd jkg and due to the introduc-
tion of ions with no net momentum via ionization of a neu-
tral of speciesj . Only the cold neutrals that have not already
suffered an elastic scattering or charge-exchange collision in
the pedestal are included invatj.

Taking the cross productB3Eq. (4) yields a radialsnrd
component equation
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njejvrjB
2 = Buhnjmjfsv j ·¹dv jgf + f¹ · pgf − Mjf − Fjf

− njejEf + mjsnjvatj + S̃jdvf jj

− BfHnjmjfsv j ·¹dv jgu + f¹ · pgu +
] pj

] ,u

− Mju − Fju − njejEu + mjsnjnatj + S̃jdvu jJ s5d

and a perpendicularsBfnu−Bunfd component equation

njmjfsv j ·¹dv jgr + f¹ · p jgr +
] pj

] r

= njejsvu jBf − vf jBu + Erd s6d

and taking the scalar productB·Eq. (4) yields a third, inde-
pendent parallel momentum balance equation

Bfhnjmjfsv j ·¹dv jgf + f¹ · pgf − Mjf

− Fjf − njejEf + mjsnjnatj + S̃jdvf jj

= − BuHnjmjfsv j ·¹dv jgu + f¹ · pgu +
] pj

] ,u

− Mju − Fju − njejEu + mjsnjnatj + S̃jdvu jJ . s7d

The quantityEf
A is the induced toroidal field due to trans-

former action.
Using Eq.(7) in Eq. (5), multiplying the result byR and

taking the flux surface average leads to an expression for the
flux surface average radial particle flux

RBuejknjvrjl . RBuejn̄jv̄rj = kR2¹f ·njmjsv j ·¹dv jl

+ kR2¹f ·¹ · p jl − kRMjfl − kRFjfl

− kRnjejEf
Al + kRmjsnjvatj + S̃jdnf jl. s8d

The first(inertial) term on the right-hand side vanishes iden-
tically. The remaining terms on the right-hand side represent
the transport fluxes in response to the toroidal viscous force,
the (beam) momentum input, the interspecies collisional mo-
mentum exchange, the inductive toroidal electric field, and
the momentum loss due to interactions with neutral particles,
respectively.

Neglecting the viscous and inertial terms in Eq.(6), us-
ing Eq. (3), and assuming that the radial electric field is
electrostatic leads to an expression for the flow velocity of
ion speciesj in the flux surface

njv j = sKj + I jdB −
1

ejBu
S ] pj

] r
+ njej

] f

] r
Dnf. s9d

Flux surface averaging this equation yields an expression for
the average toroidal rotation over the flux surface in terms of
the average poloidal rotation and radial gradients of the pres-
sure and electrostatic potential

v̄f j = fp
−1v̄u j − sP̄j8 + F̄8d, s10d

where

fp ; Bu/Bf, P̄j8 ;
1

n̄jejB̄u

] p̄j

] r
, F̄8 ;

1

B̄u

] f

] r
= −

Ēr

B̄u

.

s11d

The particle fluxes within and across the flux surface are
determined by Eqs.(9) and (8), respectively. In order to
evaluate these fluxes it is necessary to specify the models for
the viscosity and collisional friction, to know the constantKj

(equivalently the average value of the poloidal velocity), and
to know the radial electric field.

Using the Lorentz approximation for the collisional fric-
tion,

F j = − njmjo
kÞ j

v jksv j − vkd, s12d

Eq. (8) may be reduced to

Grj ; n̄jv̄rj =
1

ejB̄u

f− sM̄f j + n̄jejĒf
Ad

+ n̄jmjo
kÞ j

n̄ jksv̄f j − v̄fkd + n̄jmjn̄dj
* v̄f jg, s13d

where the total momentum transfer, or drag, frequencyndj
* is

given by

n̄dj
* ; n̄dj + n̄atj + n̄ion jj j s14d

which consists of a cross-field viscous momentum transport
frequency formally given by

n̄dj ; kR2¹f ·¹ · p jl/R̄n̄jmjv̄f j s15d

and of the two atomic physics momentum loss terms dis-
cussed previously, with the neutral ionization source asym-
metry characterized by

j j ; kR2¹f ·mjS̃jvf jl/R̄mjS̄jv̄f j . s16d

Writing

P̄j8 = −
Tj

ejBu

sLnj
−1 + LTj

−1d s17d

the perpendicular component of the momentum balance
given by Eq.(10) can be used to eliminate the toroidal ve-
locity in the radial component given by Eq.(13) to obtain a
generalized pinch-diffusion equation for each ion species
present,

