Viscous effects in a collisional tokamak plasma with strong rotation

W. M. Stacey, Jr.
Georgia Institute of Technology, Atlanta, Georgia 30332

D. J. Sigmar

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

(Received 20 March 198S5; accepted 1 June 1985)

The full viscosity tensor for an axisymmetric toroidal plasma in the collisional regime (with strong
rotation) is calculated, including gyroviscosity and O (€) poloidal variations over the flux surface.
It is shown that the resulting viscous force is of sufficient magnitude to account for the radial
transfer of toroidal momentum that must be inferred in order to explain the rotation
measurements in tokamak experiments. The consequences of a viscous force of this form and
magnitude on particle transport and on the evolution of toroidal and poloidal rotation velocities

are discussed.

I. INTRODUCTION

Measured '™ toroidal rotation velocities in tokamak ex-
periments with unbalanced neutral beam injection indicate
that the radial transport of toroidal momentum apparently
occurs at a rate one to two orders of magnitude faster than
can be accounted for by standard (i.e., proportional to the
self-collision frequency) neoclassical perpendicular viscos-
ity.58 This has led to the feeling that an anomalous mecha-
nism was responsible for the “enhanced” radial transport of
toroidal momentum and correspondingly “reduced” mo-
mentum confinement times in these experiments.

We have been motivated by this situation to derive the
full viscosity tensor with full toroidal geometry and all pieces
of Braginskii’s stress tensor, including the gyroviscous ten-
sor elements and taking into account the O (€) poloidal den-
sity variations® produced by strong rotation (¥, ~V,). The
formalism is developed for a collisional plasma, but some of
the consequences are of more general applicability. We con-
firm that the perpendicular viscous forces, which are pro-
portional to the self-collision frequency, are too small to ac-
count for the rotation measurements, but we find that the
gyroviscous forces, as modified by the toroidal geometry ef-
fects, are of the proper magnitude to explain the momentum
confinement time inferred from these experiments. The ef-
fects of this large gyroviscous force in coupling the time evo-
lution of toroidal and poloidal rotation velocities and in driv-
ing a radial particle flux are also examined.

Il. RATE-OF-STRAIN TENSOR

The elements of the general rate-of-strain tensor of fluid
theory may be written

W=, VVetyg+hg-VVeh, —36,5VV, (1)
where V is the fluid velocity and 71, is the unit vector in the
direction. The elements of the rate of strain tensor can be

written generally as'®

av,
WaB = ( b + zrgk Vk)
o, | 4
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where dl, are the differential elements in the a-coordinate
directions and I"5, are the Christoffel symbols (see the Ap-
pendix). We adopt an orthogonal (¢,p,4) flux surface coordi-
nate system with dl, =h, d, =(RB,)"'dy,dl, =h, d,,
dly, = hy d; = R d¢, where R is the major radius and B, is
the poloidal magnetic field. We further make use of toroidal
symmetry. The elements of the traceless rate-of-strain tensor
in this coordinate system are

av, JRB,)™!
ENETILLIRNENE A
3 al 3 R,

P

w3 Al

J _
Wer =hPI(V"hP )= Wy
¥

W, =RI(WV,R ) =W,,
al,

av. dRB,)™!
=t 22y MBI, LI,
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RAV,R )
W = o Weps
av, JRB,)!
e = __2_ 2 (_A'__l_ﬂ_iRBpi)Vp‘
3 g, \3Ral, 3 al,
(3)
11l. VISCOUS STRESS TENSOR

We follow Braginskii'' in computing the elements of the
viscous stress tensor for a plasma in a magnetic field from the
corresponding rate-of-strain tensor elements:

”aB = — ﬂoWgB - [(nlelzB + 772W¢213)]
+ [(773W¢3:f3 + 774W;B)]
=M + 15+ 1T, (4)
where the prescription for construction of the W,
(n = 0,1,2,3,4) from the rate-of-strain tensor elements of Eq.
(3) is given in the Appendix and the viscosity coefficients are
given by Braginskii.'! The stress tensor elements in this form

naturally decompose into a “parallel” term /7 4, a “perpen-
dicular” term /7%, and a “gyroviscous” term J7}. The
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particle motions producing these stresses are discussed in
Ref. 12. The parallel viscosity coeflicient 7, scales inversely
with self-collision frequency; the perpendicular viscosity co-
efficients %, and 7%, scale directly with collision frequency
and inversely as the square of the magnetic field; and the
gyroviscous coefficients, 7, and 7,, are independent of colli-
sion frequency and scale inversely with the magnetic field.

