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SUMMARY

A recently developed neoclassical theory has been used to model the poloidal
rotation and density asymmetries in ASDEX, DIII, ISX-B, JET, and TFTR. Using
measured plasma parameters and a first-principles model, the poloidal rotation ve-
locity, the in-out density asymmetries, and the up-down density asyminetries were
predicted for the hydrogenic and dominant impurity species in these plasmas. Ade-
quate experinental data does not exist to allow a direct confirmation of the predic-
tions. Thus the validity of the theory was confirmed indirectly by using the predicted
asymmeiries to calculate theoretical momentum confinement times which were then
compared with the experimental momentum confinement times.

The experimental momentum confinement times ranged from 17 ms in ISX-B to
204 ms in JET H-mode plasmas. The theoretical momentum confinement times rea-
sonably predicted the experimental momentum confinement times for each machine.
Since the theoretical momentum confinement times depend directly on the poloidal
velocities and density asymmetries, it can be inferred that the theory predicts the
poloidal velocity and density asymmetries of the two ion species reasonably well.

Numerical analysis of the theory showed that the main ion and impurity ion
poloidal velocities 7y were in the direction opposite the poloidal magnetic field and
depended on the plasma viscosity and the inertial effects of the toroidal rotation.
For more collisional impurities, the poloidal velocity was also affected by friction.

The up-down density asymmetries for both ion species were affected mainly by a






CHAPTER 1

INTRODUCTION

Since the introduction of neutral beam injection (NBI) heating in tokamak
plasmas, new theories regarding particle, energy, and momentum transport have been
developed to explain the observed degradation of plasma confinement properties.
Early transport theories were applicable to chmically heated plasmas which exhibited
particle velocities much smaller than the ion thermal velocity, and therefore were not
capable of predicting confinement of NBI heated plasmas having vg ~ vy.

Poloidal rotation and density asymmetries have become a topic of increasing in-
terest since they appear to affect the confinement properties of tokamak plasmas. For
example, changes in poloidal rotation have been observed?? in the L to H transition,
and density asymmetries have been observed®® in many ELM-free discharges.

Recently, a neoclassical theory? was developed to predict poloidal rotation and
poloidal density asymietries. The theory, derived from the fluid particle and mo-
mentum balance equations, consists of three nonlinear equations per ion species for
a plasma which can be represented by one main ion species and one impurity ion
species. For any given tokamak, the equations consist of several known parameters
and six unknowns. The six unknowns are the poloidal velocities, the in-out den-
sity asymmetries, and the up-down density asymmetries for each ion species. The

equations can be solved using a nonlinear equation sotver.



The purposes of this thesis were to calculate the predicted density asymmetries
and poloidal velocities in the tokamak experiments ASDEX, DIII, ISX-B, JET, PLT,
and TFTR and to indirectly confirm these predictions by comparison with experi-
ment. This was accomplished by first calculating the theoretical poloidal velocity and
density asyminetries from the set of six nonlinear equations. Next a poloidal asym-
metry factor which depends on the asymmetries was calculated. Then the theoretical
momentum confinement times, which depend on the poloidal asymmetry factors and
thus on the density asymmetries, were calculated. Finally the theoretical momen-
tum confinement times were compared with experimental momentum confinement
times. Since the density asymmetries and poloidal rotation velocities have not been
measured in the core of any of these plasmas, this indirect comparison was the only
method of determining the validity of the predicted asymmetries.

The organization of this thesis is as follows: in Chapter I1, the poloidal rotation
and density asyminetry theory and the computational model are presented. A dis-
cussion of the experimental plasma parameters, theoretical momentum confinement
results, and asymmetry results follows in Chapter [II. The theoretical results are then
compared with the predictions of earlier theories in Chapter [V. Finally, the closing

chapter includes conclusions and recommendations for future work.



CHAPTER 1I

THEORY OF POLOIDAL ROTATION AND

DENSITY ASYMMETRIES

2.1 Theory

A neoclassical theory was derived® to predict poloidal rotation velocities and
poloidal density asymmetries in tokamak plasmas. ‘The theory models NBI heated
plasmas for which v, ~ vy, and E/By ~O(1). Kinetic theory effects were accounted
for by including viscosity and friction terms®® in the derivation of the theory.

In deriving the new theory, the fluid particle equation
Vo (nv) =0 (2.1)
and the momentum balance equation
nym(vy - 7V + T + V- ?j + e,n; 7P —n,e;v; x B =R, + M, (2.2)

were solved self-consistently in the large-aspect-ratio approximation to determine the
poloidal velocity s and density asymmetries »n° and #* in tokamak plasmas.

