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SUMMARY 
 

The recycling of neutral atoms in the plasma edge is an area of increasing interest 

in Tokamak plasma physics. Strong evidence has been presented recently that suggests 

there is a strong link between neutral particles and the overall confinement of the plasma. 

Experimental studies of neutral particle dynamics [1] and penetration into the core 

plasma [2] have stimulated investigations of the effects of neutrals upon edge phenomena 

such as MARFEs [3, 4] (Multifaceted Axisymmetric Radiation from the Edge), the L-H 

(Low-to-High Mode) transition [5-7], the structure of the edge pedestal [8, 9] in H-mode 

plasmas, and the interpretation of thermal transport coefficients from measurements of 

edge density and temperature gradients [10].  One such piece of evidence (and major 

motivation for our research) comes from a series of experiments carried out on the 

Tokamak TEXTOR that qualitatively demonstrates there is a direct link between density 

limits and neutral particle density in the plasma edge. The details of this experiment are 

found in Chapter 2 of this thesis.     

Many studies have focused on the investigation of edge pedestal fueling by 

neutrals produced from ions recycling from edge plasma material surfaces.  At issue is 

whether the edge pedestal is fueled primarily by neutrals recycling from ion fluxes 

incident on the divertor target plates, as has long been assumed, or by neutrals recycling 

from the main plasma chamber wall produced by radial convective ion fluxes in the SOL 

(scrape-off layer).  Evidence for both divertor recycling [11, 12] and main chamber 

recycling [13-15] stimulated an extensive data collection, analysis and modeling effort 

for a series of DIII-D discharges [16], which concluded that divertor recycling was the 

primary fueling mechanism in DIII-D. 



xiv 

One purpose of this thesis is to make use of this extensive data 

compilation/analysis and background plasma calculation database that has been 

established for this series of DIII-D discharges for a detailed analysis of neutral particle 

recycling and edge pedestal fueling in an H-mode Tokamak plasma with the 2D neutral 

particle transport code GTNEUT [17, 18].  We have chosen the deterministic GTNEUT 

code instead of the more familiar Monte Carlo codes such as DEGAS2 [19] and EIRENE 

[20] which are frequently used with plasma fluid codes such as SOLPS [21] and UEDGE 

[22] for neutral recycling calculations in Tokamak plasmas because of the difficulty of 

obtaining sufficiently good statistics to calculate accurate neutral profiles with Monte 

Carlo (see e.g. Fig. 17 in Ref. [21]).  The GTNEUT code is discussed in detail in 

Chapters 3 and 4. The ion flux measurements used in this analysis are discussed in 

Chapter 5. The neutral particle recycling and pedestal fueling calculations are discussed 

in Chapter 6. Analyses of the relative importance of neutrals recycled at different spatial 

locations and discussion of the calculational uncertainties are also presented in Chapter 6.  

Suggestions for improvements to the GTNEUT code are briefly discussed in Chapter 7. A 

brief summary and conclusions are presented in Chapter 8.   
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1. Introduction 

1.1 Area of Research 

This PhD dissertation is related to the fields of Plasma Physics and Fusion 

Technology. The main research topics are Edge Plasma Physics and Neutral Particle 

Transport Theory. 

1.2 Motivation 

Fusion is the process by which two nuclei are brought together to form a larger 

more massive nucleus. If the mass of the resulting nucleus is less than the sum of the two 

original nuclei, energy is released. This is the very process that powers our sun and every 

star in the night sky. In order for the fusion process to occur, very high temperatures are 

typically needed. The temperatures are so high in fact that no physical material can 

contain the reaction; instead, other means of confinement must be used. In stellar fusion, 

this is accomplished with gravity. The collective mass of all the nuclei in a star create a 

gravitational bottle that traps the hot atoms keeping them from escaping. While 

gravitational bottles are rather common throughout the known universe, they are 

impossible to replicate in the laboratory setting with today’s technology. Here on earth, 

we must use more innovative means of confining the hot nuclei.  

Fortunately, if a gas is heated to sufficiently hot temperatures, the electrons 

surrounding the nucleus of the gas atoms become unbound. This means the atoms are no 

longer microscopically neutral in charge; however, the system of ions and electrons are 

still macroscopically neutral. When the electrons are “vaporized” from the nucleus in this 
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fashion, we say that a gas has transitioned to the fourth state of matter which is called 

“plasma”. Since the charged particles of the plasma spiral around magnetic field lines due 

to the Lorentz force, it is possible to utilize magnetic fields to confine the plasma. 

There have been many magnetic field configurations used to create a “magnetic 

bottle” to confine the plasma, but one of the devices that holds the most promise is a 

device called the Tokamak. First developed in the former Soviet Union in the 1950s [23], 

the Tokamak is a donut shaped device that consists of three primary components: a 

vacuum vessel, an array of toroidal magnets, and a system of poloidal magnets as seen in 

the figure below. 

 

Figure 1: Simple Diagram of a Tokamak [24]. 
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The vacuum vessel is used to confine the neutral gas and maintain optimal 

densities in order to create the plasma. The plasma itself is actually confined by the 

magnetic fields generated by the toroidal and poloidal field coils. The inner poloidal field 

coils (also called the central solenoid) are used to induce a current in the plasma. The 

current coursing through the plasma not only heats it, but also creates another magnetic 

field. The superposition of the toroidal and poloidal magnet fields creates a helical shaped 

magnetic field line for the plasma ions and electrons to orbit about. 

The creation of the plasma particles begin in or around the core of the plasma. 

The core of the plasma is the hottest region inside the Tokamak. Temperatures exceed 

one million degrees Kelvin. The core is where most of the fusion occurs. A plasma 

particle cannot remain in the core indefinitely though. Ions will either fuse with other 

ions or escape. When the ion escapes the core of the plasma it crosses the Last Closed 

Flux Surface (LCFS) and then hits the wall of the vacuum vessel or another structure. 

The LCFS is the last of the helical field lines that creates a closed loop. Outside of the 

LCFS, the field lines are connected to the first wall of the vacuum vessel or another 

structure. Once a plasma ion hits the wall it recombines with an electron forming a 

neutral gas particle once again. This neutral gas is no longer confined by the magnetic 

field lines. Some neutral gas particles can be absorbed by the first wall of the vacuum 

vessel while others are injected back into the core to refuel it. However, in order for the 

neutral particle to refuel the plasma, it must first cross the LCFS once more and enter a 

region of the plasma called the edge.  

The plasma edge is a small region inside of the Tokamak plasma that extends 

inward from the LCFS for only a few centimeters, as shown in the figure below. 
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Mathematically, this is the region that determines the boundary conditions for core 

plasma physics solutions. Physically, this is the region through which particles and 

energy from within the core must be transported through in order to pass to the 

unconfined plasma in the Scrape Off Layer (SOL). It is also the region in which the 

neutral particles re-entering the core from the SOL are ionized.   

 

Figure 2: A 2D cross section of single-null poloidal divertor plasma configuration [25]. 

In the past, many plasma physicists concentrated research efforts on the 

exploration of core and SOL plasma physics with little attention given to the edge region 
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[25]. However, it has been known for some time that neutral atoms could travel deep into 

a hot plasma by repeated charge exchange [26, 27]. Strong evidence has been presented 

recently that suggests there is a strong link between neutral particles and the overall 

plasma power and particle balances, temperature and density profiles, plasma 

confinement, particle and energy fluxes to the wall of the device, erosion of the first wall, 

and the performance of the pumping systems [27-30]. The primary objective of this 

dissertation is to examine how neutral particles affect the plasma edge under various 

operating conditions; however, it is important to first discuss what has already been done.  

It is known that recycling neutral particles cool the plasma edge, provide a source 

of ions, and alter the plasma momentum balance. By doing so, neutral particles may have 

profound effects on the plasma edge. Some of these effects may be due to the neutral 

particles altering the particle or power balance of the plasma [31]. Neutral particles may 

also influence the plasma velocity via momentum balance [32, 33] or simply alter the 

temperature and densities in the region [5, 34]. Regardless of how the plasma has been 

affected, the primary mechanisms by which neutral particles affect the plasma are 

through charge-exchange, ionization, and elastic scattering. Furthermore, neutrals may 

cool the plasma to the point where recombination occurs. Another primary effect is that 

the charge-exchange of neutral particles with partially ionized impurity atoms followed 

by recombination can increase substantially the impurity radiation cooling [31, 35].  

One mechanism by which neutral particles may affect the plasma is by affecting 

thermal instabilities. Thermal instabilities are those instabilities in the particle and power 

balances driven primarily by the unfavorable temperature (and density) dependence of 

the plasma heating and cooling rates [31].  These instabilities have been identified by 
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many researchers as the probable cause for numerous abrupt-transition phenomena in 

Tokamaks. Such phenomena include (but are not limited to) transport barrier formation, 

Multifaceted Asymmetric Radiation From the Edge (MARFE), radiative collapse, 

divertor MARFEs, etc.   

One of the most important discoveries in recent Tokamak history has been the 

observation of a new confinement regime called H-mode. It has been observed that when 

a particular non-radiative power through the LCFS exceeds a certain threshold value, a 

transport barrier sets up in the edge of the plasma causing steep density and temperature 

gradients to form. There are a number of theories on why this transport barrier forms, but 

the reigning paradigm is that an increase in the E B× velocity shear stabilizes edge 

turbulence. Regardless of how the transport barrier forms, there is a significant 

enhancement of the steep gradients signifying that more of the plasma remains hotter for 

a longer period of time thereby increasing the chance a fusion reaction will occur. This 

enhanced confinement regime is called High Mode (H-mode), and it can improve the 

confinement by a factor of two or more over that of the Low Mode (L-mode) 

confinement. The inner edge of the steep gradients is referred to as the “pedestal” [5]. 

From the many experiments in which the L-H transition has been observed, an empirical 

equation has been formulated to approximate the non-radiative power flowing outward 

across the last closed flux surface required for this transition to occur [25]. 

 
0.58( ) 0.82 0.81
20(2.84 / )MW

LH i
P A n B Ra=  (1) 

The above equation is based solely on the Tokamak machine parameters (aspect ratio, 

density, magnetic field, major, and minor radius) and can vary widely from device to 

device. In order to compensate, additional scaling factors are sometimes used.  
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 Stacey has suggested [31, 36] how the suppression of thermal instabilities could 

act as a trigger mechanism in the formation of the steep temperature gradient region that 

is referred to as the edge transport barrier. He has developed a model for the power 

required to cross the separatrix in order to suppress thermal instabilities in the edge. His 

model is one of the few “non-empirical” formulations to achieve such a feat.  

 
( )( )0 0 2

2

/5
1 1

4 5

4

r

thresh sep

k
P TA

n

χ α χ ν
⊥

⊥

 
 −
 = Γ + +
 Γ 
  
   

 (2) 

The equation above is the simplified mathematical formularization of the model. 0χ is the 

thermal conductivity and Asep is the area of the separatrix. ⊥Γ  is the convective particle 

flux. n and T are density and temperature respectively. ν  is the collision frequency and 

1

r
k

−  is the radial wavelength. Eq. (2) is similar in function to Eq. (1), except that it works 

for both the L-H transition and the H-L transition. It is based on fundamental physics 

rather than empirical correlations. threshP  is equivalent to ( )MW

LH
P , in that both are the non-

radiative powers required to cross the separatrix in order for the plasma to transition to H-

mode.  

We should also note that the model formulated in Eq. (2) provides compelling 

theoretical evidence that neutral particles can strongly influence the L-H transition. This 

will become abundantly clear as we highlight the development of the model.  

 To develop his model [36], Stacey assumes that once thermal instabilities in the 

edge have been suppressed, the turbulent transport in the edge is suppressed by the 

sheared E B× flow. Then he couples the most basic particle, momentum, and energy 
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balance equation to density-velocity-temperature instabilities with a short 1

r
k

−  in the edge. 

The coupling is done by performing an expansion of the solution of the time dependent 

balance equations in the vicinity of a given equilibrium solution as a small perturbation in 

density, velocity and temperature about a given equilibrium solution. This course of 

action yields a dispersion relationship for the growth rates and wavelengths of the 

thermal instabilities in the edge.   

 ( )2 2 12 5

3 2
T r TL k L

n
ω χ ν ν α− −⊥Γ 

= − + + − 
 

 (3) 

When ω of Eq. (3) goes to zero, thermal instabilities in the plasma edge are 

suppressed, thus enabling the transitioning of the plasma from L-mode to H-mode. It is 

by setting Eq. (3) to zero that Eq. (2) may be derived; however, it is easier to study the 

effects of neutral particles on thermal instabilities by looking at Eq. (3). The first two 

terms in Eq. (3) are the stabilizing effects of heat conduction and convection respectively. 

The α-terms encompass the destabilizing atomic physics process and the stabilizing 

effects of heating in the edge. For ions the α-term is given by 

 ( )
5 3 1

1 1
2 2

c
c i at i i

i ion at c

at i i i

T H H

T n T T

ν
α ν ν ν ν ν

ν

    ∂ ∂
= − + − + − −     ∂ ∂    

 (4) 

and for the electrons  

 ( )
5 3 1

1
2 2

ion ion e e ez z
e z ion

e e e e ion e e

E E T H HL L
n

T T T T n T T

ν
α ν ν ν ν

ν

      ∂∂  
= − + − + − + − −      

∂ ∂       
. (5) 

In these equations, Tνχ ∼  is the radial thermal diffusivity, 1 ( / ) /
T

L dT dr T
− = − , ⊥Γ  is the 

average radial particle flux flowing outward through the plasma edge region (as in Eq. 2), 

ion
ν  is the neutral ionization frequency, c

at
ν  is the frequency of charge exchange plus 
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elastic scattering reactions with ‘‘cold’’ neutrals, Eion is the ionization energy, 
z

n and 
z

L  

are the density and radiation emissivity of impurity ions, and H is any external heating 

that may be present. All quantities are in the plasma edge [36].  

It is from the α terms that we can see how the presence of neutral particles can 

enhance the excitation thermal instabilities in the edge. In the ion α term, 

( )0

c cold

at cx elast
nν σν σν= + . This term encompasses the charge exchange and elastic 

scattering rates. As the neutral particle density in the edge increases, so do these rates. 

This means the edge is cooling faster causing ω to increase. The same is true for the 

ionization rate ( ion o ion
nν σν= ) in both α terms.  Additionally in 

e
α ,  the first term 

represents impurities in the edge. As the impurity density in the edge increases, the edge 

to further cools by radiation which further increases ω.  

Further theoretical evidence for the effect of neutrals on the L-H transition has 

been provided by Carreras. He examined a wide range of plasma discharges to study the 

effects that neutral particles have on the L-H transition [37]. Carreras finds that neutrals 

may in fact play multiple roles in the transition. As previously stated in Stacey’s analysis, 

Carreras also finds that the neutrals clearly affect the particle and energy fluxes as well as 

the ion momentum loss through charge exchange friction. From here, he suggests that 

due to the poloidal localization of the charge exchange damping, neutrals may modify not 

only the magnitude, but also the topology of the E B× flow shear. This suggest that 

neutrals can play a dual role in the L-H transition by having both positive or negative 

effects [37].  

Carreras uses a different approach to examine the effects of the neutrals on the L-

H transition. He starts with the assumption that the L-H transition occurs by the sudden 
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amplification of the poloidal shear through the Reynolds stress which suppresses 

turbulence in the edge. With this assumption, he suggest that one must examine the main 

physics effects of the poloidal momentum balance in order to obtain a clear picture of 

what effects the neutrals have on the suppression of the edge turbulence. This is done by 

looking at a simplified form for the evolution of the poloidal ion velocity shear, 
'

s
Vθ , 

given by: 

 
( )

( ) ( )

2'

2' '

32

/
, /

i s
neo n i n T Es cx s s

k

n nd V
n V f N N n n V

dt W

θ

θ θβ µ νσ α

 
 = − + + × +
  
 

ɶ
ɶ .

 (6) 

The first and last terms on the right hand side of Eq. (6) are contributions due to the 

Reynolds Stress Tensor, and the second term is the neoclassical flow damping term. The 

third term is a simplified form of the friction between ions and neutrals induced by 

charge exchange. Using Eq. (6), Carreras formulates a transition criterion [37].   

 ( ) ( ) ( )
2 2 2

3 , / / /n T neo k n s ex
f N N n n n n W nα µ β νσ> + +ɶ ɶ  (7) 

The left hand side of the equation can be equated related to power through 

transport and temperature gradients. It is therefore straight forward to see how one of the 

possible roles of neutrals is impeding the transition. The enhanced poloidal flow damping 

due to charge-exchange friction increases the power threshold. 

He also suggests that neutrals may also increase the ion energy loss through 

charge exchange and ionization, but that this contribution to the increase in the power 

threshold would be weak. From the model discussed, Carreras suggest that the increase of 

the transition threshold by neutrals goes beyond the particular model just discussed. In 
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fact, he says this carries over to all transition models that incorporate the E B× shear flow 

suppression of turbulence as the basic transition mechanism [37].  

Using the phase transition model, Carreras suggest that the effects of the neutrals 

on the transition could possibly be described by taking the ratio of the charge exchange 

damping rate, cxν , to the neoclassical flow damping rate, ceon . Carreras produces a semi-

empirical formula based on experimental correlations from DIII-D for the power required 

to cross the separatrix in order to transition from L mode to H mode.  

 
( )

2

2
0.37 0.63

cx M
sep

neo

P n
ν

µ

 
 = +
 
 

 (8) 

Here Carreras correlates /sepP n  to ( ) /
cx neoM

ν µ . This equation is similar to Stacey’s 

formula in Eq. (2) in that both predict an increasing power flow across the separatrix is 

required for H-mode as the neutral density in the edge increases and in that both indicate 

that the value of this power flux depends on local edge parameters. Carreras finds that 

this fit is rather poor, especially if the density dependence is eliminated. He suggests a 

better fit to experimental data is produced when he correlates /sepP n  to /
n s

rλ , where nλ  

is the poloidally averaged neutral profile radial decay length and rs is the averaged minor 

radius of the separatrix. 

 

2.56

0.179 3148.8 n
sep

s

P n
r

λ  
 = +     

 (9) 

From his experimental analysis, Carreras concluded that there was significant 

correlation between neutrals at the plasma edge and the power threshold for L-H 

transitions which is quite clear from Eq.  (8) and Eq. (9). Additionally, it was observed 

experimentally, that neutral densities in the SOL can be misleading when estimating the 
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neutral population inside of the separatrix. This is because an increase in the neutral 

population in the SOL increases the plasma density, which in turn increases the opacity to 

the neutrals. This reduces the neutral penetration, which reduces the neutral density [37]. 

In fact, Carreras suggest this could be a reason that in some experiments with very strong 

gas puffing in DIII-D, the power threshold actually decreases.     

Fukuda [38] points out that the DIII-D observations directly contradict 

observations in JT-60U. In JT-60U (as well as other Tokamaks) excessive gas puffing 

can either quench H-mode or inhibit its formation altogether, but he goes on to suggest 

neutrals are still extremely significant factors. It should be noted that while those such as 

Fukuda suggest that neutrals are in fact important “hidden” variables in scaling laws such 

as Eq. (1), there is some experimental evidence that may suggest the impact that neutrals 

have on the L-H transition is small. Suttrop [39] made comparisons of matching sets of 

experiments on JET and ASDEX-upgrade. The comparisons consisted of a set of 

similarity tests; from which, he concluded that it is unlikely that atomic physics processes 

dominated the H-mode threshold scaling at the parameters of the experiment. The reason 

for these conclusions was that while Ip, en , and Bt matched for each comparable 

discharge between the machines, there was no consistency between some other factors 

such as *ν .   

In addition to the H-mode regime, neutral particles may influence a regime known 

as detachment. Detachment is useful because it may decrease the heat and particle loads 

to the wall of the confinement vessel and the divertor (effectively decreasing the damage 

to both respectively). Detachment occurs when the plasma just above the divertor strike 

plate is radiatively cooled. Detachment can reduce the temperature in the divertor region 
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to extremely low temperatures (~ 1 eV). Lowering the temperature in this region also 

increases the number of neutrals by increasing the amount of recombination of ions and 

electrons [40, 41]. Some have indicated that increase of neutrals from this region in the 

detached regime may influence the H-mode transition [1, 36, 42]. It has also been shown 

that by continuing to fuel the plasma via gas puffing after detachment has occur, the onset 

of a Multifaceted Asymmetric Radiation from the edge (MARFE) may occur [3, 36, 42].  

MARFEs are essentially poloidally localized, relatively cool, dense, and strongly 

radiating regions in the plasma edge [43]. They were first observed in the early 1980’s in 

DIII, FT, ASDEX, and PDX [43-46]. MARFEs were observed to have threshold density 

limits slightly lower than that of the disruption density limits. It was observed that if the 

MARFE density limit were reached the plasma still remained stable, but if the density of 

the plasma was further increased, the MARFE would grow until the heat lost by the 

ionization of the neutrals exceeded the heat flow from the plasma. Once this occurred a 

plasma disruption was imminent. This is one reason that many have studied the MARFEs 

on a number of devices.  

Petrie [47] observed distinct differences in the accumulation of neutral particles in 

the private flux region between single-null (SN) and double-null (DN) divertor 

discharges. He observed that in SN discharges, MARFE formation was more likely to 

take place than with DN divertor configuration. Petrie suggests that one reason for the 

decreased neutral particle accumulation in the double-null discharges was that DN 

divertors are ‘more detached’ on their inboard legs than are single-null divertors. Petrie 

states that in the DN divertor case there is a higher probability that a neutral particle will 

recycle and directly fuel the core as opposed to being pumped by the graphite tiles [47]. 
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Others have shown how localized neutral particle accumulation may precede 

MARFE formation in several limiter Tokamaks [4, 34, 35, 48]. In a series of ohmic 

discharges with an actively cooled limiter carried out on Tore Supra, Guirlet observed an 

increase in the Dα  radiation line just above the alt limiter [34]. The Dα line is usually 

proportional to the neutral particle flux in the region. Just prior to the MARFE formation, 

this radiating region left the area above the limiter and migrated to the HFS of the 

Tokamak. This could be similar to the phenomena observed by Petrie in the single-null 

case where a radiating region forms in the private flux region then crosses the X-point 

during MARFE formation. Friis and Liang [49] have observed several cases similar to 

Guirlet’s observations under different operating conditions in TEXTOR. Friis and Liang 

were investigating the effect that plasma flow has on the MARFE density limit when they 

discovered that different auxiliary heating methods can affect the neutral particle 

distribution in the edge. More of Friis and Liang’s analysis will be presented in the next 

section of this thesis as it is a primary motivation for this body of work.    

