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SUMMARY

Neutral particles play an important role on the performance of tokamak plasmas.
Transmission and Escape Probability (TEP) method has been demonstrated toffbe an e
cient and accurate calculation for neutral transport in tokamak edges and divertor config-
urations. However, the comparisons with Monte Carlo have also shown that a number of
approximations to simplify the TEP methodology limit the applications of the TEP method,
especially for problems with very short or very large mean free path.

In this dissertation, the original TEP methodology, which assumed isotropic angular
distributions in both the inward and outward hemisphebBd3yj, has been extended to take
into account linearly PP;) and quadratically @P,) anisotropic distributions of angular
fluxes for calculations of transmission probabilities. It has been confirmed by comparisons
with Monte Carlo calculations that tHeP; approximation significantly improves the ac-
curacy of the TEP method, but there is no advantage to the implementation BDPthe
approximation.

Three approaches, subdivision of optically thick regions, expansion of collision sources
and the difusion approximation, have been developed and implemented to coffiecise
of the preferential probability of collided neutrals escaping back across the incident surface.
Solving the dffusion equation via the finite element method has been shown to be the most
computationally &icient and accurate for a broader rangeAgft by comparisons with
Monte Carlo simulations. To take into account spatial non-uniformities in angular fluxes
along interfaces, a linear spatially dependent s&Ilyf representation functions has been
adopted. Benchmark simulations with Monte Carlo show that this approach significantly
improves the accuracy of the simulations.

The average neutral energy (ANE) approximation, which assumes that the average neu-
tral energy from a region is the weighted average of the energy of neutrals incident from

contiguous regions and of the energy of neutrals resulting from charge-exchanged ions

Xiv



within the region, has been developed and implemented into the GTNEUT code. The av-
erage neutral energy approximation has been demonstrated to be more accurate than the
original local ion temperature approximation for optically thin regions. The simulations

of the refined GTNEUT code agree excellently with the DEGAS predictions in DIII-D L-

mode and H-mode discharges, and the results of both the codes are in good agreement with

the experimental measurements.
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CHAPTER 1
INTRODUCTION

Neutral atoms or molecules, resulting from neutral recycling or external injection for pur-
pose of plasma heating or diagnosis, are always present in magnetically confined plasmas.
The range of the neutral concentration in a typical tokamak varies fromiaQ@he core
plasma region to more than 10% near the divertor.

The transport of neutral particles often plays a significant role not only in the local par-
ticle and energy balance, but also in the global behavior of thermonuclear plasmas. Low
energy neutrals, reflected from material walls, may undergo ionization or charge-exchange
scattering. The former process simply adds cold plasmas. However charge-exchange
events, by which the newly created high-energy neutral particles can easily leak out of the
confined region, result in consequent cooling of the plasma and the bombardment of the
surrounding walls by energetic neutrals. In addition, through charge-exchange processes,
neutral particles, due to their largdiisivity and the coupling with plasma transport, have
a direct impact on the plasma ion momentum and the local heat balance in the edge and
consequently modify the plasma density profile. Experiments [1] and theoretical simula-
tions [2] demonstrate that neutral particles have a crucial influence on the global plasma
performance and parameters. There is the strong evidence that neutral pafiiedetha
total particle and energy confinement times , the H-L transition [3], the density limit [4] in
the plasma edge and the formation of the edge pedestal [5]. For instance, high-resolution
measurements of hydrogenic neutral properties in Alcator C-Mod [6] indicated that neu-
trals have an important impact on the evolution of the density pedestal found in H-modes,
and it also was found that neutral$ext the characteristics of the pedestal through its width
and height.

A detailed knowledge of the neutral particle distribution at the plasma edge is therefore



crucial to understanding the physics of tokamak edge plasmas, and the accurate predic-
tion of the neutral density profile is very important for the interpretation of current fusion
experimental results and for the prediction of the performance of next generation fusion

reactors.

1.1 Characteristics of neutrals transport in the plasma edge

Neutral particles have no charge and therefore their trajectories areffacted by the
strong electric and magnetic fields that exist in plasmas. Like the orbits of neutrons in a
reactor medium, the orbits of neutrals in a plasma medium are straight lines between col-
lisions, which are categorized into two types: 1) ionization, corresponding to absorption
for neutron-matter interactions, and 2) charge exchange and neutral-ion scattering, corre-
sponding to scattering for neutron-matter interactions.

The governing equation for neutral transport in edge plasmas is represented by the
linearized version of the Boltzmann equation originally developed for the kinetic theory of
gas and without taking into account the neutral-neutral collision. The steady-state intergro-

differential neutral transport equation can be written as

QVlﬂ(r,Q,E)+Zt(r’E)lp(r’Q’E) (1 1)

= [dE [, dZ,(r.Q - Q.E — E)y (1, Q,E) + Sex(r. Q. E),

wherey (r, , E) is the neutral particle angular fluX; (r, E) is the total macroscopic cross
section for neutrals with energy & at point r, X, (r, Q" - Q, E’ — E) is the double
differential macroscopic charge-exchange cross sectiorsaf(d, @, E) represents all the
volumetric sources resulting from creation processes such as ion-electron recombination.
The highest neutral concentration occurs at the plasma edge, where there are a strong
gradient of background plasma properties and very complex geometric configurations with
divertors, b#fles and pumps. The mean free path of neutrals varies from millimeters at the
core plasma regions to several meters in the vacuum regions. These facts, together with

the large variety of physical processes taking place in plasma edge, make the successful



modeling of neutral transport in fusion plasmas very challenging.

Except for highly idealized problems, solving the neutral transport Eq. 1.1 is an almost
impossible feat to perform analytically andittult to achieve numerically. In general, a
number of approximations such as isotropic scattering, local ion temperature or multi-group
treatment of the neutral energies, and homogeneous plasma background in each computa-
tional region are employed to simplify Eg. 1.1 for numerical calculations. Initially, numer-
ical methods from the neutron transport theories were directly adopted to simulate neutral
transport in plasmas [7, 8]. These numerical methods can be categorized, according to the
form of the Boltzmann transport equation, into three groups: stochastic methods, integro-
differential methods and integral methods. However, it is realized that none of them was
suitable for the coupled plasma-neutrals transport due to geometrical complexities, widely

varying mean-free-path and the requirement of computatidfiaiency.

1.2 Existing methods

Currently the numerical methods for solving the neutral transport equation are the Monte
Carlo method, the spherical harmonicsRarmethod, the discrete ordinates® method,
the difusion or Navier-Stokes fluid theory, the collision probability method and the inter-

face current method.

1.2.1 Monte Carlo method
The basic concept of the Monte Carlo method [9, 10] is to perform statistical sampling
experiments on a computer, so there is no need to explicitly write down the neutral transport
equation. The Monte Carlo method obtains an answer by simulating a large but finite
number of particle histories and recording some aspects of their average behavior.

The history of a particle is begun by sampling the source distribution to determine the
initial energy, position and direction. Then, more pseudo random numbers are sampled to
determine the subsequent events of the particle such as collision distance, reaction types,

particle-wall interactions, etc. If it is ionized or vacuumed out of the device, the history is



terminated.

Because the Monte Carlo method can trace neutral particles propagating in the plasma
edge and directly simulate the physical processes such as neutral-plasma and neutral-wall
interactions in detail, the results of Monte Carlo method can be very accurate if the CPU
time is not concerned. Nowadays the most sophisticated Monte Carlo codes for neutral
transport in the edge plasma are DEGAS [11] and EIRENE [12]. Because of their high
accuracy and capabilities of treating regions with realistic 3D geometries, widely vary-
ing mean free path and multi-species of neutrals, the Monte Carlo method is the most
widely used methods in edge plasma neutral calculations. But, the limitations of the Monte
Carlo method are also obvious: the Monte Carlo method is fimient for some prob-
lems because of the significant computatiorfébre required to achieve acceptably small
uncertainty, especially for regions far away from sources. As a result, it is impractical
to calculate the detailed spatial distribution in the whole device. Perhaps more crucial,
because of its inherent statistical error, the Monte Carlo method is found to be ill-suited
for coupled plasma-neutral simulations, where a large number of iterations are generally
required. The stochastic characteristics of the Monte Carlo methodology makes iterative

calculations extremely time-consuming anéidult to converge.

1.2.2 Dfferential transport methods

Starting from the dterential transport equation, a lot of numerical methods have been
developed either by a direct discretization of the transport operator or by an expansion of the
angular flux in terms of a set of functions. Since thi@edential equation is based on a local
particle balance it leads to sparse matrices, most of the elements of which are zero. Among
those diterential methods, the most widely used methods applied to neutral transport in
the edge plasma are theffdision theory, Navier-Stokes [13] and discrete ordinates [7].
However, diferential methods are usually suitable for regular geometries such as slabs,
rectangles and cylindrical annuli. In addition, for some plasma edge regions under study,

the characteristic mean free path may not be small compared with plasma dimensions, and



under these conditions integrofidirential transport methods are not justifiable.