The solution for the (normalized) poloidal velocity ¢, with jrepresenting either
the main ion species or the impurity ion species, may be expressed in the form

. driving driving (2.3)
7 damping  viscosity + friction — inertia
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In the above equation, driving (the driving force) is given by

) _— o [P [P @f i
M, + e + 7 /T—nkag_q?q;jé;?{——{- J {__f+—(5+—"')}} (2.4)
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and the three damping terms are given by
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friction = zﬁ;k (2.6)
A
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A q ”ﬁ(g 6) ( )

By taking the sinf and cosf projections of the parallel component of Eq. (2.2}, two

equations (for each ion species) coupling 7] and 7] were obtained:

2 R E RIS P ‘
((gfj *ﬁz’/jk) U.w) Lot (o) S &= = B (2.8)

2% | 4 my . 22w o T 24
+ /3 ‘U,yk Ve — ;7}_’1&-;9 — Ujkvjﬂ? — ﬁ] Ui (29)
k

Equations (2.3-2.9), with j representing the impurity ton and k representing the main
ion, constitute six equations with six unknowns: the poloidal velocities (9,4, Ui14), the
up-down density asymmetries (7§, 7;), and the in-out density asymmetries (77, 7ig).

The six unknowns have been expanded in the form
z(r,8) = Z(r)[l + £°sin 6 + Z°cos b]. (2.10)

Some important dimensionless quantities which enter the equations are defined

as follows:

H

=i

.



$
=1 -5 (2.11)
31 Vi,

where v;; is the thermal speed, Uy, 073, and ;. are the poloidal, experimental
toroidal, and radial velocities of ion species j, respectively, Mjg i8 the poloidal mo-
mentum input, and fﬁj is the electrostatic potential.

The poloidal velocity and density asymmetries, which are the main focus of this
thesis, were used to determine theoretical momentum confinement times based on the

neoclassical (gyroviscous) momentum transport theory and defined as'!

2R%B  hur. m

rih = , 2.12
¢ (@G/Z)Fff hn.‘v mp ( )
In Eq. (2.12),
PR /UL LI IR A S AL P
6=+ T’)["vje(?)jcp) (-E— + —6"’-) + ?} -+ _E_J[Uj9(vj¢) H2 -t f) - ?} (2.13)
¢ 2
o = 2r/a)(en + a + o) (2.14)

L= (r/a)

where density, temperature, and velocity profiles are represented as parabolic to some
power, [1 —{r/a)?]*=. The experimental momentum confinement time is defined!! as

o 2TR T (Ramug)rdr  2m%0” RPnoymprgoh,y 21 @ Rn.omQg
T = = —
’ F¢' F‘P nghn'u

(2.15)
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where A, ) = 1+ a, + a,, ', is the torque input from NBI, R, is the tangency

n

Ty = (2.16)

radius, £, is the neutral beam energy, n.q is the central electron density, Q57 is the
central angular frequency, and 7 is an effective mass'' which reduces to mp for
deuterium plasmas. The theoretical and experimental confinement times determined
from Eqgs. (2.12) and (2.15} can be compared in order to determine the validity of the

asymmetry predictions.

2.2 Computational Model

As mentioned earlier, the set of six nonlinear equations was solved using a non-
linear equation solver. In this analysis, the equations were solved using HYBRID.?
HYBRID is a general nonlinear equation solver which finds the zeros of a system of n
nonlinear equations in » unknowns. The system of equations is provided by the user
in the form of a subroutine to HYBRID. Solution of the equations is calculated by
the forward-difference approximation. This section first describes the calculation of
the input data, then the numerical computation of the asyminetries and confinement

time.

2.2.1 Input Parameters

Prior to solving the system of equations, a few plasma parameters were calcu-
lated. First, for those cases tn which the central electron density was not known,
it was calculated from the line-average density 7, and the density profile factor «,,
using nunierical integration. Density, temperature, and velocity were then calculated

at r/a = 0.5, where a is the minor radius. Radial profiles were assumed to be of the



form
x = z(1— (7"/@)2)“r (2.17)

where x=n, T, or v. However, in the case of DIII, the density' profile was given by
(2.18)

S (o)

Tl = Nep(1 —

Next, the ratios of ion density {j=main ion, k=impurity ion) to electron density

were calculated from the effective charge®

D 210
e 20
so that
_ (m/ne)2% (2.21)
(mj/ne)

'The dimensionless impurity ion species self-collision frequency® 7}, was

Vi = Ve qR /v i (2.22)

where the self-collision frequency'® is defined as
1.36 x 107 "n;aZ%A
(2.23)

Vi =
/ kaA}b

272\ /Zan;
Coulomb logarithm = A = 23 - log {—#} (2.24)
k

and the impurity ion species thermal velocity!® is

T
Vene = 1.38 x 10%, /=% (2.25)
my;

Dimensionless toroidal velocities were calculated for each ion species®
,l’}(il' @E’-l?
By = —— and Dy = —2—. (2.26)
Utk Uih:



using the ion thermal velocities of Eq. (2.25).
Finally, the above calculations were used to compuie the dimensionless main

ion self-collision frequency and the dimensionless interspecies collision frequencies®

— % Dltk ¢
Yii = 720 (2'27)

. 17;:,", my + myg
ij -= ﬁ W (228)

. P jmytmy
= 2.2
ij a Qmj ( )

2.2.2 Asymmetries and Theoretical Confinement Time

Appendix A includes a copy of the user subroutine, SUBROUTINE FCN, con-
taining the system of six equations. The main computations were of the poloidal
velocity and density asymmetries. Each of the six equations obtained from Egs. (2.3-
2.9) were rewritten with all terms on the left-hand-side of the equation such that the
value of the right-hand-side was zero. The first execution of the subroutine resulted
in an estimate of the roots of the system of nonlinear equations (using an initial guess
of zero for each root). Subsequent calls to the subroutine yielded estimates of the
roots until successive estimates varied by 107> or less for each root.