G j = njDjjsLnj
−1 + LTj

−1d − njDjksLnk
−1 + LTk

−1d + njvpj, s18d

where the diffusion coefficients are given by

Djj ;
mjTjsndj

* + n j jd
sejBud2 , Djk ;

mjTkn jk

ejekBu
2 s19d

the pinch velocity is given by
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njvpj ; −
M̄f j

ejBu

−
njĒf

A

Bu

+
njmjndj

*

ejBu
SEr

Bu
D

+
njmj fp

−1

ejBu

ssn jk + ndj
* dv̄u j − n jkv̄ukd s20d

and where a sum over thekÞ j terms is understood when
more than two ion species are present. Note that the self-
diffusion coefficientDjj involves the atomic physics and vis-
cous momentum transfer rates as well as the interspecies
collisional momentum exchange frequency.

B. Rotation velocities and radial electric field

Taking the flux surface average of the toroidal compo-
nent of Eq.(4)—the term inh j on the left-hand side of Eq.
(7)—yields a coupled set of equations for the toroidal veloci-
ties of the different ion species present plus the electrons,

Sndj
* + o

kÞ j

n jkDyf j − o
kÞ j

n jkyfk

=
snjejEf

A + ejG jBu + Mf jd
njmj

; yj . s21d

Since the condition sncarbonZcarbon
2 /ned@ sme/mDd1/2

<0.016 is satisfied in most plasmas, the ion-electron colli-
sions can be neglected relative to the ion-impurity collisions
in Eq. (21). In the limiting case of a two-species ion-impurity
si − Id plasma, the two Eqs.(21) can be solved to obtain the
toroidal rotation velocity of each species

yf j =
f1 + sndk

* /nkjdgyj + yk

fh1 + sndk
* /nkjdjh1 + sndj

* /n jkdj − 1g
. s22d

The toroidal rotation is driven by the input beam torque
sRMf jd, the input torque associated with the induced field
sRnjejEfd, and by the internal torque due to the radial ion
flow sejBuG jd which enter theyj, and depends on the radial
transfer rate of toroidal angular momentumsndj* d due to
viscous, atomic physics and convective effects and on the
interspecies momentum exchange ratesn jkd.

The difference in toroidal rotation velocities of the two
species is

yf j − yfk =
sndk

* /nkjdyj − sndj
* /n jkdyk

fh1 + sndk
* /nkjdjh1 + sndj

* /n jkdj − 1g
. s23d

In order to actually evaluate the above equations it is
necessary to specify the toroidal viscous force,kR2¹f ·¹ ·pl,
which determines the viscous momentum transport fre-
quency,ndj, given by Eq.(15). There are three neoclassical
viscosity components—parallel, perpendicular, and gyrovis-
cous. The parallel component of the neoclassical viscosity
vanishes identically in the viscous force term, and the per-
pendicular component is several orders of magnitude smaller
than the gyroviscous component,25