1.2.3 Integral transport methods

The integral transport methods construct an expression for the angular flux at a given lo-
cation by integrating over all external and scattering sources that could contribute, taking
in account the probability of the source neutral reaching the given location without a col-
lision. The collision probability method [14, 15, 16] result from partitioning the domain
of the problem into a large number of finite size regions and formulating the equation
to calculate the average value of the neutral flux in each region. Like the Monte Carlo
method, the result of collision probability method can be very accurate. This method has
been successfully implemented for neutral propagating in 3D rectangular grids [17]. Since
the collision probability method is based on a global particle balance, the neutral flux at a
given region is coupled to the neutral scalar flux of any other regions via collision prob-
abilities which must be calculated by multi-dimensional numerical integration involving
expensive evaluation of Bickley functions. Theoretically speaking, the ray-tracing method
can be used to calculate collision probability fiaments for arbitrary geometries. But in
practice, calculating these d@ieients is a formidable task even for a high performance
computer. However, the collision probability method is usually applied to periodic or reg-
ular geometries, where interpolation of collision probabilities and symmetric conditions
can be exploited to improvefeciency. Since the neutral flux is coupled to all the regions
via collision probabilities, we have to calculate the collision probability between any two
regions no matter how far away they are. It is formidable requirements for a computer to

calculate and store all these probabilities for any realistic tokamak and divertor.

1.2.4 IC and TEP methods
The Interface current (IC) method [18, 19, 20, 21] is also based on the integral transport
equation, it assumes the distribution functions of the angular flux at each interface and the

scalar flux within each region, and then a balance is performed relating the uncollided and



scattering (charge-exchange) currents across the surfaces bounding these regions. There-
fore the outward partial current from a surface is only coupled to the scalar flux within that
region and the inward fluxes at the interfaces bounding it, leading to very sparse transmis-
sion and escape probability matrices.

Because of the high charge-exchange fraction in most edge plasmas, a straightforward
cell-by-cell iteration solving scalar fluxes within regions and partial currents on interfaces is
computationally expensive. The Transmission and Escape Probability (TEP) method [22]
[23] extends the IC method by treating charge-exchange sources analytically, eliminating
the dependence on the scalar flux within regions. This leads to the benefit that the outgoing
partial current from a region is coupled only to the incoming partial currents from all the
adjacent regions.

Several advantages arise from the contiguous-region coupling of the partial currents.
First, it results in very sparse probability matrices that must be numerically evaluated for
solving the patrtial currents, in contrast to the full collision probability matrices that must
be calculated for the collision probability method. Second, the local dependence of the
interface currents allows the flexibility in choosing the level of approximations and the
computational methods matching the physical properties of the regions of interest. For ex-
ample, difusion approximation may be used to calculate directional escape probabilities
for optically thick regions; while the non-directional approximation may be a more rea-
sonable choice for calculation of directionalities for a region with the long mean free path.
Thus the TEP method can avoid the majdfidulties of the other methods. These inher-
ent advantages make the TEP method to be an ideal neutral particle transport method in
realistic divertors and edge plasmas.

The TEP method has been successfully implemented into the Georgia Neutral Transport



code GTNEUT [24] for calculation of neutral transport at the edge of thermonuclear plas-
mas. Extensive comparisons [25, 26] with Monte Carlo simulations and experiment mea-
surements have demonstrated its accuracy and computattbomrey. However, Bench-
marking [27] with specially designed model problems also suggests that the assumptions
made in the TEP methodology limit the ability of GTNEUT for extreme cases with very

short or long mean free path.

1.3 Conclusions and introduction to thesis research

Neutral particle transport has an importaffeet on the behavior of thermonuclear plas-
mas. An dicient numerical method with the ability to simulating problems with complex
geometries and widely varying mean free path is indispensable for plasma modeling.

The Monte Carlo method, filerential methods and the collision probability method
are limited either by the irf@ciency to couple to iterative plasma fluid codes or by the
difficulties to handle problems with geometric complexity and strong background plasma
parameters. The TEP method has been demonstrated to be a promising candidate to model
neutral transport at the plasma edge. Extensive comparisons and tests with Monte Carlo
calculations also suggest that extensions in the following two areas would be useful: 1)
taking anisotropy into account in the calculation of first-flight transmission probabilities
when the neutral mean free path is much larger than the characteristic dimension of com-
putational regions; 2) taking into account that the escape of charge-exchanged neutrals is
preferentially across the incident surface when the mean free path is small compared to the
characteristic dimension of the computational region.

Chapter 2 will review the TEP methodology and analyze its limitations. Chapter 3 will
detail theDP,, approximation theory to take into account the anisotropy of the angular flux
distribution at interfaces between regions. The validity of new assumptions will be inves-
tigated. In Chapter 4, threeftBrent approaches to address tifte&s of non-uniformly

distributed charge-exchange sources will be discussed and compared. In addition, a new



function expansion to take into account the spatially dependent angular flux on interfaces
will be introduced. The average neutral energy approximation will be developed in Chapter
5.

In Chapter 6 the accuracy of new extensions will be investigated by tests and compar-
isons with Monte Carlo calculations for realistic DIlI-D problems and experimental mea-
surements. Finally, Chapter 7 will draw conclusions from current work and point to areas

that further research is needed.



CHAPTER 2
TRANSMISSION/ESCAPE PROBABILITY (TEP) METHOD

The TEP method is based on the the balance of the total partial currents crossing the sur-
faces bounding each computational region. Originally, a heuristic approach [22] was used
to obtain the TEP balance equation. The total neutral partial current crossing an interface
consists of three distinct contributions: uncollided neutrals, collided neutrals and external
volumetric neutral sources together with their progenies. The uncollided flux is the sum of
all the fluxes entering from the adjacent regions multiplied by surface-surface transmission
probabilities. The secondary source in a intervening region is just therehce of the
incoming currents and the outgoing uncollided currents crossing its bounding interfaces.
The collided fluxes can be calculated through the total and directional escape probabilities.
Then, approximations of the angular distribution of the flux at interfaces and the spatial
distribution of the scalar flux within computational regions are made to calculate transmis-
sion, first-flight escape probabilities and directionalities. Based on the repeated application
of the first-flight transport calculation of escape probabilities, the total escape probability
is the sum of all generations charge-exchanged neutrals.

Alternatively, a stricter mathematical derivation starting from the integral transport
eqguation can be proceeded to calculate the total partial current crossing an interface and
the total collision rate within a region. After identifying the relations between the total
collision rate within a region and all the incoming fluxes from the contiguous regions,
the outgoing partial current from a region can be explicitly expressed in terms of all the
incoming partial current from the adjacent regions via transmission and escape probabili-
ties. Since it is easier to extend to the higher order approximation, the strict mathematical

derivation of TEP equations will be presented in this chapter.



Figure 2.1. Schematic diagram for the integral transport equation

2.1 Integral transport equation

The one-speed steady-state integral transport equation [14] for a dBmaith boundary

0D;j, as shown in Figure 2.1, can be written as

Rs

U(r, Q) = Yin(rs, Q) exp(—7(r,rs)) + dig(r - 1, Q) exp(—7(r,r - 12)), (2.1)
0

wherey(r, Q) is the angular flux at pointin directionQ andQ = %; Uin(rs, Q) is the
incoming flux at boundanRis the distance between pomand the starting points on the
boundary andR = |r — rg|; X; is the total macroscopic cross secti@gy is the macroscopic
charge-exchange cross sectiofr; r’) is the optical length betweenandr’ defined by the

following expression,

, [r—r’| ) r—r’
7(r,r’') = diZe(r" +1 , (2.2)
0

Ir—r’|

andq(r, ) is the total volumetric source defined as

q(r,Q) = dQ'Ze(r, Q" — Q) (r, Q") + Sex(r, 2), (2.3)
A

whereSe(r, Q) is external volumetric source.
With isotropic sources and charge-exchange scattering, the integral transport equation

becomes

Rs _
U(r, Q) = vin(rs, @) exp(—r(r,rs)) + fo dlw exp(—7(r,r —1Q)). (2.4)

10
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Figure 2.2. Schematic diagram for TEP methodology

Integrating over over a 4 solid angle, we obtain scalar flux

)= [ BTN fg 0 @G 0 (o
Dj

Anlr — 172 Ir —rgl?
dh;

wheren_ is the inward normal unit vector at the boundary.

2.2 2D TEP equations

Starting from subdividing the region of interest into a number of convex polygons or cells,
we calculate neutral transport within each single cell in which the background plasma prop-
erties can be treated as a constant. As shown in Figure 2.2, we consider an arbitrary cell
i bounded by surfacéD; = 3}, dD;;, wheredD;; is the interface between celland the
adjacent cell. |

First we define the total partial current from celhto adjacent celf, I'; ; as

r, = f ds; f dQ(Q - ny)u(rij. ). (2.6)

oDjj Qnjj>0

wheren;; is the outward normal (out of cdlf at interfacedD;;, and insert Eq. 2.4 into Eq.

11



2.6, we obtain

tii = fdsj f dQ(Q - nij)[‘/’in(rsa Q) eXp(_zt“'ij - rs|)

aDjj Qn;j>0

+ bedI—Q(rij — 1) exp(—ZtI)]

Nki) (2.7)
_Zfds,, fds,k(g n.J)| |21//(r.k,9)exp( 2ilrij — .kl)
0Djj dDik IJ
q(r)
ds;; fdr expl=2ir —rii|) (- ny;).
f J 47T| _ ”|2 p( t| jl)( J)
D]
Eq. 2.7 can be written in more concise form,
Iij= Zrk,i-ﬂi(,j + QiPojiAjj. (2.8)
k

where we define cdﬁcientsTli(’ j ,Po;,Ajj and the total volumetric sourc@ as

T|i<,j fdslj fdslk(ﬂ nlj)l - Il)zlﬁ(hk,ﬂ)eXp( —2|ri _r|k|) (2.9a)

ﬂD.J ODik
Poi = 0 3!dS.fdr4 r exp( Zr —ri)) (- ny), (2.9b)
q(r)
Ajj = lemmfdsufdr4 r—rp exp(—zt|r—rij|)(g.nij), (2.9¢)
and
Qi :fdr(,](r). (210)

Apparently, the first term in the right hand side of Eq. 2.8 represents the uncollided flux

from all the adjacent cells, the second term is the contribution from the volumetric source.