After solving the equations, SUBROUTINE FCN was called one final time. At
this time, the predicted asymmetries were used to calculate the normalized poloidal
and radial profile factors. Using these normalized profile factors, the theoretical

momentum confinement time was calculated according to Eq. (2.12).



CHAPTER 1III

ANALYSIS OF EXPERIMENT

3.1 Experimental Parameters

‘I'he rotation velocities and density asymmetries of each tokamak were calculated
by providing the nomnlinear equation solver with values of the plasma parameters at
r/a=0.5. Since the density, temperature, and velocity were calculated at a point
halfway across the plasma minor radius, they were considered average values of the
plasma characteristics, as were the other quantities determined from these parameters.

Most of the data available for each tokamak covered a range of values and a
range of discharge types. The discharges selected for analysis had known experimental
momentum confinement times and sufficient experimental data for the evaluation of
the input parameters. However, information concerning some input parameters was

unavailable and a few basic assumptions were made and applied to all tokamaks:

Safety factor ¢{r/a=0.5)=2 since ¢(0)~ 1 and g(a)~ 3
5 - Bg/Bd, =0.1
e@/Ti:1

Radial velocities 7, and 7, were zero



¢ Beam momentum inputs My, and My were zero

e Radial profile has the form z(r) = zy{1 — (r/a)?)*=

The value of e®/T; = 1 was obtained for ISX-B'® at a potential of 0.5 V and an
average ion temperature of 500 eV. Since measurements of electrostatic potential
were not available for the other machines, the value of e®/T; obtained for ISX-B was
assumed to be a reasonable estimate for all machines.

Several other parameters which were different for each machine were necessary
in solving for the density asymmetries and poloidal velocities. Some of the parame-
ters were known, and others were calculated from the known quantities as discussed
in Chapter Il. Parameters such as plasma current and neutral beam power were
not essential to the analysis of the data, but are included to illustrate the operat-
ing regime of each tokamak. The known parameters were central toroidal velocity,
effective charge z.¢s, ion-to-electron temperature ratio, profile factors a,, major and
minor radii, magnetic field, central ion temperature, and hine-average density. In some
cases the central electron density was known. The calculated parameters included ion
and impurity densities, collision frequencies, thermal velocities, and in some cases,
central electron density. Methods of determining these machine-dependent parame-
ters are presented in the following subsections. The parameters that characterize the
discharges analyzed in this thesis are given in Table 1. For perspective, the range of

relevant experimental parameters achieved in these machines is given in 'l'able 2.

3.1.1 Axially Symmetric Divertor Experiment

Two complete sets of data'™!'® were available for the analysis of deuterium
discharges with a dominant carbon impurity in ASDEX. One set with 2=9.1 x10*
rad/s was suitable for analysis. The other with ©=2.3 x10% rad/s did not satisfy the

requirement that v3"~ vy, and was not analyzed. Both data sets were part of a larger
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set of data that covered a range of parametric values. In Table 2, z.55, vy, T5o, and £
describe the two subsets of data; the remaining ranges of input parameters pertain
to the larger data set.

By using the peaking factors @, defined as the ratio of the central parameter z;
to the volume-averaged parameter < z >, the profile factors o, were easily obtained.

The peaking factors for density, angular velocity, and electron temperature were given

byl?'
Qn = 1.6 x (1,/0.38)™"% x (B, /2.2)" (3.1)
Qo = 2.3 x (1,/0.38) "% x (B,/2.2)"% (3.2)
Qr, = 2.3 x (1,/0.38)"7 x (B,/2.2)"7 (3.3)

where current has units of MA and magnetic field has units of T. Introducing a spatial
integrall* of the form
(h,)™' = 3[&[1 —(r/a)?*]® rdr = 3fa he(r)rdr = (1 + a,)™! (3.4)
' a?.Jo a?Jo ‘

such that z(r) = xoh,(r), and defining an average quantity < z >

(L d
<z >:T% = 2o(1 4 ) (3.5)
it is easily seen that the peaking factor @, is
I
QxE<I>:1+Ot$. (36)

Due to the relatively high deusity in the case chosen for analysis, T, and T, were
roughly equal.!® Thus the ion temperature profile factor ar was assumed to be ap-

proximated by the electron temperature profile factor calculated from Qr. .