kR2¹f ·¹ · p jl =
1

2
ũ jGj

njmjTj

ejBf

yf j

R̄
; Rnjmjndjyf j , s24d

where

ũ j ; s4 + ñj
cdỹf j

s + ñj
ss1 − ỹf j

c d

= s4 + ñj
cdF− S ŷu j

ŷf j
DsF̃s + ñj

sd + F̃sG
+ ñj

sFS ŷu j

ŷf j
Ds2 + F̃c + ñj

cd − F̃cG s25d

represents poloidal asymmetries and

Gj ; −
r

h4jyf j

] sh4jyf jd
] r

= rsLpj
−1 + Lv j

−1d s26d

with the gyroviscosity coefficienth4j <njmjTj /ejB and Lx
−1

=−sdx/drd /x.
In order to evaluate Eq.(25) it is first necessary to cal-

culate the sine and cosine components of the density and
toroidal velocity poloidal variations over the flux surface.
(The electron momentum balance can be used to relate the
sine and cosine components of the potential variation to the
corresponding components of the density variations.) A low-
order Fourier expansion of the densities and rotation veloci-
ties over the flux surface can be made, and Eq.(9) can be
used to relate the Fourier components of the rotation veloci-
ties for speciesj to the Fourier components of the density for
that species. These results then can be used in the poloidal
component of Eq.(4)—the h j term on the right-hand side in
Eq. (7)—the flux surface average of which with 1, sinu and
cosu weighting then yields a coupled set of three nonlinear
equations per species that can be solved numerically for the
flux surface average poloidal velocities and the sine and co-
sine components of the density variations, for the various ion
species present, over the flux surface.21 These equations are

ŷu jF− qŷu j«sñj
s + F̃sd − q2f j fpS1 + F̃c +

2

3
ñj

cD + fpo
kÞ j

n jk
* +

q

«
natj

* fp +
1

2
fp«nionj

* Hs1 + ñj
cdS n̄e

n̄j

sñe
c + ñoj

c d − sñj
c + ñoj

c dD
+ ñj

sS n̄e

n̄j

sñe
s + ñoj

s d − sñj
s + ñoj

s dDJG − o
kÞ j

ykuF fpn jk
* Îmj

mk
G = − ŷrj − q«

1

4
ñj

s − q«F̂ jF1

4
sF̃s + ñj

cF̃s − ñj
sF̃cdG

− q2f j fpsŷf j + P̂j8dF̃
c − q«ŷf jFsŷf j + P̂j8dF̃

s +
1

2
ŷf jñj

sG −
n̄e

n̄j

nionj
* qFŷf j«sñe

c + ñoj
c d−

2

3
qfjsñe

s + ñoj
s dG , s27d
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ñj
sF1

3

q2

«
f j fpŷu j +

1

2
«ŷrj −

1

2
«fpo

kÞ j

n jk
* ŷukÎmj

mk
+

1

2
qnion

* fpŷu jG + ñj
cF1

2
qfp

2ŷu j
2 −

1

4
q +

1

2
qnatj

* nionj
* G

= −
1

2
«fpo

kÞ j

n jk
* ŷu jñk

s −
1

4
qF̂ jf− F̄cg −

q2

«
f j fpF1

2
sŷu j − ŷf j − Pj8

ˆ dF̃s −
1

2
qfp

2ŷu j
2 −

1

2
qŷf j

2 −
1

2
qnatj

* ffpŷu jñoj
s + nionj

* ñoj
c g

− qnionj
* fpF1

2
ŷu jHñoj

s S1 +
n̄e

n̄j
D +

n̄e

n̄j

ñe
sJ+

1

3

q

«
f j

n̄e

n̄j

sñe
c + ñoj

c dG , s28d

and

ñj
cF1

3

q2

«
f j fpŷu j +

1

2
«ŷrj −

1

2
«fpo

kÞ j

n jk
* ŷukÎmj

mk
+

1

2
qnionj

* fpŷu jG + ñj
sF−

1

2
qfpŷu j

2 +
1

4
q −

1

2
qnatj

* nionj
* G

= − o
kÞ j

ñk
cF1

2
«fpn jk

* ŷu jG −
1

4
qF̂ jfF̃sg −

q2

«
f j fpF1

2
hs1 + F̃cdŷu j − sŷf j − Pj8

ˆ dF̃cjG − qŷf j
2 F1

4
«hỹf j

s ỹf j
c + ñj

cỹf j
s + ñj

sỹf j
c jG

−
1

2
qnatj

* ffpŷu jñoj
c − nionj

* ñoj
s g − qfpnionj

* F1

2
ŷu jHñoj

c S1 +
n̄e

n̄j
D +

n̄e

n̄j

ñe
cJ +

1

3

q

«
f j

n̄e

n̄j

sñe
s + ñoj

s dG , s29d

ŷu j ;
ȳu j

ufpuythj
, ŷf j ;