We assume f,=|B,|/|B|~1, f,=|B,|/|B|<1. The
viscosity tensor elements can then be represented as given in
Table L.

We note that Mikhailovski and Tsypin'* have also re-
cently generalized the Braginskii representative of Il to gen-
eral curvilinear coordinates. In this respect, Table I can be
considered an explicit evaluation of their general result for
tokamak flux surface coordinates, although we worked di-
rectly from the Braginskii representation.

IV. TOROIDAL VISCOUS FORCE

The flux-surface-averaged (denoted by ( }) toroidal
momentum balance on a tokamak plasma, summed over
species, can be written

2( 294 nmd:> 2(R2V¢ M,)

(5)

where n and m are the number density and mass of the plas-
ma ions, M is the momentum density input to the plasma by
the unbalanced beam injection, and d V/dt is the convective
derivative.

The toroidal component of the viscous force can be writ-
ten, by specializing the representation in general curvilinear
coordinates'® to flux-surface coordinates, as

— S(R*V$-V-1L),

1 4 \+ B2 (R”m)
h, dl, Tl + 5, al, '
(6)
Recall that HaﬂEﬁa -II- hﬁ‘
The flux-surface average of this force is
R¥W¢:.V-II) = . 7
(R2% 9T = (o R, ) )

We note that, since Il is a symmetric tensor,

2 2
(R*V$-V-I) = V' 3¢(V (R°V$-TI- V).
Making use of Table I, we find that the parallel ()
viscosity contribution to the toroidal viscous force vanishes,
that the perpendicular (7,7,) viscosity contribution can be
written (to leading terms in f, €1) as

(R2¥$-V T,
(Rorn G )

~ {19
o <th al,
and the gyroviscous (,7,) contribution can similarly be
written as
-1
(R 3’1,774——-8( Vg;: ))>
©

(R*¥g-V M= — (

We note that if the plasma rotated as a rigid body, then
V4(¥p) = R (¢,p) Q, and both of the viscous forces would
vanish. Thus, it is the departure from rigid-body rotation
within a flux surface d(V, R ~')/dl, 0 that drives the gyro-
viscous force, and it is the departure from radially uniform -
rigid-body rotation, d(V, R ~')/dl, #0, that drives the per-
pendicular viscous force.

(8)

1 9
Rh, dl,

TABLE 1. The viscosity tensor elements, where 4, = 2{ — }(dV,/dl) + [(1/R)AR /31,) + {(1/B,)8B,)/31, |V, + f,R [AV,R ~1)/dI, 1}

Parallel Perpendicular Gyroviscous
HoaﬂE - ﬂoWoaa n(lz,zeE —(mWes + 7]2szzﬁ) ni‘ﬂE(WSWiﬂ + 7’4W:ﬂ)
_ dRBV,) a(VR“)) ( AV,h Y (V,R ™Y
1 RB 1 2’ _fR 4 . h 2" p —fR ¢
e in04o 7]1(( ) al, f;: al,, N3\ A, 31,,, f; al‘,,
aV,h, ") HRB,V,)
n, =1 0 — — n,(RB,) " ——2 £
v ps mh, 31 73(RB,) al)
RAVeR ) V,R~!
+ (7, — mlf, R 31 —(7,— ﬂsv;R'a(_Z;I‘—)
¥ P
aV,R -1 3(V, -1
m,, =1 0 —n,R——— -
v =gy 72 ul, 7R al,
RB V. V,h, s
pr il’IOA ° - ”I(RBP)—IE(__LL) 773h a(
P a’nﬁ
HV,R ™Y V,R~!
+ (n = 2l R—5— + (274~ ﬂslf;R—(;I—)
P v
AV,R ™Y AV,R™Y)
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V,R ! V,R !
M, — A ® 2,,2];1{‘_9(__21_1 _2,7401(%__)
» ¢
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To leading order, ¥, is uniform over the flux surface.
Hogan® has recently shown that the viscosity itself drives a
higher-order [0 {v}], poloidally asymmetric flow that, when
used to evaluate Eq. (9), contributes a term that is 2.31¢>
times Eq. (8), thus constituting an effective “Pfirsch-
Schliiter” type factor. We® have shown that with strong rota-
tion (V4 ~ V), inertial effects drive an O (¢) poloidal vari-
ation in the density that in turn produces a higher-order
[0 (€)], poloidally asymmetric flow. We shall now evaluate
Eq. (9) in the presence of strong rotation and a poloidally
asymmetric flow of order €.