3.1.2 Doublet III1

The data for DILI were obtained for deuterium plasmas with a dominant oxygen

impurity. Data covering a wide range of parameters were available; however, central
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toroidal velocities were available only for specific sets of data.'® Furthermore, plots
of experimental momentum confinement times were only available for plasmas with
characteristics different from the tabulated data.'® Thus all of the tabulated data
describing two different types of discharges was averaged and scaled, as described
below, to obtain two cases for analysis.

3 was an average of the data from two similar shots at a current

The first casel
of about 0.7 MA and 3.9 MW NBI. The other case!® was an average of the data from
two similar shots at 0.71 MA and 6.1 MW NBIL Average parameters for both cases
were calculated by averaging all of the data (including profile factors) for both pairs

of shots. The ion temperatures were scaled using the relation

P5T¢n61

T=T (3.7)

Pthd>1ne

where the subscript 1 indicates values at #,= 8x10¥ cm™

. The scaling was nec-
essary since the plots of experimental confinement times!® were available only for
n.= 8x10" cm~3 whereas 7, for the tabulated data was lower. Straight-line fits to
the plots of experimental confinement time versus beam power were not justifiable;
74" varied slightly and inconsistently with P,. Since 75 varied little for small changes
in P, the ratio of Pyry 10 P74 was set to unity in Eq. (3.7).

As mentioned earlier, the central velocities!¥ were available for only specific
sets of data, namely P,=3.7, 5.0, and 5.9 MW all at major radii of R=1.52, 1.67,
and 1.74 m. The velocities at F,=3.7 and 5.9 MW and a major radius of 1.52 m were
chosen to describe the two cases at 3.9 and 6.1 MW (R~1.43 m).

Finally, profile factors «, of the density, temperature, and velocity were deter-

mined from the central zy and midway x,/,—05 values using the relation

o [(If/a:o.a)/(l‘n)}

“ T [l—(r/a=05)

(3.8)

The temperature and velocity profiles were assumed to be parabolic to some power,
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but the electron density was given by Eq. {2.18).

3.1.3 Impurity Studies Experiment-B

Analysis of ISX-B!® began with determining the experimental toroidal velocity

as a function of the neutral beam power. A straight-line fit to the data'® yielded
vy = (8.4995 4 2.365 P, }(10°) (3.9)

with P, in MW and v, in cm/s.

In [SX-B, the study focused on hydrogen neutral beam co-injection in deuterium
plasmas with a dominant carbon impurity. The central ion temperature for such a
plasma is given by1®

T(0) = Tog(0) + C 10 (3.10)

€

where C=2.2x1071 keV - MWL m™? for H° — D* NBI and Tpg(0)=0.3 keV,
The experimental momentum confinement time was 17 ms at £,=0.85 MW
and f,=4.5x10"* cm™3.1% Using these parameters in Egs. (3.9) and (3.10) vields

25" =1.1x10" cm/s and Ty=716 eV,

3.1.4 Joint European Torus

Data for JET*# covered both H-mode and L-mode deuterium plasmas with
a dominant carbon impurity. For most H-mode discharges 7;* =200-500 ms, and for
most L-mode discharges 75°=100-200 ms.! However, ranges of experimental confine-
ment times do not sufficiently indicate the accuracy of the theoretical model. For this
reason, an experimental confinement time was constructed for one H-mode and one
L-mode shot using the available data® and Eqgs. (2.15) and (2.16). Using an average

Rian=1.515 m (eight ion sources with R,,,=1.85 m and eight with Re.,=1.18 m),*?
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the experimental momentum confinement time was 204 ms for the H-mode shot and
70 ms for the L-mode shot.

Temperature profiles in L-mode discharges varied up to slightly more peaked
than parabolic to the fourth power.!! For this reason two values of ap (3.5 and 4.0)

were chosen to illustrate a range of predicted confinement times.

3.1.5 Princeton Large Torus

In PLT,'® deuterium neutral beams were injected in a hydrogen plasma with

a dominant carbon impurity. The analysis of PLT began similarly to that of ISX-B.

The experimental toroidal velocity was plotted as a function of the neutral beam

power over the square root of the beam energy. Since all of the PLT cases were for a

beam energy of 40 keV, a curve was fit to vy versus V40P, with Vs in cm/s and F; in
MW, '® vielding

vy = —2.143 x 10° + 7.8683 x 10°P;. (3.11)

The beam power!® ranged up to 1.2 MW, thus the largest toroidal velocity in PLT
did not satisty v§*~ v and no further analysis was performed. It should be noted,
however, that the theory may be generalized to model cases in which v3* does not

approach vy,

3.1.6 Tokamak Fusion Test Reactor

Although several sets of TFTR data?* were available for deuterium plasmas
with a carbon impurity, only one included temperature, velocity, and density profiles.
This case, a hot ion-mode discharge, was chosen for the analysis,

Determination of experimental momentum confinement time proceeded as for
JET with U';=18.25 N-m in Eq. (2.16), yielding an experimental momentum confine-

ment time of 44 ms. Profile factors were determined using the same method as for
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DIII (Eq. (3.8)).