ȳf j

ythj
,

ŷrj ;
ȳrj

Smjythj

ejBu
0 DufpuS ythj

qR
D , fp ;

Bu

Bf

,

where

ñj
c/s ;

nj
c/s

«
, F̃c/s ;

Fc/s

«
, ñoj

c/s ;
noj

c/s

«
,

n jk
* ;

n jk

ythj

qR

, nion j
* ;

n̄ion jr

ythj
, natj

* ;
n̄atjr

ythj
,

F̂ j ;
ejF̄

Tj
, Pj8

ˆ ;
1

Bu
0n̄jejythj

] pj

] r
, s30d

and f j is defined in Eq.(33).
In deriving Eqs.(27)–(29), we have used the neoclassi-

cal parallel viscosity tensor obtained by extending the clas-
sical rate-of-strain tensor formalism to toroidal geometery,25

leading to the poloidal component of the divergence of the
parallel viscosity tensor,

n̂u ·¹ · p = hojS1

2
AojDH1

r

] lnshojAojd
] u

−
3 sin u

R
J , s31d

where

1

2
Aoj = H−

1

3

1

r

] vu j

] u
+ vu jS 1

R

1

r

] R

] u
+

1

3

1

Bu

1

r

] Bu

] u
D

+ SBu

Bf
DR

r

] svf j/Rd
] u

J s32d

and by replacing the classical parallel viscosity coefficient
with a neoclassical form26 that takes banana-plateau colli-
sionality effects into account,

hoj

njmjythjqR«−3/2n j j
*

s1 + «−3/2n j j
* ds1 + n j j

* d
; njmjythjqRfjsn j j

* d. s33d

The sine and cosine components of the plasma ion den-
sity asymmetries over the flux surface are indicated bynj

s and
nj

c, respectively, and the corresponding components of the
electron density asymmetries,ne

s/c, are calculated from the
charge neutrality requirement. The asymmetry in the recy-
cling neutral density is likewise represented by sine and co-
sine components,no

s/c. The electron momentum balance was
used to relate the sine and cosine components of the asym-
metry in the electrostatic potential,Fs/c, to the corresponding
asymmetry inne

s/c. For convenience, all of the asymmetry
Fourier components have been divided by«=r /R, the local
inverse aspect ratio, and denoted by a tilde.

We note that is has been suggested27 that the above ex-
pression for the gyroviscous toroidal force underestimates
the momentum transport rate in regions of steep pressure
gradients and low toroidal rotation(e.g., the edge pedestal)
because of failure to take into account a drift kinetic correc-
tion not present in the original Braginskii derivation. Bragin-
skii’s momentum equations are valid if the fluid velocities in
the directions perpendicular and parallel toB are much larger
than the diamagnetic velocity and the diagmagnetic velocity
multiplied by Bw /Bu, respectively. Ordering arguments sug-
gest that this is not the case in the absence of a large “exter-
nal” source of momentum. It is nota priori clear if the Bra-
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ginskii gyroviscous formulation is correct for the conditions
of the plasma edge or needs to be supplemented by a heat
flux term.28 In any case, the above equations have done well
in predicting toroidal rotation(hence radial momentum trans-
port) in the DIII-D core plasma,29 and have predicted mo-
mentum transport frequencies in the edge pedestal of the
magnitude observed in DIII-D experiments,20 which moti-
vates us to investigate their use to predictndj in the edge
pedestal.

When Eq.(10) is used to eliminatevw j from Eq.(21), the
resulting equations can be summed over ion species(and the
toroidal electron momentum equation can be used) to obtain
an explicit expression for the radial electric field

Er

Bu

=

o
j

ions

hMf j + njmjndj
* sPj8 − fp

−1yu jdj

o
j

ions

njmjndj
*

. s34d

The local electric field depends on the total local input tor-
oidal momentum depositionsMw=o jMw jd, the local radial
pressure gradientssPj8d, the local poloidal velocitiessyu jd and
the local values of the radial momentum transfer ratessndj

* d
due to viscous, atomic physics and convective effects.[We
note that this formulation avoids the ambiguity associated
with the more common procedure of using Eq.(10) for a
single ion species to determineEr, which can result in dif-
ferent electric fields for different ion species.]