While many have experimentally studied MARFEs, Drake [50] was one of the 

first to explain them theoretically. Using astrophysical precedents, he expressed the 

driving mechanism behind MARFEs as “Radiative Condensation” which is quite easy to 

explain qualitatively. First, there must be a local increase in the plasma density in the 

edge. This increase in density causes an increase in the radiation rate in the region, 

reducing the local plasma temperature. For the plasma to maintain constant pressure, 

more density must flow along field lines into the cooler radiating region (“condensing”). 

This process continues as the plasma is fueled, ultimately leading to a plasma disruption. 

Using this concept, Drake was able to formulate a model for threshold conditions for 
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MARFE onset. Many have expanded upon Drake’s work, and Stacey has developed a 

comprehensive theoretical conditions for MARFE onset [51, 52].   

Stacey [53] performed a stability analysis for the ( )/ / 0k m nqB B qRθ= + ≈
�

 two-

dimensional edge-localized modes. These modes are the first modes to become unstable 

in MARFE formation, because of the stabilizing effect of parallel heat conduction for 

finite k
�
 modes. When the linear analysis of stability is carried out over a poloidally 

uniform plasma edge density and temperature distribution in the limit 0k →
�

, a 

conservative estimate for the maximum density for which the uniform equilibrium 

solution is stable may be obtained. This is referred to as the MARFE onset density limit 

and is given by [3] 
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. (10) 

When the experimental density (nexp) exceeds this theoretical prediction, a MARFE 

forms.  Therefore, higher values of 
MARFE

n  are desirable. From Eq. (10) it becomes 

abundantly clear of how important neutrals are in determining MARFE onset. 0f  and 
z

f  

are the neutral and impurity concentrations in the edge, respectively. The “cold” refers to 

uncollided neutrals recycling from the wall. In Eq. (10), if either 0f  or 
z

f  increases, then 

MARFE
n  will decrease. Additionally, as the charge-exchange and elastic scattering rates 



16 

(
cx

vσ< >  and 
el

vσ< > ) increase with increasing neutral particle concentration, 
MARFE

n  

will decrease.        

It is often easy to predict MARFE onset by dividing nMARFE by nexp. This is 

referred to as the MARFE Index (MI). When MI is greater than 1, a MARFE has formed. 

The theoretical MARFE index has been compared with experimental results many times. 

One example is shown below. 
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Figure 3: DIII-D Discharge 92976 (B=2.1T, I=1.03MA, PNBI=5MW, fcarbon=0.028-0.012). Several parameter versus time[3]. 
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Experimental data from discharge 92976 indicates a MARFE occurred between 3050-

3100 ms. In Fig. 3, at around 3000 ms, we see the MI beginning to rise. At around 3100 

ms, the MI increases to above 1. By examining the components of Eq. (10), it becomes 

easy to see how neutral particles in the edge can influence this theoretical onset 

prediction. 0f  is also plotted in figure 1, and as we can see, at around 3000 ms it steadily 

increases with the MI [3].   

Stacey is not the only one to describe the role neutrals play in the theoretical 

prediction for MARFE onset. Tokar [4, 54-56] has extensively studied the subject using 

simple heat balance equations. In his predictive model, the plasma edge becomes 

thermally unstable if / 0lossq T∂ ∂ < . Therefore, the destabilizing terms become the heat 

lost due to convection-recycling and radiation. Both of these losses are directly 

proportional to the neutral particle fluxes in Tokar’s models.  

It has been observed in a number of Tokamaks that when a MARFE forms in the 

H-Mode confinement regime, the plasma will transition back to L-mode [42]. This has 

been attributed to the loss of non-radiative power crossing the separatrix due to the 

increase in radiation losses associated with the MARFE. Recently, however, Stacey and 

Friis analyzed the relation between MARFEs and the H-L transition using the models 

outlined in Eqs. (2) and (10), and they have shown that this is not the only reason for the 

back transition. Their analysis showed that while the increase in the radiating power 

could contribute to the H-L transition, it was primarily the increase in the neutral particles 

associated with the MARFE formation that changed the conditions required to maintain 

H-mode (Eq. (2)).  
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Table 1: : 
expand theory

thresh sepP P  evolution during three DIII-D shots that underwent H-L transitions 

following core MARFE. (All Units are in MW) 

92976 

TIME(ms) 
Prad PNBI 

dW

dt
 POH Psep

exp
 Pthresh 

2500 .54 5 0 .30 4.8 2.5 

2962-3000 DIVERTOR MARFE 

3000 .39 5 0 .58 5.2 3.0 

3050-3100 CORE MARFE 

3212 1.4 5 0 .63 4.2 4.1 

3230 H-to-L TRANSITION 

92972 

TIME(ms) 
Prad Pnbi 

dW

dt
 POH Psep

exp
 Pthresh 

2500 .62 5.2 0 .35 4.9 3.5 

2750-2790 DIVERTOR MARFE 

3000 .87 5.2 0 .45 4.8 3.7 

3190 CORE MARFE 

3325 1.29 5.2 0 .55 4.5 4.6 

3323 H-to-L TRANSITION 

96887 

TIME(ms) 

Prad Pnbi 
dW

dt
 POH Psep

exp
 Pthresh 

2390 DIVERTOR MARFE 

2500 .8 8.5 0 .21 7.9 6.1 

3200 1.09 8.5 -.46 .37 8.2 6.8 

3240 CORE MARFE 

3650 1.2 8.5 -.23 .95 8.5 8.8 

 
T 
I 
M 
E 
↓ 
↓ 
↓ 
↓ 
 

T 
I 
M 
E 
↓ 
↓ 
↓ 
↓ 
 

T 
I 
M 
E 
↓ 
↓ 
↓ 

3653 H-to-L TRANSITION 

 

Table 1 shows a “snapshot” time progression analysis of three similar DIII-D density 

limit discharges with continuous gas fueling. exp

sepP  is the experimentally observed non-

radiative power crossing separatrix. It was calculated using the power balance equation, 

exp /sep OH NBI radP P P dW dt P= + − − . 
thresh

P  was then calculated using Eq. (2). According to 

Table 1, we do generally see rP
ad

 increase as fueling continues, but more importantly it 

seems that 
thresh

P  increases sharply after MARFE formation. When we break down 
thresh

P  

into its components to ascertain the reason for the sharp increase, we find some 

interesting results.  



20 

Table 2: Breakdown of 
thresh

P  

92976 

TIME(ms) 

Srecyc(10
20

/s) 
 

nped 

(10
20

m
-3

) 
Teped(eV) 

f0 (%) 
 

αi 

(10
3
s

-1
) 

αe 

(10
3
s

-1
) 

 

20(10 /s)⊥Γ  

2500 .64 .41 218 .84 .37 .40 1.6 

2962-3000 DIVERTOR MARFE 

3000 1.4 .43 212 1.7 .88 1.3 3.0 

3050-3100 CORE MARFE 

3212 3.9 .44 187 3.7 2.3 2.4 6.9 

3230 H-to-L TRANSITION 

92972 

TIME(ms) 

Srecyc(10
20

/s) 
 

nped 

(10
20

m
-3

) 
Teped(eV) 

f0 (%) 
 

αi 

(10
3
s

-1
) 

αe 

(10
3
s

-1
) 

 

20(10 /s)⊥Γ  

 

2500 .40 .59 414 .48 .26 .29 1.1 

2750-2790 DIVERTOR MARFE 

3000 1.1 .62 212 .91 .48 1.0 2.7 

3190 CORE MARFE 

3325 7.2 .55 168 2.3 1.6 1.6 12 

3323 H-to-L TRANSITION 

96887 

TIME(ms) 

Srecyc(10
20

/s) 
 

nped 

(10
20

m
-3

) 
Teped(eV) 

f0 (%) 
 

αi 

(10
3
s

-1
) 

αe 

(10
3
s

-1
) 

 

20(10 /s)⊥Γ  

 

2390 DIVERTOR MARFE 

2500 2.1 .99 440 .46 .45 .46 5.3 

3200 2.5 .96 450 .56 .54 .55 6.1 

3240 CORE MARFE 

3650 6.7 1.13 231 .70 .90 1.1 13 

3653 H-to-L TRANSITION 

 

The quantities in Eq. (2) for 
thresh

P , which change with time during the shots, are 

tabulated in Table 2. It is clear from the table that the neutral influx 

(Srecyc(1020/s)= 0

in

sepAΓ ), hence the neutral concentration in the edge (f0) increases with 

time in general and increases sharply at the time of core MARFE formation. . The 

increase in neutral influx produces an increase in the ion out-flux across the separatrix, as 

given by Eq. (2), and causes an increase in both the neutral and electron densities in the 

pedestal. The increased neutral density in the pedestal increases the ionization, charge-

exchange and scattering rates in the pedestal, ion o ion
nν σν=  and  

( )0

c cold

at cx elast
nν σν σν= + , which generally causes an increase in the atomic physics 
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terms αi and αe. An increase in neutral concentration in the edge also causes an increase 

in the carbon radiation emissivity, which causes an increase in αe [6, 42].  

Stacey and Friis concluded from these results that the increased neutral influx 

associated with the MARFE formation, causing a sharp increase in the threshold non-

radiative power crossing the separatrix that is required for the plasma to remain in H-

mode, is a principal mechanism triggering the back H-L transitions that are observed to 

follow MARFE formation in DIII-D [6, 42]. 

We have previously discussed the MARFE density limit in some detail, so now 

we will discuss some of the other density limits that may be of interest in this study. 

Probably the most important density limit for fusion power reactors will be the 

“disruption density limit”. A disruption refers to a total loss of confinement, and it can be 

one of the most destructive events that can take place in a Tokamak. Plasma disruptions 

in smaller devices are generally considered minor nuisances. A disruption can “dirty” the 

next plasma discharge with impurities vaporized from the first wall leading to 

unfavorable plasma conditions, and could also offset sensitive diagnostic settings. In 

either case, time would be lost while cleaning the containment vessel or recalibrating the 

diagnostics took place. In larger Tokamaks such as JET or ITER, disruptions are no 

longer minor nuisances but crippling events that can cause substantial damage to 

diagnostic equipment, diverters, the vacuum vessel, and even the support structure.  

The overall physics behind a disruption are generally well understood [57]. 

Cooling of the plasma at the q=2 surface will eventually contract the current profile 

increasing the destabilizing current gradient. In some cases (not all), the cooling at the 

q=2 surface may be caused by phenomena directly influenced by neutral particles from 
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the edge. This unstable current profile will subsequently destabilize the m = 2 tearing 

mode. The non-linear growth of this tearing mode ultimately leads to a collapse of the 

plasma temperature and a total loss of particle confinement. 

Greenwald [58] compiled a database of discharges from several machines that had 

undergone a plasma disruption which he used to create an empirical correlation between 

the plasma current and maximum attainable density.  

 
2

P
GW

I
n

aπ
=  (11) 

This correlation is often used as a guideline, as numerous experiments on many 

Tokamaks have shown that the “Greenwald Density Limit” may be exceeded by up to a 

factor of 2. In most Tokamaks, additional scaling terms are added because other factors 

may either increase or decrease nGW [31, 59]. In has been postulated by some that this 

variation in the Greenwald scaling may be due to some of the effects neutrals have on the 

plasma [49]. 

While they represent the absolute maximum limit, disruption density limits are 

often preceded by one of two other density limits [59]. In moderately heated discharges 

that have relatively high amounts of Low-Z impurities, a disruption will usually be 

preceded by a symmetric radiation belt around the plasma and a shrinking of the plasma 

column. This is referred to as radiative detachment [31]. This is due to the radiative 

cooling power equaling the heating power. Consequently, the destabilization at the 

“detachment density limit” is not caused by the high density but by the low temperatures 

in the edge or to high of radiation levels. As with the MARFEs, the low temperatures in 

the edge can cause recombination of ions. Through atomic physics processes, the 

recombination ions and electrons causes increased radiation, which further decreases the 
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temperature. To increase the “detachment density limit”, more auxiliary heating is 

required.  

As previously stated, the inner edge of the steep gradients in an H-mode plasma is 

referred to as the “pedestal”. The height of the pedestal and the width of the transport 

barrier can have a significant influence on the overall performance of the Tokamak, 

especially in the “next step” machines. It is for this reason, the H-mode pedestal has been 

well scrutinized for the last several years [9]. The mechanisms responsible for controlling 

the characteristics of the transport barrier are still a topic of great debate. There are 

several competing models that claim magneto-hydrodynamic (MHD) stability, transport, 

and sources of heat, particles, and momentum are responsible for controlling the H-mode 

transport barrier widths, but one model in particular predicts that transport barriers are 

driven by fluxes of heat and particles [60]. 

To derive the model [61], the assumption is made that the electron and neutral 

densities obey the continuity equation. The two continuity equations are then coupled to 

derive a steady state expression for the neutral density. 

 0 0( ) ( ) exp ( )
a

e
x

n

v
n x n a n x dx

V

σ < >
= − 

 
∫  (12) 

The assumption is made that ( ) 0en a = , where a is the radius of the base of the pedestal 

and is also assumed to be the location of the separatrix. From here the electron density 

can be described as the following differential equation: 

 0 ( ) exp ( )
a

e
n e

x
n

n v
D V n a n x dx

x V

σ ∂ < >
=  

∂  
∫  (13) 

Solving Eq. (13) for ne, the familiar hyperbolic tangent function with width and height 

given by: 
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2 ( )

ne

i

D
W

v a
=  (14) 
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( )

( )
n

ne

i

V
H n a

Dv a
=  (15) 

where D is the usual particle diffusion coefficient, ( ) ( )i o ion
a n aν σν=  is the ionization 

frequency evaluated at the base of the pedestal, ( )
n

V a  is the average neutral velocity 

originating from outside the plasma, and 0 ( )n a  is the neutral density at the base of the 

pedestal. Numerical simulations [60] of this model have shown that the particle barrier is 

driven by the large edge particle source and the resulting width of the barrier is 

approximately equal to the neutral penetration length; which to this begs the question, “Is 

the width of the transport barrier for the electron density equal to the characteristic 

penetration length for neutrals?” Luckily, this can be studied experimentally. On Alcator 

C-Mod, good agreement was seen between this model and experiment [61]. Observations 

on DIII-D have shown remarkable agreement as well. They showed neutral penetration as 

well as particle transport can play an important role in setting the width of the electron 

density transport barrier in H-mode. However, Groebner further expanded on this model 

by showing that there is a canonical shape to the density profile so that the height and 

width of the barrier have a relationship that is nearly independent of transport and 

depends primarily on the neutral penetration length [5, 60]. 

Stacey [10, 62] has theoretically investigated the extent to which the structure and 

other features of the edge density pedestal can be accounted for by (1) the requirements 

of plasma ion particle and momentum balance and (2) the penetration of recycling 

neutrals. He considers only steady-state balance equations, so his investigation is only 
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applicable in between ELMs. The results from his investigation was a first principles 

model for the self-consistent calculation of the edge density pedestal structure–radial 

profiles of plasma ion and neutral densities, radial electric field, poloidal and toroidal 

velocities, radial pinch velocity, and related quantities in the plasma edge of Tokamaks 

all of which had varying degrees of dependence on the neutral particles in the edge region 

[62].   

It is very clear from these studies that the transport of neutral particles in the 

plasma edge is very important for the overall performance of the plasma. And, as varied 

as the effects of neutrals on the plasma edge, so are the methods by which they are 

studied. While the primary focus of this paper utilizes but one of these methods, it is 

important to list some of the other methods used.    

1.3 Methods of Solving the Neutral Particle Transport Equation 

One of the first methods used to study neutral particles was the spherical 

harmonics method (or Pn method) which can be traced back to 1926 [63].  The Pn 

approximation is the theoretical basis for the diffusion equation [64]. Utilizing the Pn 

method to find a solution to the one-dimensional transport equation can be done as 

follows. If ψ, the neutral flux distribution, is defined as ψ = nv and µ as the cosine of the 

angle made by the velocity vector v of the neutral particle and the x-axis; then the one-

dimensional and time independent Boltzmann equation can be written as [65]:  
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( ) ( ) ( )
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The basic concept of the Pn method is to write the unknown ψ (x,    µ, E) as an 

expansion of a finite number of known functions of angle. The most convenient 

expansion functions are the Legendre Polynomials, because the integration over µ    ranges 

from 1 to -1. Using the Legendre Polynomials, we can rewrite ψ (x,    µ, E) as [65]: 

 ( ) ( ) ( ) ( )2 1
2

0

, ,  ,  
N

n
n n

n

x E x E Pψ µ ψ µ+

=

=∑  (17) 

Since the scattering term (i.e., Σs (x:µ' , E' → µ , E) usually depends only on the 

scattering angle, this term can be written as: 

 ( ) ( ) ( ) ( )2 1
0 02

0

, ,  ,  
N

n
s sl l

n

x E E x E E Pµ µ+

=

′ ′Σ → = Σ →∑  (18) 

where µ0 = cosθ = µ'⋅µ represents the scattering angle. 

Now these expressions can be placed in the original transport equation, then 

multiplied by Legendre polynomials of various orders, namely, Pl, l = 1, 2, ...N, and 

integrated over the angular variable. At this point the orthogonality, recurrence relations, 

and additive properties of the spherical harmonics [63-71] can be used to obtain the 

expressions [65]: 
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for l = 1, 2, 3, ...  

The angular components of the differential scattering cross section are defined as 
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 ( ) ( ) ( )
1

0 0 0
1

,  , ,  
sl s l

x E E d x E E Pµ µ µ
−

′ ′Σ → = Σ →∫  (21) 

 
The boundary conditions, which cannot be imposed exactly due to previous 

approximations, can still be approximated by Marshak-type boundary conditions. For 

instance a vacuum condition, which otherwise can be represented as ψ (a,    µ, E)  = 0, can 

be represented as 
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a E P P dψ µ µ µ+

=

=∑ ∫  (22) 

for  l = 1, 3, ... N. Similar expressions can be found for reflective, incident flux, and other 

boundary conditions [65]. 

In order to force closure of the equations, and thus obtain the Pn approximation, 

the last term ψ
N + 1

 is dropped and what is left is a set of N + 1 coupled integrodifferential 

equations in space and energy. These equations can be solved numerically by 

approximating the spatial derivatives with finite difference schemes, and the energy 

dependence can be implemented with multigroup techniques [65]. 

While the Pn approximation is very useful and has been extended to 2 and 3 

dimensions, it is very difficult to model complex geometries such as a Tokamak plasma. 

The same can be said for the discrete ordinates method (Sn method), which generally 

more preferable when dealing with higher dimensions [65]. 

The Sn method had its origin in radiation transport calculations in stellar 

atmospheres [65]. Since then, the method has evolved and is primarily used in reactor 

analysis calculations where the diffusion theory has proved to be inadequate [64]. It has 

become the dominant method for obtaining numerical solutions to the integrodifferential 

form of the transport equation. The Sn method consists of evaluating the angular 
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distribution of the neutral flux at discrete angular directions or ordinates. This is the 

prime characteristic that differentiates this method from the spherical harmonics method, 

in which the angular variable is treated as continuous. In theory, the solution of the 

transport equation can be found to a high degree of accuracy by taking enough discrete 

ordinates; however, in practice it is very complicated. The method requires careful 

tracking in order to preserve particles; however, the method can lead to computer 

algorithms of high efficiency [64].  

In the most general case, the total angular dependence of ψ (r, µ, E) is eliminated 

by taking a discrete number of directions, i.e., µν (n = 1, 2, 3,..., N) where  µν = iµxn + 

jµyn  + kµzn where i, j, k represent the unit vectors in the x, y, and z direction. Therefore, 

the unknown function becomes ψ (r, µn,E). In this way the integral over µ is now 

represented by a summation 

 ( ) ( )
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1
1

 , ,  , ,
N

n

n

d r E w r Eµ ψ µ ψ µ
−

=

′ ′ ≅∑∫  (23) 

 

where the wn are quadrature weights for the particular numerical integration scheme used 

to handle the angular integrals. Since the values of the µin are not unique, the main factors 

that determine the choice of directions are the physical insights of the problem and the 

experience. For the one-dimensional and the time independent transport equation, this 

treatment leads to  

 



29 

 

( )
( ) ( ) ( )

( ) ( )
N

0
n 1

, ,
,  , , , ,

1
               , ,  , ,

2

n

xn t n n

n s n n n

x E
x E x E S x E

x

dE w x E E x E

ψ µ
µ ψ µ µ

µ µ ψ µ
∞

′ ′
′=

∂
+ Σ = +

∂

′ ′ ′Σ → →∑∫
 (24) 

 
This forms a set of N-coupled differential equations which, with the 

corresponding boundary conditions, can be solved by replacing the energy variable with a 

sum over a finite number of energy groups, and by making use of finite difference 

approximations to approximate the spatial derivatives. Implementation of the method is 

rather long and involved; however, the N-coupled differential equations can be solved on 

almost any computer. 

The selection of the quadrature weights, wn, and of the directions cosines, µν, are 

important when assessing the accuracy of the solutions of these equations. It is customary 

to obey the following requirements when selecting these quantities [66]: 

1. wn must always be positive. This requirement arises from the intrinsic nature of 

the integral term in Boltzman transport equation. Simply put, its value is always 

positive. 

2.  Since particle flow is equally important in both positive and negative directions, 

then it is the norm to make a symmetric choice of quadrature weights and of 

directions about  µ = 0. Thus µn = -µN+1-n  and wn = wN+1-n 

If N is even, then at a reflective boundary, (e.g. at x = 0, ψn(0) = ψ
N+1-n

(0)  for n = 1, 2, 

... N/2) and at a vacuum boundary (e.g. at x = a, ψn(a) = 0, for n = N/2 + 1, N/2 + 2, ... 

N). Therefore, an even value for N will automatically provide the correct number of 

boundary conditions for the set of N-coupled differential equations. If N is odd then the 
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direction cosine, µ = 0, would be perpendicular to the x axis, which implies that the 

derivative term vanishes.  

It is important to note that the Pn and Sn methods can be fairly accurate, but they 

require that the mesh spacing be smaller than the mean free path. Additionally, they are 

not well suited for treating regions with long mean free paths [65]. As will be shown later 

in this study, both of these conditions are prevalent in close proximately to one another 

near the private flux and divertor regions of a Tokamak.  