3.2 Momentum Confinement Results

Recent research has shown that the neoclassical (gvroviscous) theory ™ predicts
momentum confinement times reasonably well. Until now, however, the application
of this theory has involved the theoretical determination of the poloidal rotation and

1121 about the normalized poloidal,

density asymmetries based on certain assumptions
©, and radial, G, profile factors. Such assumptions were that the product ©G=1, or as

in a recent study of TETR, ©=1.5. In the present analysis, these profile factors were

calculated from first principles using the predictions of the poloidal rotation velocity
and density asymmetries of Eqs. (2.3-2.9) to evaluate Eqgs. (2.13) and (2.14). As
shown in Table 3 and Figure 1, the theoretical momentum confinement times closely
predicted the experimental momentum confinement times. ‘The term {@G/z).s in
Eq. (2.12) ranged from 0.18 to 0.29 for Group 1 tokamaks and from 0.048 to 0.12
for Group 2 tokamaks. Thus (©G/z).ss ~ O(0.1), with the main ions contributing
slightly more than the impurity ion species to this parameter.

The division of the tokamaks into two distinct groups is illustrated in Figure 2
which shows the variation of the viscosity with the self-collision frequency v*. T'wo
entries are shown for each experiment in Figure 2: the leftmost one for the plasma ions
and the rightmost one for the impurity ions. The value of the impurity ion self-collision
frequency (#7},) is greater than the value of the main ion self-collision frequency (7;;)
for both groups, thus the main ions are less collisional than the impurity ions and
fiGroup2 <Ggroupt <Tkcroupr < fugroupr. We also note that since the predictions of 74
are based entirely on neoclassical theory, the results shown in Table 3 and Figure 1
demonstrate agreement between a first-principles calculation of 75 and experiment.

The close agreement of the confinement times provides some measure of con-
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Table 1: Summary of Machine Parameters and Plasma Characteristics.

Parameters
Machine Ref. R a I Py B, | v (0) 1 7.(0) ;—( Te Zeff | om 1o o
(m) | (m) | (MA) | (MW) | (T) | (1072) | (keV) oy
ASDEX | [17,18][1.65] 040 | 042 | 1.8 217 15 | 1.23 [ 1.0 | 46 | 3.2 054] 1.2 [ 11
| D111 [13,19] | 1.43 | 0.385 | 0.7 3.85 | 2.53 1.2 1.86 | 1.0 8.0 | 1.85 0971099 2.0
[13,19] | 1.44 | 0.38 | 0.71 6.1 2.53 1.6 2.23 1097 | 8.0 20 1086 1.1 1.9
ISX-B {16 | 0.93 | 0.25 | 0.155 0.85 1.4 1.1 7.16 1.0 4.5 25 | 1.0 | 1.0 1.0
JET (H) ( [11,20] | 3.00 | 1.10 3.1 7.7 2.2 2.0 55 | 1.25 ] 3.0 23 [ 0.0 | 1.5 1.5
JET (L) [ [11,20] | 3.00 | 1.10 | 3.22 14.25 | 3.47 3.5 155 | 1.5 | 1.33 | 3.5 | 2.0 | 3.0 | 3.54.0
TFTR [21] 245 0.79 1.1 11.6 | 4.75 6.2 26.0 | 2.2 20 | 3.1 | 1.0 39 4.3
Table 2: Ranges of Experimental Parameters.
I Parameters
Machine | Ref. I, Py B, v (0) T:{0) e Zeff
(MA) (MW) {T) (107cm/s) | {keV) | (10%cm=3) |
L ASDEX | [17,18] | 0.25-0.45 | 0.3-1.8 | 1.87-2.8 2.3—9.1‘i 1.05-1.23 1.6-7.6 2.6-3.2
DITIT [13,19] | 0.35-0.89 | 3.7-6.1 2.53 1.2-1.6 1.72-3.79 3.3-8.0 1.8-3.2

I[SX-B [16 ] 0.155 0.2-2.0 1.4 0.9-1.3 0.4-1.3 4.5 2.5

JET | [11,20] >3 4-15 | 2.2-35 2-13% 35-17.5 | 2.5-82f | 2-4

TFTR [ 21] 1.1-1.8 | 4.4-13.6 4.75 2.4-5.5 9.6-21.7 1.4-2.8 3-4

T Q(x10%ad/s) 1 7.




Table 3: Comparison of Momentum Confinement Times.

Machine I, B in) ug (0) | T:(0) 1, 75" Téf
(MA) | (MW) | (T) | (1072) | (keV) | ({22)  ms | ms
ASDEX 0.42 1.8 2.17 1.5 1.23 4.6 \ 42 59
DI 0.7 | 385 |253| 1.2 | 189 | 80 | 59 | 53
DIIT 071 | 61 [253] 1.6 223 | 8.0 | 42 28
ISX-E 0.155 | 0.85 1.4 1.1 7.16 4.5 17 16
JET (H-mode) 3.1 7.7 2.2 2.0 5.5 3.0 | 204 240
JET (L-mode) | 3227 | 14.25 | 347 35 155 [ 1.33 [ 70 [ 58-89
U TFTR 1.1 11.6 | 4.75 0.2 26.0 2.0 44 50
JET (H) )
e
Zﬂ 4
£
EE

ATME X, e JET (L)
TFTRs"* DIl (1)

L e DIN(2)
e 5K -B
o 1 1 ]
il 100 TEG 200G 250
TR

Figure 1: Comparison of Theoretical and Experimental Momentum Confinement
Times.
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Figure 2: Viscosily as a Function of Self-collision Frequency.

fidence that the predicted asymmetries reasonably approximate the actual plasma
asymmetries. The results of the poloidal rotation and density asymmetry analysis

are therefore presented in the following sections.