2.2.1 Transmission probability

A physical interpretation comes from Eq. 2.9 (rix, Q)(€ - nii)/Tki - dS;; (2 - njj)

[Irij — ricl? = dSydQu(rik, @)(Q - ni)/T; is the probability that neutrals entering from
interfacedD; will emit at ry aboutdSj, and in direction® aboutdQ?, exp(—Ztlrij - rikl)

is the probability that neutral born af and in directionQ will transmit tor;; without a

12



Figure 2.3. Schematic diagram for theDPy approximation

collision. Thus, the transmission probabilil’)i(,j defined in Eq. 2.9a is the probability for
particles uncollidedly traveling from celito cell j through celli without a collision.

In order to evaluate transmission probabimyj, we make the following assumptions:
1) the angular distribution of the flux at interfa@®y is isotropic in the inward hemisphere;
2) the spatial distribution of the angular flux at interfaces is uniform. When we evaluate
transmission probabilities for cel, we again need to assume that the outward angular
flux (actually it is inward direction for cek) at interfacedDj is isotropic, but it may the
have diferent magnitude from the inward direction as shown in Figure 2.3. Thus the first
assumption is usually called Dould®g or DP, approximation. Now we denotgr iy, Q) =

Yo, thenly;, the total incoming partial current at interfa@by, is

rk,i:fdsik f dQ(Q - ni)y(ri, ) = mpolLix, (2.11)

dDik Q-ngi>0

and transmission probabilifyli’j may be simplified as

‘ 1 Lik Pmax(Xik) % Ztl (X|k ¢)
T = _f d>qf d f doyoQ - ngi ex (——)
ki myolik Jo “ Gmin(Xik) ¢ 0 Vo e siné

2 Lik max(Xik)

=2 | dx de cosgKis (! (X, 4)),
mLik Jo Prmin(Xik)

(2.12)

where, as shown in Figure 2 by is the length of interfacéDix, ¢min(Xik) aNd@max(Xik) are

the integral limits for the angular variable, ahf,;, ) is just the distance traveled by a

13



Figure 2.4. Planar projection of geometry for calculation of transmission probability in 2D

A:

R(x, ,€2)

>
(G509 yen

ij
x(n,)

Figure 2.5. 3D geometry for calculation of transmission probability
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Figure 2.6. Geometry for calculate escape probability

neutral in the 2D plane anis is the third order Bickley-Naylor function,

Ki, (X) = fz desin”‘leexp(—si—%). (2.13)
0

2.2.2 Escape probability
The codficient defined in Eq. 2.9b also has a physical meamgdr /Q; - dSi (€ - ny)
JAn|r —ryl? = g(r)dr/Q; - dQ/4rn is the probability that neutrals are bornraaboutdr in
directionQ aboutdQ; exp(—Xr —ri|) is the probability that a neutral born gt and in
direction Q will escape to the adjacent regions without a collision. TRysis just the
first-flight escape probability that neutrals born (volumetric sources) in egll escape
from celli without a collision with cell. Similarly, the coéficientA;; defined in Eq. 2.9c is
the directional escape probability that a neutral born in and escaping fronwekkkscape
into the adjacent region

With the assumption that volumetric sources are uniformly distributed in ¢t flux

assumption), we yield

_ Zi(r, ¢)
Poi = ey fdrfdﬂexp( Sing )
_ . z:tl(r’¢)
_Fsifdrfo d¢f0 desmeexp(— Sing ) (2.14)
Dj

zzﬂisi f dr f deKiz (S (1. 8)).
Di 2r

15



and

1 Bhax(r) T A (r ¢)
Ajj = d d dgsing —_—
N 4yrSiPo,in rjf;imm(r) ¢,£ S exp( sin¢ )

1 Dhnar)
= drf doKi, (i (r, @)).
S Df | K0

However, it is computationally expensive to calculate these first flight escape prob-

(2.15)

abilities and the directional escape probabilities. Usually, a rational approximation for
calculation ofPy; can achieve both highfieciency and accuracy.

1 X

Poi = & [1 - (1 ; H)_n] , (2.16)

whereX = 4S;%;/L; , S is the area of cell andL; is the perimeter of cell and exponent
n = 2.09 is resulted from comparisons with Monte Carlo calculations [27]. For the case
of a cylinder,n = 4.58 is better. The directional escape probability is assumed to be

proportional toL;; , the length of interfacéD;j, i.e.

Ay = 2. (2.17)

2.2.3 Final forms of the TEP equations

However, the total volumetric sourd@ used in Eq. 2.8 is still unknown. In order to
eliminateQ;, we first need to determine its relation wigh,,, the total external volumetric
source andIy;, k = 1,...}, the incoming total partial current from all the adjacent cells.
Keep in mind that

A1) = Sod(r) + Se(t) = Sod(r) + S;Xt, (2.18)

whereS; is the area of region
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Inserting Eqg. 2.5 into Eq. 2.18, we have

Q- f dro(r) = f dr (zcx¢(r)+ )

i ,q(r’) exp(=2¢|r —r’])
= Sexit+ fdfzcx fd R (2.19)
ex Xielr—=r
- [ dsua(rs.9) p(lr . : D)
—Is
dD;

usingDPy and the flat flux assumption, it is possible to write the total volumetric source as

EXZ Jexp(=X¢r —r’
Qi eXt C tfd fd p( tl |)

Arlr —r')?

Tex X exp( Zelr —ril)
+Zrk|£nl_k|fd de. - Q- ny) (2.20)

Di 0Dik

= SL+ QGPL; + Z ['kiCiP2,
K

where coéficientsPl;, P2 andc; are defined in the following equations.

fd fd EXPEr —er|), (2.21a)

4 |r — 1|
szi:— dr f dS, eXp( 2 =) 6 0. (2.21b)
ﬂ I H
“ DI ale |
2CX
_ Zox 222
G =3 (2.22)

Now we change dummy variables in the integral of Eq. 2.21altly= R?dRdQ2 =

17



(I/sing)? - (dlI/sing)d, then integrate along the neutral trajectory, we obtain

_d ( smle)
=55 fdrqu)fdlKil(Ztl)

- f dr f do (1 — Kiy (50(r. 6)) (2.23)

_ 1_%_3 f dr f dKi, (S (r. 8))

=1-Py,.

Li = 47TS

During the derivation we used thefidirential propertydKi,(x)/dx = —Ki,_1(x) and

Kiy(0) = 1
Similarly,
_ exp(=Zelr —ril) o
P2 = e J aDj; dSi r_ rik|2 (Q nk,)
P
dSi —d ( )(Q'Hki)
f IE
= dekfdQ[l— ( Ztl(rk"¢))] (- ny)
_1_7T_k| dS.kfdQ ( 2 k"¢))(9 ) (2.24)
—l—ﬂdeSmfwe p( z:t|r|_r|k|)(9 nkl)
k|aDIk pr i ik
_1_ dSI| (Q n|I) _ . n.
= ZﬂLk.an Skg! T exp(=Z¢Iri — ril) (€ - ni)

=1- ) Ty
|

Substitute Egs. 2.23 and 2.24 into Eg. 2.20, we have

[1 - 61~ Po]Q = Skt Y 5(1- ) Th)aT. (2.25)
k |
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or _ .
Sext + Ekl(l - ; T )cilki

= 2.2
Q 1-ci(1- Poj) (2.26)
InsertQ; back into Eqg. 2.8 and define the total escape probability,
Poi
P — o 2.27
T I-c-Poy (2.27)

Finally, the TEP equations can be written as

Lij = Z Ti Twi + Z [y (1 - Z TLJ] GPiAij + ShPiAj. (2.28)
k k |

The first term of Eq. 2.28 represents the sum of the partial currents enteringroetl
all the adjacent cells and being directly transmitted to regiaithout a collision with cell
i. The second term is the sum of the partial current entering frelin all the adjacent cells
and having one or more charge-exchange scattering with aetl finally exiting into cell
j. The third term is the contribution of the external volumetric sources and their progenies.

The most salient feature of TEP method is that the exiting flux from a cell is only
dependent on the incoming fluxes entering that cell from all the adjacent cells. Thus, the
transmission cdécient matrix is sparse, with the number of nonzero elements growing
linearly with the number of cells. Secondly, the shape of cells is arbitrary , so we can

choose whatever shape in order to match the local geometry.

2.3 Boundary conditions

There are two kinds of boundary for neutral transport in tokamaks: wall and core plasma

region. The former refers to the material surfaces surrounding the plasma. The latter is
the part of plasma where neutrals get ionized or scattered back once they enter in, so it is

computationally #icient to treat these core plasma regions as albedo boundary.

2.3.1 Wall boundary
When ions or neutrals hit the wall, the most important particle-surface interaction processes
[28], which couple to the neutral transport as sources or sinks, are backscattering, desorp-

tion and absorption. In the first process, a neutral is recoiled back with a significant fraction
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of the impact energy after fiering several elastic collisions with the target material. In the
second process, neutral particles are implanted in the near surface, where they will reach
thermal equilibrium with the wall material and subsequently be released as thermal mole-
cules due to either direct particle-surface collisions or collisions of sputtered and backscat-
tered particles. Absorption means the incident particles are permanently trapped inside the
material wall. Usually the mean free path of the re-emitted thermal molecules is very small
and they disassociate as Franck-Condon atoms with an energy of a few electron volts near
the wall surface, so we may approximately treat these neutrals as a slow group of neutrals
backscattered from the wall segments.