In the large aspect ratio, low-S, circular flux-surface ap-
proximation (e=r/R,«1), p—6, h,—1/r,y—r,and R = R,
X (1 + € cos 6). A strong toroidal rotation produces poloidal
variations®:

Vy=VS(1+ 7V, cos6+7,sin6),

7 =71%1 + A, cos 6 + A, sin ).

The X quantities are of the order O (€). In this approximation,
Egs. (8) and (9) reduce to

c?Vo
(R*Vg-V- H12)~-—R0—1-§-(1]2 o )+0(52)

(R™Vg-V- n34)~-?—2R0( 5‘3( po
<[+ ()
-2 )](%)}

=— R '93V3[G(NO] +O(e)
(11)

s) (10)

r 5(7721"3)
vy or ’

o=l ()E)+ - o

The quantity  is order unity when there are O () poloidal
variations in toroidal velocity and density.

V. INTERPRETATION OF ROTATION MEASUREMENTS

If we associate the viscous toroidal force with the mo-
mentum loss term used to interpret the rotation experi-
ments,"™ nmV, /7, (where 7, is the momentum confine-
ment time), or with the equivalent “drag” force that we
previously introduced®'* to model radial transfer of toroidal
momentum, nmv, ¥V, (where v, is a radial momentum
transfer or “drag” frequency), and make use of Eqgs. (10) and
{11), we obtain

Ve Ve
nOdeVOEﬂ'—'ﬁ'= _i__a_(”gra ¢)
T4 r or ar
1
- "‘-—( Ve 8. (13)
Using Braginskii’s'! viscosity coefficients
73~n°Tm/ZeB, 75~%5/Qr, (14)
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where {2 = (m/ZeB) is the gyrofrequency and 7 is the ion
self-collision frequency, we find that for the conditions in
present tokamak plasmas £27~10"3-10%, so that the ratio of
the gyroviscous force to the perpendicular viscous force is
~€0 X (10°-10%). Thus, for O () poloidal variations over the
flux surface, the gyroviscous force is ~ 107 larger than the
perpendicular viscous force, allowing us to ignore the first
term on the rhs of Eq. (13) in solving for

0 1 (18
-XE —_— ()TVO)
e =V ZZeB[ VS \rr ]

We thus conclude that the dominant radial transport of
toroidal momentum is caused by the gyroviscous mecha-
nism and scales like %,, which is independent of collision
frequency. Thus, Eq. (15} should be applicable to all collision
regimes. We note that this result differs from earlier conclu-
sions that the radial transport of toroidal momentum varied
inversely”'® or directly® with the collision frequency. Tsang
and Frieman’ apparently calculated a parallel viscosity term
{~m,) which, as we will see, enters into the parailel viscous
force but, as we have shown, does not enter into the toroidal
viscous force. Grimm and Johnson'® worked out the viscos-
ity tensor in tokamak geometry, but only considered the par-
allel viscous force. Hogan® correctly identified both the per-
pendicular and gyroviscosity terms, His result is equivalent
toour Eqgs. (8) and (9) within the limits of his approximations.
However, his approximate evaluation of the poloidal vari-
ation of ¥, neglected inertial forces which can produce O (¢)
variations, and his results are based on smaller variations
produced by the viscous forces, leading him to conclude that
the dominant viscous force scaled with collision frequency.