C. Ion profile in the pedestal

The particle flux for each ion species in the edge pedes-
tal satisfies the balance equation

¹ · G j =
dG j

dx
= nion jne = nion jSo

k

nkZkD s35d

with a separatrix boundary conditionG jsxsepd=G j sep. For the
main ion species,G j sep can be determined from a particle
balance on the core plasma. In order to determineG j sep for
the various impurity charge states it would be necessary to
calculate the sputtering rate and transport of impurities in the
divertor, edge, and core regions, which is beyond the present
state-of-the-art. Rather than introducing ambiguity by using
approximate models to calculateG j sep for the impurities, we
will assume a fixed impurity fraction,fz, and impurity charge
state,Z, in the edge region. This allows Eq.(35) for the main
ion species to be written

dGi

dx
= nivion js1 + fzZd, Gisxsepd = Gi sep, s36d

wherei andz now refer to the main ion and impurity species,
respectively.

With this “constant impurity fraction” approximation,
Eqs.(18)–(20) for the main ion species can be reduced to a
simple pinch-diffusion flux relation

Gi = − Di
] ni

] x
+ nisDiLT

−1 + ypid, nisxsepd = ni sep, s37d

where an effective ion diffusion coefficient has been defined

Di ; Dii − fZDiZ =
miTiniZ

seiBud2FS1 +
ndi

*

niZ
D −

1

Z
G , s38d

and the temperature gradient scale length,LT;−T/ sdT/drd,
is assumed to be known for the moment(we plan to return to
a similar determination of this quantity in a subsequent pa-
per).

Equations(36) and (37) are coupled equations that can
be solved forGisxd and nisxd, with the boundary conditions
G jsxsepd=G j sep and nisxsepd=ni sep. We will determineni sep

with a “2-point” divertor model calculation, using plasma
core power and particle balances to determine the heat and
particle fluxes into the divertor-scrapeoff layer from the
core.24 The equations of the preceding section will be solved
to determine the poloidal rotation velocities, the radial elec-
tric field, and the gyroviscous cross-field momentum trans-
port frequency.

D. Neutral penetration

The interface current balance method23 is used to calcu-
late the inward transport of a partial current,Jsep

+ , of neutral
particles incident on the core plasma from the scrape-off
layer at the separatrix. Defining the albedo as the ratio of
inward to outward partial currents,an;Jn

+/Jn
−, a recursive

relation relates the albedos at successive interfacesn
=1,2, . . . ,N numbered successively from the separatrixsn
=1d inward to the innermost interfacesn=Nd,

an =
an−1sTn−1

2 − Rn−1
2 d + Rn−1

1 − an−1Rn−1
, n = 2,3, . . . ,N. s39d

Once the albedos are calculated by sweeping inward from
n=2 to n=N, the ratio of outward partial currents at suces-
sive interfaces can be calculated by sweeping outward from
n=N−1 to n=1 using the recursive relation

Jn
−

Jn+1
− = RnTn

−1an+1sTn − Rn
2Tn

−1d, n = N − 1,N − 2, . . . ,1.

s40d

The appropriate boundary conditions areJ1
+=Jsep

+ and aN

=aplasma. The quantityaplasmais the albedo of a semi-infinite
plasma medium, but the actual value is not important if the
location of interfaceN is sufficiently far(several mean free
paths) inside the separatrix that the neutral influx is highly
attenuated. The quantitiesRn and Tn are the reflection and
transmission coefficients for the region of thicknessDn

=xn+1−xn with total (ionization +charge-exchange+elastic
scattering) mean-free-pathln calculated for the local ion and
electron temperature and assuming the neutrals to have the
same local temperature as the plasma ions
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Rn =

1

2
CF ln

Dn
GF1

2
− E3SDn

ln
DGF1 − E2SDn

ln
DG

1 − CF1 −F ln

Dn
GF1

2
− E3SDn

ln
DGG ,

Tn = E2SDn

ln
D + Rn, s41d

wherec is the ratio of the charge-exchange plus elastic scat-
tering cross sections to the total cross section, andEmsyd is
the exponential integral function ofmth order and of argu-
ment y. The neutral density in each mesh interval is deter-
mined by equating the divergence of the neutral current to
the ionization rate.