Quite different from the discrete ordinates and spherical harmonics technique, the 

integral transport method is based on integrating out the angular dependence of the 

transport equations rather than discretizing the angular dependence. The angular variable 

can in principle be treated with perfect accuracy by eliminating the angular dependence. 

The level of accuracy is essentially determined by the methods used to numerically 

evaluate the expressions resulting from the angular integration [64]. One such method 

implies the transport equation can be integrated making use of an integrating factor 
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where S represents the scattering term and the external source term.  Integration leads to 
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From this point on the solution is an iterative procedure such that  
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where 
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in which Ssc, the secondary source, is the n-1 iteration solution. 

In practice, particles of a given source going in a particular direction are 

exponentially attenuated as the integral of the inverse mean free path along the direction 

of flight. This implies that for a fixed source, the solution to the flux distribution is 

simply dependent on the geometry of the problem. However, if one of the processes by 

which the neutrals are attenuated (such as recombination) gives rise to another neutral 

with a different energy and direction, the process is in itself a secondary neutral source 

which is uniquely distributed in space [65].  

This means the solution must be obtained via an iterative process. This process 

can be very time-consuming because couplings exist among all spatial points. In order to 

speed up the iteration process, it has become customary to solve for the flux distribution 

of fixed sources and to neglect all secondary sources. This procedure is good in just a few 

cases, in particular when the ionization rate is greater than the charge-exchange rate. The 

method becomes impractical for complex geometries and when the rate of processes that 

result in secondary sources becomes large (such as charge exchange near the wall and 

divertor plates) [64-66, 69, 72]. Despite this limitation, the integral transport method has 

been applied in the edge region of fusion plasmas for simple one-dimensional problems 

[73].  

In order to circumvent the short comings of the Pn, Sn, and integral transport 

methods, the standard method used to study neutral particles in the plasma edge today is 

the Monte Carlo method. Monte Carlo methods are essentially the brute force simulations 



32 

in which large numbers of particle histories created by a random number generator and 

tracked. In each history created, random numbers are used to sample probability 

distributions for energy, angles, path lengths, reactions, etc. The overall accuracy of the 

Monte Carlo method is ultimately determined by the accuracy of the reaction rates used 

in the simulation and the number of particles tracked [65]. The great advantage of Monte 

Carlo simulation is that they can model nearly any geometry with a great deal of 

accuracy. The greatest draw back to Monte Carlo techniques though is that they can 

require great amounts of computational time in order to decrease the statistical errors 

inherent to the method. Variance reduction schemes can be utilized to decrease the 

amount of computational time and increase accuracy. Monte Carlo techniques are 

considered by some to be computationally expensive and also have the disadvantage of 

being prone to statistical noise. 

In an attempt to solve the transport equation for complicated geometries in a 

computationally efficient manner devoid of statistical noise, the Transmission/Escape 

Probability (TEP) formulation of integral transport theory was developed by extending 

the interface-current balance method used in fission reaction calculations [64, 65, 68, 72, 

74]. The TEP method is based on the balancing of particle fluxes/currents across surfaces 

and internal sources. It has the advantages of being computationally efficient, ability to 

model complex geometries, as well as function in regions with both long and short mean 

free paths. For the analysis that follows, the TEP method is the principle method used in 

the Georgia Tech Neutrals Code which is the primary tool used in the analysis presented 

at end of this work. A more in depth look into the formulation of the TEP method used in 

the Georgia Tech Neutrals Code will be presented in a chapter 3 of this thesis.  
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2. TEXTOR Experiment and Motivation 

In the introduction, we briefly covered many instances (both computational and 

theoretical) in which the plasma edge was influenced by neutral particles. In this chapter 

we will be discussing a series of experiments that are in large part a direct motivation for 

the topic of this dissertation. In March of 2006, a rotation scan analysis was performed 

for the author of this work on the Tokamak TEXTOR in order to determine if plasma 

rotation influenced the MARFE density limit. This chapter discusses what TEXTOR is, 

the relevant diagnostics used in the experiment, the motivation for the experiment, the 

experimental setup, and the analysis of the results.  

2.1 Overview of TEXTOR and Diagnostic Used in Analysis 

The Tokamak Experiment for Technology Oriented Research (TEXTOR) is a 

Tokamak located in Juelich, Germany that is optimized for studying plasma wall 

interaction. TEXTOR is a medium size toroidal pumped limiter Tokamak belonging to 

the class of moderate field but large volume (approximately 7 cubic meters) devices 

having a circular cross section of the plasma and an iron core. The plasma major radius is 

1.75 m and the minor radius is 0.47 m [75].  
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Figure 4: TEXTOR CROSS SECTION 

 
TEXTOR can have a maximum plasma current of 0.8 MA, and its 16 toroidal 

field coils can provide a maximum magnetic field of 3 Tesla.  It has had a sustained pulse 

length of 10 s with optimal cooling conditions. TEXTOR is fed directly from the 110 kV 

grid using an installed converter power of about 300 MVA. The inner wall of TEXTOR 

is equipped with several specially shaped limiters being partly remotely movable. 



35 

TEXTOR has several auxiliary heating systems. The neutral beam injection (NBI) system 

can provide up to 3 MWs. There are two beam lines that can each supply up to 1.5 MWs 

of power. The two beams are injected into the system in different ways. The co- beam is 

directed in the same direction as the plasma current. The other beam (ctr-) is injected 

against direction of the plasma current as illustrated in the figure below. The beam 

direction is very important to the analysis presented later in this chapter.  

In addition to NBI, TEXTOR can also be heated by ion cyclotron resonance 

plasma heating (ICRH). There are two ICRH antennas that can supply up to 4 MWs of 

power. TEXTOR can also be heated with electron cyclotron resonance plasma heating 

(ECRH). The contributions to plasma heating via the ECRH are limited to about 0.8 

MWs. In total, TEXTOR is capable of being heated by approximately 9 MW of auxiliary 

power.  
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Figure 5: Top View of Neutral Beam Heating System in TEXTOR 
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One of the most unique features of TEXTOR is the Dynamic Ergodic Divertor 

(DED). The DED is a novel flexible tool used to influence transport parameters at the 

plasma edge and to study the resulting effects on heat exhaust, edge cooling, impurity 

screening, plasma confinement and stability [75].  

The main component of the DED is a set of magnetic perturbation coils whose 

purpose is to ergodize the magnetic field structure in the plasma edge region. These coils 

are located inside the vacuum vessel at the high field side of the torus. The set consists of 

16 individual coils (4 quadruples) plus two compensation coils. The compensation coils 

above and below the proper DED coils are required because the coils do not have the 

most symmetric feeding every 22.5◦ but every 90◦. The compensation coils prevent a 

vertical force from acting on the plasma. The individual perturbation coils follow the 

direction of the equilibrium magnetic field of the plasma edge (i.e. helically) [76]. 

Using the DED, a resonant effect of the external perturbation field is obtained on 

the edge plasma at a pre-selected radius. The inputs and outputs of the individual 

windings from the DED are fed through the vacuum vessel to the outside where they are 

connected in different ways to the power supplies. There are three primary modes of 

operation. The figure below depicts these.  In each mode, the DED can be operated either 

in dc or in ac with frequencies of up to 10 kHz. In the ac-operation, the neighboring sets 

of coils have a phase difference of 90◦. In dc-operation, the maximum perturbation is 

obtained and reached if two neighboring sets of coils have the full current in one 

direction and the next set in the opposite direction. We call these configurations (a) 12/4, 

(b) 6/2 and (c) 3/1 base modes because the coils would form this configuration if the coils 
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were continued poloidally over the whole torus. Each corresponding mode configuration 

has been illustrated in the figure below [76]. 

 

Figure 6: Electric connections for the base modes (a) m/n = 12/4, (b) 6/2 and (c) 3/1. The coils are 

plotted in different colors which indicate different phases in the ac-configuration of the DED. In the 

12/4 base mode, neighboring coil has a different phasing while in the 3/1 base mode 4 neighbors are 

switched in parallel. The top and bottom coils are compensation coils which are necessary for vertical 

plasma stability [76]. 



39 

 
TEXTOR is outfitted with glow discharge system. Glow discharge cleaning 

(GDC) has proven to be useful for both hydrogen recycling control and impurity removal. 

It is routinely used in many fusion devices [77]. GDC uses a direct current anode 

(sometimes with RF bias) inserted into the torus to produce a steady-state low-pressure 

‘cathode glow’ discharge that covers the torus/wall surface. The GDC in TEXTOR is 

used for initial removal of oxygen and other volatile impurities. Helium glow cleaning 

decreases the hydrogen content of graphite walls by particle induced desorption processes 

[77]. GDC is often used between discharges that have experienced a disruption in order 

to decrease the amount of impurities that would be present in subsequent discharges 

otherwise.  

TEXTOR’s glow discharge system is operated at a pressure of about 10-3 mbar. 

The apparatus consists of four antennae. The output of an RF-amplifier and a positive DC 

voltage are applied simultaneously to these structures making them anodes in the 

discharge. The wall is grounded and thus cathode. The cleaning method is completed by a 

residual gas analysis [75].  

TEXTOR is outfitted with a myriad of diagnostic tools. The most important 

diagnostics used in the analysis presented below are: the Hydrogen Cyanide (HCN) 

Interferometer used to ascertain the electron density, Electron Cyclotron Emission (ECE) 

diagnostic used to measure electron temperature, charge exchange spectroscopy used to 

measure ion velocity, filterscopes used to measure the intensity of photonic emissions 

from hydrogen, and the bolometer array used to measure the power being radiated from 

the plasma.  
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The HCN interferometer used in TEXTOR works the same way as most other far 

infrared (FIR) interferometers used to measure the electron density. A laser beam 

generated by a FIR laser (Hydrogen Cyanide in the case of TEXTOR) crosses the plasma 

column and undergoes a phase shift relative to a reference beam outside of the plasma. 

This phase shift ϕ△ , depends on the electron density of the plasma which amounts to 
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where 
e

r  denotes the classical electron radius and λ  the wavelength of the laser. The 

integral is taken along the line of sight of the laser beam. When characterizing the fusion 

plasma it is typical to take the line averaged density which is defined as 
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with L being the length of the intersection of the laser beam with the plasma. 1/
e

C r λ=  

depends only on the wavelength of the laser. The phase shift ϕ∆ , is determined by 

superposing the probing wave with a reference wave whose frequency is slightly shifted 

and detecting the resulting intensity with a square law detector. In TEXTOR 10khzγ∆ ≃ . 

Thus the output signal of the detector is a sine wave with the difference frequency ω∆ , 

and the plasma-induced phase shift of the probing wave is transferred to an equal phase 

shift of the oscillating beat signal. By comparing it with a reference signal of equal 

frequency but constant phase, the line integrated electron density is obtained [78]. A 

schematic view of TEXTOR’s HCN interferometer can be seen in the figure below.  
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Figure 7: Schematic view of the HCN-interferometer-polarimeter. The line-integrated electron 

density is measured along nine vertical and one horizontal lines of sight [79]. 

 

In an external magnetic field electrons will gyrate around magnetic field lines. 

The gyromotion caused by the magnetic field gives rise to electron cyclotron emission 

(ECE) at harmonics of the electron cyclotron frequency. The emissions are proportional 

to the local magnetic field. If the plasma is optically thick (the electrons are sufficiently 
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hot and sufficiently dense), the electron cyclotron emission (ECE) is directly proportional 

to the electron temperature and independent of all other plasma parameters [80].  

Because of the circular cross section in TEXTOR, the magnetic field decreases 

monotonically with radius. The emissions at a given frequency are emitted from a very 

specific layer of the plasma corresponding to a given magnetic field. By measuring the 

ECE power as a function of frequency, the electron temperature can be computed as a 

function of plasma radius. Typically, ECE radiometry employs a single wideband 

receiver to resolve multi-frequency ECE into a spatially varying temperature profile. This 

has been a standard diagnostic for magnetic fusion plasmas for over thirty years. These 

systems are generally limited to one dimensional horizontal measurement along the major 

radius [81]. 

For the set of discharges analyzed later in this dissertation, a method of 

establishing the total momentum input into was needed. Using charge exchange 

spectroscopy (CXS), we can locally measure the ion velocity distribution. From the local 

ion velocity distribution, the random thermal velocity (or ion temperature) and the fluid 

velocity may be derived. CXS works by analyzing the Doppler shift and broadening of 

the line-emission spectrum by ions in the plasma core. Due to the high temperature the 

ions in the center of the plasma are fully stripped of electrons (except for heavy 

impurities); hence, the line-emission from ions in the plasma core does not occur 

spontaneously [81]. 

In order to emit light, the ions must receive at least one electron, which can 

happen when they undergo a charge exchange reaction. Typically, when neutral atoms 

(via Neutral Beam Injection) are shot into the plasma, they will usually provide one of the 
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electrons with which the ions to charge exchange. The ion receives this electron in a high 

quantum level. It will return from its excited state to the ground state, losing its excess 

energy through line-emission. Throughout the charge exchange process a neutral atom 

loses an electron to a plasma ion [82]. The electron is most likely to be transferred to a 

specific, preferential quantum level of the plasma ion. The probability for electron 

transfer to both higher and lower levels decreases monotonically. In case of a charge 

exchange reaction + 6+ + 5+H + C  H + C→  the C5+ level most likely to be populated is n = 

4, but also for the n = 7 and n = 8 levels the chances of population are significant [83]. 

These quantum levels differ from the ground state, which means that a charge exchange 

reaction will yield a plasma ion in an excited state. It will return to the ground state 

through a cascade of transitions. The radiation emitted by the transitions varies over a 

wide wavelength range, depending on the populated states. For diagnostic use of charge 

exchange, especially transitions that emit visible light, are of interest. The advantage of 

visible light is that it can be easily collected by common optical elements and also plenty 

spectroscopical methods are available for the analysis of visible light [81]. 

In the Tokamak TEXTOR, the :8 7n → transition of C5+ is used. It has a 

wavelength of 529 nm. This is in the visible range. The reason for analyzing the charge 

exchange light of an impurity like carbon instead of the charge exchange light of the bulk 

ions of deuterium or hydrogen is the high complexity of the hydrogen-deuterium 

spectrum. Usually the bulk plasma is a mixture of deuterium and hydrogen, where the 

charge exchange (CX) emission lines of deuterium and hydrogen overlap. Apart from CX 

emission, neutral deuterium and hydrogen in the plasma edge have a strong line-emission 

due to excitation by electrons. This emission lies in the same wavelength range as the 
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charge exchange emission. Finally the neutral beam species is commonly hydrogen as 

well, resulting in a beam spectrum on top of the charge exchange spectrum. As a result 

one gets a spectrum that is the sum of two charge exchange lines, electron excited 

emission and beam emission. The spectrum is decomposed into its components in order 

to regain the charge exchange line that results in large error bars on the derived 

quantities. A schematic representation of the CXS diagnostic used in TEXTOR can be 

seen below [81]. 

 

Figure 8: A top view of a Tokamak with a CX line-of-sight. The passive component of the CX 

spectrum is caused by neutral particles in the edge, the active CX signal is emitted where the line-of-

sight crosses the neutral beam [81]. 
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The fliterscopes in TEXTOR are an array of light sensitive diodes positioned 

around the walls of the vacuum chamber. As discussed previously when ions recombine 

with electrons, photons are emitted. Depending on what ions recombine and at what 

energy levels they recombine too, different wavelengths of light are emitted. Light 

emitted from a location such as limiter is focused through a lens to a diode as depicted in 

the figure below. 

 

Figure 9: Experimental setup for observation of Hα. 



46 

The light being emitted by the recombination of ions is then focused through a lens to a 

photodiode detector. Electrical signals produced by the diode are then amplified through 

a circuit such as the one below, where D1 is the light sensitive diode [84].



47 

 

Figure 10: Schematic Filterscope 
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For the Hα signal, the system has a quantum efficiency of about 0.85. Its sensitivity is 

roughly 108 V/A. This means that for every 1 Volt measured by the photodiode 5.3 * 1010 

photons per second are being produced in that line of sight [84].  

The photodiodes are sensitive to a number of wavelengths that emerge from the 

recombination spectrum of hydrogen, carbon, and other atoms that might be present in 

the line of sight. The table below shows which spectrum lines certain diode arrays are 

sensitive to and the corresponding element. The designations LIMV, LIMW, and LIMZ 

correspond to the line of sight at different positions. The different positions will be 

discussed later in this chapter as they pertain to the analysis.  

Table 3: Filterscope Channel 

Channel λ,nm ∆λ,nm Element Channel λ,nm ∆λ,nm Element 

LIMV1 427.0 3.6 CII+CrI LIMW1 656.2 3.6 Hα 

LIMV2 844.5 5.0 OI LIMW2 909.4 1.76 CI 

LIMV3 909.4 5.0 CI LIMW3 844.5 3.0 OI 

LIMV4 412.0 1.0 BII LIMW4 468.6 1.5 HeII 

LIMV5 656.2 5.0 Hα LIMW5 640.2 1.5 NeIII 

LIMV6 514.0 1.5 CII LIMW6 434.0 1.5 Hγ 

LIMZ1 656.2 5.4 Hα LIMW7 412.2 1.5 BII 

LIMZ2 486.1 5.4 Hβ LIMW8 486.1 2.0 Hβ 

LIMZ3 434.0 1.8 Hγ     

LIMZ4 426.3 1.0 CII     
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Of particular importance to our analysis later in this chapter are the filterscopes located at 

certain positions. Looking at the image below, in our analysis we were most interested in 

the filterscope channels LIMZ1 and LIMW1. We also used LIMZ3 in determining the 

discharge at which the MARFE occurred. 
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Figure 11:LIMZ1 measures the Hα signal over the HFS and LIMW1 measures the Hα signal just above the alt toroidal limiter [84] 
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In addition to the filterscope array, bolometers are also a useful tool for measuring 

incident photons on the vessel wall. Unlike the filterscope array though, bolometers are 

non-discriminatory in which wavelengths of light they sense. Bolometers utilize 

thermocouples to convert the radiant energy into electrical signals. These signals can be 

used to determine the total amount of energy being lost from the plasma due to radiative 

mechanisms [85]. The figure below shows a schematic diagram of the bolometer array in 

TEXTOR. Four cameras are used to measure incident heat fluxes on 36 surface locations. 

Computational models can be used to create a 2D representation of the heat being lost 

due to radiation.     
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Figure 12: Bolometer Chords in TEXTOR [49] 

The bolometer arrays are often very useful in tracking radiative phenomena, such as 

MARFEs. Two dimensional representations of the radiant power profiles can be 

compiled from data provided by the bolometers. The results from one of these analyses is 

shown later in this chapter.  
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2.2 Introduction and Motivation for TEXTOR Experiments 

 
In a series of density limit discharges on TEXTOR, it was shown that the 

Greenwald number (as seen in Eq. 11) varies with auxiliary heating power by P0.44 as 

illustrated in Fig. 13 [59]. However, in the same illustration, the edge density limit seems 

to plateau towards the upper heating levels. 
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Figure 13: Dependence of Greenwald number on the heating power. The regression yields P

0.44
. Dependence of the edge 

electron density (a + 1 cm) on the heating power (Ip = 230 kA) [49]. 
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In order to reach the power levels used in the experiment in Fig. 13, both co- and 

counter- neutral beam injections must be used in nearly equal parts. When the beam 

powers were balanced towards the upper heating limits of the device, the total momentum 

input should have been reduced. This would in-turn decrease the poloidal velocity in the 

edge [49].  

From a different set of experiments, it has also been shown that the poloidal flow 

in the edge induced by the Dynamic Ergotic Divertor (DED) could “smooth” the 

distribution of the neutral particle recycle. The “smoothing” of the neutral particle flux 

helped to extend the MARFE density limit [48]. To test whether flow might have an 

effect on the MARFE density limit, a series of Rotation Scan Density Limit discharges 

has been carried out on the Tokamak TEXTOR [49]. The reason these experiments could 

be important is because the neutral beam injectors in ITER are directed into the plasma in 

such a way that plasma rotation should be fairly low. It is important to assess whether or 

not low rotation could affect the MARFE density limit. TEXTOR was an ideal machine 

for this particular experiment given its size and the availability of both co- and counter- 

neutral beam injection.  

2.3 Experimental Setup 

To perform the Rotation Scan Density Limit discharges, all of the main plasma 

parameters (IP, B, a, etc.) where kept constant. Bt=1.9T, Ip=250kA, plasma position was 

kept constant, and NBI co and counter used deuterium  beams with an energy of 50kV. 

Throughout the series, we ramped up the density starting from 2.5*1019m-3 until a 

MARFE formed or the plasma disrupted. To determine the exact moment at which 
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MARFE form, a ration of the Hα to Hγ signals were taken from the filterscope array 

position over the High Field Side of TEXTOR. As discussed previously, these signals 

correspond to the amount of photons being emitted at the respective spectrum lines. The 

Hγ transmission line occurs are higher temperatures than the Hα line, so when there is an 

increase in the ratio of Hα to Hγ this means there must be a temperature drop in the line of 

sight. The temperature drop along this view chord is indicative of a MARFE. All density 

limits discussed later in this analysis are taken at a time slice just prior to when a MARFE 

occurred. If no MARFE formed, the density limit was taken to be the maximum density 

achieved prior to disruption.  

Due to the frequency of high density disruption, helium glow discharges were 

used between each shot to clean the vessel. The total input power was maintained at 1.3 

MW for each discharge varying only the method at which it was obtained in order to vary 

the total input momentum. The figure below shows the basic outline of the shot plan.   
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Figure 14: Schematic of Shot Plan presented to BATEX committee. 
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To vary the momentum input, we used two methods. In the first method, only co 

and counter beam were used. The shot sequence started with pure co beam injection. In 

the next discharge, the co beam power was decreased slightly, while the counter beam 

was turned on to compensate. In the third shot, the co beam was decreased again, and the 

counter beam increased to match the co beam. We continued this for two more 

discharges, ending with pure counter beam and no co beam. The table below is the actual 

shot plan for the rotation scan.  