The particle and energy reflection ¢heientsRy andRg, which depend on the impact
energyEg, impact and substrate species, are two of the most important back-scattering data
[29]. The particle reflection cdigcientRy is defined as to be the ratio of the numibeof

all reflected particles to the total numkéy of incident particles,
Ry=—. (2.29)

The energy reflection céiécientRe is defined as to be the total energy of the reflected
particles divided by the total energy of the incident particles, so the average energy of the

back-scattered particles is

E-lep, (2.30)

The total reflection flux from the wall segméiw to the celli can be written as
ka,i = Flé\)l(vt + RK,WFLKW + (1 — RKIW) (1 - f;(t\)NS) ri,kw» (231)

whereRy,, is the particle reflection cdicient for the wall segmerkw, fall(t\),\'ls is the fraction
that particles are permanently trapped inside the wall material.
In Eq. 2.31, the first term is the external flux, the second term represents back-scattered

flux with energyE, and the last term represents the flux due to Franck-Condon atoms.
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2.3.2 Albedo boundary

The mean free path of neutrals in core plasma regions is extremely small due to the large
plasma densities, so these regions can be treated as a semi-infinite half-space. The reflected
flux from a core plasma region can set be to equal to albedomes the incident flux to the

same region. Originally one-speedtdsion theory was exploited to calculate the albedo

2 -1
i 1- 2 Jet-1

o= (2.32)

2 -1 .
1+%1,Ci -1

Eg. 2.32 has been found to be accurate if charge-exchange fracigogreater that

codficient [30],

0.9. However, the results of Eq.2.32 would be significant lower than the Monte Carlo
calculations whert is smaller than 0.9, and even become negative whisnsmall than
0.57. The following fit to albedo cdicient based on data from Monte Carlo simulations
is found to be very accurate for the entire range of charge-exchange fraesoshown in

Figure 2.6.

0.00059720174 0.204504%t - 0.38186442 + 0.176934%3

a(c) = 1- 246848678 + 1.9744932 — 0.5058363

(2.33)

2.4 The assumptions of TEP method and their limitation

The TEP method has been successfully implemented into the 2D neutral transport code
GTNEUT [24]. The accuracy and performance of the TEP methodology and the GTNEUT
code have been extensively investigated by comparison with Monte Carlo simulations for
a variety of model problems and against realistic DIlI-D experimental measurements [26].
These comparisons have demonstrated that the GTNEUT is an accurate and economic tool
for simulation of neutral transport in realistic divertors and edge plamas. The sensitivity of
the approximations made in the TEP methodology has been tested for a specially designed
9-region problems shown in Figure 2.8 over a wide range of the Agtip whereA is the

characteristic dimension of a computational region amslthe mean free path of neutrals
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Figure 2.7. Comparison of albedo cofficients calculated by dfferent methods
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in that region. The tests have shown that the predictions of the GTNEUT code agree very
well with the calculations of the Monte Carlo code DEGAS as we can see from Figure
2.9, whereA/A1 = 1. However the agreement deteriorates whén < 1, which drives
the strong anisotropy of the angular fluxes, or wiag¢nn > 1, which results in the strong
gradient of the charge-exchanged neutral source.

TEP method is accurate, subject to the following approximation®g)approxima-
tion, which assumes that angular flux at each interface is isotropic in both the outward and
inward hemispheres; (2) Flat collision source approximation, which assumes that scalar
flux within each computational region is uniform. (3) Local ion temperature approxima-
tion, which assumes that neutral energy in each cell is equal to the local ion temperature.

TheDPy assumption would be reasonable if the incident neutrals were dominantly com-
posed of the collided neutrals from the previous computation cell because charge-exchange
events tend to randomize neutrals’ angular distribution. However, the anisotropy may be
driven by the attenuation in a strongly ionizing medium or by the wall reflection and the
presence of sources in optically thin regions. Consequently the TEP methodology under-
predicts the uncollided neutral flux as shown in Figure 2.10.

The first flight escape probability calculated by the rational approximation is found to

be very accurate for a wide range of conditions, but the non-directional escape assumption
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is questionable whefi/A > 1. In this case, the probability a collided neutral escapes back
across the incident interface is larger than the probability that it escapes forward across
the next interface. Due to failing to take thiffext into account, Figure 2.11 shows the
overestimation of the neutral penetration by the TEP method.

Extensive comparisons with Monte Carlo methods have shown the local ion tempera-
ture assumption is accurate if (1) the ion temperature varies slowly across many compu-
tational regions, or (2) most neutrals in a region have collided in that region. But if these
conditions can not be satisfied, especially for the slow group of the reflected neutrals from
the wall can penetrate very deep into the interested regions, a two-group or multi-group
treatment is necessary.

The tests have also suggested that the refinements to the TEP methodology in the fol-
lowing two areas would improve its accuracy for the extreme conditions: (1) calculation
of transmission probabilities based on the linearly anisotropic or the higher order approx-
imation of the incident angular distribution wheyA <« 1, and (2) calculation of the
directional escape probabilities with taking into account that the charge-exchanged source

is predominately distributed near the incident surface wkeh> 1.
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CHAPTER 3
ANISOTROPIC TRANSMISSION PROBABILITIES

3.1 Introduction

As mentioned in the previous chapter, if the neutral flux crossing an interface predominately
consisted of the collided neutrals immediately from the previous computational region, the
assumption of an isotropic angular distribution would be reasonable. However, anisotropies
may be driven in regions with long mean free path, or in the presence of sources, strongly
ionizing plasmas or boundaries.

Take the problem shown in Figure 3.1 as an example. An isotropic neutral flux is im-
posed from the left boundary and the neutral mean free path is longer than the grid size.
The angular distribution at the next interface will be somewhat peaked in the forward direc-
tion due to greater attenuation of particles with a large angle than a smaller angle relative
to the normal to the surfaces. The original TEP methodology [22] assumed an isotropic
particle distribution in the forward half-spacBR, approximation) at each successive in-
terface. In fact, particles with a large angle to the normal are preferentially attenuated, and
the distribution at successive interfaces will become more forward peaked, as illustrated
in Figure 3.1. TheDP, approximation does not account for the preferential attenuation of
particles moving at large angles relative to the normal and consequently over-estimates the
attenuation between successive interfaces. Thus, the angular flux will become increasingly
forward-peaked. As a result, th@P, approximation leads to significant under-prediction
of neutrals’ penetration. Thisffect has been observed for the specially designed model
problems [27] to test the validity of thBPy assumption.

In order to improve the validity of the TEP methodology for long mean free path re-
gions,in which the above problem is most important, an expansion of the angular flux at
interfaces in terms of the linearlypP,) or quadratically DP,) anisotropic representation

functions will be adopted in this chapter, then the balance equation for each partial current
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Figure 3.1. Anisotropy of angular flux in a 2D problem with long mean free path

moment associated with each expansion function will be developed. This is the standard

technique [18, 19, 20] used to deal with the anisotropic neutron fluxes in fission reactors.

3.2 DPy methodology
3.2.1 Basic equations

Taking the same approach as in the derivation of the original TEP methodology outlined
in Chapter 2, we first subdivide the region of interest into relatively small cells, and then
apply the integral transport equation to each cell. Again, our starting equations will be the

integral forms of the angular flux at an interface and the scalar flux withirDgell

w exp(—7(r,r — 1)), (3.1)

Rs
Y(r, Q) = Yin(rs, Q) exp(—7(r,rs)) + fo dl

) exp(r(r, 1) expl-r(r.15))
o0) = [ar 2RI [asyra 28V ), @2)
Dj dD;

whereq(r, Q), n_ andr have the same meaning as those defined in Chapter 2. The incoming

flux ¥in(r, Q) is defined as
lﬁin(rs, Q) = lﬂi’j(rs, Q), if Is € aDij andQ - ni; < 0, (33)

wheren;; is the outward normal unit vector at interfagb;; .
Assuming that the angular flux(r, Q) at an interface in the outward hemisphere can be

expanded as a linear combination of a set of locally defined and orthonormal representation
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Figure 3.2. Schematic diagram forDPy methodology

functions{y?, (r.@)IN=0,1,--- ;i = 1,--- ; j = ---}[31, 32], we can writey (1, 2) as
w(r,Q) = Z Myl (r, Q). (3.4)
niJ
The expansion functiong’; (r, €2) are locally defined,
#0, if redD;and (Q-nij) > 0;

Y (r, Q) = (3.5)
=0, otherwise

and the expansion functions also satisfy the following orthogonal conditions,

(uf; (r. Q) v (r,9)>=fd5fd9¢’ﬂj (r. Q) yf; (r,Q)IQ-n,

R2 Ar
:fds” f dQlﬂnj(rij,g)wp:j'(rij’ﬂ)(g'nij) (3.6)

oD;jj Q-n;j>0
_ OnGiirOjjr
ﬂsij ’

where we define inner product for any two angular flux functigps, Q) andy,(r, Q) as

<w1(r,sz)|w2(r,sz)>=fdsfdswl(r,n)wz(r,sz)m-n+|. (3.7)

R2 Ar
S;j is the area of interfac&D;;, andd,y is the Kroneker’s delta.
I7; is then-th codficient of the expansion. Taking the inner product with Eq. 3.4

and the representation functimﬂj and making use of the orthonormal conditions, we can