The transmission of uncollided cold neutrals into the
edge plasma is calculated fromJn+1

c =E2sDn/ln
cdJn

c, where the
mean-free-pathlc is calculated for the temperature of neu-
trals entering the scrape-off layer from the plenum region.

The incident partial current,Jsep
+ , boundary condition is

obtained from a 2D neutral transport calculation of ions in-
cident on the divertor plate recycling as neutrals and return-
ing through the divertor region and across the scrape-off
layer to the separatrix.24

This coupled 2D neutral divertor transport and core pen-
etration calculation is iterated to consistency with a core
power and particle balance calculation and with a “2-point”
divertor calculation.24 The overall neutral calculation proce-
dure has been benchmarked by comparison with neutral den-
sity measurements inside the separatrix in DIII-D and with
Monte Carlo calculations in Ref. 30, where further details of
the calculation procedure and of the atomic data can be
found.

III. CALCULATIONS FOR A DIII-D H-MODE
DISCHARGE

A calculation with parameters representative of a lower
single null divertor DIII-DH-mode plasma was made in or-
der to investigate the extent to which the calculation model
of this paper, which is based on ion particle and momentum
balance and neutral particle recycling, predicts the observed
structure and other features of the edge density pedestal. We
modeled the DIII-D plasma as an effective circular plasma,
but explicitly modeled the divertor geometry for the neutral
recycling calculation and used a valuej=1 for deuterium to
represent the strong up-down asymmetry in the ionization
source term[see Eq.(16)]. The representative discharge con-
ditions s#92976@3.2 sd used in the calculations were char-
acterized by the parameters[R=1.7 m, a=0.6 m, k=1.8, I
=1 MA, B=2.1 T, Pnb=5 MW, nav=5.9 e19/m3, nped

=4.9 e19/m3, nsep=1.9e19/m3, Te ped=275 eV, Ti ped

=375 eV, Te sep=50 eV, Ti sep=150 eV, deuterium plasma
with edge carbon concentration 2.5%].

The discharge was modeled, as described in Ref. 23, in
order to calculate the poloidally averaged recycling neutral
flux flowing inward across the separatrix and the poloidally
averaged ion flux flowing outward across the separatrix.
These quantities and the measured(and calculated) plasma
ion density at the separatrix,nsep, were then used as the

boundary conditions for the calculation of the ion and neutral
density profiles(and the profiles of radial electric field, po-
loidal rotation velocity, pinch velocity, etc.) in the edge
plasma that was described in the preceding section. Although
the calculation model of the preceding section yielded toroi-
dal rotation velocities comparable to the measured values in
the edge, we elected to use the measured velocities in Eq.
(28) to calculate the poloidal rotation velocities(the calcula-
tion of the poloidal rotation velocity was relatively insensi-
tive to the value of the toroidal rotation velocity).

The plasma ion and neutral atom profiles in the edge
plasma are shown in Fig. 1. An average inward recycling
neutral flux across the separatrix of 5.3231020 at. /m2/s was
calculated. We observe the ion profile exhibits an edge ped-
estal structure.

In order to gain physical insight into the factors which
cause the pedestal structure of the edge density profile in
these calculations, it is useful to rewrite Eq.(37) in a form

FIG. 2. Calculated outward radial ion total velocity and inward ion pinch
velocity as a function of distance inside the separatrix for a DIII-DH-mode
discharge.