The second method used to vary the momentum input comprised of using a 

combination of co beam injection and ICRH. ICRH deposits very little momentum into 

the plasma, so it was thought that by keeping the total input power the same, but varying 

the amount of ICRH and co beam injection we could also vary the poloidal flow in the 

edge. The table below show the actual shot plans for the campaign. V-Target/cm in the 

table below corresponds to the size of the target for the neutral beam injectors and thus 

the amount of power being beamed into the plasma. When V-Target/cm = 40 this 

corresponds to 1.3 MW of neutral beam power being deposited into the plasma. Shots 1 

through 9 in the table below are the actual rotation scan. Discharges 10 through 15 where 

part of a power scan analysis. In those discharges, we where testing the limits of 

TEXTOR. Fortunately, some of the data obtained from these additional discharges 

proved valuable for the analysis discussed in a later section.  
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Table 4: Shot Plan for Rotation Scan 

# ICRH(MW) NBI1 

V-Target/cm 

NBI2 

V-Target/cm 

1 0 40 0 

2 0 20.5 4.6 

3 0 11.4 11.4 

4 0 4.6 20.5 

5 0 0 40 

6 .325 20.5 0 

7 .65 11.4 0 

8 .975 4.6 0 

9 1.3 0 0 

10 0 40 11.4 

11 0 40 20.5 

12 0 40 40 

13 .65 40 0 

14 .975 40 0 

15 1.3 40 0 

  

The figure below shows the experimental measurements of the toroidal flow in the edge 

for both the rotation scan discharges. Shot 100179 corresponds to #1 in the table above. 

Discharges 100185 and 100189 correspond to #5 and #9. Both of these discharges only 

used counter beam injection or ICRH. The CXS system requires the co- beam injectors to 

function; therefore no rotation measurements exist for those two shots.    
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Figure 15: Toroidal Flow Measurements 
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As one can see, the toroidal rotation does indeed decrease as the co- beam power 

decreases. Since no diagnostic was available to measure the poloidal velocity, we 

estimate that the poloidal velocities should be approximately an order of magnitude lower 

than above measured toroidal velocities. To show that the discharge had roughly the same 

input parameters as requested, the center line electron temperature was measured at a 

time just prior to MARFE formation.  
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Figure 16: Centerline Electron Temperature for Rotation Scan Discharges
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Shots 100185 and 100183 did not experience a MARFE prior to a disruption. Instead, the 

disruptions occurred early in the time progression due to the onset of the 2-1 tearing 

mode. The rest of the discharges had roughly the same center line electron temperature 

just prior to MARFE formation which indicated that the experiment was set up properly. 

The toroidal velocity measurements show that variation of the toroidal velocity was 

achieved and the center line electron temperature indicates that we heated the plasma to 

roughly the same temperature throughout the campaign.  

Initially from the motivation for this set of experiments, it was postulated that 

enhanced poloidal flow in the plasma edge may “smooth” the neutral particle recycle. To 

see if this indeed happened for this experiment, the maximum edge density limit at the 

edge was recorded at a time just prior to MARFE formation. This was then compared 

with the ratio of the Hα line from the High Field Side (HFS) over the Low Field Side 

(LFS) at a time shortly after the heating scenario was set up. 

The Hα signal is a measure of the amount of light coming from hydrogen 

undergoing an atomic transition. This signal is often proportional to the neutral particle 

flux in the region. A ratio of these signals from the HFS to the LFS is a “quick and dirty” 

way of estimating the distribution of the neutral particle flux in the edge. Because there is 

usually a much higher neutral particle flux just above the LFS due to the alt limiter, it is 

thought that an increase in the ratio illustrates a smoothing of the neutral particle flux.  
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2.4 Results 

The comparison of the Edge Density Limit to the Hα ratios yielded some 

interesting results. The results do not conclusively show that the edge density is 

influenced by edge rotation; however, this could be due to the fact that the maximum 

edge velocity measured is at least an order of magnitude lower than the ion sound speed. 

At such low velocities, the effects of the distribution of neutrals occurring outside of the 

SOL would much lower than those created from ions streaming into the wall from the 

inside the SOL. 

There are, however, significant differences in the edge density limit versus the 

methods of heating used. Figs. 18 are plots of the ratio of the Hα signal versus the co 

beam input power. Fig. 17 shows the maximum edge density versus the co beam input 

power.  
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Figure 17: Maximum Edge Electron Density (m
-3

) versus Co NBI (MW) beam power. 
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Figure 18: Hα ratio versus Co NBI Power (MW). 
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Surprisingly, the two plots seem to synch with one another. Discharges with the higher 

edge density limit had a higher ratio of the Hα signals, which would imply that the neutral 

particle flux in the edge may be more distributed.  

A similar pattern was found later the same day in a power scan series of 

discharges. In Figs. 19 and 20, the main plasma parameters were the same as the rotation 

scan. The only difference in the discharges was that the power was increased in each 

discharge using several different types of heating methods. The amount of power being 

deposited into the system can be ascertained from table 2. Three separate trends can 

clearly be seen.  
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Figure 19: Maximum edge electron density (m
-3

) versus the requested total power (MW). 
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Figure 20: Ratio of the H-alpha signals versus the requested total power (MW).
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Figs. 19 and 20 show results similar to the rotation scan. In predominately co- and 

counter- beam heated discharges, the maximum edge density is higher than discharges 

heated with a mixture of ICRH and co- beam injection. Figure 20 displays how the 

maximum edge density synchs with the ratio of the Hα signals.  

In addition to the rotation and power scans, the very first shot of the discharge 

sequence had an additional experiment piggy backed onto it. In the power scan and 

rotation scan analysis, we were only interested in the actual MARFE density limit. The 

additional experiment dealt with control of the MARFE position. After the MARFE had 

occurred, neutral gas was puffed into the vacuum chamber near the top of the vessel. 

Once the gas was puffed in, the MARFE migrated to the top of the vessel. Using the 

bolometer array, a 2D representation of the radiant power profile from the plasma was 

compiled.  
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Figure 21: 2D Bolometer Liang Shot 100178 [86] 

The figure shows an increase in the power being radiated on the high field side of 

TEXTOR at around 1.1s indicating a MARFE has started to form. The density was 

continuously ramped up until about 2.7s. One can see power is being radiated from the 

core at this time also. Using gas puffing at an alternate location near the top of the vessel, 

the MARFE was moved to the top of the vessel as can be seen in subsequent time slices 

such as 3.9 ms. Gas puffing was turned off at the top of the vessel, and the MARFE 

subsequently moved back to the High Field Side of the TEXTOR.  
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A less quantitative (but far more visually stunning) representation of this induced 

MARFE migration can be seen by observing a video of the Dα light. We have discussed 

previously that the intensity of Dα light is inversely proportional to the temperature and 

directly proportional to the neutral particle density. In the video below, you can clearly 

see a very bright “pinkish” ball of plasma (the MARFE itself) forming on the high field 

side (right hand middle side for the video) of TEXTOR close to the inner wall. The 

brightness is misleading to those unfamiliar with plasma physics. In thermonuclear 

physics, visually bright regions such as the one shown in the video are in fact very “cool” 

regions within the plasma. The very hot regions remain invisible to the naked eye. These 

cool regions are radiating immensely releasing their energy in the form of visible light.   

As the time progresses in the discharge depicted in the video below, gas is puffed 

into the plasma vessel at the top of TEXTOR and the MARFE migrates to the location of 

the gas puffing. This is clear evidence and undisputable evidence that two dimensional 

effects are extremely important in MARFE dynamics.  
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Figure 22: Video of MARFE migration in TEXTOR. 
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2.5 Conclusion 

From the analysis, we have essentially shown that plasma rotation induced by the 

neutral beam injection does not significantly alter the MARFE density limit as we had 

thought plausible. However, the experiments did reveal there is a distinct difference in 

the neutral particle distributions due to the various methods of heating. The varying 

distribution of the neutral particles coincides with the change in the MARFE density 

limit. The prevailing theory for why the ICRH heated discharges have a much earlier 

MARFE onset is that there is some localized cooling source near the antenna. The ICRH 

antennas are located in positions above the alt-limiter on the low field side. If a localized 

cooling source were present, this could increase the amount of neutral particles and 

initiate conditions for MARFE onset [4, 34]. Shot 100178 somewhat backs up this 

possibility. 

The neutrals analyses for these experiments should be done using more 

quantitative techniques. The ratios of the Hα signals for these discharges are useful in 

determining the influence of neutral particles on the MARFE density limit; however, they 

provide little quantitative information. A more detailed analysis of neutral particles in the 

plasma edge would be useful for this study. However, at this time, edge and SOL data for 

these sets of experiments are very sparse. Additionally, a 2D grid based off of an 

equilibrium fitting code is not readily available. In order to carry out a neutral particle 

analysis using the methods that will be outlined in later chapters, this information is 

necessary.  
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3. The GTNEUT Code 

 In the previous chapter, we utilized experimental data to perform an “ad hoc” 

neutral particle analysis for the Tokamak TEXTOR. In the following chapter, we will be 

performing an in depth neutral particle analysis from experiments performed on the DIII-

D Tokamak in San Diego California. For this analysis, we have chosen to use the Georgia 

Tech Neutrals Code (GTNEUT) [87]. 

The GTNEUT code is based on the TEP method of solving the Boltzman 

transport equation. In this chapter we will outline the basic formulation of the TEP 

equations used in GTNEUT and discuss what upgrades have been added to the GTNEUT 

code. Along the way, we will discuss computational methods used to solve certain 

aspects of the TEP in GTNEUT. Towards the end of the chapter, we will discuss previous 

comparisons between GTNEUT code and Monte Carlo simulations. To begin, we should 

start with the derivation of the TEP equations. This originates with the integral transport 

equation [87]. 

3.1 Derivation of TEP Equations 

 The one-speed steady-state integral transport equation for a domain 
i

D  with 

boundary 
i

D∂ , as shown in Fig. 23, can be written as [87]: 

  

 ( ) ( )( ) ( ) ( )( )
0

( , ) , exp , , exp ,
sR

in S S
dlq l lψ ψ τ τ= − + − − −∫r Ω r Ω r r r Ω Ω r r Ω  (31) 
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Figure 23: Schematic diagram for integral transport equation [87] 

Where ( ),ψ r Ω  is the angular flux at point r  in direction Ω  and S

S

−
=

−

r r
Ω

r r
; ( ),in sψ r Ω  

is the incoming flux at boundary; SR  is the distance between point r  and the starting 

point Sr  on the boundary and S SR = −r r ; ( ),τ ′r r  is the optical length between r  and 

′r  defined by the following equation; 

  

 ( )
0

, tdl lτ
′−  ′−

′ ′= Σ +  ′− 
∫

r r r r
r r r

r r
 (32) 

 
 

Here, tΣ  is the total macroscopic cross section and ( ),q r Ω  is the total volumetric source 

defined as: 

  

 ( ) ( ) ( ) ( )
4

, , , ,cx extq d S
π

ψ′ ′ ′= Σ → +∫r Ω Ω r Ω Ω r Ω r Ω  (33) 
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where ( ),extS r Ω  is external volumetric source and cxΣ  is the macroscopic charge-

exchange cross section. 

With isotropic sources and charge-exchange scattering, integral transport equation 

becomes: 

  

 ( ) ( ) ( )( )
( )

( )( )
0

, , exp , exp ,
4

SR

in S S

q l
dl lψ ψ τ τ

π

−
= − + − −∫

r Ω
r Ω r Ω r r r r Ω  (34) 

 

Integrating over Ω  over 4π  solid angle, we obtain scalar flux ( )φ r . 

  

 ( )
( ) ( )( )

( )
( )( )

( )2 2

exp , exp ,
,

4
i i

S

in S

D D S

q
d dS

τ τ
φ ψ

π
−

∂

′ ′− −
′= + ⋅

′− −
∫ ∫

r r r r r
r r r Ω Ω n

r r r r
 (35) 

 
 

Where −n  is the inward normal unit vector at the boundary [87]. 

To begin deriving the TEP equations from the integral transport equation shown 

above, we must start by subdividing the region of interest into convex polygons or cells. 

The background plasma is treated as uniform in each individual cell. From here a neutral 

particle balance is applied to each single. In the figure below, we consider an arbitrary 

cell i bounded by surface 
i ij

j

D D∂ = ∂∑ , where 
ij

D∂  is the interface between cell i and 

adjacent cell j. The schematic below illustrates the neutral particle balance performed on 

the cell [87]. 
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Figure 24: Schematic diagram for TEP methodology [87] 

 First we define the total partial current from cell i into adjacent cell j, ,i j
Γ  as: 

  

 ( ) ( ),

0

,

ij ij

i j ij ij ij

D

dS d ψ
∂ ⋅ >

Γ = ⋅∫ ∫
Ω n

Ω Ω n r Ω  (36) 

 

where 
ij

n  is the outward normal (out of cell i) at interface 
ij

D∂ . It should be noted here 

that ,i j
Γ  is a current, and it is a particle flow rate across the interface. It has units of 

particles/sec. Unfortunately, throughout the work leading up to this thesis, the term “flux” 

has been applied to ,i j
Γ  by many. Keep in mind that all sources used in GTNEUT are 

currents or particle rates regardless of rather or not the term “flux” is used. There is NO 

spatial component to ,i j
Γ .    

Continuing with the derivation, we insert the integral transport equation into the 

equation for the total partial current and obtain [87]: 
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( ) ( ) ( )

( )
( )

( ) ( )

( )
( )

( ) ( )( )

,

0

0

2

2

, exp

exp
4

exp
,

exp
4

ij ij

S

ij ik

ij i

i j ij ij in S t ij S

D

R ij

t

ki

ij ik ij t ij ik

k D D ij ik ik

ij t ij ij

D D ij

dS d

q l
dl l

dS dS

q
dS d

ψ

π

ψ

π

∂ ⋅ >

∂ ∂

∂

Γ = ⋅ −Σ −


−
+ −Σ


⋅
= ⋅ −Σ −

−

+ −Σ − ⋅
−

∫ ∫

∫

∑ ∫ ∫

∫ ∫

Ω n

Ω Ω n r Ω r r

r Ω

Ω n
Ω n r r

r r r Ω

r
r r r Ω n

r r

 (37) 

 
This can be written in the more concise form. 

  

 , , , 0,

i

i j k i k j i i ij

k

T Q PΓ = Γ + Λ∑  (38) 

 

Where we define coefficients ,

i

k jT , 0,iP , ijΛ  and total volumetric source iQ  as: 

  

 ( )
( )

( ) ( ), 2

,

1
, exp

ij ik

kii

k j ij ik ij ik t ij ik

k i D D ij ik

T dS dS ψ
∂ ∂

⋅
= ⋅ −Σ −

Γ −
∫ ∫

Ω n
Ω n r Ω r r

r r
 (39) 

 
  

 ( ) ( )0, 2

1 ( )
exp

4
i i

i i t i

i D D i

q
P dS d

Q π
+

∂

= −Σ − ⋅
−

∫ ∫
r

r r r Ω n
r r

 (40) 

 
  

 ( )( )2

0,

1 ( )
exp

4
ij i

ij ij t ij ij

i i D D i

q
dS d

Q P π∂

Λ = −Σ − ⋅
−

∫ ∫
r

r r r Ω n
r r

 (41) 

 
and 

  

 ( ) ( )
iD

Q d q= ∫r r r  (42) 
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The first term in the right hand side of the concise form represents uncollided flux from 

all adjacent cells. The second term is contribution from volumetric sources [87]. 

,

i

k jT  is the probability that particles going from cell k to cell j through cell i will do so 

without making a collision. We call this the transmission probability. In order to evaluate 

,

i

k jT , we make the following assumptions: 1) the angular distribution of flux at interface 

ik
D∂  is isotropic in the inward hemisphere; 2) the spatial distribution of angular flux at 

interface is uniform. When we evaluate transmission probabilities for cell k, we again 

need to assume that the outward angular flux (actually it is inward direction for cell k) at 

interface 
ik

D∂  is isotropic, but it may have different magnitude from inward direction. 

Thus the first assumption is usually called Double 0P  or 0DP  approximation [87].  

Noting that ( ) 0,ikψ ψ=r Ω , the total incoming partial current at interface 
ik

D∂  can 

be written as: 

  

 ( ) ( ), 0

0

,

ik ki

k i ik ki ki ik

D

dS d Lψ πψ
∂ ⋅ >

Γ = ⋅ =∫ ∫
Ω n

Ω Ω n r Ω  (43) 

 

From here the transmission probability, ,

i

k jT , may be simplified as: 

  

 

( )
( )

( )

( )

( )( )
( )

( )

min

min

max

min

2
, 0

0 0
0

3
0

,1
exp

sin

2
cos ,

ik ik

ik

ik ik

ik

L x
t iki

k j ik ki
x

ik

L x

ik t ik
x

ik

l x
T dx d d

L

dx d Ki l x
L

π
φ

φ

φ

φ

φ
φ θψ

πψ θ

φ φ φ
π

 Σ
= ⋅ − 

 

= Σ

∫ ∫ ∫

∫ ∫

Ω n

 (44) 
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Figure 25: Geometry for calculation of transmission probability 
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Figure 26: 3D geometry for calculation of transmission probability 

 

Where, as shown in the figure above, ikL  is the length of interface ikD∂ , ( )min ikxφ  and 

( )max ikxφ  are integral limits for angular variable, and ( ),ikl x φ  is just distance traveled by 

a neutral in the 2D plane and 3Ki  is the third order Bickley-Naylor function [87]. 
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 12

0
( ) sin exp

sin

n

n

x
Ki x d

π

θ θ
θ

−  
= − 

 
∫  (45) 

 
In the actual coding of GTNEUT, this third order Bickley-Naylor function is the cause of 

some trouble. Approximately 85% of the computation time is spent solving the Bickley-

Naylor functions. Additionally, the Bickley–Naylor function, in GTNEUT is evaluated 

from an approximate fit [17]. The performance of GTNEUT could be improved by 

utilizing other methods of integral evaluation of the transmission coefficients.  

The coefficient, 0,iP , is defined as the probability that neutrals born (volumetric 

sources) in cell i will escape from cell i without collision with cell i. Similarly, the 

coefficient, ijΛ  , is the directional escape probability that a neutral born in and escaping 

from cell i will escape into adjacent region j [87]. 

Using the assumption that volumetric sources are uniformly distributed in cell i, 

we obtain the following for the escape probability: 

  

 

( )

( )

( )( )

0,

4

2

0 0

2

2
0

,1
exp

4 sin

,1
sin exp

4 sin

1
,

2

i

i

i

t

i

i D

t

i D

t

i D

l
P d d

S

l
d d d

S

d d Ki l
S

π

π π

π

φ

π θ

φ
φ θ θ

π θ

φ φ
π

 Σ
= − 

 

 Σ
= − 

 

= Σ

∫ ∫

∫ ∫ ∫

∫ ∫

r
r Ω

r
r

r r

 (46) 

 
and 
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( )

( )

( )( )
( )
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max

min
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0
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,1
sin exp

4 sin

1
,

4
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i
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i
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i i D

t

i i D
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d d d
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φ π
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φ

φ
φ θ θ

π θ
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 (47) 
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Figure 27: Geometry for calculating escape probability 

 
However, it is computationally expensive to calculate these first flight escape 

probabilities and directional escape probabilities. Usually, a rational approximation for 

calculation of 0,iP  can achieve both high efficiency and accuracy [87]. 

  

 0,

1
1 1

n

i

X
P

X n

−  
= − +  

   
 (48) 

 

In the equation above, 4 /i t iX S L= Σ , iS  is the area of cell i and iL  is the perimeter of 

cell i and exponent 2.09n =  is resulted from comparisons with Monte Carlo calculations 

[65]. The directional escape probability is assumed to be proportional to ijL , the length of 

interface ijD∂ , i.e. 
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ij

ij

i

L

L
Λ =  (49) 

 

The total volumetric source iQ  used the equation for the total partial current is 

still unknown. To eliminate iQ , one must first determine its relation with i

extS , the total 

external volumetric source and{ }, , 1,k i kΓ = ⋯ , the incoming total partial current from all 

the adjacent cells. If we keep in mind that the source term is equal to [87]: 

   

 ( ) ( )( ) ( )
i

ext
cx ext cx

i

S
q S

S
φ φ= Σ + = Σ +r r r r  (50) 

 

we may insert the equation for the scalar flux into the source term and integrate over iD  
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 ′ ′−Σ −
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−Σ −
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∫ ∫

∫ ∫

∫

r r r r

r r r
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r r

r r
r Ω Ω n

r r

 (51) 

 

Using 0DP  and flat flux assumptions, we may rewrite the total volumetric source as: 
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( )
( )
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, 2

,

exp

4
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4

1 2

i i
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ti cx t
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′−Σ −Σ Σ
′= +

Σ ′−

−Σ −Σ Σ
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Σ −
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∑
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Where coefficients 1
ii

P , 2
ki

P  and 
i

c  are defined in the following equations. 
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exp
1

4
i i
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ii

i D D

P d d
S π

′−Σ −Σ
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′−
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i

t

c
Σ

=
Σ

 (55) 

 
 
Now we change dummy variables in the integral of Eq. 2.21a by 

( ) ( )
22 / sin / sind R dRd l dl dθ θ′ = = ⋅r Ω Ω , then integrate along neutral trajectory, we 

obtain [87] 
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During derivation we used the differential property ( ) ( )1/n ndKi x dx Ki x−= −  and 

( )2 0 1Ki =  

 Similarly, 
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Substitute the two equations above into the equation for the total volumetric source, we 

have 
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or 
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If we insert 
i

Q  back into the concise form of the total partial currents and define the total 

escape probability as: 
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we can rewrite the TEP equations as [87]: 
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The first term of the TEP equation represents the sum of the partial currents entering cell 

i from all adjacent cells and being directly transmitted to region j without collision with 

cell i. The second term is the sum of the partial current entering cell i from all the 

adjacent cells and having one or more charge-exchange scattering with cell i and finally 

exiting into cell j. The third term is the contribution of external volumetric sources and 

their progenies. Since the exiting flux from a cell is only dependent on the incoming 

fluxes entering that cell from all the adjacent cells, the transmission matrix is sparse, with 

the number of nonzero elements growing linearly with the number of cells. In the actual 

coding of GTNEUT, the sparse matrices are solved using the UMFPACK Fortran version 

2.2.1 [17]. UMFPACK is a set of routines for the direct solution of sparse linear systems 

using the unsymmetric multifrontal method [88]. In theory, any sparse matrix solver 
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could be used in the coding of GTNEUT, and as will be presented at the end of this work 

it may be necessary to upgrade the routines used to solve the sparse matrix.  