Momentum confinement times inferred from toroidal
rotation measurements and momentum balance consider-
ations have been about two orders of magnitude smaller than
could be accounted for by neoclassical perpendicular viscos-
ity.”™ We have shown that the gyroviscous force is about
two orders of magnitude greater than the perpendicular
force in a strongly rotating tokamak plasma. Thus, the mo-
mentum confinement time predicted based upon gyrovis-
cous effects must be the same order of magnitude as the
momentum confinement time inferred from the rotation ex-
periments.

Equation (15a) can be rewritten in a form that provides
more physical insight:

(15a)

7; '=v,; =(TO@ /2R 3ZeB)G 1), (15b)
where G (r} is-a geometrical factor that depends upon the
radial profile of n, TV [see Eqgs. (12) and (14)]. For example,
when the profile ~(1 — x%)", then G = 2nx?/(1 — x?), where
x = r/a is the normalized radius, so that |G | is order unity.
We have previously calculated®'® O (€} density variations
over the flux surface in strongly rotating plasmas with pa-
rameters typical of ISX-B? and PLT,"? and substantial im-
purity density variations have been measured in PDX."
Thus, the product &G () is order unity in a strongly rotating
plasma. Lacking detailed knowledge, we set &G (r) = 1in the
following comparisons.

Thescaling 74 ~(R 3BT ;') given by Eq. (15b} is consis-
tent with the experimental observation® that the momentum
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confinement time is greater in PDX (R, = 1.45m, B=2.2
T, 7,~800 eV) than in PLT (R,=1.3 m, B=25 T,
T, ~900 eV), as well as the observation'® that the momen-
tum confinement time is less in ISX-B (R, =93 cm, B = 1.4
T, T;~500 eV) than in PLT.

We have compared the prediction of Eq. (15b) with two
experimentally determined values of the momentum con-
finement time in ISX-B.'® In the first case, the steady-state
toroidal rotation velocity was measured for an oxygen impu-
rity, then a momentum confinement time was inferred by
assuming that all of the plasma ions were rotating with the
same velocity and balancing the momentum input from the
beam with the momentum loss rate. The inferred experimen-
tal value of the momentum confinement time thus deter-
mined was 16 msec. Applying Eq. (15b) to a composite ion
species with an effective charge Z = 2.5 and an average tem-
perature T; = 500 eV'° results in a predicted momentum
confinement time of 12 msec.

In the second ISX-B experiment, the decay of the Ne '*
toroidal rotation velocity when the beam was shut offled to a
preliminary experimental confinement time of 35 msec for
the center of the plasma.'® Applying Eq. (15b) to an ion with
charge Z =9 and a central ion temperature of 7;(0) = 800
eV’8 results in a predicted momentum confinement time of
28 msec.

In PLT, momentum confinement times of 10-30 msec
were inferred? from measured toroidal rotation velocities
and balancing momentum input with momentum losses on
the bulk plasma. Applying Eq. (15b) to a composite ion spe-
cies with an effective charge Z = 2.5 and an average ion tem-
perature T, = 900 eV'® results in a predicted momentum
confinement time of 23 msec.

The decay of the toroidal rotation velocity of centrally
peaked Ti **! after the beams were turned off in PDX was
used to determine® a central momentum confinement time of
80-100 msec for PDX. These experiments were performed
for 3.5 MW of beam power. For similar plasma parameters
and 7.2 MW of beam power, the central ion temperature in
PDX was 6 keV.?° Applying Eq. (15b) to a titanium ion with
charge Z = 21 and temperature 7;(0) = 2.5keV resultsin a
predicted momentum confinement time of 78 msec.

Thus, there is good agreement between the experimen-
tally determined confinement time and the prediction of Eq.
(15b) over a range of major radii (93-145 cm), magnetic field
{1.4-2.5 T), ion charge (2.5-21), and ion temperature (500-
2500 eV). These results are summarized in Table I1.