3.3 Poloidal Rotation and Density Asymmetry Results

Before proceeding with the analysis of the asymmetries, it is interesting to note
that 759, vg0, P, and I, were higher for discharges in the large machines (TFTR and
JET), while n., was higher in the smaller machines (ASDEX, DIII, and ISX-B}. This
grouping of machines—ASDEX/DIII/ISX-B (Group 1) and TFTR/JET (Group 2)—
occurs frequently throughout the tables and figures. The values of the asymmetries

are shown in Table 4 and their dominant driving forces are summarized in Table 5.
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Table 4: Poloidal Rotation and Density Asymmetries.

Machine | 94 e | Mi/e | Rjfe| nife | ng/e
ASDEX | -0.15 | -0.35 | 0.064 | 0.38 | 0.0087 | 0.061
DIIT (1) | -0.063 | -0.17 | 0.057 | 0.45 | 0.011 | 0.040
DIII (2) | -0.11 | -0.27 | 0.073 | 0.57 | 0.0073 | 0.12
ISX-B -0.13 | -0.32 | 0.075 | 0.46 | 0.030 | .037
JET (H} | -0.047 | -0.073 | 0.035 | 0.21 | -0.0049 | 0.045
JET (L) | -0.11 |-0.075 | 0.028 | 0.17 | -0.0056 | 0.024
TFTR -0.12 | -0.079 | 0.047 | 0.28 | -0.0031 | 0.023
Table 5: Summary of Asymmetries and Driving Forces.
Asymmetry | Group 1 | Group 2
e 7| P
Uks Ij):ka p}tj: U}iz ﬂ;k
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3.3.1 In-out and Up-down Density Asymmetries

The density asymmetries, defined?® as

a{r) = [n{r,0) — alr)l/[(r)], (3.12)
are less than the inverse aspect ratio ¢ in all cases. While 2§ ranges from 0.17¢ to 0.57¢,
fi; and 7y are much smaller and range from 0.023¢ to 0.12¢. The smallest density
asymmetry relative to ¢ is 7§, the magnitude of which is in the range 0.0031¢-0.03¢.

The analysis begins with the effect of the plasmas’s inertia due to the toroidal
velocity, or the centrifugal force. As the main ion and impurity ion species rotate
in the toroidal direction (i.e., along the minor axis), inertial effects are expected to
increase the density of the ions on the outboard side of the tokamak. This outward
shift corresponds to 7¢ > 0. Evaluation of each term coupling the density asymmetries
showed that the largest term contributing to both 77 and 7} was indeed the inertia
vis, with j representing either the main ion or impurity ion. Furthermore, the in-out
density asymmetries are positive and increase with increasing values of the toroidal
velocity, as would be expected. The inertial term also contributed to the up-down
impurity density asymmetry for Group 1, again with 7] increasing with increasing
Vg

The viscosity (f;, fx), which is a function of the self-collision frequency (77;, 7).
contributed to the impurity ion #* for both Groups. Although 7] remained constant
for creaging f, 7] increased for Group 1. The largest contributor to Group 2 7} was
the potential asymmetry $*.

An increase in the ion density near the top of a tokamak corresponds to 72° > 0.
Thus the up-down demsity asymmetries for the Group 1 main ion species and all
of the impurity ion species show an upward shift. However, the up-down density

asymmetries for the main ion species are negative for Group 2 tokamaks, indicating

a downward shift of ions.
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CHAPTER 1V

DISCUSSION OF RELATED THEORIES

In the case of a non-rotating plasma with the main ion and the high z impurity
ion in the collisional regime, Chang and Hazeltine® used the momentum balance
equation (neglecting inertia, source, and viscous terms) to show that the density and
potential asymmetries were related to the friction term #7,. However, the numerical
analysis in Chapter ITI showed that the density asymmetries depended mainly on the
ion self-collision frequencies.

Neglecting the viscous and source term in the momentum balance equation,
Burrell et al.?® derived expressions for the density asymmetries with the following

assumptions:

e large aspect ratio
. mk/m_.,- < 1 (e ~ Uy < U”’-j)

o np2i/n; <1

With the above assumptions,

2
mk%

., M@PRZU qRu;2* .
g~ =€ bg; and ny ~ €

4.1
eByL, Vihj Ty (4.1)
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Based on the agreement between predicted and experimental momentum con-
finement times, the theory appears 1o adequately describe the poloidal rotation and
density asymmetries of the main ion and impurity ion species present in tokamak
plasmas. Thus the physical mechanisms identified as the dominant driving forces of
plasma asymmetries must also be reasonably correct.