FIG. 1. Calculated plasma ion and neutral atom densities as a function of
distance inside the separatrix for a DIII-DH-mode discharge.
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Lni
−1 ; −

1

ni

dni

dx
=

sGi/ni − vpid
Di

− LTi
−1 s42d

that displays the dependence of the local density gradient
scale length on the local ion particle radial velocity,vr

=Gi /ni, on the local value of the effective diffusion coeffi-
cient of Eq.(38), and on the local value of the radial pinch
velocity of Eq. (20). We note that the local ion temperature
gradient scale length also appears in Eqs.(37) and(42), im-
plying a relationship between the ion temperature and den-
sity gradients in the edge. We plan to explore this relation-
ship in a future paper, but for this paper we set the ion
temperature gradient scale length to a large value, which has
the effect of making the density gradient scale lengths calcu-
lated from Eqs.(37) or (42), somewhat smaller than they
would otherwise be if the temperature gradient scale length
was taken into account. Equation(42) was used to evaluate
the pressure gradient termPj8 used to calculate the radial
electric field in Eq.(34), and elsewhere.

The terms determining the density gradient scale length,
hence the density profile, in Eq.(42) are plotted in Fig. 2.
The radial velocity,vr =Gi /ni, exhibits a pronounced peaking
as the separatrix is approached from the inside, which is due
to an increase with radius(by a factor of 4 over the 5 cm
range inside the separatrix) in Gi due to ionization of recy-
cling neutrals and to the sharp decrease inni just inside the
separatrix. This increase invr as the separatrix is approached
from inside produces a sharp increase in magnitude of the
negative poloidal velocity[first term on the right-hand side
in Eq. (28)], as may be seen in Fig. 3.(The carbon poloidal
velocity profile was calculated to be similar to, but of slightly
larger negative magnitude than the deuterium poloidal veloc-
ity profile shown in Fig. 3.) The radial electric field of Eq.
(34) becomes strongly negative as the separatrix is ap-
proached because of the strong negative pressure gradient
produced by the sharp decrease inni, as may be seen in Fig.
3. We note that thevu and Er profiles of Fig. 3 are charac-
teristic of observed profiles in the edge pedestals ofH-mode
plasmas.

The inward pinch velocity given by Eq.(20) and plotted
in Fig. 2 was primarily determined by the toroidal electric
field sEfd and friction svizd terms well inside the separatrix.
However, the momentum dragsndi

* d term involving the radial
electric field and the poloidal rotation velocity became domi-
nant and caused the sharp inward(negative) spike near the
separatrix where bothvu andEr became large and negative.
This large inward pinch velocity in the edge pedestal, pre-
dominatly caused by the large negative values ofvu andEr,
would seem to be the cause of the particle transport barrier
observed in the edge pedestal, at least for this discharge.

The diffusion coefficient of Eq.(38) is plotted in Fig. 4.
The sharp drop just inside the separatrix is due to a drop in
niz, caused by a drop innz (assumed in this model to be a
constant fraction ofni) relative to the values at locations
further inside the separatrix.(Another calculation using a
constant value ofnz at all locations resulted in the same type
of pedestal structure in the ion density and large negative
spikes invu andEr in the pedestal but not in a reduction inDi

in the pedestal region.) The increase inDi at the separatrix
was produced by an increase in the calculated value of
ndi

* /niz at the separatrix relative to the value slightly inside
the separatrix[see Eq.(38)], shown in Fig. 5.

FIG. 5. Momentum transfer frequencies as a function of distance inside the
separatrix for a DIII-DH-mode discharge.

FIG. 3. Calculated radial electric field and deuterium ion poloidal rotation
velocity as a function of distance inside the separatrix for a DIII-DH-mode
discharge.

FIG. 4. Effective deuterium ion diffusion coefficient as a function of dis-
tance inside the separatrix for a DIII-DH-mode discharge.
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The profiles of the interspecies collision frequency,niz,
the gyroviscous momentum transport frequency,ndi, the
atomic (charge-exchange1 elastic scattering1 ionization)
momentum exchange frequency,nati, and the total momen-
tum drag frequency,ndi

* =ndi+nati, are plotted in Fig. 5. The
atomic momentum exchange frequency naturally decreased
with distance inside the separatrix because of attenuation of
the neutrals. The gyroviscous momentum transport fre-
quency also decreased with distance inside the separatrix be-
cause of the decreasing value ofLn

−1 [used in evaluating the
factorG of Eq. (26)] and because of the decreasing values of
vu [used in evaluating the factoru of Eq. (25)].