In PLT, the toroidal rotation velocity was observed!? to
vary linearly with the beam momentum input, whereas in

ISX-B the toroidal rotation velocity was saturated.!® We
have made some preliminary calculations of the poloidal
variation of the impurity density in these experiments, based
on the theory of Ref. 16. We predict that the  component of
the impurity density variation in PLT is O (€) and does not
vary greatly over the range of beam powers for which the
rotation experiments were performed. Since ¥ ~7~", this
would lead us to conclude from Eq. (15b) that, aside from
temperature effects, the momentum confinement time
would be roughly constant over the range of the PLT rota-
tion experiments. This is consistent with the observed linear
dependence of rotation velocity on momentum input. On the
other hand, our calculations for ISX-B indicate that & could
increase significantly with increasing momentum input over
the range of the rotation experiments, which is consistent
with a saturation of the toroidal rotation velocity.

Oscillations almost 180° out of phase between the toroi-
dal rotation velocity and the temperature have been ob-
served in ISX-B.'® Equation (15a) predicts that an increase in
temperature would lead to a decrease in momentum confine-
ment time, which would be followed by a decrease in toroidal
rotation velocity, and conversely. The experimental result is
V/V,~1.5 and T,/T,~2, which is not inconsistent with
the prediction of Eq. {15b) that V,/V, = T,/T, when possi-
ble G (r) and © variations are neglected.

VL. PARALLEL VISCOUS FORCE

The parallel viscous force in flux surface coordinates is
represented as

m
B~V-H=Bp[—l—i(Rhf,H¢p)+Bp ‘7( "P)

RRZ 3, a1\ B,
d(RB,)™!
(e (=5
R 3l al,
B, [ 1 4
s ~ (R?,1T
TR [Rh,, alw( plles)
RIT,
+ Bpi(__ﬂ)]. (16)
3\ B,

Comparison with Eq. (6) shows that the second term in Eq.
(16)is B, /R times the toroidal viscous force of Eq. (6). [The
second term in Eq. (16) is dominant when |B, | B, |.] Thus,
we see immediately that the toroidal viscous forces caused by
the radial transfer of toroidal momentum, which are neces-
sary to explain the rotation measurements, also contribute to
the parallel viscous force. This justifies our previous inclu-
sion®'* of a term nmv, ¥, in the parallel momentum balance

TABLE II. Comparison of experimental and predicted momentum confinement times.

Ion Major Magnetic Momentum
Ion temperature radius field confinement time

Experiment species Charge (eV) {cm) (m experiment Eq. (15b)

ISX-B composite Z=25 500 93 14 16 msec 12 msec

ISX-B Ne'™* _9 800 93 1.4 35 msec 28 msec

PLT composite Z=25 900 130 25 10~-30 msec 23 msec

PDX T 21 2500 145 22 80-100 msec 78 msec
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and the assumption v, =v,, in modeling tokamak plasmas
with unbalanced neutral beam injection.

Making use of the viscous stress tensor representation
given in Table I and retaining only the leading terms
(f, €f3 =1), we find the parallel (7,) viscous force contribu-
tion,

v 2 42
(g,
+J;,R‘ﬁ37p__‘l”
LA

1R 1 1 9B,
—_— v,
+(R81+3B al)

a(V,R )]
+R—— a I (17)

the perpendicular (7,7,) viscous force contribution,

B V,R !
(B9 Myt L 9 (R3h,,772—_a( ’ ))
al,

Rh, dl,
IV,R !
+p, (B LN g
a\'B, a,

=(B,/R}R Voo V-10),,

and the gyroviscous (7,74) force contribution

B, 1 4 3(V,R !
(B:V n)34~__¢ (R3hp174—(—¢——))

Rh, 9, oL
IV,R !
B e |
a\' B, d

=(B,/R)R*V¢ -V + I},

Making use of the continuity equation V+nV =0 to
write nV, = K (¢) B,, Eq. (17) can be used to write the flux
surface average of the leading, parallel viscous force contri-
bution as

v -2 2
)

AV,R !
+3<nof(al )R ( ‘;l )>. (20)

f 4

Noting that in a low-£ equilibrium where RB, is a surface
quantity,

1 R _ 1 6B,

R dl, B, al,

the first term on the rhs of Eq. (20) is of the form given by
Hirshman?' in his derivation of a general constitutive rela-
tionship between the parallel viscous force and the flows.

s
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The second term arises because of a variation of the particle
density over the flux surface, and the third term arises from
the departure from rigid rotation over the flux surface; both
of these effects are associated with a strongly rotating plas-
ma.