A useful convenience in the TEP methodology is that the shape of cells is 

arbitrary [87]. Practically any shape could be used so long as it is convex in nature. By 

this we mean, the cell cannot be set up so that particles streaming from one interface can 

stream back into the same interface. In practice, GTNEUT generally only uses meshes 

that have cells with 3 or 4 sides.  

Defining the TEP equations for the computational regions would not be complete 

without a brief discussion of the boundary conditions that may occur at certain cell faces. 

There are essentially two kinds of real world boundaries used in the neutrals analysis of 

Tokamak plasmas. The neutrals may either encounter the wall of the confinement vessel 

or they may enter the core plasma region. The wall of the confinement vessel is a 

physical boundary. The core plasma region is an area of the plasma that is so hot that 

neutral particles either scatter out of or get ionized in. The most computationally efficient 

method of handling the neutrals entering the core plasma boundary is to simply impose 

an albedo boundary condition [89]. 

Since the mean free path of neutrals in core plasma regions are extremely small, 

core plasma regions can be treated as semi-infinite half-space. Originally the one-speed 

diffusion theory was exploited to calculate the albedo coefficient [63]. 
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The diffusion approximation has been found to be accurate if charge-exchange 

fraction c is greater that 0.9. However, the results of the diffusion approximation would 

be significantly lower than the Monte Carlo calculations when c is smaller than 0.9, and 

could even become negative when c is smaller than 0.57. To compensate, an albedo 

coefficient was created using data from Monte Carlo simulations. It was found to be very 

accurate for the entire range of charge-exchange fraction c [63].  
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The wall boundary is a great deal more complicated than the core boundary. Ion 

and neutrals striking the first wall of the confinement vessel can either backscatter into 

the system or they may undergo desorption or absorption into the first wall. Neutrals 

backscattering into the system may do so with a significant fraction of the impact energy 

after encountering several elastic collisions with target material. In desorption or 

absorption, neutral particles are implanted in the near surface, where they will reach 

thermal equilibrium with wall material and subsequently be released as thermal 

molecules due to either direct particle-surface collisions or collisions of sputtered and 

backscattered particles. The “absorption means” of the neutrals means that the incident 

particles are permanently trapped inside the material wall. In the actual coding of 

GTNEUT, these particles are lost in the same manner as particles are lost to the core [87]. 

The neutrals; however, that are re-emitted back into the plasma typically have an energy 

of 1-5 eV since the molecules disassociate as Franck-Condon atoms [90, 91].  In previous 

sensitivity studies, varying the Franck-Condon energy in GTNEUT did little to impact 



90 

the neutral transport; however, a sensitivity study presented later in the thesis disputes 

those findings.   

The particle and energy reflection coefficients 
N

R  and 
E

R , which depend on the 

impact energy 0E , impact and substrate species, are two of the most important back-

scattering data. The particle reflection coefficient 
N

R  is defined as the ratio of the 

number N of all reflected particles to the total number 0N  of incident particles [87]: 
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The energy reflection coefficients 
E

R  is defined as the total energy of the 

reflected particles divided by the total energy of the incident particles, so the average 

energy of the back-scattered particles is [87]: 
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The total reflect flux from a wall segment can be written as: 

  

 ( )( ), , ,1 1kw kw kw kw

kw i ext N i kw N abs i kw
R R fΓ = Γ + Γ + − − Γ  (66) 

 

Where kw

N
R  is the particle reflection coefficient for wall segment kw, kw

abs
f  is the fraction 

that particles are permanently trapped inside the wall material. In the equation above, the 

first term is the external flux, the second term represents back-scattered flux with energy 

E , and the last terms represent the flux due to Franck-Condon atoms [87]. It should be 

noted that there is no one definitive number for E . Several estimates place it to be 
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between 1-10 eV [17, 65, 90-92]. As will be revealed in Chapter 6, this range is actually 

very important for the penetration of neutral particles into the pedestal region. For all the 

results presented in Chapter 6, we will be assuming 2E eV= . 

Having derived the most basic 2D TEP equations used in the original GTNEUT 

code and discussed the most basic boundary conditions, it is important to discuss what 

additional work has been done in upgrading and implementing them.  

3.2 Additions to the TEP Methodology 

Many additions to the TEP Methodology have been made by Dingkang Zhang. 

One of the most important additions to the GTNEUT methodology is the incorporation of 

the DP1 approximation for the particle distribution in the forward half-space at each 

successive interface. In the old methodology, only the DP0 was used. The DP0 

approximation has a tendency to over-estimate the attenuation of neutral particles 

streaming between successive interfaces. The reason for this is that the DP0 

approximation does not account for the preferential attenuation of particles moving at 

large angles relative to the normal. The problem tends to be most prevalent in cases 

where the mean free path lengths are longer than the cell length [74]. This could be a 

major problem in realistic plasma backgrounds.  

In reality, the mean free path lengths can be on the scale of meters (sometimes 

10’s of meters) and border cells with mean free paths of less than 1cm. This means that in 

regions where the mean free path is very long compared to the cell length, there could be 

an over estimation of particle flux across the cell with much less current streaming into 

the i-1 or i+1 locations. Fortunately, the most current version of GTNEUT has the ability 
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to use either DP0 or DP1. It should be noted that using the DP1 method can increase the 

computational time of the problem substantially as the TEP equations become much 

longer and more complicated to solve. Even with DP1, GTNEUT may have some regions 

of excessive forward scatter. DP1 is a good approximation in most cases, but DP2 might 

further increase the accuracy of GTNEUT by making the forward streaming more 

quadrilateral anisotropic. Still, this would add much more computational time (probably 

comparable with Monte Carlo).  

The most recent addition to the TEP methodology has been the incorporation of 

the Average Neutral Energy (ANE) approximation. The ANE approximation assumes 

that the average neutral energy from a region is the weighted average of the energy of 

neutrals incident from contiguous regions and of the energy of neutrals resulting from 

charge-exchanged ions within the region. This can be expressed as [87] 
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It has been developed and implemented into the GTNEUT code. In GTNEUT, the ANE 

approximation is implanted by using the following algorithm [18]: 

1. Assume 3/ 2ij iE T= � the local ion temperature assumption 

2. Calculate the neutral mean-free-path, transmission and escape probabilities, and 

solve the linear system to determine the interface currents 

3. Calculate the collided and uncollided fluxes from the interface currents 

4. Use the above equation to update the average neutral energy ijE  
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5. Repeat steps 2-4 until convergence, which is determined by the maximum 

fractional change of ijE  from the previous iteration 

6. Calculate the final neutral densities and the ionization rates. 

The average neutral energy approximation has been demonstrated to be more 

accurate than the original local ion temperature approximation for optically thin regions. 

The simulations of the refined GTNEUT code agree excellently with the DEGAS 

predictions in DIII-D Lmode and H-mode discharges, and the results of both codes are in 

good agreement with the experimental measurements [87]. 
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4. Application of the GTNEUT Code 

4.1 GTNEUT Input File 

While the GTNEUT code has been used in the past for experimental analysis, 

most of the work has focused primarily on methods development. The GTNEUT code 

has never been used from a “start-to-finish” type of analysis of actual experimental data. 

A large part of this thesis was developing a method to utilize the GTNEUT in a “routine” 

type fashion. 

In order to do this, two obstacles had to be overcome. First, GTNEUT does not 

possess intrinsic mesh generation capabilities for complex 2D geometries such as those 

found in a Tokamak plasma. Additionally, the GTNEUT methodology requires the use of 

a “region-free” grid structure. This means traditional grid points are not needed for 

GTNEUT and cannot be utilized in neutral particle transport calculations. Second, 

GTNEUT does not possess the ability to generate its own plasma background parameters. 

This means, GTNEUT is dependent on the use of other codes or directly observable 

experimental values for the ion and electron temperatures and densities, recombination 

neutrals, ion fluxes to the walls, gas puffing rates, and pumping locations. 

In order to use GTNEUT for experimental analysis, a procedure for 

circumventing these two above issues we utilized the 2D fluid code UEDGE. UEDGE is 

a very powerful 2D fluid code that has the capability of generating very complex 2D 

meshes based off of equilibrium fitting data. Additionally, UEDGE calculates a plasma 

background throughout the 2D mesh [22]. We have created routines that can convert the 

2D mesh generated by UEDGE into a format that can be directly imported into the 
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geometry section of the GTNEUT input file called “toneut”. Additionally, if UEDGE has 

already converged to a solution, it is possible to extract the plasma background 

information into a format usable by GTNEUT as well. Additionally, experimentally 

observed quantities may also be imported into the GTNEUT mesh. 

4.2 Breakdown of the TONEUT file 

GTNEUT requires an input file called “toneut” to run. In the toneut file there are 

essentially 4 sections: geometry, plasma background, sources for neutrals, and runtime 

options.  

The geometry is arguably the most complicated section of the input file. The 

geometry section contains the geometric definition of the problem. The TEP method is 

unique in that it does not require a clearly defined coordinate system. Instead, cell 

information is made up of the lengths and angles of the cell interfaces. Additionally, 

neighboring cells must be tracked. The greatest challenge in this problem has been 

devising a way of tracking cell lengths, angles, and cell neighbors. GTNEUT has a built 

in routine that checks the geometry section of the input file. If the geometry is off at all, 

GTNEUT will halt and list the cells in which there is a problem. 

The figure below is a very simplified version illustrating how we have decided to 

number our grid. The UEDGE mesh is essentially laid out in a poloidal and radial 

distribution. 

The number of cells in the poloidal direction is referred to as NX. It is defined 

(starting at cell one and going in the clockwise direction) as nxleg(1,1) + nxxpt + nxxpt + 

nxcore(1,1) + nxcore(1,2) + nxxpt + nxxpt + nxleg(1,2).  
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A better explanation of these terms are located in the UEDGE manual ZWF, but 

nxleg(1,1) and nxleg(1,2) are the number of cells in the poloidal direction for the inner 

and outer divertor strike points respectively. 

Likewise, nxcore(1,1) and nxcore(1,2) are the number of poloidal cells for the 

regions above the X-Point. One can add resolution to the X-Point region by adding nxxpt. 

The creates 4 * nxxpt number of cells around the X-Point. Various options are available 

to determine how closely these extra cells are clustered around the X-Point. 

 

Figure 28: Simplified Geometry of UEDGE Mesh [93] 
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The number of cells in the radial direction (NY) is the summation of nycore(1) 

and nysol(1). nycore(1) is the number of poloidal layers within the separatrix. nysol(1) is 

the number of poloidal layers outside the separatrix.  

The convention of numbering from the 2D array of UEDGE coordinates to the 

GTNEUT 1D array of cells is given by: icn = ix + NX*(iy-1) 

In total, there are NX*NY cells in the UEDGE grid. The UEDGE grid, however, 

requires some modifications before it can be used in GTNEUT. First, the grid should be 

fit to the divertor [93] for all GTNEUT runs. Additionally, UEDGE imposes boundary 

conditions at the edge of the grid. The UEDGE mesh does not extend to the wall. The 

UEDGE grid does not extend to the walls of the confinement vessel. The routines created 

for our analysis extend the UEDGE mesh to the wall. Intrinsic to the UEDGE calculation, 

there is a dummy layer of cells along the last layer of cells in the SOL. We call this the 

HALO region. When GTNEUT utilizes this layer of cells, there are effectively 

(NY+1)*(NX) number of cells in the GTNEUT grid. The same formula as above can be 

used to locate cells in term of icn. NY is now given by NY = NY + 1. 

Lastly, the GTNEUT mesh also needs to fill in the gap in the private flux region 

with computational cells. These cells are slightly different. All of the other NX*(NY+1) 

cells are 4 sided. The cells in the private flux region are 3 sided. The number of cells is 

determined by the sum of nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2). 

So, in total there are:  

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) 
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cells in a GTNEUT calculation. Additionally, the number of plasma regions and the 

number of wall locations must be tracked. The number of plasma regions is simply:  

nxppt+nxcore(1,1)+nxcore(1,2)+nxxpt 

The number of wall locations is given by:  

NX + 2* NY + 2 

The additional 2 wall segments are from the 2 cells touching the wall in the private flux 

region.  The numbering scheme for the plasma and wall cells can appear complicated. 

However, it is fairly straight forward. The plasma number scheme starts from the total 

number of cells in GTNEUT. So, if there are  

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) 

cells in the problem, the first plasma region is: 

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) +1 

The first plasma location is located adjacent to the first internal cell bordering the plasma 

region. The numbering likewise goes in the clockwise fashion. The wall regions start at: 

NX*(NY+1)+nxleg(1,1)+nxxpt+nxxpt+nxleg(1,2) + 

nxppt+nxcore(1,1)+nxcore(1,2)+nxxpt 

The numbering starts at the wall location immediately adjacent to internal cell 1. In many 

of the GTNEUT input options, the wall locations are labeled from 1 to # of wall 

segments. Be aware, in this numbering convention, wall segment 1 is located adjacent to 

cell 1. The wall segments increase linearly from 1 to # of wall locations in a clockwise 
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fashion until it gets to the wall segment bordering the first private flux region cell. This 

method was used to create the grids used in the experimental analysis. A more detailed 

version of this procedure with links to the code can be found in Appendix A. There we 

will show examples of the actual process as well as provide links to the code used to 

carry out the process.   
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5. DIII-D Analysis of Neutral Particle Recycling and 

Pedestal Fueling 

5.1 DIII-D Neutral Particle Recycling Measurements 

In recent DIII-D analyses, Leonard et al. [13, 16] developed techniques to 

experimentally determine ion fluxes to the wall. The principle technique used to find the 

ion flux to the divertor target plates was by integrating the ion saturation current profile 

over the surface mounted Langmuir probes along the divertor target. The location of the 

divertor Langmuir probes are depicted in the Fig. 29A. 
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Figure 29: A) DIII-D geometry showing the divertor configuration and the location where most of the main chamber ion flux 

recycles as well as where most of the divertor ion flux recycles. B) midplane probe data. C) divertor target ion flux ascertained 

from the surface mounted Langmuir probes along the strike plates. Thomson scattering data for D) density and E) 

temperature (A and B reproduced with permission from Refs [13]and [16]).   
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Ion fluxes to the wall from main chamber recycling were inferred from a 

“window frame” analysis [13]. The window frame analysis utilizes data from the 

midplane insertable Langmuir probe, Thomson Scattering, and the Langmuir probe near 

the Upper Baffle. The locations of these diagnostics and their respective outputs are 

depicted in the figure above. The window frame analysis determines a global ion flux to 

the outboard chamber. The global radial particle flux to the outboard main chamber is 4 

cm from the outboard midplane separatrix [13]. This is represented by the magnetic flux 

surface marked with the dashed line in the figure above.  The main chamber is defined as 

surfaces outside of the horizontal divertor target tiles for the outboard divertor and the 45˚ 

tile for the inboard divertor. An important feature of this surface is that both ends of the 

field lines terminate on a toroidally symmetric surface. If one assumes parallel plasma 

flow to the surface with negligible recycling in the low density far SOL plasma, the 

particle flux through the window frame can be found from: 
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where  , , ,
e s

n c λ  are density and sound speed and their convoluted e-folding scale length 

at the midplane probe, and Bp and BT are the midplane window frame values of toroidal 

and poloidal magnetic field respectively. R is the average major radius of the upper and 

lower halves of the window frame flux surface, and  ξ  is the ratio of saturation current 

between the termination surfaces and the midplane, 0.5ξ ∼  [13].  For the midplane 

window frame plasma conditions, the probe profiles of electron density and temperature 
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and ion saturation current (Isat) are fit to an exponential function from the window frame 

radius outward to the baffle limiters [13]. The window frame analysis provides global 

estimated particle flux, 
i

Γ , to the outboard midplain. In Ref. [16], it was noted that low 

midplane probe currents suggested the ion flux was mainly to the baffles, so that the 

recycling neutral source due to this ion flux is distributed evenly between the upper and 

lower baffles. A distribution of the ion current to the wall for both the divertor and baffle 

sources is presented later. 

Table 5: Neutral sources from recycling ions obtained from surface mounted probes 

(divertor) and window frame analysis (baffles).  

Ion Recycling Sources (#/s) 

UPPER BAFFLE 8.13E+20 

LOWER 

BAFFLE 
8.13E+20 

INNER 

DIVERTOR 
5.55E+21 

OUTER 

DIVERTOR 
6.04E+21 

 

The 2D edge fluids code UEDGE [22], which has been used extensively [5, 8, 11-

13, 16, 20] to interpret DIII-D edge plasma phenomena, was used to determine the 

background edge plasma parameters.  This determination and reconciliation with 

spectroscopic data of the background plasma parameters is described in detail in earlier 

work [11, 13, 16]. The transport coefficients in the edge pedestal were adjusted to obtain 

agreement between calculated and measured densities and temperatures at the Thomson 

scattering diagnostic locations shown in Fig. 29A, thus validating the calculated 

background by comparison with experiment in the edge pedestal.  Figs. 29D and 29E 

show that the UEDGE calculation matches well with the Thomson data. 
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There was not adequate experimental data in the divertor region to benchmark the 

UEDGE calculation to experimental data in this region [16]. Thus, two different sets of 

background plasma parameters were calculated [16] with UEDGE to bracket the actual 

experimental conditions (both benchmarked to the upstream Thomson data), by varying 

the wall recycling coefficients in UEDGE.  Following these authors [16], we denote these 

two calculated background plasmas as ‘attached’ (high T) and ‘detached’ (low T). In the 

‘attached’ case, the temperature near the inboard divertor plate is fairly high ( 10eV∼  

within a cm of the plate).  In the ‘detached’ case, the inboard divertor temperature is 

much lower ( 1eV∼ within a cm of the plate).  We emphasize that we are analyzing a 

single DIII-D discharge using two different sets of previously calculated background 

plasma parameters in order to bracket the likely divertor plasma parameters. 

We further note that the GTNEUT neutrals calculation and the UEDGE 

background plasma calculations have not been iterated to consistency.  The UEDGE 

background plasma calculations include an approximate fluid neutrals calculation and are 

adjusted to match the measured ‘upstream’ plasma conditions in the outboard midplane 

edge pedestal and scrape-off layer. Then, the more geometrically detailed GTNEUT 

calculations (extending the neutral transport to the plasma chamber wall) are carried out 

on a fixed background plasma to investigate in detail the neutral particle recycling and 

core refueling.    

Because of the different ranges of temperatures and densities in the SOL, divertor 

and pedestal regions, the neutral mean free paths can vary by large amounts, as shown in 

Fig.30 for the “detached” plasma background, for which neutral mean free paths (mfp) 

range from less than a cm at the divertor plate to close to 60 meters in the private flux 
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region. In the “attached” case, the mean free path lengths in the SOL-DIV region range 

from less than a cm to well over 30 meters in the private flux region.  
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Figure 30: Neutral mean free path distribution (DETACHED left and ATTACHED right plasma background) calculated 

with the UEDGE code [22]) 
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The recombination rates calculated with UEDGE ZWF are quite different for the 

‘attached’ and ‘detached’ background plasmas. In the ‘attached’ case, the source of 

neutrals due to recombination is small (1.473x1020/s in front of the inboard divertor 

plate); however, in the ‘detached’ background plasma case the temperatures are so low 

and the density is so high that the neutral atom source due to recombination becomes 

quite substantial (6.243x1021/s in front of the inboard divertor plate) relative to the 

attached background plasma case.  

The core ion particle source due to neutral beam injection for this discharge is 

known from experiment to be 3.86x1020/s.  Note that the neutral beam source is not 

included as a source in the neutrals calculations, but as a source of ions. 

Since the UEDGE code does not calculate the core plasma transport, the ion out- 

flux must be determined from experiment. Using a method proposed by Porter [94], the 

ion outflow across the separatrix was estimated [16] from the density rise just after the L-

H transition by assuming the separatrix ion flux was diffusive with a uniform diffusion 

coefficient equal to 25% of the effective heat diffusivity inferred from the experimental 

temperature gradient.  This estimated ion outflux across the separatrix was 2.74x1021/s, 

with an estimated uncertainty [94] of ± 30% due to experimental uncertainty.  There are 

an additional modeling uncertainties associated with assumptions such as a diffusive ion 

particle flux and a constant diffusion coefficient over the separatrix which would increase 

this uncertainty in the ion outflux, but these can not be readily estimated.    
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6. Neutral Particle Recycling Calculations 

6.1 Geometric model 

The analysis presented in this paper was performed on a 2D mesh generated by 

the 2D fluids code UEDGE and extended to the walls of the confinement vessel, as 

discussed in the previous section.  The computational grid shown in Fig. 31 consists of a 

pedestal (PED) region extending inward from the separatrix for a distance sufficient to 

attenuate the neutral density by a couple of orders of magnitude [about 7% of the 

normalized radius (rho)], a scrape-off layer (SOL) region extending outward from the 

separatrix to the outer edge of the UEDGE computational grid, a halo (HALO) region 

extending from the exterior of the UEDGE computation grid to the material wall, inner 

and outer divertor (DIV) regions extending from the X-point to the divertor targets, and a 

private flux (PFR) region. Also shown in the figure is a CORE region, which is 

represented in the GTNEUT calculation as an albedo (fractional reflection) boundary 

condition for the inner surface of the PED region. 
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Figure 31: 2D geometric model used in GTNEUT analysis. 

 



110 

The lines going around the plasma in the poloidal direction in Fig. 31 are the flux 

surfaces produced from the EFIT.  “Radial” lines crossing these flux surfaces extend 

inward from the separatrix across the PED region to the CORE region (at 0.93ρ < ) and 

outward from the separatrix across the SOL to the outer edge of the UEDGE 

computational grid, and then across the surrounding HALO region to the material wall.  

The regions formed by these intersecting “poloidal” and “radial” line define the 

computation grid for the GTNEUT calculation.  Neutral densities, ionization rates, etc. 

are calculated in the grid regions formed by the intersection of these “radial” and 

“poloidal” surfaces.  Each of these grid regions can be identified by a “radial” location 

associated with the bounding flux surfaces and a “poloidal” location defined by where its 

bounding radial lines intersect the separatrix (this poloidal distance along the separatrix is 

measured in the clockwise direction with respect to an origin where the separatrix 

intersects the target plate in the inner divertor).  For example, a poloidal distribution of 

ionization rates at 0.96ρ = in the pedestal would be constructed by plotting the 

ionization rate in each grid region between the flux surfaces bounding 0.96ρ =  versus 

the poloidal location at which the “radial” lines bounding the grid region intersected the 

separatrix.  The poloidal distribution of the total ionization in the pedestal would then be 

plotted by summing the ionization over all cells in the pedestal bounded by two “radial” 

lines intersecting the separatrix at a given poloidal distance along the separatrix. 