The calculated pedestal ion density shown in Fig. 1 is
comparable to the measured electron density value of 4.2
31019 m3. When the calculated plasma ion density gradient
scale length calculated from Eq.(42) neglectingLTi is cor-
rected using the experimental value ofLTi in Eq. (42), the
resultingLn=6 cm is comparable to the experimental value
of 6.4 cm(see appendix of Ref. 15 for discussion of mapping
measured gradient scale lengths to average values for the
effective cylindrical model). The average radial electric field
observed experimentally in the pedestal(steep gradient) re-
gion was −13 kV/m, which is comparable to the average
calculated value shown in Fig. 3. We intend to make a more
comprehensive comparison with experiment in the future.

IV. DISCUSSION

We have formulated from plasma ion momentum and
particle balance and neutral atom transport theory a first-
principles model for the self-consistent calculation of the
edge density pedestal structure–radial profiles of plasma ion
and neutral densities, radial electric field, poloidal and toroi-
dal velocities, radial pinch velocity, and related quantities in
the plasma edge of tokamaks.

We have found that these equations have a self-
consistent solution in the plasma edge which exhibits an ion
density pedestal and sharp negative spikes in the radial elec-
tric field, the poloidal rotation velocity and the pinch velocity
in the pedestal region, for a calculation using the parameters
of a DIII-D H-mode discharge. The mechanism for the cre-
ation of an edge(particle) transport barrier was found to be
the creation of a large inward pinch velocity caused prima-
rily by the large negative spikes in the radial electric field
and poloidal velocity. These large negative spikes in the ra-
dial electric field and poloidal velocity in turn were caused
primarily by the large pressure gradient and the large radially
outward particle velocity required to satisfy the continuity
condition as the ion density decreased sharply in the edge
pedestal, respectively. An edge convective energy transport
barrier is associated with an edge particle transport barrier, of
course.

The results of this paper are not inconsistent with recent
studies14–16that demonstrated that the width of the edge den-
sity pedestal was comparable to the ionization mean free
path (or the somewhat shorter transport mean free path that
governs neutral penetration when charge-exchange and elas-
tic scattering are taken into account) over a wide range of
edge plasma conditions in DIII-D. However, in view of the

new result of this paper on the dominant importance of a
strong inward pinch term in determining particle transport in
the plasma edge, the adequacy of the purely diffusive model
of Ref. 31(which omitted a pinch term) for interpretation14,15

of these experimental data is questionable. The presence of
recycling neutrals in the edge pedestal may be necessary in
order for solutions to the coupled set of equations required
by momentum and particle balance to have a pedestal struc-
ture, but this remains to be seen.

The edge plasma calculation models presented in this
paper were derived from first principle—the model for cal-
culation of the plasma ion profile from particle and momen-
tum conservation requirements, and the model for calculat-
ing the neutral atom profile from neutral particle transport
theory. However, it was necessary to invoke further theory to
evaluate the collisional friction and viscous momentum
transfer terms—a Lorentz model was used for the friction
and neoclassical models were used for the parallel and cross-
field viscous force terms. To this extent, the overall model
can be considered neoclassical. However, if any other vis-
cous models were used to evaluateh0i and ndi, the calcula-
tion model would be unchanged, but the results would differ
to the extent that the other viscosity model yielded different
values forh0i andndi.

There was nothing in the formulation of the calculation
model of this paper that distinguished betweenH-mode and
L-mode plasmas, and in fact observed edge density gradients
differ more quantitatively than qualitatively between the two
regimes.15 However, the large negative spikes in radical elec-
tric field and poloidal velocity found in the edge pedestal for
theH-mode discharge parameters used in the calculations of
this paper(and presumably also the large inward pinch ve-
locity) seem to be observed only inH-mode plasmas. We
conjecture that these distinctiveH-mode features will be pre-
dicted by the model of this paper for certain ranges of edge
and plasma parameters, but not for others. We intend to in-
vestigate this conjecture in the future.
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