VIl. PARTICLE TRANSPORT

The toroidal component of the momentum balance
equation for particle species j can be flux-surface-averaged to
obtain an expression for the *“radial” particle flux across flux
surfaces:

F=(Vy-nV;) = —m
¢
2 N ) 2 R
_ (R vé M)  (R7VS v ) o1
g o

The first term is the usual collisional friction-driven trans-
port flux. The second term is the transport flux driven by the
momentum input to species j because of collisions with fast
injected beam ions. The third term represents explicitly the
contribution to the transport flux from the toroidal viscous
force, which we have shown to be primarily caused by the
gyroviscous effect. We have previously developed® a trans-
port theory that includes these last two terms, with the third
term represented as a “drag” term (R *V® - nm;vyV; )/ej.
These previous results can now be taken over by identifying
the drag frequency with the gyroviscous term, as given in Eq.
(15a).

The combined effect of rotation, beam momentum in-
put, and toroidal viscous force on impurity transport is
theoretically predicted®’® to enhance the inward transport
of impurities with counterinjected neutral beams and to re-
duce and even reverse the inward transport with co-injected
neutral beams. Experimental observations in PLT?>** and
ISX-B? indicate that the central accumulation of edge-in-
jected impurities is substantially increased with counterin-
jection and reduced with co-injection, in qualitative agree-
ment with the theory.

We further note that the theory®'® predicts that the nor-
mally negative radial electric field in the center of the plasma
is made more negative by counterinjected beams and is made
less negative or even positive by counterinjected beams.
Measurements®™ in ISX-B qualitatively confirm these
trends.

VIil. ROTATION

Solution of the continuity and “‘radial” momentum ba-
lance equations yields® leading order expressions for the po-
loidal and toroidal rotation velocities for species j:

V, = [K,WV/n]B,=X,5, 22)
and

V.

s =X.B, —R(pj/me, + ), j=1,..,J.  (23)

The surface quantities K;(} must be determined by using
these equations in the flux surface averaged parallel momen-
tum balance equations:
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<B nm a:>+(B- nm(V,V)V,) + (B-V-IL)

=(B-F)+(B-M), j=1,..,J (24)
In Eqs. (23), ® is the ambipolar potential, and the prime
denotes differentiation with respect to ¥.

Using the results of Sec. V1, we write the viscous force in
Eq. (24) in the form

(B:V-IM)==((B:V-II)) + ((B+V-II),)
~uX (B* + (B+nmv,V), (25)

where the appropriate definition of the “viscosity coeffi-
cient” u follows from the first two terms in Eq. (20) [i.e., it
corresponds to Hirshman’s®! u); we neglect the third term,
which is O (f, )].

In order to illustrate the effects, we use a Lorentz model
for the collisional friction

F, = —nm, ;jvﬁ(vj —V), (26)
where v; is the Coulomb collision frequency, and make the
low-B, circular flux-surface approximation. Using Egs. (22)
and (23), Egs. (24) can then be reduced to

LAz
at n;m;

1/9Y
+ Tl X)}_;(—+vdjy)

at
1{ M )
Y +v,P; + Svu(P/ —P})) +0(&),
B(n,.m,. WP+ TP =) +0(€)

j=1,.,J : (27)
where
g, E
p'E_l__ﬁ, 1 @= . (28)
n,e;B, or B, or B,

An equation for the evolution of the quantity Y, which is
related to the radial electric field, can be obtained by using
Eqs. (22) and (23) in the flux surface averaged toroidal mo-
mentum balance equations summed over species:

2 2 {5+ k)
—4 Y) X |B,
( 3 a4 121 P 6t ¢
J aP!
= - S| oG+ vari)] 2
=1 . t
where
pj=nm;, p= zpj’ 7 -‘—“_EP;W; (30)

j=1

It is clear from Egs. (27) and (29) that the time evolution
of the toroidal and poloidal rotation velocities of the various
particle species and the time evolution of the radial electric
field are coupled. Equations (22) and (23) show that the poloi-
dal and toroidal rotation velocities evolve on the same time
scale, that of X, rather than separate time scales as previous-
ly found?® in the absence of a gyroviscous term of sufficient
magnitude to account for the observed experimental mea-
surements of toroidal rotation.