The dominant mechanism contributing to the in-out density asymmetries was
the inertia, while the viscosity was the main driving force in the up-down asymmetries,
with additional contributions arising from potential asymmetries. Viscosity, inertia,
and friction all contributed in varying degrees to the poloidal rotation velocities.
In general, the dependence of the asymmetries on individual forces was not readily
identifiable, except for the in-out density asymmetries which increased with increasing
toroidal velocity.

The poloidal velocities were O{1071), except for the Group 2 impurity ion
species velocities which were O(1072). The in-out density asymmetries for the main
ion species and the up-down density asymmetries for the impurity ion species were
also O(107%). The impurity ion in-out density asymmetries were larger than those
for the main ion species and were about O(1071). The up-down density asymmetries

of the main ion species were about O(1073).
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APPENDIX A

SUBROUTINE FCN

subroutine fen (n,x,fvec,iflag,istar,vthetaj,vthetak)
integer n,iflag,istar,style

double precision x(n),fvec(n}),q,beta,rnukj,alpha,zj,rmk,
rmj,rmjtheta,rmktheta,vjrad,vkrad,vphiex0,q2,vphiexk2,
beta2,vphiexj2,ep,fj,fk,rnujk,phij,phik,cl,c2,c3,c4,c5,
c6,phic,phis,thetaz,thetai,alphan,alphav,zk,
vthetaj,vthetak,rnujj,rnukk,alphat,zeff,G,thetagz,rne0,
ephiti,rmajor,rminor,temp0,bphi,hntv,hnv,rmd, rmdbar,rne,
tauphi,rovera2,vphiexj,vphiexk,titote,rnebar,densrat,
rnztone,rnitone

* O X X X ¥ ¥

character tok*4(0, inform*60

¢ read in data on initial run
if(istar.eq.1)then

open(unit=1,file="xsecin’)
1star=2
read(1,’'(a40)’)tok
read(1,’(a60)’)inform
read(1,’(4i3)’)style
read (1,*) rnukk, vjrad, vkrad, vphiex0, vphiexj, vphiexk
write(2,’ (" nuzzstar vzrad virad vphiex0") )
write(2,’(d10.3,3x,f6.3,6x,f6.3,6x,d10.3)7)

* rnukk,vjrad,vkrad,vphiex0
if(style.eq.3)then

read (1,*) alpha, q, zeff, titote, densrat

else

read (1,*) =21lpha, q, zeff, titote
endif
write(2,#*)
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*

*

*

write(2,’ ("alpha q zeff Ti/Te™") )

write (2,5) alpha, q, zeff,titote

read (1,*) zk, rmk, zj, rmj, beta

write(2,%)

write(2,’ ("zimp massz zion massion”)’)

write (2,5) zk, rmk, zj, rmj

read (1,%*) ephiti, rmjtheta, rmktheta, rnztone, rnitone

write(2,*)

write(2,’ ("exphi/Ti Mitheta Mztheta")’)

write (2,5) ephiti, rmjtheta, rmktheta

format (4(£6.3,7x))

read (1,*) alphan, alphav, alphat, rne(

write(2,%*)

write(2,’ ("alphan alphav alphat ne0")?’)

write (2,15) alphan, alphav, alphat, rne®

format (3(£6.3,7x),d10.3)

read (1,*) rovera2, rmajor, bphi, temp0O, rnebar

write(2,*)

write(2,’ ("(r/a)"2 major radius bphi Tion(0)
nebar")’)

write (2,12) rovera2, rmajor, bphi, temp0, rnebar

format (£6.3,7x,f6.3,8%,f6.3,4x,f10.3,4%,d10.3)

read (1,*} rmd, rmdbar, rne, rminor

write(2,%*)

write(2,’("m sub D m sub d bar minor radius ")’)

write (2,9) rmd, rmdbar, rminor

format (f6.3,8x,f6.3,7x,f6.3)

read(l,*) rnujj, ep, fk, fj, rnujk, rnukj

read(l,*) phij, phik

read{1,*) cl, ¢2, c3, c4, c5, cb6

write(2,%*)

write(2,’ ("nuii star=",d10.3)’)rnujj

write(2,’ ("epsilon=",d10.3) 7’ )ep

write(2,’("f ion and f impurity: ",2(d10.3))’) fj, fk
write(2,’ ("ion-impurity and impurity-iom collision freq: ",

d10.3,3x,d10.3)’ )rnujk, rnukj
write(2,’("phii hat and phiz hat:",d10.3,3x,d10.3)’)
phij,phik

close(1)

beta2=bhetax*beta

q2=q*q

vphiexj2=vphiexj*vphiex]