30



oD.. Q

Figure 3.3. Optical paths used inDPy approximation ray tracing

easily obtain
<l/’|1|lﬂ < erjwlj>
Z <wlj|rpjwl j>
(5 s (3.8)
Onn Onr Onnt
nZ’ - ﬂS'J
I
= E,J
So we have
|j - ﬂSlJ <l//| j |lﬂ>
=7TSij dei,- f dQl/lan (rij,9)¢/(rij,9)(ﬂ-nij). (3.9)
aDjj Qn;j>0

If we want to expand the incoming flux ;(r, ) across interfac&D;;, which is nonzero

only if r € 0D;; andQ - nj; > 0, we have the simpler form,

Vi (r, Q) = Zr{jjl//{jj (r, Q). (3.10)

The reason why orthogonal conditions 3.6 are chosen and the physical meaﬁmg of
will be discussed in the next section.
Now substitute Eqg. 3.1 into Eq. 3.9, and then change var@ble —Q so thatQ’ is in

the inward direction. UsdQ’ = dS(Q’ - n.)/Irs — ri;|> ordr = 12dldQ’ and finally change
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backQ = -,

FanZTFSijdeij f dﬂlﬁlnj (rij,ﬂ)wm(rs,ﬂ)exp(—r(rij,rs))(ﬂ-nij)

dD;jj Q-n;jj>0

Re q(rij — 1

+7TSijdeij f dﬂw{jj(rij,ﬂ) . d|q(”4—ﬂ_)
aD;jj Q>0

exp(—r(rij, ] —IQ))(Q-nij)
_ﬂsljfdsljde(Q T;)lﬂ.,(ru,— ,)win(rs»_gl)'

Irs—ri
aDjj aD;
exp(—r(rij , rs)) (—9’ . ni,-)
+”S|desljfdr¢’|1 lij,— Q, 4 |rq(—)r |2 exp(—r(rij,r))(—ﬂ’-nij).

aDy)

Notice thatvD; = Z 0Dy, then

rn. _]'(Slj Z de” dekﬂp” rlja wkl(rklag)

k 9Dy Dy
ex;T(—T(rij"Zki)) (@-n)) @ (3.11)
N — Tij
+ 7TS|J de,J fdrlﬂlj r”, 4|::I(—_r)r”|2 eXp(-T(rij, r)) (Q . nij)'

dhjj

Making use of Eqg. 3.10 to expang;(r, ), we have

Fn__ﬂS,JZFklde”fdskﬂ,l/l] Fij Q) Ui (g, Q)-

by aby
exp(-7(ry. ) (

Irii — ril?

+7rS.,de,fdr¢,J (ri. %exp(—r(rij,r))(ﬂ-n”)
i

aDjj

_ n n—n
- ZFKITI k—j T QIPOI i
kv

Q- nij) (- ny)
(3.12)

where we define cdiﬁcmntsT,”k:T, Poj andAf,; as

T.nk:T_ﬂSijdeijdekil//ﬂj (rij- Q) upi(ra. Q) (3.13a)

JDjj 0Dy
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exp(-7(ry, )

a—TP (@ nyj) (@ ny),
exp(—(rij,r)

Poi = ZS” »[dS.J‘[dn//,J rij, Q q(r) 4(|r—r : )(Q‘nij), (3.13b)

aD;; '

. _ 7S exp(-t(ry.r))
Aij = QiPo; fdsllfd“ﬁu r'J’ q() 4t — 1y P (Q'nij), (3.13¢c)

IDjj
and the total volumetric sourd@,
Qi = f drq(r). (3.14)
D.

By convention, we choose the 0-th representation function to be a constant. To satisfy
the orthogonal conditions we choo:s%. = 1/#S;;. Comparing with Eq. 2.9 we will find
Po; defined in Eq. 3.13b is exactly the first-flight escape probabi '.J.‘ is the gener-
alized transmission probabilityy!; is the generalized directional escape probability. The
0-th moment has the same value and physical meaning as the transmission and directional
escape probabilities defined in Chapter 2.

Until now, Eq. 3.12 is exact and no approximation was made. In order to evaluate the
first-flight and directional escape probabilities, we must make an assumption of the spatial
distribution of charge-exchanged neutral sources. If the flat collision source assumption is

made again, then the total and directional escape probabilities may be written as

exp(—7(rij,r)
Poi = Zs,J de.der;l/” i, Q zmﬁrfr:m)(ﬂ'n”)’ (3.15)

Dy

7S exp(—r(ri,- )
Ay = ViPI(iu deIJ fdrwlj rij, €2 W(Q-nij). (3.16)

oDjj

3.2.2 Total volumetric source
The total volumetric sourc®; is still unknown. Apparently, the total volumetric source

depends on the incoming fluxes at the bounding interfaces and the external volumetric
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source. Two approaches generally can be used to dealQuitin the first approach, we
begin with making a guess @J;, then we can solve the linear system 3.12. In the next step,
we use Eq. 3.2 and Eq. 3.14 to calculate the volumetric sdQyc&hen we can solve for

the angular flux using the updat€¥l and repeat these steps until the result is converged.
The iterative procedure is straightforward, but it is nfitogent for regions with a high
charge-exchange fraction. The alternative way is to identify the relation between the total
volumetric source);, the incoming fluxgi, and the external volumetric sourgg,,.

Starting from Eq. 3.14, we obtain the total volumetric source inigell

Q = fdrq(r) fdr( B(r) + e’“)

_ ai ,q(r’) exp(=2¢|r —r’|)
=S Xt+fdl‘25 fd it 1P (3.17)

exp( Zelr —rsl)
Ir —rgf?

+ f dSyn (s, ©)

oh;

Q- n_)].

Expandingyi, and making use of the flat collision source assumption, the total volu-

metric source can be written as

Q =S+ Q2 s tfd fd,exp(—Etlr—r’l)

A |r —r'f?

exp(=2i|r - rk.l)
+%;r DfdrandSk.wkl( d, Q)= = (@)
. ady (3.18)

= S:ext+ Qi GPL; + Z rk,iCi PZE;
k,nv

= S:axt+ Qi Ci(l - PO,i) + Z Fk,iCi PZE;,
k,nv

wherePl; andc; are the same as those defined in Eq. 2.21a and 2.22. ThHmo# PZE;

is

exp(=Z;|r — rI
P2y =5 [[or [ aswin) p(l T .. (319)
- k|
DI aDkI

Exchange the order of the integrals in Eqg. 3.19, then change varidblesR?dRd,
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so we can find the integrals parallel to the neutral path can be performed analytically,

’ 3 eX _2 r r ]
P2y =thdrfd5kilﬂﬂ,i(rki,9) P3| al) (- ny)

D ey |I'— k||
il
—Ztfdsklff—dﬂlﬁk.(rkl,ﬂ)exl)(—z—ng)(ﬂ'nki)
D
Z:tl(rk|’¢)
dSq | dQy, I(r ,,Q)[l ex ( )}(Q-n )]
ankl kf kit K sing ‘ (3.20)

= Sy <l//E,i (i @)y, (1, Q)>
—Zfdsk.fdsn @ nll)wk:i(rki,g)exp(_zt|ril_rkil)(g‘nki)

Irir — il
0D by

= 0o — Z Tlnk:?
[

Substitute Eqg.3.20 into Eq. 3.1Q; can then be written as

xt + Z (6n '0 T|nk:?)c' rE:i
Q=

T-od-Fo) (3.21)

To better understand the physical meaning of Eg. 3.21, we expand theﬁﬁ%

as 1+ ¢(1 - poi) + [Ci(1 — poi)]? + ---. The first term of Eq. 3.21 is the sum of the
external volumetric source and its progenies. Realizingkﬂ)éﬁn/o -2 Tlnkj?)cll"“ is the
difference of the total incoming partial currents and the’:otal outgoing uncollided patrtial
currents crossing all the bounding surfaces, the second term turns out to be the sum of the

first collision source, the second collision source and so on.

3.2.3 Final balance equations

InsertingQ; from Eq. 3.21 into Eq. 3.12, finally we end with the final balance equations,

=> Z TR+ > > ((sn,o - Z T,“k:?) ITGPAD +SLPAL.  (3.22)
k k n
As in the original TEP equations, Eq. 3.22 states thattfi®e moment of the partial

current from region to regionj, I s is the sum of three contributions:
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1. The sum of theY-th moment of the total partial current from all the adjacent regions
k into regioni, times the probabilityTif‘l'(:rj‘ that a neutral emitted from regidnin
momentn’ is transmitted across regiorno regionj in momentn without a collision

within regioni.

i,k—l

2. The sum of the collided neutrals from all the adjacent reglo@(énro - T.”'—’O),
n |
times the fractiort; that the collision is a charge-exchange scattering, times the prob-
ability PiA] j that a neutral produced uniformly and isotropically in regi@scapes

from regioni into regionj in momentn.
3. The sum of the external neutrals born in regiotimes the probability that these
neutrals or their progenies escape into regiammoment.

Also as in the original TEP equations, an outgoing partial current moment from a region

is coupled only to all the incoming partial current moments from its contiguous regions.

3.3 Properties of the orthogonal conditions
The orthogonal conditions 3.6 and the inner product defined in Eq. 3.7 appear unfamiliar,
however, they have the following properties.
1. The 0-th moment of the angular f|l]“)&- is the exact total partial current from region
i to regionj;
2. The orthogonal conditions 3.6 guarantee the particle conservation at each interface;

3. The codficients defined in Eq. 3.9 ensure the expansion 3.10 to be the best approxi-

mation.