The background plasma parameters in the upper PED, outboard PED and SOL 

were taken from the Thomson scattering data and used to benchmark the UEDGE 

calculation of the background plasma parameters throughout the PED, SOL and DIV 

regions [16]. The HALO region was assumed to have a uniform temperature and density 
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distribution (ne , ni = 0.13e19  #/m3 and Te , Ti = 12 eV).  The PFR is assumed to have a 

uniform temperature and density (ne , ni = 1e18  #/m3 and Te , Ti = 3 eV).  The plasma 

CORE is not included in the GTNEUT calculation, but the net number of neutrals 

crossing the boundary from the PED to the CORE are considered to be ionized in the 

core.   

Several points of interest are also illustrated in Fig. 31. The lower and upper 

baffle locations (L. BAFF. and U. BAFF.) are where the recycling calculated by the 

Window Frame method and shown in Table 1 is assumed to take place.  

In order to discuss the poloidal distribution of neutral particles and reaction rates, 

it is convenient to define certain ‘poloidal’ reference points. It is easiest to do this in 

terms of an angle θ. Starting at the outboard midplane (OUT MID), θ = 0. If we consider 

the separatrix in the 2D calculation model as a 1D strip starting at θ = 0, the midpoint of 

the first computation cell occurs at θ = 0.28. Thus, θ = 0.28 is the OUT MID reference 

point. Continuing along the 1D strip (separatrix) in the counterclockwise direction, the 

next reference point is the cell  along the separatrix located at the upper baffle (U. 

BAFF.) location (θ = 1.49). The next reference point is the inner midplane (IN MID) 

location at θ = 2.84. Finally, the last reference point is at the X-Point. There are two sides 

of the X-Point, an inboard and an outboard side. For our figures showing the poloidal 

distributions, the SOL always starts at the inboard side of the X-Point (θ = 4.28) and 

continues in a clockwise fashion around the separatrix back to the outboard side of the X-

Point.  The divertor regions are represented as short extensions on both ends of the SOL.  
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6.2 Overall particle balance 

The overall ion particle balance on the region inside the separatrix (CORE + 

PED) is shown in Table 6 for both sets of background plasma parameters.   

Table 6: Ion global particle balance on CORE+PED 

 ‘Attached’ ‘Detached’ Determined 

Loss--Ion Outflow Across 
Separatrix (#/s)a 

2.74E+21 2.74E+21 Experiment 

Sources    

Neutral Beam Ion Source(#/s) 0.386E+21 0.386E+21 Known 

Ionization of Recycling 
Neutrals (#/s) 

0.927E+21 1.313E+21 
GTNEUTb 

 

Total Ion Source(#/s) 1.316E+21 1.699E+21  

Ion (Outflow – Sources) (#/s) 1.424E+21 1.041E+21  
a
  determine experimentally using the Porter method [94]

 

b  
see Refs [17, 95-97]for comparison of GTNEUT with Monte Carlo and experiment 

 
If the UEDGE solution for the background plasma parameters and the GTNEUT 

solution for the neutral particle ionization rates were self-consistent, and if the Porter 

method [94] for determining the experimental ion outflow across the separatrix was 

precise, then the experimental outflow of ions across the separatrix should be balanced at 

steady-state by the neutral beam ion source plus the ionization of recycling neutrals in the 

CORE+PED regions.  As shown in Table 6, there is a significant discrepancy between the 

sources of ions in the core (due to neutral beams and to the calculated neutral inflow 

across the separatrix) and the experimental ion outflow across the separatrix determined 

by the Porter method [94].  This discrepancy is larger than the quoted ±30% uncertainty 

in the determination of the experimental ion outflow associated with uncertainty in the 

experimental data [94].  However, as discussed at the end of section II, there are other 

unquantified uncertainties in the determination of the experimental ion outflow across the 

separatrix.   
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As indicated by the last line in Table 6, the use of the “detached” UEDGE 

background plasma parameter (with the larger recombination neutral source) results in 

significantly better agreement between the ion sources and losses. In both cases the 

difference between ion sources and losses are larger than the estimated [94] 30% error in 

the determination of the ion outflow across the separatrix.  This result is consistent with 

the earlier conclusion [16] that the plasma is probably detached at the inner divertor in 

this shot.  

The overall neutral particle balance between sources (ion recycling and 

recombination) and sinks is shown in Table 7 for both the ‘attached’ and ‘detached’ 

background plasma parameters.  The distribution of neutral particle ionization rates 

among the various regions is also given in Table 7.  Clearly, the majority of the ionization 

( ≈70%) takes place in the divertors, and only 7% of the recycling and recombined 

neutrals actually make it across the separatrix to fuel the pedestal and core.  The 

percentage of the total neutral ionization that is in each region and the percentage of the 

total neutral source from recycling and from recombination is given in parentheses in 

Table 7. 
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Table 7: Global neutral particle balance on entire computation domain 

 ‘Attached’ ‘Detached’ Determined 

Ionization (Sinks) (#/s)    

CORE 0.129E+21 (1%) 0.193E+21 (1%) GTNEUT 

PED 0.798E+21 (6%) 1.120E+21 (6%) “ 

SOL 1.910E+21 (15%) 2.670E+21 (14%) “ 

HALO 1.120E+21 (9%) 2.020E+21 (11%) “ 

IN DIV 4.380E+21 (33%) 7.390E+21 (39%) “ 

OUT DIV 4.770E+21 (36%) 5.430E+21 (29%) “ 

PFR 0.107E+19 (<<1%) 0.365E+19 (<<1%) “ 

Total Ionization 13.108E+21 18.827E+21  
Sources (#/s)    

Ion recycling 13.217E+21 (99%) 13.217E+21 (66%) experiment 
Recombination 0.147E+21 (1%) 6.243E+21 (34%) UEDGE 

Total Sources 13.364E+21 19.460E+21  

6.3 Neutral particle fluxes recycling from wall surface and 

crossing separatrix 

With reference to the poloidal locations identified in Fig. 31, the neutral particle 

fluxes recycling from the wall are shown in Fig. 32.  Two types of recycling neutral 

particle fluxes are shown—those produced by the recycling of the experimental incident 

ion fluxes (which are inputs to the GTNEUT calculation) and those produced by the 

recycling of the calculated (GTNEUT) incident neutral fluxes.  The incident ion fluxes 

measured by the probes at the divertor targets of course recycle as neutrals from those 

locations, but the incident ion fluxes determined from probe measurements on the 

outboard using the “window frame” technique are represented in the GTNEUT 

calculation as being localized at the upper and lower baffles, and are shown as single 

points in Fig. 32.  The recycling neutral fluxes from incident ions are consistent with the 

measured ion fluxes to the wall—largest near the divertors but with a significant peaking 

at the upper and lower baffles. 
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These neutral fluxes from the wall resulting directly from the incident ion fluxes 

then charge-exchange somewhere in the edge plasma and produce neutral fluxes incident 

on the wall which in turn recycle as neutral fluxes, charge exchange and produce neutral 

fluxes to the wall, etc.  The sum total of  the recycling neutral fluxes from the wall due to 

charge exchange (and elastic scatter) incident neutral fluxes on the walls are also shown 

in Fig. 32, for the GTNEUT calculations using both the ‘attached’ and ‘detached’ 

background plasma parameters.  The recycling fluxes produced by the recycling incident 

charge exchange neutral fluxes dominate the recycling fluxes produced by incident ion 

fluxes. The poloidal length along the chamber wall is measured clockwise from the point 

on the chamber wall in the lower left of Fig. 31 where the inner divertor and halo regions 

meet. 

The recombination source is calculated in all regions but is only significant in the 

inner divertor region.  As shown in Table 7, the recombination source is only 1% of the 

total neutral source for the “attached” background plasma, but is 34% of the neutral 

source for the “detached” background plasma. 

The inward neutral fluxes across the separatrix are shown in Fig. 33.  Both the 

partial inward flux and the net inward flux (when the outward flux of charge-exchanged 

and scattered neutrals is subtracted) across the separatrix are shown.  The inward partial 

flux is directly related to the recycling source, while the net inward flux is the quantity 

relevant to particle balance inside the separatrix.    The plasma is fueled primarily through 

the X-point region by neutrals recycling from the divertor targets or recombining in the 

inner divertor region.  There is a strong secondary fueling due to ions recycling at the 

upper and lower baffles. 
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Figure 32: Poloidal distribution of neutral fluxes recycling from the wall 
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Figure 33: Inward partial (in) and net (in minus out) neutral fluxes across the separatrix 
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6.4 Poloidal distributions of ionization and charge-exchange 

rates 

A neutral particle recycling from the wall or formed by recombination will 

ultimately be ionized.  It is of interest to examine in which region this ionization will take 

place. The “radially-summed” ionization rate in the various regions defined in Fig. 31 is 

plotted as a function of poloidal location along the separatrix in Figs. 34 and 37.   

With reference to Fig. 31, the computational grid is constructed so that for each 

segment along the separatrix there is a corresponding set of SOL regions extending 

outward, beyond which is a HALO region, and a corresponding set of PED regions 

extending inwards.  In the previous Monte Carlo (DEGAS2) calculations16 of this 

discharge, the total ionization in all the PED regions “behind” a given segment along the 

separatrix were summed and divided by the surface area of that separatrix segment (the 

segment length extended toroidally around the plasma chamber) in order to obtain a 

proxy for the poloidal distribution of the radial neutral particle flux crossing the 

separatrix (the statistical nature of the Monte Carlo solution leads to a rather erratic direct 

calculation of this quantity).  In order to touch base with these Monte Carlo calculations, 

this same quantity calculated with GTNEUT is plotted in Figs. 34 and 35 as the PED 

ionization (with units of flux), for the detached and attached plasma background case. 

Similar quantities constructed from the ionization in the corresponding HALO region and 

summed “radially” over the corresponding SOL regions are also plotted.  The 

computation grid extends almost perpendicular to the separatrix in the two divertor 

regions, and the summed ionization rates over the regions corresponding to a given 

segment along the separatrix (divided by the area of that segment extended toroidally) is 
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plotted as the INNER DIV and OUTER DIV ionization in Figs. 36 and 37.  The main 

difference between the ionization rates shown in Fig. 34 and 35 for the detached case and 

those calculated with the attached background plasma parameters are factor of 2 lower 

ionization rates in the HALO, SOL and PED ionization vicinity of the inner divertor due 

to the lower recombination source for the attached case. 

The major part of the ionization (≈70%) takes place in the divertor and, to a lesser 

extent, in the scrape-off layer (≈15%).  The poloidal distribution of ionization roughly 

corresponds to the poloidal distribution of the recycling sources shown in Fig. 4 and the 

location of a strong recombination source in the inner divertor for the ‘detached’ 

background plasma parameters.  The reduction in the inner divertor ionization rate just in 

front of the target, where the temperature is about 1 eV, is notable in Fig. 34 for the 

‘detached’ background plasma parameters. 
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Figure 34: Poloidal distribution of ionization rates per unit area along the separatrix (DETACHED) 
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Figure 35: Poloidal distribution of ionization rates per unit area along the separatrix (ATTACHED)
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Charge-exchange reaction rates, constructed in the same manner as discussed 

above for ionization, are shown in Fig. 36 for the detached plasma background and Fig. 

37 for the attached.  The poloidal distribution roughly corresponds to the poloidal 

distribution of the wall recycling neutral fluxes and recombination source in the inner 

divertor.  The charge-exchange rates are generally comparable to or larger than the 

ionization rates; the enormous charge-exchange rate in the inner divertor for the 

“detached” background plasma is notable. For the “attached” background plasma the 

large peaking of the charge-exchange rate in the inner divertor is reduced by several 

orders of magnitude and the charge-exchange rates in the HALO, SOL, and PED in the 

vicinity of the inner divertor are reduced by a factor of 2. 
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Figure 36: Poloidal distribution of charge-exchange rates per unit area along the separatrix (DETACHED) 
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Figure 37: Poloidal distribution of charge-exchange rates per unit area along the separatrix (ATTACHED)
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6.5 Neutral penetration of the edge pedestal 

The poloidal distribution over the flux surface of the neutral atom density is 

plotted for several values of the normalized radius (rho) in Fig. 38, for the detached 

plasma background case.  For the ‘attached’ plasma background (Fig. 38), the ionization 

rates were a factor of 2 lower in the vicinity of the inner divertor, because of the lower 

recombination source.  Similar distributions were calculated for the ionization and 

recombination rates.    
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Figure 38: Poloidal distribution of neutral density over flux surface in edge pedestal (DETACHED). (see Fig. 31for locations corresponding to θs) 
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Figure 39: Poloidal distribution of neutral density over flux surface in edge pedestal (ATTACHED). (see Fig. 31 for locations corresponding to θs) 
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Figure 40: Poloidal distribution of ionization density over flux surface in edge pedestal (DETACHED). (see Fig. 31 for locations corresponding to θs) 
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Figure 41: Poloidal distribution of ionization density over flux surface in edge pedestal (ATTACHED). (see Fig. 31 for locations corresponding to θs)
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It is clear that there are orders of magnitude variations in the neutral atom density, 

the ionization fueling source, the electron ionization cooling and the ion charge-exchange 

cooling over the flux surface in the plasma edge pedestal. This raises questions about the 

adequacy of 1D ion particle and energy transport calculations that are frequently made 

(e.g. Ref. [10]) in the edge pedestal region in the presence of strong neutral recycling.  

For example, the more than two orders of magnitude difference between the ionization 

rate in the pedestal just above and to the left of the X-point (poloidal length ≈ 1) and the 

upper inboard quadrant (poloidal length ≈ 2) causes a similar variation in the ionization 

particle source and electron cooling rate which could drive edge thermal instabilities (e.g. 

MARFEs) that might not be predicted by a 1D radial calculation in which the poloidal 

variations were averaged out.  

6.6 Importance of different neutral particle sources in fueling 

pedestal and core 

The importance of a given neutral particle source (e.g. upper baffle recycling or 

inner divertor recombination) for fueling the pedestal and core depends on two factors—

the strength of the source and the fraction of the particles from a given source that are 

transported inward across the separatrix.  The poloidal distribution of the PED ionization 

rates (constructed by radially summing the ionization occurring in the PED regions 

inboard of a given segment along the separatrix and dividing by the area of that segment 

extended toroidally around the plasma, as previously described) resulting from each 

individual neutral particle source are shown for the ‘attached’ and ‘detached’ background 

plasmas in Figs. 42 and 43.  Not surprisingly, the inner and outer divertor ion recycling 

sources are most important for fueling the region around the x-point, for the ‘attached’ 
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background plasma, and the upper baffle recycling ion source is most important for 

fueling the top of the plasma near the upper baffle. For the ‘detached’ background 

plasma, the recombination source (mostly in the inner divertor) is also an important 

contributor to the x-point fueling of the pedestal. 
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Figure 42: Poloidal distribution of PED ionization rate per unit area along the separatrix due to each recycling source separately. (ATTACHED) 



133 

 

 

Figure 43: Poloidal distribution of PED ionization rate per unit area along separatrix due to each recycling source separately. (DETACHED) 
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In order to characterize the likelihood that a neutral particle from a given source 

would be transported across the separatrix and cause a fueling (ionization) event on a 

given flux surface (rho) in the pedestal, we first calculated ionization rates as a function 

of rho and theta, like those shown in Figs. 38 and 39, for each source.  We then summed 

these plots poloidally to obtain the total ionization rate on each flux surface due to each 

source, then divided by the respective source strengths to obtain the fraction of neutrals 

from a given source that would cross the separatrix to refuel the pedestal on a given flux 

surface.  This “fraction” is plotted vs. flux surfaces (rho) in Figs. 44 and 45 for the 

‘attached’ and ‘detached’, respectively, background plasma parameters.  Neutrals 

recycling from the upper and lower baffles are more effective at penetrating across the 

separatrix to fuel the pedestal than are neutrals recycling or recombining in the divertor.  

This is understandable because of the shorter distance (in mean free path) the neutrals 

must travel from the baffle to separatrix than from the divertor plates to the separatrix.  
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Figure 44: Effectiveness of neutrals from different sources in fueling the pedestal (fraction of source neutrals ionized on each flux surface in pedestal) 

(ATTACHED) 
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Figure 45: Effectiveness of neutrals from different sources in fueling the pedestal (fraction of source neutrals ionized on each flux surface in pedestal) 

(DETACHED) 
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Neutrals recycling from the inner divertor are more effective in fueling the 

pedestal than neutrals recycling from the outer divertor for the “detached” case in which 

the ionization mean free path in the cold inner divertor become longer. 

Summing the ionization rate due to each source over the entire pedestal and core 

regions (basically integrating the pedestal integration of Figs. 44 and 45 over the radial 

extent of the pedestal), and then dividing by the strength of that source, yields the fraction 

of the neutrals produced by each source that crosses the separatrix to fuel (ionize in) the 

confined plasma shown in Table 8. 

Table 8: Fraction of neutrals from each source ionized in PED+CORE 

 Fraction 

ATTACHED DETACHED 
CASE 

PED CORE PED+CORE PED CORE PED+CORE 

Upper baffle 
recycling 

17.5% 4.0% 21.50% 27.6% 5.4% 33.00% 

Lower baffle 
recycling 

15.2% 3.7% 18.90% 15.8% 3.6% 19.40% 

Inner divertor 
recycling 

4.0% 0.7% 4.70% 7.6% 1.5% 9.10% 

Outer divertor 
recycling 

4.7% 0.4% 5.10% 3.8% 0.3% 4.10% 

Recombination 2.4% 1.3% 3.70% 3.0% 0.5% 3.50% 

 

It must be emphasized that, although individual neutrals recycling from the 

baffles have better chance of fueling the pedestal than do individual neutrals recycling 

from the divertor, the greater number of neutrals recycling or recombining in the divertor 

than recycling from the baffles results in the divertor being the principal source of 

neutrals refueling in this discharge, as shown in Figs 46 and 47, which were obtained by 

multiplying the curves in Figs. 44 and 45 by the respective source strengths given in 
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Table 5 and recombination strengths given in Table 7.  These figures also show how the 

relative contributions of the various neutral sources to fueling the pedestal depends on the 

background plasma parameters (note that only the recombination neutral source 

calculated with UEDGE is different for the GTNEUT calculations with the “attached” 

and “detached” plasma backgrounds, since the ion recycling neutral sources are taken 

from experiment and are independent of the background plasma parameters). 
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Figure 46: Ionization fueling rates in the pedestal from different sources (ATTACHED)   
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Figure 47: Ionization fueling rates in the pedestal from different sources (DETACHED)   
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6.7 Computational and experimental uncertainty 

There is a fair amount of uncertainty in the analysis we have presented. As 

previously mentioned, the accuracy of the experimental determination of the ion outflow 

from the CORE+PED across the separatrix into the SOL, due to uncertainty in the  

experimental data, is judged to be about ± 30% [94], but experimental uncertainties are 

not the only ones.  

A measure of the computational uncertainty in the GTNEUT solution is obtained 

by performing an internal particle balance on the input sources minus the calculated 

sinks. The difference is a measure of the overall error in the calculation, and local errors 

could be greater or less. For the ‘attached’ background plasma, this error was about 1.8% 

and for the ‘detached’ background plasma it was about 3.2%. While GTNEUT has been 

extensively benchmarked against Monte Carlo calculations [17, 95-97], it has not 

previously been used for problems with so many (1560) regions, some of which have 

mean free paths in the tens of meters. The error in the internal particle balance may be 

due to errors in inverting such a large, albeit sparse, matrix. Additionally, some errors 

may be occurring in the evaluation of the transmission coefficients. There is some 

evidence [87] that the approximate evaluation of the Bickley functions used in the 

angular integration to obtain the transmission coefficients may be a source of error.  

A Monte Carlo neutrals calculation for this same shot, using the same two sets of  

background plasma parameters, has been performed [13] with DEGAS2 [19]. The 2D 

mesh was identical except in the halo regions, where a different grid structure from that 

shown in Fig. 31 was used to extend the UEDGE mesh to the wall of the confinement 

vessel in the DEGAS2 calculation. With 10,000 histories each for the four wall recycling 
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sources and for the recombination source, the overall statistical uncertainty in the 

DEGAS2 calculation is estimated to be roughly 5%± , but the statistical uncertainty in the 

calculation of ionization rates in individual small regions could be significantly larger.   

The radially integrated PED+CORE ionization rates, determined as discussed 

above, calculated with GTNEUT and DEGAS2 are compared in Figs. 48 and 49.  It is 

clear that the two calculations agree rather well except in the region on the inboard side 

just above the X-point.  Possible causes of this disagreement are discussed below. 

The GTNEUT and DEGAS2 calculations of the total ionization rate in the 

PED+CORE region are compared in Table 9.  Also shown are the overall particle balance 

error from Table 7 in the GTNEUT calculation, which is a measure of the global 

calculational uncertainty in GTNEUT, and the estimated statistical uncertainty in the 

DEGAS2 calculation of the ionization in the PED+CORE region.
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Figure 48: Poloidal distributions of PED+CORE ionization rate per unit separatrix area calculated by GTNEUT and DEGAS2. (ATTACHED) 
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Figure 49: Poloidal distributions of PED+CORE ionization rate per unit separatrix area calculated by GTNEUT and DEGAS2. (DETACHED) 
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Table 9: Comparison of ionization rates in the PED+CORE calculated by    GTNEUT  and DEGAS2 

 GTNEUT DEGAS2 

 ‘Attached’ ‘Detached’ ‘Attached’ ‘Detached’ 

Source Strength (#/s) 1.34E+22 1.96E+22 1.34E+22 1.96E+22 

Ionization Rate (#/s) 
PED + CORE 

0.927E+21 1.313E+21 0.860E+21 1.77E+21 

Percent of Source 
Neutrals Ionized in PED 

+ CORE 

6.9% 6.7% 6.4% 9.0% 

Calculation Uncertainty 1.8% 3.2% 5% 5% 

 

Calculations of pedestal fueling for the two codes agree reasonably well for the 

‘attached’ background plasma parameters, but differ more significantly for the ‘detached’ 

background plasma parameters.  Fig. 49 indicates that most of this disagreement arises 

from differences in neutral transport just above the x-point on the inboard side.  For the 

‘attached’ background plasma parameters, the disagreement between the two calculations 

is within the calculational uncertainty in the calculations.  However, for the ‘detached’ 

background plasma calculations the disagreement would seem to be significantly larger 

than the calculational uncertainty, suggesting a discrepancy due to methods or data. There 

are several possible reasons for the discrepancies. The most obvious reason is the 

difference in the grid structure in the HALO and private flux region as seen in the figure 

below. 
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Figure 50: Difference in HALO and Private Flux Region for GTNEUT and DEGAS2 Calculation. 
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We conjecture that this discrepancy may be due to the different ways in which the 

two codes handle molecular transport. DEGAS2 fully models molecular transport with 

different species in the plasma edge. In GTNEUT molecules recycled from the wall are 

assumed to dissociate into Franck-Condon energy atoms in the first grid region in front of 

the wall and be transported with a mean free path corresponding to that energy until they 

have a collision. The regions that would be most affected by the different treatments of 

molecular transport would be the regions with very low temperature (e.g. the inner 

divertor regions with the ‘detached’ background plasma parameters).  This conjecture is 

supported by a previous comparison [95] of GTNEUT and DEGAS for a different DIII-D 

shot, in which differences between calculated ionization rates between the two codes 

were reduced dramatically when the molecular transport calculation was turned off in the 

DEGAS calculation.  