vphiexk2=vphiexk*vphiexk
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endif
¢ begin calculation of roots
if(istar.eq.1 .or. istar.eq.2)then
¢ potential asymmetries
phic=(x(5)/c2+x(6)/c1)/(ephiti*titote)
phis=(x(3)/c2+x(4)/cl)/(ephiti*titote)
¢ user-supplied system of equations
fvec(1)=x(1)*(q2%£j*(1.0d0 + 5.0d0*x(5)/6.0d0
+ 2.0d0%x(3)/3.0d0 + 1.0d0*x(3)*x(3)/3.0d0
+ 1.0d0*x(5)*x(5)/3.0d0 + phis*x(3)/2.040
+ 0.5d0*phic*(5.040+x(5)))} + rnujk
q2*vphiexj*(x(3)+phis))
- rmjtheta - vjrad - c5*x(2) + g2«vphiexj2
* phis + 0.5d0%q2*fj*vphiexj*{phis*x(3)
+ phic*(5.0d0 + x(5)))

* ¥ ¥ O * ¥ ¥ ¥
|

fvec(2)=x(2)*(q2*fk*(1.0d0 + 5.0d0*x(6)/6.0d0

+ 2.0d40*x(4)/3.0d0 + 1.0d0*x(4)*x(4)/3.0d0
+ 1.0d0*x(6)*x(6)/3.0d0 + phis*x(4)/2.0d0
+ 0.5d0*phic*(5.0d0+x(6))) + rnukj
q2*vphiexk*(x(4)+phis))

- rmktheta - vkrad - c6*x(1) + g2*vphiexk?2
* phis + 0.5d0*q2*fk*vphiexk+(phis*x(4)

+ phic*(5.0d0 + x(6)))

¥ OX ¥ ¥ X X X
]

fvec(3)=c3*x(1)*x(3) + vphiexj2 - 0.5d0*x(5)
* - 0.5d0*phij*phic + beta2*rnujk*x(1)#*x(4)

fvec(4)=c4*x(2)*x(4) + vphiexk2 - 0.5d0*x(6)
* - 0.5d0*phik*phic + beta2*rnukj*x(2)*x(3)

fvec(5)=x(1)*c3*x(5) + x(1)*fj + 0.5d0%x(3) + 0.5d0*phij*phis
- beta2¥rnujk*x(1) + betalxcb¥x(2)
+ beta2*rnujk*x(1)#x(6) + beta2*vjrad

fvec(6)=x(2)*cd*x(6) + x(2)*fk + 0.5d0*x(4) + 0.5d0*phik*phis
- beta2*rnukj*x(2) + betal2%cH*x(1)
+ betal¥rnukj*x(2)*x(5) + betal2*vkrad
endif
¢ after solving equations, calculate confinement time
if(istar.eq.3)then
phic=(x(5)/c2+x(86)/c1)/(ephiti*titote)
phis=(x(3)/c2+x(4)/c1)/(ephiti*titote)
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write(2,’ ("phic and phis: ",d10.3,3x,d10.3)’) phic, phis

¢ poloidal profile factors

*
¢ radial

L

¢ radial

10

thetaz=(4.0d0+x(6))*((-x{(2)*(phis+x(4))/vphiexk)
+ phis) + x(4)*((x(2)*(2.0d0+phic
+ x(6))/vphiexk) - phic)
thetai=(4.0d0+x(5)) *((-x(1)*(phis+x(3)})/vphiex]j)
+ phis) + x(3)*((x(1)*(2.0d0+phic
+ x(5))/vphiexj) - phic)
write(2,’ ("theta z and theta ion: ",d10.3,3x,d10.3)7)
thetaz, thetai
profile factor for DIII
if(style.eq.3)then
G=2.0d0*rovera2*(alphan+alphav+alphat}*(1.0d0+densrat*
((alphat+alphav)*{((1.0d0-rovera2)#**{-alphan))/
(alphan+talphat+alphav) - 1.0d0))/
((1.0d0-rovera2)*(1.0d0 + densrat*(((1.0d0-roveral)*x*
(-alphan)) - 1.040)))
profile factor for other tokamaks
else
G=2.0d0*rovera2*(alphant+alphav+alphat)/
{1.0d0-rovera?2)
endif
write(2,("G: ",d10.3)’) G
thetagz=(rnztonexthetaz + rnitone*thetai)*G
write(2,10)thetagz
format(’ {(theta*G/z)eff = *,d10.3)
hntv=1.0d0+alphan+alphat+alphav
hnv=1.0d0+alphan+alphav
rmajorZ=rmajor*rmajor

¢ theoretical momentum confinement time (msec):
¢ major radius {(rmajor) in meters, toroidal magnetic field

¢ (bphi) in Tesla, central ion temperature (temp0) in electrom
volts
c DIII
if(style.eq.3)then
tauphi=2.0d3*rmajor2+bphi* (1.0d0+alphat/(1.0d0+

* alphan+alphav))*(1.0d0+densrat*alphan/(1.0d0+

* alphav) }*rmdbar/

* (temp0*(1.0d0 +densrat*alphan/(1.0d0+alphav+

* alphat))*rmd*thetagz)
c other tokamaks

else
tauphi=2.0d3*rmajor2*bphi*hntv*rmdbar/
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