The first property is quite obvious. Inse&rﬂj = 1/nS;; into Eq. 3.9, then

1
FEj:ﬂSijdeij f dﬂazp(r”,g)(g.nij)

ahyj Q-njj>0

:dei,- fdglp(r”,g)(g-ni,-).

dDhjj Q-njj>0

(3.23)
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Compared with Eq. 3.11, it can be seen that the 0-th moment of the angular flux is the total
partial current from regionto regionj.
Actually, the particle conservation relations have already been derived in the previous

section. Rewrite the 0-th moment of Eq. 3.22, Eq. 2.23 and Eq. 3.20 as following,

HEWIETEDN) ((5 -¥ T,nkzs) GPAL + SLPAD,  (3.24)
k k n
Pli + Po; = 1, (3.25)

P2y + Z T = 6o (3.26)
Eq. 3.24 is the particle balance equation over interfdde Eq. 3.25 states that the sum

of the volume-volume collision probabilities and the volume-surface escape probabilities is

equal to 1; Eq. 3.26 represents that the sum of the transmission probabilities (equivalently

the surface-surface escape probabilities) and the surface-volume collision probabilities is

eqgual to the total particles entering through a given interface, which is 1 for the 0-th moment

or O otherwise.

The third property means that, for all possible expansions in subspace

Yy = {lp” In = , N}, the expansion 3.10 is the best one. It is equivalent to

N N
<wi,,- (r.Q) - > TNyl (. Q) lwi,,- (r.Q) - > I, (r,sz)>
0 0 (3.27)
< <wi,,- (@) - > il Q) ‘wi,j (r, @) - > Xl sz)>, for x; € R
n=0 n=0

The proof is quite simple: we begin with defining the norm between the original angular

flux and the expansion approximation as

N
dy = J{wi,j (r.Q) - > I (r, Q)
n=0

Apparently,

N
vy (r, Q)= ) Tl (r, Q)>' (3.28)
n=0

N N
o = (i) -2 T (ullgig) + > (ns, . (3.29)
n=0 I

n=0
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In order to makedy is the minimum, it must have

odk =0 n=20 N (3.30)
6r|rjj - ) - b ’ . .
So we can easily have
I} = 1S <¢Rj|¢’i,j>
3.31
=7TSij deij f dglﬂlnj (rij,Q)lp(rij,Q)(Q-nij). ( )
oD;jj Q-njj>0

This means that, if we choose expansionfioents as defined in Eqg. 3.31, the expan-
sion 3.10 is the best approximation in subspdge The higher order an expansion, the
better the approximation. It should be mentioned that the ryya defined as the integral
over the entire interfac&D;; and the whole 2 solid angle. As a resultly is a parameter
describing the global behavior of expansions. In slab geometries, transmission probabilities
are also an integral over ther 2olid angle. So the higher the expansion, the more accurate
the DPy approximation. However, the 2D transmission probabilities defined by Eq. 3.13a
are an integral over a part of ther 2olid angle. Thus, for the transmission probability
between a given pair of interfaces, the error may oscillate as the order of the expansion

increases. But eventually, it will diminish if the order of the expansion fscently high.

3.4 DP; and DP, approximations

Until now, the only approximation made is the flat collision source assumption. So, if each
computational cell is diiciently small compared to the neutral mean free path, calculations

of the new TEP method approach to the exact solutions. However, for practical reasons,
we cannot use an infinite number of representation functions and must truncate the series
at a finite numbeN. The choice of the representation functions is almost arbitrary except
subject to the orthogonal conditions. The simplest approximation for angular fluxes is
to assume that they are isotropic over the inward hemisphere and uniform on the entire
interface as was done in the original TEP method. This has been proven to be inaccurate

for some cases. To overcome this limitation, the more sophisticated angular representation
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Figure 3.4. Geometry for angular representation functions

functions will be presented in this chapter. Alternatively, subdividing thedid angle

into small cones and piecewise-linearly interpolating is also possible.

3.4.1 Construction of theDP; and DP, representation functions

Naturally, we first consider an isotropic (constant) representation function, then linear and
quadratic functions. So the O-th representation function can be 86t asl. if ;; is the

angle between vectd® and the z axis¢;; is the angle between the interface normgal

and the projection of2 onto thex — y plane, as shown in Figure 3.3. A linear function

dependent o® would be like the following form,
f(Q) = a; sind;j singi; + a, sind;; CoSg;j + a3 Cosk;;. (3.32)

Since the function cag; violates the symmetry in the z direction, which requires that
f(m—6ij, ¢ij) has the same value &&;;, ¢;;), its expansion cd&cient must be zero. There-
fore ¥, = sing;j sing;; and'¥, = sing;; cosg;;.

Similarly, a quadratic function dependentQcan be written as

f(Q) = QTAQ = a]_Sianij SII’]2 ¢ij + ay Slr'l2 Qij COS2 ¢ij + ag COS2 Qij
(3.33)
+ ay Sirf 6ij singij COSg;j + as Sind;j Cosk;j Sing;j + 8 SiNd;j COSY;j COSe;;.
Since the sum of the three diagonal terms is equal to 1, only two of them are inde-
pendent. The terms sff) cos#;; sing;; and sing;; coss;; cose;; also violate the symmetry
in the z direction. So the acceptable quadratic representation functiod, arecos 6,

Ve = sir? i sir? bij and¥g = Sir? bij Sin(bij COS¢ij .

39



However, these representation functions are not orthogonal. We use the following strat-

egy to obtain the orthogonal representation functions.

1. If ¥, is not normalized, we sequj = 1/ \(¥nl¥n)/7SijPh.

2. If ¥, is not orthogonal tc{np{j'jln’ =0,---,n-1}, we set

n-1
Ui = P = > TSIV, (3.34)
n’=0
Following the above procedures, we obtain the orthogonal representation functions,
1
'7[’| J(rlj’ Q) (3358.)
IJ
Ve (rij, Q) = 2 sme.J sing;j, (3.35b)
Sij
\/é
w?(rij, Q) = sme., cosgij — 2V2u?,(rij, Q), (3.35¢)
2 2V2 15
Uiy, @) = ————sin 6 - wf-(rij,ﬂ) - ——y?(rij, Q) (3.35d)
J \/_ﬂ Sij Vi V17
3+3d
v (i, Q) = 5 Sir 6, sir? ¢yj — \ﬂ//”(r.,, Q) (3.35€)
3\/_7 3x/_4
l//u( IJ’Q) lr//|1( IJ,Q)
3 . :
woi(rij, Q) = \/TTS., sin? 6, sing;; cosg;; — ﬁw%j(rij,ﬂ)- (3.35f)

Representation functiomﬁj(e, @) is the isotropic termDPy); Functionswﬁj(e, ¢) and
l//fj (0, ¢) represent the linear termBP,); Functionswfj(e, ®) , ¢i‘fj(0, ®) andwfj(e, ¢) are
the quadratically anisotropic functionBP,). It also should be noticed that this choice
implies the angular flux is uniformly distributed over each interface because these repre-

sentation functions are independentrgn

3.4.2 Transmission probabilities
A direct numerical integration of the transmission probabilities in Eq. 3.13a is very time-
consuming. Moreover, the singularity @f = ry, if the interfaces)D;; anddDy; are ad-

jacent, will incur extra troubles. The best way to overcome thiscdity is to change
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Li
Figure 3.5. Geometry for calculation of transmission probabilities

variablesdQ = dS;;(Q - nij)/Iri; — rijl?, solri; — ri;|*> appears in both the numerator and

denominator and can be canceled out. The transmission probabilities can be rewritten as

2 Lki Pmax .
Tﬂ:?, = Ef kaif cosyy - Kisz (Zd (X, ¢ki)) dewis (3.36a)
I $min
Lki $Pmax ) )
TOF_,l, = E dmf singij cosyy - Kia (Zd (X, ¢xi)) dewi, (3.36b)
| $min
Lii Pmax ]
TR =—— d X f CcOSpii COSyij - Kig (Ztl (Xai» ki) depx (3.36¢)
ﬂLk' 0 Pmin
- 2V2T5S,
Lki Pmax . .
T = E dmf singyi Cospyi - Kia (Zel (X, ¢xi)) deiis (3.36d)
I $min
Lki $Pmax ) . .
Tho = E dmf singi; singyi cosyyi - Kis (Z4l (X, ¢ki)) dewi, (3.36e)
I $min
N 12\/_ Lii Pmax ) .
T2 = L kaif COSyij SiNgxi COSpyi - Kis (Zil (X, i) dewi - (3.36f)
| 0 $min
-2V2 T,lk:fj,
Lii Pmax .
T.Zk_f, = — ka.f cog ¢y - Kia (Zel (Xui» ¢xi)) A (3.369)
ﬂLk' 0 $min
- 2V2T5S,
. 12\/_ Lii Pmax ] ]
T.Zk_,lJ = kaif singij o ¢y - Kis (24l (X, ¢ki)) Ak (3.36h)
ﬂ-Lki 0 $min
- 2V2T8 2,
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Li Pmax
TR2 = e f kalf cospij COS ¢y - Kis (Ztl (X, ¢ui)) depi (3.36i)
! ¢

min

— 22 2T22% - 22 21572 - 8150,

whereL;; is the length of the interfacgD;;, |, #min andgmax are defined in Figure 3.5.

All the transmission probabilities are expressed in terms of the Bickley-Naylor func-
tions. For theDPy approximation,the number of transmission probabilities which must be
numerically calculated for each pair interfaces is only 1; while for@iRe or DP, approx-
imation, this number becomes 9 and 36, respectively. Though the higher order approxima-
tions generally enhance the accuracy of the TEP method, the order of the approximation
higher than 2 is rarely used for 2D geometries, because the number of transmission proba-

bilities significantly increases as the order of the approximation increases.