Additionally, in the figure below we can clearly see how varying the Franck-

Condon energy can affect the penetration of the neutral particles into the core of the 

plasma. “twall” is the assumed Franck-Condon energy (eV) of the neutral atoms formed 

by the dissociation of molecules in the first region in front of the wall. In GTNEUT, this 

energy is specified by the user. For our analysis, we used a twall value of 2 eV for both 

the ‘attached’ and ‘detached’ cases. The twall = 2.0 value in the figure below corresponds 

to the green line in figure 48. Increasing twall can drastically increase the neutral particle 

penetration.  
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Figure 51: Franck-Condon Energy Sensitivity Study (Attached Case) 

 

The figure above somewhat contradicts previous assumptions that the variance of 

“twall” did little to affect the outcome of results. However, the previous analysis used to 

test the importance of “twall” was primarily concerned with neutral particle densities 

outside of the separatrix [17, 87]. Here densities are very high. Small perturbations in the 

total number of neutral particles would be quite small. In the analysis we have done, we 

are concerned primarily with the neutral particles that have crossed the LCFS. In the table 

above, we see that this is typically less than 5 percent of the total number of neutral 

particles being tracked by GTNEUT. Since we are dealing with much smaller numbers, it 

is clear why the “twall” parameter can change the outcome of the problem.  
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In addition to the discrepancies that may have arisen from the lack of molecule 

transport, other possible causes of this discrepancy could arise from differences in atomic 

physics data used by the two codes (which we believe based on previous work to be 

small) and to the treatment of a plasma flow dependence of the direction of charge-

exchanged neutrals in DEGAS2 which is not available in GTNEUT. 
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7. Suggested Improvements to GTNEUT 

The TEP methodology results in a large matrix equation relating the two partial 

fluxes across each interface in the computational domain indicated in Fig. 31, which is 

solved using a standard sparse matrix routine. In previous applications to problems with 

many fewer interfaces the solution procedure went smoothly.  However, with this large 

number of interfaces we did encounter some difficulty (which we attributed to round-off 

error) in obtaining a solution in some cases.  For problems of this size and larger, it 

would be good to implement a better sparse matrix routine.  

The differences between the GTNEUT and DEGAS2 calculation near the inner 

divertor shown in Figs. 48 and 49 are conjectured to be due to the differences in the 

treatment of molecules. As discussed at the end of Chapter 6, DEGAS2 explicitly 

accounts for molecular transport, whereas in GTNEUT the molecules are assumed to be 

dissociated in the region immediately adjacent to the wall and into atoms.  Inclusion of 

molecular transport in GTNEUT would seem to be suggested.  

We also suggest an improvements previously mentioned by Dingkang Zhang 

[87].  The method of angular integration used to find the transmission coefficients should 

be modified. The current routines take up approximately 85 percent of the computational 

time for a GTNEUT calculation.  Additionally, there is reason to believe these routines 

could be responsible for round off errors in the calculations.  
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8. Summary & Conclusions 

We have investigated in detail the neutral particle recycling and pedestal fueling 

from wall reflection and volumetric recombination sources in a DIII-D H-mode 

discharge. The investigation confirms previous studies [13, 16] that the edge pedestal in 

DIII-D is primarily fueled by recycling and recombination neutrals from the divertor 

region.  

We find that the penetration of recycling neutrals into the pedestal region is 

highly non-uniform poloidally, both because the recycling and recombination sources are 

poloidally non-uniform and because neutral particles recycling from the upper baffle 

penetrate deeper into the pedestal (because the path length in mean free paths is shorter) 

than do neutrals recycling from the divertor region. Although the effects of poloidally 

asymmetric particle source and heat sinks will be ameliorated to some extent by rapid 

poloidal transport along the field lines, this result raises questions about the adequacy of 

one-dimensional plasma transport calculations that are sometime employed in the edge 

pedestal and suggests an area of further investigation.   

Finally, comparison of DEGAS2 and GTNEUT calculations of neutral ionization 

rates indicates relatively good agreement between the two codes except in the immediate 

vicinity of the inner divertor, where the differences in treatment of molecular transport is 

thought to be responsible for the significant discrepancy in predicted neutral influxes 

across the separatrix. 
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Appendix A. Procedure 

The following procedure is intended for those with previous knowledge of 

GTNEUT, EFIT, and some UEDGE experience. Access to the Linux Cluster at General 

Atomics is required to carry out this procedure. Before continuing, please study the 

GTNEUT and UEDGE manual founds in Refs. [17, 22]. 

The first step in creating the GTNEUT geometry section of the “toneut” file is 

obtaining the EFIT files required create a grid structure for GTNEUT. The steps are quite 

simple. At the UNIX command prompt: 

1st: Run IDL.  

2nd: From the IDL command prompt, generate the “a” and “g” EQDSK files by 

issuing the commands:  

writea,shotnumber,timeslice,runid 

writeg,shotnumber,timeslice,runid 

Next, export the EQDSK into a directory of your choosing. UEDGE templates to 

generate the GTNEUT mesh can be found in my GA home directory:  

/u4/friis/uedge/runs/UEDGE_DEMO 

Several templates have the extension, “.template”. Several of the files in this 

folder are needed in order to simply run UEDGE. As previously stated, all UEDGE runs 

need to be run with the divertor fitting option. It is up to the user to ensure the correct 
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divertor geometry files have been loaded. Remember new divertor shelves where 

installed on DIII-D, and different divertor geometries require different fitting files. The 

creators and custodians of UEDGE will have more information on this.  

There are many options to modify in the templates provided. These are in the 

UEDGE manual also. It may be discovered, there are options not utilized in the routines 

provided that may cause the scripts to breakdown. It does however work for the cases 

used in this dissertation and should provide a basis for expansion. After the template files 

are set up in conjunction with the proper EFIT files, UEDGE may be run.  

It should be noted that the versions of UEDGE and GTNEUT utilized for this 

analysis are all located on the linux cluster. For this analysis Zeus was primarily used; 

however, Zeus died several months into the analysis. To finish the analysis Delphi was 

used with success.  

The version of UEDGE used is located in: 

/d2/uedge/Ver_5.0b_linux/dev/lnx-2.3-i32/bin/xuedge 

The version of GTNEUT used is located in: 

/u4/friis/GTNEUT/ 

This is the most current and up to date version of GTNEUT in existence. ALL 

MODIFICATIONS TO THE GTNEUT CODE SHOULD BE BASED OFF THIS 

VERSION. The routine used to convert the UEDGE mesh into a GTNEUT mesh can be 

found in: 
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/u4/friis/uedge/runs/UEDGE_DEMO 

and it is called:  

make_toneut 

Before the script make_toneut can be run, the UEDGE mesh must be created. 

This can be accomplished by running UEDGE using the executable provided above and 

then typing: 

read “template file name” 

This sets up the UEDGE file. Next, the actual UEDGE grid must be created. 

Instead of actually running UEDGE though, this is accomplished by typing:  

call flxrun 

call grdrun 

This simply makes the UEDGE grid. One can view the mesh by typing  

win on 

followed by  

read plotmesh 

If mesh has been successfully created, make_toneut can be run by typing  

read make_toneut 
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By running this, we have extended the mesh to the wall and generated several 

outputs.  

To view the new GTNEUT mesh, type  

read plotgtneutmesh 

This routine is located in the post directory within the UEDGE directory. It will 

create a very color depiction of the new GTNEUT mesh.  

The output files created from make_toneut are primarily the geometry files.  

There are 5 output files. The table below breaks down the output files from 

make_toneut. The toneut-cells, toneut-cores, and toneut-walls contain all of the pertinent 

geometric data. toneut-flatflux create a uniform temperature and density distribution 

throughout the computational grid. This isn’t really useful, except for making sure the 

geometry is set up properly. Lastly, toneut-rwall_gex are the run options. 

Table 10: make_toneut output files 

toneut-cells contains all iType(0) cells and needed information. 

toneut-cores contains all iType(1) regions and tracks neighboring cells 

toneut-walls contains all iType(2) regions and tracks neighboring cells. 

toneut-flatflux 
gives all of iType(0) and iType(1) cells a uniform temperature 

and density. 

toneut-rwall_gex generates the end of the toneut file with specified options. 
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To test the geometry use the unix cat command to make the toneut file:  

cat toneut-cells toneut-cores toneut-walls toneut-flatflux toneut-rwall_gex > toneut 

GTNEUT can now be run using the executable provided previously. If there is a 

problem with the geometry, it will be instantly obvious. If GTNEUT starts running 

though, one can simply cancel the run using ctrl c. There is no point in running GTNEUT 

with the flatflux approximation. It may not converge to a solution.  

If  GTNEUT ran under the flatflux run, this means the geometry section should be 

correct. We know need the plasma background. The routine “gtneut_temp_dense_full” 

can extract ion and electron temperatures provided a UEDGE run has been made. The 

routine “gtneut_volume_source” can extract volumetric sources due to recombination 

provided a UEDGE run has been made. If one is using the recombination source from 

UEDGE, it is advised that ifrstcol = 0 in the GTNEUT runtime options. This treats all 

volumetric sources as first flight collisions. If ifrstcol=1, the volumetric neutrals have an 

initial energy of eneut_v. To create the actually GTNEUT input files use the linux “cat” 

command and merge the geometry, background plasma, source files, and run options files 

together and create the “toneut” file. 

After gtneut has been successfully ran, use the command “read loadnd” from the 

UEDGE prompt. This will load the output from GTNEUT into uedge. Now type “win 

on” so the routines in Table 11 may be run. These routines can be found in 

“u4/friis/uedge/post”. These routines were used to create the figures in Appendices B and 

C.  
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Table 11: Routines created to plot data. 

read plotpoly_ir Plots Ionization Rates 

read plotpoly_id Plots Ionization Densities 

read plotpoly_nd Plots Neutral Particle Densities 

read plotpoly_cx 
Plots Charge Exchange 

Fractions 

read 

plotgtneutmesh4 
Zooms in on Divertor Region 
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Appendix B. DETACHED CASE 

 

Figure 52: Charge Exchange Fraction per Cell (Detached Case) 
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Figure 53: Charge Exchange Fraction per Cell divertor view (Detached Case) 
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Figure 54: Charge Exchange Rates per Cell (Detached Case) 
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Figure 55: Charge Exchange Rates per Cell divertor view (Detached Case) 
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Figure 56: Ionization Density per Cell (Detached Case) 
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Figure 57: Ionization Density per Cell divertor view (Detached Case) 
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Figure 58: Ionization Rate per Cell (Detached Case) 
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Figure 59: Ionization Rate per Cell divertor view (Detached Case) 
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Figure 60: Mean Free Path per Cell (Detached Case) 
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Figure 61: Mean Free Path per Cell divertor view (Detached Case) 
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Figure 62: Neutral Density per Cell (Detached Case) 
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Figure 63: Neutral Density per Cell divertor view (Detached Case) 
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Figure 64: Electron Density per Cell (Detached Case) 
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Figure 65: Electron Density per Cell divertor view (Detached Case) 
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Figure 66: Ion Density per Cell (Detached Case) 
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Figure 67: Ion Density per Cell divertor view (Detached Case) 
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Figure 68: Electron Temperature per Cell (Detached Case) 
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Figure 69: Electron Temperature per Cell divertor view (Detached Case) 
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Figure 70: Ion Temperature per Cell (Detached Case) 
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Figure 71: Ion Temperature per Cell divertor view(Detached Case) 
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Appendix C. ATTACHED CASE 

  

Figure 72: Charge Exchange Fraction per Cell (Attached Case) 
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Figure 73: Charge Exchange Fraction per Cell divertor view (Attached Case) 
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Figure 74: Charge Exchange Rates per Cell (Attached Case) 
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Figure 75: Charge Exchange Rates per Cell divertor view (Attached Case) 
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Figure 76: Ionization Density per Cell (Attached Case) 
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Figure 77: Ionization Density per Cell divertor view (Attached Case) 
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Figure 78: Ionization Rate per Cell (Attached Case) 
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Figure 79: Ionization Rate per Cell divertor view (Attached Case) 
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Figure 80: Mean Free Path per Cell (Attached Case) 
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Figure 81: Mean Free Path per Cell divertor view (Attached Case) 
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Figure 82: Neutral Density per Cell (Attached Case) 
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Figure 83: Neutral Density per Cell divertor view (Attached Case) 
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Figure 84: Electron Density per Cell (Attached Case) 
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Figure 85: Electron Density per Cell divertor view (Attached Case) 
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Figure 86: Ion Density per Cell (Attached Case) 
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Figure 87: Ion Density per Cell divertor view (Attached Case) 
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Figure 88: Electron Temperature per Cell (Attached Case) 
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Figure 89: Electron Temperature per Cell divertor view (Attached Case) 
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Figure 90: Ion Temperature per Cell (Attached Case) 
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Figure 91: Ion Temperature per Cell divertor view(Attached Case) 
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Appendix D. “make_toneut” Code 
 

The following appendix contains the actual “make_toneut” code used to create the 

geometry section of the toneut file. It is listed here incase the version on the General 

Atomics servers should somehow be deleted.  

The code works by automatically extending the UEDGE mesh to the outer wall of 

the confinement vessel using simple geometry. The top of the GTNEUT mesh is 

determined by specific wall locations unlike the automated routines that define the base 

of the mesh. This was done because a GTNEUT mesh could not be automatically created 

to reproduce a mesh like that seen in the DEGAS2 code. The numbering schemes are 

incompatible. Modifications to specific wall locations like xlim(85) or ylim(85) can 

redefine the GTNEUT mesh.  

The code is written in the BASIS scripting language used by UEDGE. It has 

similarities with the python language.   
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# This file defines a function to plot the UEDGE mesh, and 
# then calls the function to plot the entire mesh. 
# To use this file in a simple way, give the following commands: 
#    read plotmesh 
#    nf 
# The function could then be used in a more sophisticated way 
# to plot portions of the mesh, possibly with customized plot limits 
# (by resetting any of r_min, r_max, z_min, and z_max): 
#    call plotmesh(ixmn,ixmx,iymn,iymx) 
#    nf 
# where ixmn, ixmx, iymn, and iymx are integer variables or 
# expressions.  Always give an "nf" command after reading the file 
# plotmesh or calling the function plotmesh. 
 
# DEFINE THE PLOT FUNCTION -- 
 
function createtoneut(ixmin,ixmax,iymin,iymax) 
# Plot the cell boundaries for cell indices (ix,iy), 
#               ixmin <= ix <= ixmax 
#               iymin <= iy <= iymax 
integer ix,iy,zachy,zachx,counter,indiv,outdiv,i,kk,hatleft,hatright 
real r0(5),z0(5),r1(22),z1(22),rtop(2),rbottom(2),ztop(2),zbottom(2),rl(2),zl(2),rr(2),zr(2) 
real wallr(ixmax,iymax,4),wallz(ixmax,iymax,4),rw(2),zw(2) 
real denom,a1,c1,b1,b2,d1,d2,x1,x1,x3,x4,y1,y2,y3,y4,temp 
real dcl,dct,dcr,dcb,acl,act,acr,acb,atot 
frame r_min, r_max, z_min, z_max 
integer nxmin,nxmax,nymin,nymax 
integer ounit=basopen("toneut-cells","w") 
integer walls=basopen("toneut-walls","w") 
integer cores=basopen("toneut-cores","w") 
integer rwall_gex=basopen("toneut-rwall_gex","w") 
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integer geometry=basopen("geometry.m","w") 
integer flatflux=basopen("toneut-flatflux","w") 
integer icn,icl,ict,icr,icb, plasmawall,cells,kk,plasmareg,wallreg,mm,pf1,pf2,pp,pfregionsides,ix1,iy1,qq,iter_pfr_in,iter_pfr_out,rwall 
real dcl,dct,dcr,dcb,acl,act,acr,acb,atot,rcl(2),rcr(2),rct(2),rcb(2),zcl(2),zcr(2),zct(2),zcb(2),dcb1,acb1 
real edense,idense,etemp,itemp,pfr_r,pfr_z,a,b,c,angc,divplt_d,divplt_t,divchan_d,divchan_t,sol_d,sol_t,deln,x_deln,nflux 
real a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,ang1,ang2,ang3,ang4 
# icn = cell number of present cell 
# icl = cell number of neighbor poloidally left (decreasing ix) 
# ict = cell number of neighbor radially above (increasing iy) 
# icr = cell number of neighbor poloidally right (increasing ix) 
# icb = cell number of neighbor radially below (decreasing iy) 
# dcl = length of line between icn and icl [meters} 
# dct = length of line between icn and ict 
# dcr = length of line between icn and icr 
# dcb = length of line between icn and icb 
 
# ll is for lower-left vertex 
# ul is for upper-left vertex 
# ur is for upper-right vertex 
# lr is for lower-right vertex 
 
attr labels=no     # don't label curves 
attr scale=equal   # use equal horiz. & vert. grid spacing 
counter = 1 
titlet=runid 
titleb="RADIAL POSITION (m)" 
titlel="VERTICAL POSITION (m)" 
indiv = (nxleg(1,1)+nxxpt) 
outdiv= (nxleg(1,2)+nxxpt) 
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# Redefine gap to wall 
#####################################################Inner Leg 
do iy=iymax,iymax 
do ix=ixmin,(nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)-1 
      x3=0 
      y3=zm(ix,iy,1) 
      x4=rm(ix,iy,1) 
      y4=zm(ix,iy,1) 
      if(zm(ix,iy,1)<ylim(85)) then 
 x2=xlim(84) 
 y2=ylim(84) 
 x1=xlim(85) 
   y1=ylim(85) 
       else 
 x2=xlim(85) 
 y2=ylim(85) 
 x1=xlim(10) 
   y1=ylim(10) 
       endif 
      denom=(x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)  
      a1 = x1*y2-y1*x2 
      c1 = x3*y4-y3*x4 
      b1= x1-x2 
      b2= y1-y2 
      d1= x3-x4 
      d2= y3-y4 
      rm(ix,iy,3)=(a1*d1-b1*c1)/denom 
      zm(ix,iy,3)=(a1*d2-b2*c1)/denom 
   enddo 
enddo 
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do iy=iymax,iymax 
do ix=ixmin,((nxleg(1,1)+nxxpt)+nxxpt)+(nxcore(1,1)+nxxpt)-2 
      x3=0 
      y3=zm(ix,iy,2) 
      x4=rm(ix,iy,2) 
      y4=zm(ix,iy,2) 
      if(zm(ix,iy,2)<ylim(85)) then 
 x2=xlim(84) 
 y2=ylim(84) 
 x1=xlim(85) 
   y1=ylim(85) 
       else 
 x2=xlim(85) 
 y2=ylim(85) 
 x1=xlim(10) 
   y1=ylim(10) 
       endif 
      denom=(x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)  
      a1 = x1*y2-y1*x2 
      c1 = x3*y4-y3*x4 
      b1= x1-x2 
      b2= y1-y2 
      d1= x3-x4 
      d2= y3-y4 
      rm(ix,iy,4)=(a1*d1-b1*c1)/denom 
      zm(ix,iy,4)=(a1*d2-b2*c1)/denom 
   enddo 
enddo 
 
#####################################################outer Leg 
do iy=iymax,iymax 
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do ix=(nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+1,ixmax 
      x3=3 
      y3=zm(ix,iy,1) 
      x4=rm(ix,iy,1) 
      y4=zm(ix,iy,1) 
 
      do kk = 50,80 
      if(zm(ix,iy,1)>ylim(kk+1) & zm(ix,iy,1)<ylim(kk)) then 
 x2=xlim(kk) 
 y2=ylim(kk) 
 x1=xlim(kk+1) 
   y1=ylim(kk+1) 
       kk = 80 
       else 
       endif 
      enddo 
 
      denom=(x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)  
      a1 = x1*y2-y1*x2 
      c1 = x3*y4-y3*x4 
      b1= x1-x2 
      b2= y1-y2 
      d1= x3-x4 
      d2= y3-y4 
      rm(ix,iy,3)=(a1*d1-b1*c1)/denom 
      zm(ix,iy,3)=(a1*d2-b2*c1)/denom 
   enddo 
enddo 
 
do iy=iymax,iymax 
do ix=(nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+1,ixmax 
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      x3=3 
      y3=zm(ix,iy,2) 
      x4=rm(ix,iy,2) 
      y4=zm(ix,iy,2) 
 
      do kk = 50,80 
      if(zm(ix,iy,2)>ylim(kk+1) & zm(ix,iy,2)<ylim(kk)) then 
 x2=xlim(kk) 
 y2=ylim(kk) 
 x1=xlim(kk+1) 
   y1=ylim(kk+1) 
       kk = 80 
       else 
       endif 
      enddo 
 
      denom=(x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)  
      a1 = x1*y2-y1*x2 
      c1 = x3*y4-y3*x4 
      b1= x1-x2 
      b2= y1-y2 
      d1= x3-x4 
      d2= y3-y4 
      rm(ix,iy,4)=(a1*d1-b1*c1)/denom 
      zm(ix,iy,4)=(a1*d2-b2*c1)/denom 
   enddo 
enddo 
 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)-1),iymax,3)=xlim(12) 
      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)-1),iymax,3)=ylim(12) 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)-2),iymax,4)=xlim(12) 
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      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)-2),iymax,4)=ylim(12) 
 
 
        x3=xlim(49) 
 y3=ylim(49) 
 x4=xlim(51) 
   y4=ylim(51) 
        x2=rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)),iymax,3) 
        y2=10 
        x1=rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)),iymax,3) 
        y1=zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)),iymax,3) 
 
      denom=(x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)  
      a1 = x1*y2-y1*x2 
      c1 = x3*y4-y3*x4 
      b1= x1-x2 
      b2= y1-y2 
      d1= x3-x4 
      d2= y3-y4 
#      rm(ix,iy,3)=(a1*d1-b1*c1)/denom 
#      zm(ix,iy,3)=(a1*d2-b2*c1)/denom 
 