The elementary time constants of the system of Egs. (27)

2805 Phys. Fluids, Vol. 28, No. 8, September 1985

and(29)are (vy) ", (2, vy) L and (w;/nm; + vy + v;) 7
The time constants that determine the evolution of the rota-
tion velocities and the radial electric field involve combina-
tions of the elementary time constants. In particular, the v;,
which multiply a difference in velocities between species [see
Egs. (26) and (27)] in the governing equations, are suppressed
in the composite time constants, which are determined pri-
marily by the v; and u;/n; m; . In the absence of the gyrovis-
cosity, the elementary time constants of the system would be
(u;/n;m; + v;)~". Experimentally v,; is inferred to be larg-
er than u;/n;m; in the collisional regime.

IX. PHYSICAL ORIGIN OF GYROVISCOUS MOMENTUM
LOSS

While the physical mechanism of the parallel viscosity
tensor 77,7° and the perpendicular tensor 7, , 7'* are trans-
parent and widely described in the literature, the gyrovis-
cous tensor 775 47 is less understood and deserves discus-
sion here since it would not contribute to axial (i.e., z-)
momentum loss in a cylindrical tokamak.

The analogy with the collisional heat diffusion problem,
recently pointed out by Hogan,® is useful here. The terms in
the heat flow

9= — VT —x,V, T+ xbXVT, (31)
with x =3(nT /eB) independent of collision frequency
(whilex; ~v~', k, ~v)are precisely of the same form as our
Eq. (4) for the momentum flow . Braginskii'! points out
that (in slab geometry) the last piece in Eq. (31) transports
heat not across but in the isothermal surface. To obtain a
contribution to the cross-field flux q« V¥, a poloidal vari-
ation (T /dl,) [in T = Ty(¢) + T(¢,0)] is needed. In a
toroidal plasma (tokamak), this gives rise to a Pfirsch—
Schliiter factor 1.6€*(B% /B 2), thus vanishing for e—0. Bra-
ginskii'! shows that the gyroviscous piece of m can be basi-
cally written in the form

4 =13, [(BXV)V + V(bX V)], (32)

and it is easy to see that it requires [3(V,/R)dl,] = N,/
dl, #0 {where V = Ri,[Qq(¥) + Q,(¥,p)]} to obtain the
dominant contribution to w>*. We note from Eq. (32) that
(because of b ¢ V) the gyroviscous stress 7, couples to strain
elements 3V, /3X; with I, m#i.k.

Kaufman'? has provided a microscopic derivation of the
tensor element 7,, which we generalize to the case at hand.
Consider an ensemble of ions with random initial conditions
X, random gyrophases a, and random initial velocities
Vﬁ”, but subject to the conditions

usE(Xs)x,,x, =3, X, + 43, X, (33)

Here ( ), ., denotes the ensemble average taken at
the point (X,X,:X; = 0); u3, =0u,/dX, and u,, are given
constants and the positions X; execute the Larmor motion

=X —a coswt + a),
X, =X + asinjwt + a), (34)
X=X+ Ve
Prescribing the initial conditions (X,,X,;X, = 0)att =0
for all particles in the ensemble gives
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0=x9
(35)

X,=XP—acosa, X,=XP +asina,

then the velocities at # = 0 obey

X, =awsina = o(X, — X¥),

X, =aw cosa = (X — X)),

X, =P,
and we note (X,) =0= (X,), (X;) = (V{")#0 [see Eq.
(33)]. Let the Cartesian coordinates describe a local system at
a point on the flux surface such that

X, =X, X,=X, X,=X,.