3.5 Boundary conditions
3.5.1 Vacuum boundary

For vacuum boundaries, neutrals will not be reflected back, so the reflected flux at the
interfaced Dy

Yiwi(r, Q) =0, Q- Ny >0, (3.37)

wherenyy; is the inward normal at the boundary.
Since the flux expansion, in tH2Py approximation, is made only in a half-space, we

easily obtain

FEWI - ﬂSkW,i <wEw,i(ra Q)llﬁkw,i (I‘, Q)) = O, n= O, T, N. (338)

3.5.2 Albedo boundary
Since neutrals emerging from an albedo boundary is almost isotropic, the angular flux at

this boundary is

Qpl f dQ,(Q, . ni’p|)lﬂi,p|(r, Q')
Q’-ni,p|>0

Ypi(r, ) = , (3.39)

T
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whereqy, is the albedo cdécient,n; , andny; are the outward and inward normals at the
albedo boundary, respectively. So

3.5.3 Wall boundary

As mentioned in Chapter 2, neutrals reflected from the material wall segment are com-
posed of two components: fast and slow neutrals. Both of them are isotropic in the inward
hemisphere. Like the albedo boundary, the reflected neutral angular flux can be expressed
as:

[Rav+ (1 -Ra) i [ dQ(Q - nijon)Wisonlr, Q)
Q' -nj jw>0

Yiwi(r, Q) = , (3.41)

T

whereRy, is the patrticle reflection cdicient, f;gVS is the fraction that particles are perma-
nently trapped inside the wall material ., andny,; are the outward and inward normal at

the albedo boundary, respectively. So

i [Rav+ (1 - Ra) Tl T N =0;
Diewi = Skwi (WQW,i |lﬁkvv,i> = (3.42)
0, n> 0.
3.5.4 Mirror boundary
The mirror boundary means that neutrals are reflected at the specular angle. Actually, the
mirror boundary doesn’t exist for the neutral transport in the plasma edge. However, for
some problems with perfect symmetry, there exists an interface, on which the outgoing
angular flux at a given angle has the same magnitude as the incoming angular flux at the
specular angle. So for these cases, we just need to deal with half of the system by treating
the interface as a mirror boundary.

For a mirror boundary, the reflected angular flux is
"/’kW,i(ra QI’) = l/’i,kW(r s Q)’ (343)
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Figure 3.6. Geometric relations betwee2 and Q,

where

Qr =Q - 2(9 . ni,kw)nhkw. (344)
Assuming the representation 6 in the X(njkw), Y(0Dikw),2) coordinate system is
(61 kws Pikw), SO
Q = SiNG; kw COSP; kwex + SING; o SINP; k) + COSH; ke, (3.45)
and
Q; = —SiNG, kw COSP; kwex + SING; kw SINP; W8 + COSH; . (3.46)

So the representation ©f; in the X(n;kw), Y(0Dixw),2) coordinate system i®(w, 7 —
dikw). However, the reflected flus,;(r, ) is expanded in thex((Nkwi), Y (0Dkwi),2)

coordinate system,

Q= sin@i,kw COSQ; kwex — Sine?i,kwsinqbi,kwey/ + COS@i,kWeZ. (347)
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Assuming the representation & in the X'(Nkw;i), Y (0Dkw;),2) coordinate system is

(gkw,i’ ¢kwi), then

ka,i = Gi,kw, (3483.)

Brwi = —Pikw- (3.48b)
Inserting Eq. 3.48 into representation functions 3.35, we will find out

Uik ), N=0,2,3,4 even moments;
Vi (Nhwi> Rr) = (3.49)
Ui i, ), n=1,5 odd moments

Combining Egs. 3.43 and 3.49, we immediately draw the conclusion that

IMw N=0,234 even moments;

m. = (3.50)

Kw,i
—ITw» N=15 odd moments

3.6 Symmetry properties

Due to the fact that transmission and escape probabilities are multi-dimensional numeri-
cal integrals, the evaluation of these probabilities is computationally expensive. Symmetry
relations may be employed to substantially reduce the amount of calculations need to eval-
uate these probabilities. There are two kinds of symmetry relations: reciprocity relations
and conservation relations. The reciprocity relations result from the symmetry of the opti-
cal length,z(r,r’) = =(r’,r), and the inherent symmetries of the representation functions,

1i(r, Q) =yt (r, ) . The conservation relations are associated with the general proper-
ties of the Boltzmann'’s linear equation.

In general, the reciprocity of the Green’s function can be used to derive the reciprocity
relations between all kinds of probabilities, and the particle balance equations usually can
be employed to obtain the conservation relations.

We should keep in mind that the representation functions are defined in the local co-

ordinate systems. Assuming the coordinate€oin the outward half-space i%(, ¢i;)
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Figure 3.7. Geometry for symmetry between representation functions

and the coordinates ofQ in the inward half-space i/, ¢;), then, from Figure 3.7 we

immediately have the following relations,
Hji = - Qij, (3513.)
Pji = ¢ij- (3.51b)

Substituting the previous equations into the angular representation functions, we obtain

the following symmetry relations,
yiir, @) =yhi(r,-@) n=0,---. (3.52)

3.6.1 Reciprocity relations

Noting the symmetry of the optical length(r,r’) = 7(r’, r), which means the attenuation
of a neutron traveling fromtor’ is the same as the attenuation of a neutron traveling from
r’' tor, it is easier to obtain the reciprocity by a direct comparison.

Ti?l;:?zﬂsijfdsijfdskilﬂﬂj (rij,Q)’ﬁrk]:i(rki,Q)' (3.53a)

ahyj 0Dy
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EXP(—T(rij,rki)) (
I —rij[2
Tlnj——)?k = nSik fdsik fdein;((rik,Q,)lﬁ?’i(rji,ﬂl)' (3.53b)
dDik dDji
eXp(—T(rik, rji))
Irji — ril?

Q- nij)(Q - Ni),

(- ny) (- nj).

Recall thatQ is the direction fronr’ to r and thatQ’ is the direction fronr tor’, so
Q' = -Q. Changing dummy variables and using the symmetry relations 3.52, we obtain
the reciprocity relations,

SiTICh = ST, (3.54)

3.6.2 Conservation relations
Starting from Eq. 3.16, we rewrite
nS exp —7(rij,r)

47T||’ - rij|2
0D,J

To integrate along the path of neutrals traveling, we change varidbledsR*’dRd’. It

yields
Rmax —
P0| 7T IJ fdsl] fdﬂlf dRﬁwlj( ijs )%(inj)
6[’" (3.56)
- s, f Ay (ri, ~€) [1 - exp(-ZiRa)] (€ 1),
aD;;
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then changing variabled)’ = dS;(Q’ - n,)/|ri — rijlz, we have

S ’ / ’
PoiA 4V.U fdsj,fdgwj, ri. ) (Q - nj)

dDj

S ‘o, / ,
_4V:Jztfdsnf%mnz)lﬂ“(rji,ﬂ)eXp(—Ztlri—rjil)(ﬂ 'nji)

aD]I dh;
4V Zt 5”0 Z”S'k fdsu fdslk(ﬂ Nik) (3.57)
oDji dDik
, , eXp(—ZtWik - rjil) )
¢T| (rji,ﬂ)l//?,k(rik,ﬂ) |rik_rji|2 (Q 'nji)]

4\8/: i, [6”0 Z T'n’:ok]

Multiplying Eq. 3.57 with a factor ¥;Z;/S;; makes its physical meaning more obvious:
the sum of the escaped particles and the collided particles is equal to the total incident
particles.

Either for the one-speed or multi-group TEP method, these reciprocity and conservation
relations can greatly increase the computatioffadiency. However, for the current version
of the TEP method, where we make the so called local ion temperature approximation (i.e.
the neutral energy is equal to the local ion temperature), neutrals entering ffi@neofi
interfaces have fierent mean free paths because of thdfiedent energy. Therefore, these

symmetry relations cannot directly be exploited.

3.7 Further simplifications

Since the evaluation of escape probabilities are still expensive for the TEP method with
the local ion temperature assumption, additional approximations can be made to achieve
computational fliciency. Assuming the angular flux at an interface due to the volumetric
sources is isotropic, we can ignore the anisotropic flux such as the second and third terms

of Eq. 3.22,
IWESY Z TR+ > ). (@m - Z Tlnkj?] IGPIAL 6o + ShPiAY60.  (3.58)
k k n
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Actually, this assumption is reasonable for optically thick regions, because the charge-
exchange scattering tends to isotropize the angular distribution of neutrals. This fact can

be proved by the conservation relations,

A > 1 - T« 1
So
n—0
PoiAn| | T2 Tk |
5| = Ay if n>1
Po’iAi’j 1- Zk:Ti,j—>k
~T<x 1L

The maximum ratio of the anisotropic flux to the isotropic flux, due to the volumetric
source in a rectangular region, varying witfia is illustrated in Figure 3.8. The angular
flux is almost isotropic for optically thick regions, while the fraction of the anisotropic
flux increases to 20% for optically thin regions where, however, the total angular flux is
dominantly composed of the uncollided flux. Therefore the error resulting from ignoring
the anisotropic contribution from the volumetric sources has almost no impact on the total
angular flux. The validity of this assumption will be tested with the full version ofiRg

method in the next section.