 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)),iymax,3)=(a1*d1-b1*c1)/denom 
      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)),iymax,3)=(a1*d2-b2*c1)/denom 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)-1),iymax,4)=(a1*d1-b1*c1)/denom 
      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)-1),iymax,4)=(a1*d2-b2*c1)/denom 
 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+1),iymax,3)=xlim(53) 
      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+1),iymax,3)=ylim(53) 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)),iymax,4)=xlim(53) 
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      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)),iymax,4)=ylim(53) 
 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+2),iymax,3)=xlim(54) 
      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+2),iymax,3)=ylim(54) 
      rm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+1),iymax,4)=xlim(54) 
      zm(((nxleg(1,1)+nxxpt)+(nxcore(1,1)+nxxpt)+1),iymax,4)=ylim(54) 
 
      rm(ixmax,iymax,4)=rm(ixmax-1,iymax,4) 
      zm(ixmax,iymax,4)=zm(ixmax,iymax,2) 
      rm(ixmax,iymax,3)=rm(ixmax-1,iymax,4) 
      zm(ixmax,iymax,3)=zm(ixmax-1,iymax,4) 
 
 
 
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
############################################# 
#THIS SECTION CREATES THE ACTUAL GTNEUT GEOMETRY 
############################################# 
plasmawall = 0  
cells = ixmax * iymax +(nxxpt+nxleg(1,2))+(nxxpt+nxleg(1,1)) 
plasmareg = (nxxpt+nxcore(1,1))+(nxxpt+nxcore(1,2)) 
wallreg = ixmax+ 2 * iymax +1+1 
ounit << " $inp" 
ounit << " nCells = " << format((cells),6) << " nPlasmReg = " << format(plasmareg,6) <<  " nWallSegm = " << format(wallreg,6)    
kk = 1 
mm = (nxxpt+nxcore(1,1))+(nxxpt+nxcore(1,2))+cells 
iter_pfr_in = 1 
iter_pfr_out = (nxxpt+nxleg(1,1)) 
#nPlasmReg =  34  nWallSegm =  4 
       
do iy = ixmin, iymax 
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    do ix = ixmin, ixmax 
#   Compute cell number and surrounding neighbor numbers 
    icn = ix + ixmax*(iy-1) 
    icl = ixm1(ix,iy) + ixmax*(iy-1) 
    if (ix == ixmin) icl = 0 
    icr = ixp1(ix,iy) + ixmax*(iy-1) 
    if (ix == ixmax) icr = 0 
    icb = ix + ixmax*(iy-2) 
    if (iy == iymin) icb = 0 
    ict = ix + ixmax*iy 
    if (iy == iymax) ict = 0 
#PRIVATE FLUX REGION CELL NUMBER IS NY*NX+1 
    if (iy == iymin & ix <= (nxxpt+nxleg(1,1))) then 
    icb = iymax*ixmax + iter_pfr_in 
    iter_pfr_in = iter_pfr_in + 1 
    endif 
    if (iy == iymin & ix >= ixmax - (nxxpt+nxleg(1,2))) then 
    icb = iymax*ixmax + iter_pfr_out 
    iter_pfr_out = iter_pfr_out + 1 
    endif 
#END PRIVATE FLUX REGION 
    if (ix = ixmax) then 
    icr = (cells+plasmareg+wallreg-1)-(iy) 
    icl = icn - 1 
    walls << "iType(" << format(icr,6) << " ) = 2  nSides(" << format(icr,6) << ") = 1 " << "adjCell(1," << format(icr,6) << ") = " << 
format(icn,6) 
    endif 
    if (ix = ixmin) then 
    icl = cells+((nxxpt+nxcore(1,1))+(nxxpt+nxcore(1,2)))+iy 
    walls << "iType(" << format(icl,6) << " ) = 2  nSides(" << format(icl,6) << ") = 1 " << "adjCell(1," << format(icl,6) << ") = " << 
format(icn,6) 
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    endif 
    if (iy= iymax) then 
    ict = cells+((nxxpt+nxcore(1,1))+(nxxpt+nxcore(1,2)))+ix+iy 
    walls << "iType(" << format(ict,6) << " ) = 2  nSides(" << format(ict,6) << ") = 1 " << "adjCell(1," << format(ict,6) << ") = " << 
format(icn,6)  
    endif 
        
######### 
#CORE REGION 
    if (iy = iymin & ix > (nxxpt+nxleg(1,1)) & ix <= ixmax - (nxxpt+nxleg(1,2))) then 
    icb = iymax*ixmax + (nxxpt+nxleg(1,2))+(nxxpt+nxleg(1,1)) + kk 
    kk = kk + 1 
cores << "iType(" << format(icb,6) << " ) = 1  nSides(" << format(icb,6) << ") = 1 " << "adjCell(1," << format(icb,6) << ") = " << 
format(icn,6) 
    endif  
    
#   Compute length of sides 
    dcl = sqrt( (rm(ix,iy,3)-rm(ix,iy,1))**2 + (zm(ix,iy,3)-zm(ix,iy,1))**2 ) 
      b = dcl 
    dct = sqrt( (rm(ix,iy,4)-rm(ix,iy,3))**2 + (zm(ix,iy,4)-zm(ix,iy,3))**2 ) 
    dcr = sqrt( (rm(ix,iy,2)-rm(ix,iy,4))**2 + (zm(ix,iy,2)-zm(ix,iy,4))**2 ) 
    dcb = sqrt( (rm(ix,iy,1)-rm(ix,iy,2))**2 + (zm(ix,iy,1)-zm(ix,iy,2))**2 ) 
      a = dcb 
      c = sqrt( (rm(ix,iy,3)-rm(ix,iy,2))**2 + (zm(ix,iy,3)-zm(ix,iy,2))**2 ) 
      angc  =  acos((c**2 - (a**2+b**2))/(-1*2*a*b)) 
      angc = angc * (180/3.14159265358979) 
      rcr=[rm(ix,iy,2),rm(ix,iy,4)] 
      zcr=[zm(ix,iy,2),zm(ix,iy,4)] 
      rcl=[rm(ix,iy,3),rm(ix,iy,1)] 
      zcl=[zm(ix,iy,3),zm(ix,iy,1)] 
      rcb=[rm(ix,iy,1),rm(ix,iy,2)] 
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      zcb=[zm(ix,iy,1),zm(ix,iy,2)] 
      rct=[rm(ix,iy,4),rm(ix,iy,3)] 
      zct=[zm(ix,iy,4),zm(ix,iy,3)] 
    acl = acos(((rm(ix,iy,3)-rm(ix,iy,1))*(rm(ix,iy,2)-rm(ix,iy,1))+(zm(ix,iy,3)-zm(ix,iy,1))*(zm(ix,iy,2)-zm(ix,iy,1)))/(dcb*dcl)) 
    acl = acl * (180/3.14159265358979) 
    act = acos(((rm(ix,iy,4)-rm(ix,iy,3))*(rm(ix,iy,1)-rm(ix,iy,3))+(zm(ix,iy,4)-zm(ix,iy,3))*(zm(ix,iy,1)-zm(ix,iy,3)))/(dcl*dct)) 
    act = act * (180/3.14159265358979) 
    acr = acos(((rm(ix,iy,2)-rm(ix,iy,4))*(rm(ix,iy,3)-rm(ix,iy,4))+(zm(ix,iy,2)-zm(ix,iy,4))*(zm(ix,iy,3)-zm(ix,iy,4)))/(dct*dcr)) 
    acr = acr * (180/3.14159265358979) 
    acb = acos(((rm(ix,iy,1)-rm(ix,iy,2))*(rm(ix,iy,4)-rm(ix,iy,2))+(zm(ix,iy,1)-zm(ix,iy,2))*(zm(ix,iy,4)-zm(ix,iy,2)))/(dcb*dcr)) 
    acb = acb * (180/3.14159265358979) 
    atot = acb + acl + act + acr 
 
    a1 = ((zm(ix,iy,3)-zm(ix,iy,4))**2+(rm(ix,iy,3)-rm(ix,iy,4))**2)**.5 
    b1 = ((zm(ix,iy,4)-zm(ix,iy,2))**2+(rm(ix,iy,4)-rm(ix,iy,2))**2)**.5 
    c1 = ((zm(ix,iy,3)-zm(ix,iy,2))**2+(rm(ix,iy,3)-rm(ix,iy,2))**2)**.5 
    ang1 = acos((a1**2+b1**2-c1**2)/(2*a1*b1)) 
    ang1 = 
ang1*(180/3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
68) 
 
    a2 = ((zm(ix,iy,4)-zm(ix,iy,2))**2+(rm(ix,iy,4)-rm(ix,iy,2))**2)**.5 
    b2 = ((zm(ix,iy,1)-zm(ix,iy,2))**2+(rm(ix,iy,1)-rm(ix,iy,2))**2)**.5 
    c2 = ((zm(ix,iy,4)-zm(ix,iy,1))**2+(rm(ix,iy,4)-rm(ix,iy,1))**2)**.5 
    ang2 = acos((a2**2+b2**2-c2**2)/(2*a2*b2)) 
    ang2 = 
ang2*(180/3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
68) 
 
    a3 = ((zm(ix,iy,1)-zm(ix,iy,2))**2+(rm(ix,iy,1)-rm(ix,iy,2))**2)**.5 
    b3 = ((zm(ix,iy,1)-zm(ix,iy,3))**2+(rm(ix,iy,1)-rm(ix,iy,3))**2)**.5 
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    c3 = ((zm(ix,iy,3)-zm(ix,iy,2))**2+(rm(ix,iy,3)-rm(ix,iy,2))**2)**.5 
    ang3 = acos((a3**2+b3**2-c3**2)/(2*a3*b3)) 
    ang3 = 
ang3*(180/3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
68) 
 
    a4 = ((zm(ix,iy,1)-zm(ix,iy,3))**2+(rm(ix,iy,1)-rm(ix,iy,3))**2)**.5 
    b4 = ((zm(ix,iy,4)-zm(ix,iy,3))**2+(rm(ix,iy,4)-rm(ix,iy,3))**2)**.5 
    c4 = ((zm(ix,iy,4)-zm(ix,iy,1))**2+(rm(ix,iy,4)-rm(ix,iy,1))**2)**.5 
    ang4 = acos((a4**2+b4**2-c4**2)/(2*a4*b4)) 
    ang4 = 
ang4*(180/3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
68) 
 
#   Compute Angles 
     
#   Write arrays to output file 
ounit << "iType(" << format(icn,6) << " ) = 0  nSides(" << format(icn,6) << ") = 4" 
ounit << "adjCell(1," << format(icn,6) << ") = " << format(ict,6) << " lside(1," << format(icn,6) << ") = " << format(a1,15,6,0) << \ 
         "  angle(1," << format(icn,6) << ") = " << format(ang1,15,6,0)  
ounit << "adjCell(2," << format(icn,6) << ") = " << format(icr,6) << " lside(2," << format(icn,6) << ") = " << format(a2,15,6,0) << \ 
         "  angle(2," << format(icn,6) << ") = " << format(ang2,15,6,0)   
ounit << "adjCell(3," << format(icn,6) << ") = " << format(icb,6) << " lside(3," << format(icn,6) << ") = " << format(a3,15,6,0) << \ 
         "  angle(3," << format(icn,6) << ") = " << format(ang3,15,6,0)  
ounit << "adjCell(4," << format(icn,6) << ") = " << format(icl,6) << " lside(4," << format(icn,6) << ") = " << format(a4,15,6,0) << \ 
         "  angle(4," << format(icn,6) << ") = " << format(ang4,15,6,0) 
geometry << "Cell.r1(" <<format(icn,6)<< ") ="  << format(rm(ix,iy,1),15,6,0)  
geometry << "Cell.z1(" <<format(icn,6)<< ") ="  << format(zm(ix,iy,1),15,6,0)  
geometry << "Cell.r2(" <<format(icn,6)<< ") ="  << format(rm(ix,iy,2),15,6,0)  
geometry << "Cell.z2(" <<format(icn,6)<< ") ="  << format(zm(ix,iy,2),15,6,0)  
geometry << "Cell.r3(" <<format(icn,6)<< ") ="  << format(rm(ix,iy,3),15,6,0)  
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geometry << "Cell.z3(" <<format(icn,6)<< ") ="  << format(zm(ix,iy,3),15,6,0)  
geometry << "Cell.r4(" <<format(icn,6)<< ") ="  << format(rm(ix,iy,4),15,6,0)  
geometry << "Cell.z4(" <<format(icn,6)<< ") ="  << format(zm(ix,iy,4),15,6,0) 
 
  enddo 
enddo 
geometry << "NCELLS = "  << cells 
    walls << "iType(" << format((cells+plasmareg+wallreg-1),6) << " ) = 2  nSides(" << format((cells+plasmareg+wallreg-1),6) << ") 
= 1 " << "adjCell(1," << format((cells+plasmareg+wallreg-1),6) << ") = " << format((cells),6) 
    walls << "iType(" << format((cells+plasmareg+wallreg),6) << " ) = 2  nSides(" << format((cells+plasmareg+wallreg),6) << ") = 1 " 
<< "adjCell(1," << format((cells+plasmareg+wallreg),6) << ") = " << format((ixmax*iymax+1),6) 
############################################################# 
basclose(walls) 
basclose(cores) 
############################################################ 
#THE PRIVATE FLUX REGION!!! 
#!Assuming the Lower Null so...z is same 
      pfr_z = zm(1,1,1) 
      pfr_r = rm((nxxpt+nxleg(1,1)),1,2) 
 
pfregionsides = (nxxpt+nxleg(1,2))+(nxxpt+nxleg(1,1))+1 
qq = ixmax*iymax+1 
 
do iy=iymin,iymin 
      do ix=1,ixmax 
 if(ix==((nxxpt+nxleg(1,1))+1)) ix = ixmax - (nxxpt+nxleg(1,2)) + 1 
    icn = ix + ixmax*(iy-1) 
 
    dcl = sqrt( (rm(ix,iy,1)-rm(ix,iy,2))**2 + (zm(ix,iy,1)-zm(ix,iy,2))**2 ) 
    dct = sqrt( (pfr_r-rm(ix,iy,2))**2 + (pfr_z-zm(ix,iy,2))**2 ) 
    dcb = sqrt( (rm(ix,iy,1)-pfr_r)**2 + (zm(ix,iy,1)-pfr_z)**2 ) 
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    a = dct 
    b = dcl 
    c = dcb 
    acl = acos((-1)*(a**2-(b**2+c**2))/(2*b*c)) 
    acl = acl * (180/3.14159265358979) 
    act = acos((-1)*(b**2-(a**2+c**2))/(2*a*c)) 
    act = act * (180/3.14159265358979) 
    acb = acos((-1)*(c**2-(b**2+a**2))/(2*b*a)) 
    acb = acb * (180/3.14159265358979) 
    atot = acl + act + acb 
 
    a1 = ((zm(ix,iy,1)-zm(ix,iy,2))**2+(rm(ix,iy,1)-rm(ix,iy,2))**2)**.5 
    b1 = ((zm(ix,iy,2)-pfr_z)**2+(rm(ix,iy,2)-pfr_r)**2)**.5 
    c1 = ((zm(ix,iy,1)-pfr_z)**2+(rm(ix,iy,1)-pfr_r)**2)**.5 
    ang1 = acos((a1**2+b1**2-c1**2)/(2*a1*b1)) 
    ang1 = 
ang1*(180/3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
68) 
 
    a2 = ((zm(ix,iy,2)-pfr_z)**2+(rm(ix,iy,2)-pfr_r)**2)**.5 
    b2 = ((pfr_z-zm(ix,iy,1))**2+(pfr_r-rm(ix,iy,1))**2)**.5 
    c2 = ((zm(ix,iy,1)-zm(ix,iy,2))**2+(rm(ix,iy,1)-rm(ix,iy,2))**2)**.5 
    ang2 = acos((a2**2+b2**2-c2**2)/(2*a2*b2)) 
    ang2 = 
ang2*(180/3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
68) 
 
    a3 = ((pfr_z-zm(ix,iy,1))**2+(pfr_r-rm(ix,iy,1))**2)**.5 
    b3 = ((zm(ix,iy,1)-zm(ix,iy,2))**2+(rm(ix,iy,1)-rm(ix,iy,2))**2)**.5 
    c3 = ((zm(ix,iy,2)-pfr_z)**2+(rm(ix,iy,2)-pfr_r)**2)**.5 
    ang3 = acos((a3**2+b3**2-c3**2)/(2*a3*b3)) 
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    ang3 = 
ang3*(180/3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
68) 
 
 
 
    ict = qq +1 
    icb = qq -1 
    if(ix == ixmin) icb = cells + plasmareg + wallreg  
    if(ix == ixmax) ict = cells + plasmareg + wallreg - 1 
 
ounit << "iType(" << format(qq,6) << " ) = 0  nSides(" << format(qq,6) << ") = 3" 
 
ounit << "adjCell(1," << format(qq,6) << ") = " << format(icn,6) << " lside(1," << format(qq,6) << ") = " << format(a1,15,6,0) << \ 
         "  angle(1," << format(qq,6) << ") = " << format(ang1,15,6,0)  
ounit << "adjCell(2," << format(qq,6) << ") = " << format(ict,6) << " lside(2," << format(qq,6) << ") = " << format(a2,15,6,0) << \ 
         "  angle(2," << format(qq,6) << ") = " << format(ang2,15,6,0)   
ounit << "adjCell(3," << format(qq,6) << ") = " << format(icb,6) << " lside(3," << format(qq,6) << ") = " << format(a3,15,6,0) << \ 
         "  angle(3," << format(qq,6) << ") = " << format(ang3,15,6,0)   
geometry << "Cell.r1(" <<format(qq,6)<< ") ="  << format(rm(ix,iy,1),15,6,0)  
geometry << "Cell.z1(" <<format(qq,6)<< ") ="  << format(zm(ix,iy,1),15,6,0)  
geometry << "Cell.r2(" <<format(qq,6)<< ") ="  << format(rm(ix,iy,2),15,6,0) 
geometry << "Cell.z2(" <<format(qq,6)<< ") ="  << format(zm(ix,iy,2),15,6,0)  
geometry << "Cell.r3(" <<format(qq,6)<< ") ="  << format(pfr_r,15,6,0)  
geometry << "Cell.z3(" <<format(qq,6)<< ") ="  << format(pfr_z,15,6,0)  
geometry << "Cell.r4(" <<format(qq,6)<< ") ="  << format(pfr_r,15,6,0)  
geometry << "Cell.z4(" <<format(qq,6)<< ") ="  << format(pfr_z,15,6,0) 
 
qq = qq + 1 
   enddo 
enddo 
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################################### 
basclose(ounit) 
basclose(geometry) 
################################### 
 
 
 
 
################ 
rwall_gex << "zion =  1    aion =  2    aneut =  2    eneut = 0.002" 
rwall_gex << "eneut_v = 0.003" 
rwall_gex << "iquad=2" 
rwall_gex << "icosn=0" 
rwall_gex << "nph=21" 
rwall_gex << "idbug =   0" 
rwall_gex << "scalFact=1." 
rwall_gex << "prntOrdr =  -1" 
rwall_gex << "i_e0=3" 
rwall_gex << "iatdat=1" 
rwall_gex << "leh0=1" 
rwall_gex << "ifrstcol = 0" 
rwall_gex << "ifjsv=1" 
rwall_gex << "irefl=1" 
rwall_gex << "Rwall=" <<format((wallreg),3) <<"*0" 
rwall_gex << "awall=" <<format((wallreg),3) <<"*12.0" 
rwall_gex << "zwall=" <<format((wallreg),3) <<"*6.0" 
rwall_gex << "twall=" <<format((wallreg),3) <<"*2.0e-3" 
rwall_gex << "fwabsorb="<<format((wallreg),3) <<"*0" 
rwall_gex << "idp=1" 
rwall_gex << "isparsitr=10" 
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rwall_gex << "nd0=0" 
rwall_gex << "neitr = 3" 
rwall_gex << "nxleg1=" <<format((nxleg(1,1)),3) 
rwall_gex << "nxleg2=" <<format((nxleg(1,2)),3) 
rwall_gex << "nxcore1=" <<format((nxcore(1,1)),3) 
rwall_gex << "nxcore2=" <<format((nxcore(1,2)),3) 
rwall_gex << "nycore1=" <<format((nycore(1)),3) 
rwall_gex << "nysol1=" <<format((nysol(1)),3) 
rwall_gex << "nxxpt=" <<format((nxxpt),3) 
rwall_gex << "nxmod=" <<format((nxmod),3) 
rwall_gex << "$end" 
 
flatflux << "elecTemp(   1)= " <<format((cells+plasmareg ),6) <<"*0.01 " <<"elecDens(   1)=" <<format((cells+plasmareg ),6) 
<<"*2.0E+19"  
flatflux << "ionTemp(   1) = " <<format((cells+plasmareg ),6) <<"*0.01 " <<"ionDens(   1)=" <<format((cells+plasmareg ),6) 
<<"*2.0E+19"  
flatflux << " g_ex(   2) =  0.63500E+19" 
 
 
basclose(rwall_gex) 
basclose(flatflux) 
 
echo = oldecho 
endf 
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# MAKE THE PLOT -- 
 
ezcshow=false      # don't advance frame after each plot command 
ezclegfr=0.        # eliminate all space below plots for legends 
 
real x2=sup(rm(,ny,4)), x1=inf(rm(,ny,4)) 
real r_min=.9 
#0.9*x1 
real r_max=x2+0.1*x1+.2 
real ds=1.1*sup(zm) 
real z_min=0.0 
real z_max=z_min+ds+.2 
 
call createtoneut(1+nxomit,nx,1,ny+1) 
nf 
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