The stress tensor element is by definition the ensemble
average of the random part of the momentum flow, i.e.,
()X — (X)) = (XpXi)

=X -X)VP) = (X V), {36)
where we neglected the quadratic terms X ,, XX, in the last
step. Equation (36) shows that the stress 7,; originates solely
from the correlation between X and V{” which follows
from the underlying requirement, Eq. (33), as follows. The
simplest relation between the random variables X {¥ and V|
yielding Eq (33) on ensemble average is Vid=u;, XY
+us, XY+ V , where V” is an uncorrelated parallel ran-
dom variable, (V" ) = 0. Using this in Eq. (36) yields
Ty =mno[uy,(@*/2 + X31) + 45, X, X,]. (37)

Since the chosen reference point (X, X,; X5 = 0} can be
averaged out over the flux surface, we can set X ;=0=X,in
Eq. (37), and with the gyroradius

Tps/mn = ((Xz -

a= Vth /(0,
we obtain
e mthzhu _ (1’_1) Ju,
23 2&) 3,1 w a X] ]
or returning to (¢,p,¢ ) coordinates
a
=L X (38)
o dl,

We see that this viscous stress originates from the (X, V)
correlation ensuing from the preparation du /dl, #0 of the
system. Having kept the radial dependence u;, X, = du,/
dl, in Eq. (33) does not contribute to the gyroviscous stress
m,¢ and thus the viscous force

a(pl 3u¢> a p.
A\ al X, o

in this model. This is expected for the gyroviscous piece of &
in analogy to the vanishing cross field heat transport
xbX VT in slab geometry. The toroidal geometry misaligns
the surfaces of constant ¥, /R = Q(i,p) with respect to the
flux surfaces, leading to the Pfirsch—Schliiter factor 2.3¢%,
where the numerical factor stems from the viscosity coeffi-
cient ratio 72 /7,7, and the finite aspect ratio in the toka-
mak.® There may be other factors which can lead to a larger
misalignment (i.e., a larger poloidal variationin ¥, /R ). We
have shown® that inertial effects in a strongly rotating
(V4 =V ) plasma with impurities can produce O (¢) varia-

—iu3,; =0

n¢°v ‘ﬂ'
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tions in impurity density, which lead, through poloidal mo-
dulation of the radial electric field and other mechanisms, to
O () variations in V, /R, for example.

X. SUMMARY

We have derived the complete viscosity tensor in toroi-
dal geometry for a collisional tokamak plasma with strong
rotation (V; =V, ) and presented a formalism for the calcu-
lation of all toroidal and parallel viscous forces in flux sur-
face coordinates. We find that in a plasma with strong rota-
tion, the gyroviscous force that is produced by O(e)
departure from rigid-body rotation within a flux surface is
much larger than the perpendicular viscosity and is of suffi-
cient magnitude to account for the momentum confinement
times that are inferred from the rotation measurements in
PDX, PLT, and ISX. We therefore are able to explain the
experimental momentum confinement results without re-
sorting to “anomalous” effects and to justify from first prin-
ciples our previous use of toroidal and parallel viscous forces
of the form nmv, V; and nmv, V| in the development of a
theory for plasma transport and rotation. We have presented
simple prescriptions for the drag frequencies, v,=7;,
which agree with the experimental results. We show that a
viscous force of the magnitude and form that are required to
account for the rotation measurements has profound effects
upon particle transport and also couples the time evolution
of the toroidal and poloidal rotation velocities and the radial
electric field to occur on the same time scale.

APPENDIX: DEFINITIONS

The Braginskii decomposition of the viscous stress ten-
sor into parallel {7,), perpendicular (7, and 7,), and gyrovis-
cous (17, and 7,) components is given by Eq. (4), where

we E%(fafﬁ—%fsaﬂ)(fy — 36 ) Woar»
aﬁ—(‘s v + 30apfu £, ) W
s =(0% Bf + 8puta S )W
—5(5«1#6371/ +8Bv anu)f Y v
o =fa fu€ayy +S5.Ls€aruVfy Wvs

and

6¢lzﬁz‘saﬁ —fa fp’
€.p, is the antisymmetric unit tensor, f,=B,/B, and the
Einstein summation convention is employed. Here W, is
given in Eq. {3).

The nonvanishing Christoffel symbols for an axisym-
metric, tokamak, flux-surface geometry are

J(RB,)™!
ry, =&, 20— _ry,
P
h
Iy, = -2t -,
h, dl,
b= LR __ bos
R 3,
s = _1OR_ re
D R aI 4
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