3.8 Testing the validity of the DPy approximation

During the implementation of th®Py approximation, in addition to the flat collision
source assumption, it was assumed: 1) the angular flux distribution at the interfaces can
be expanded in terms of the linearlp®;) or quadratically DP,) angular representation
functions in each half space; 2) the angular flux at the interfaces is uniformly distributed;
3) the angular flux at the interfaces resulting from the volumetric sources is isotropic for
the simplifiedDPy method. The purpose of this section is to test the accuracy de

DP, approximations and their simplified forms.
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Figure 3.8. The maximum ratio of anisotropic flux to isotropic flux, due to volumetric source in a
rectangular region, versesA/4

3.8.1 Test of theDPy methodology in a slab geometry

3.8.1.1 A slab geometry in a purely ionized medium

In order to test the accuracy of transmission probabilities and exclude any other discrepancy
such as those associated with the flat collision source approximation for the calculation of
escape probabilities, we have considered the neutral transport in a purely ionizing medium.
Similarly, to avoid éects introduced by the reflection model, only vacuum boundary con-
ditions are imposed.

The problem shown in Figure 3.9 is a slab composed of seven identical regions. The
width of each regions ia = 0.3m. The model has a uniform background plasma. Vacuum
boundary conditions are imposed on the either side of the slab. An isotropic and uniform
flux of neutral particles with the total partial current of Tdms™ is injected from the left
boundary & = 0). The neutral particles released from the boundary have an energy of

10eV. There are no volumetric sources within the slab.
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Figure 3.9. A seven-region slab with purely ionizing medium and vacuum boundary

After neutrals travel to the next interface, the original isotropic angular flux becomes
peaked in the forward direction. Because it is assumed that more particles are emitted at the
large angles, thBP, assumption has twdlects: (1) over-prediction of the neutral density
in the same region; (2) under-prediction of the angular flux or the partial current at the next
interface. The first @ect results from an over-prediction of the neutral flight time in that
region, however thisféect can generally be ignored for optically thick regions, in which
the neutral flight time is determined by the mean free path rather than by the width of the
region. The second¥ect results from an over-prediction of the neutral attenuation because
these neutrals at larger angles have to travel a longer distant to escape to the next interface.
This fact was demonstrated in a test wkfw = 0.27 < 1. The four diferent curves in Fig-
ure 3.10 correspond to the Monte Carlo (DEGAS), the original GTNEUT cbdRg)(and
the GTNEUT code with th®P, and DP, approximations. The flux distribution at each
interface for the dferent approximations is illustrated in Figure 3.11. It can be seen that
GTNEUT with the DP, approximation slightly over-predicts the neutral densities in re-
gions 2,3,4 because the firgtect is dominant, and then slightly under-predicts the neutral
densities in regions 6,7 because of the over-estimation of attenuation. While the GTNEUT
simulations with thddP; andDP, approximations are almost identical as the Monte Carlo
calculations throughout the entire region because of the more reasonable assumption of the
angular distribution at each interface.

In the second case, we adjust the neutral background plasma propertiesAsal thdl.

When the neutral mean free path become smaller, flieeteof over-predicting the neutral
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attenuation becomes dominant. This causes the neutral densities predictedythe
approximation to be significantly lower than those predicted by the Monte Carlo code, DE-
GAS, in the cells away from the source (i.e., cells 3,4,5,6,7). This result can be observed
in Figure 3.12. Again, GTNEUT with thBP; or DP, approximation predicts the neutral
densities very well for all the cells compared to Monte Carlo. The neutral angular dis-
tribution predicted by the ffierent approximations and its exact value is shown in Figure
3.13. It can be observed that the angular flux becomes increasingly forward-peaked while
traversing regions, and that tbd; andDP, approximations predict this change quite well.

In the third case, we set/1 = 2. The results of the neutral density and the angular
flux profiles are illustrated in Figure 3.14 and 3.15,respectively. Since the neutral flux be-
comes extremely peaked in the forward direction, &, approximation is expected to
significantly under-predict the neutral densities. The calculations oDfeapproxima-
tion are in the excellent agreement with the simulations of DEGAS, because a quadratic
expansion can represent the anisotropy of the angular flux very well. The neutral densities
calculated by théP; approximation are only slightly lower than those calculated by the
Monte Carlo code despite that a linear expansion function canfiatisatly represent the

strong anisotropy at the interfaces away from the incident surface.

3.8.1.2 A slab with a realistic background plasma

The purely absorbing background plasma is highly unlikely to occur in realistic situations.

Actually, the charge-exchange fraction in edge plasmas varies from 0.7 to almost 1. To
test theDPy approximation for the cases with a realistic background plasma, a series of
problems with charge-exchanged sources affér@intA/A ratios have been investigated.

The geometry of the problems is the same as that presented in section 3.7.1.1. The
only difference between the two is that the problems in this section have charge-exchanged
sources. The total partial current of the injected isotropic flux remairia?l#s. The
ion temperature is 10eV throughout the entire slab. Vacuum boundary conditions exist on

either side of the slab.
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Again, there are three regimes of particular interasti > 1, A/A < 1, andA/A ~ 1.

The neutral densities calculated by thdéfelient level approximations for the case with
A/A = 0.26 are shown in Figure 3.16. The calculations of the TEP method witD Eye

DP, or DP, approximation are in the excellent agreement with the simulations of DEGAS.
The good agreement is expected as the result of mitigating the anisotropy of the angular
flux by the randomization of charge-exchange events. The comparisons of the angular flux
distributions at each interface for thefférent level approximations with the Monte Carlo
calculations are presented in Figure 3.17.

If the neutral mean free path is comparable to or smaller than the characteristic dimen-
sion of the interested regions, the angular flux at each interface is almost isotropic because
for this situation the neutral particle flux at a given interface is dominated by the collided
particles from the previous computational region. The fact was demonstrated by two runs
with A/A = 1 andA/A = 2, respectively. The angular flux distributions for thé&elient
approximations are compared in Figures 3.19 and 3.21, from which it is evident that strong
charge-exchange scattering events isotropize the neutral angular distribution. It implies that
the neutral densities calculated by the TEP method with thierdnt level approximations
will converge to the same results. This fact is obvious from the Figures 3.18 and 3.20,
which show the comparisons of the neutral densities calculated by GTNEUT with the sim-
ulations of DEGAS. However, because the flat flux breaks down for these regions, the TEP
method apparently over-predicts the neutral densities for the cells away from the incident
surface. This issue will be addressed by the correction to directionalities associated with

non-uniform collided neutral sources in the next chapter.

3.8.2 Test of theDPy methodology in 2D multi-region problems

As stated in Chapter 2, anisotropies of angular fluxes are driven mainly by the attenuation
of a purely absorbing medium in 1D geometry, while for 2D problems anisotropies are
also driven by the presence of sources with a finite dimension or asymmetric boundary

conditions. The accuracy of the TEP method with th€edent level approximations have
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been evaluated for one-dimensional geometries. The purpose of this section is to test the

accuracy of thédPy approximation for problems with strong 2¥ects.

3.8.2.1 A uniform nine-region problem with a purely ionizing medium

The model considered is a 0.9x10.9 m square region composed of nine identical cells.
The arrangement of cells is shown in Figure 3.22. As in the previous section, a homoge-
neous and purely ionizing background plasma is assumed to exdliedéesentroduced by

the flat collision source assumption. To avoid tlkeets of the reflection model, vacuum
boundary conditions are assumed on the four surfaces of the box. The characteristic di-
mension of each cell i4=0.3 m. an isotropic and uniform flux of unit strength is imposed

on the left boundary of the second cell. Both the injected neutral energy and the plasmas
(ion and electron) temperatures are 10eV.

In the first case considered, the mean free path of neutral particles is set to 1.17 m by
adjusting the densities of the background plasma. Unlike in a slab geometry, the angular
fluxes become strongly anisotropic once they enter into the next regions though the atten-
uation is not very strong in this case. For example, at interface between regions 5 and 6,
neutral particles must be in the northwest direction. Figure 3.23 shows the neutral densities
calculated by the dierent methods versus the region index. SinceDRiRg assumption

fails to take the anisotropy into account, it leads to the under-prediction of the uncollided
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flux for the regions (cells 4, 6-9) away from the incident flux. The over-prediction of the
density in region 5 by th®P, approximation results from the over-estimation of the neu-
tral flight time in this region. Both th®P; andDP, approximations agree very well with

the calculations of DEGAS because of the more reasonable angular flux approximations.
However it should be mentioned that the accuracy of@fg is a bit worse than that of

the DP; approximation compared to the results of the Mont Carlo, unlike for a 1D slab,
where the higher order approximation always agrees better with DEGAS than the lower
order approximation. this counterintuitiveect can, as stated earlier, be explained by the
fact that 2D transmission probabilities are the integrals over a part ofitlselitl angle,

while theDPy approximation is optimized over the whole &olid angle.

In the second case, the neutral mean free path is set to 0.3kiise 1. The compar-
isons of the TEP method (tH2P, or DP; approximation) with DEGAS are presented in
Figure 3.24. The neutral flight time in region 5 is mainly determined by the collision dis-
tance, so the over-prediction of the flight time by (B, approximation is not important.

It can be seen from Figure 3.26 that the neutral density predicted WyRph& region 5 is

in good agreement with the Monte Carlo. For regions 4, 6-9 which are away from the inci-
dent source, th®P, approximation predicts less penetration than DEGAS. DRe and

DP, approximations result in good agreement between the GTNEUT and DEGAS calcu-
lations for the entire region, since they take the anisotropy into account for the calculation
of transmission probabilities.

In the third case, the mean free path is 0.15 m, which is smaller than the characteristic
dimension of each cell. Figure 3.25 is the graphical output of the neutral densities calcu-
lated by the various approximations and DEGAS. It shows that botBEheandDP, do a
good job for the entire region except cells 4 and 6, whilelry predicts less penetration
of the uncollided flux for cells 7-9 than the Monte Carlo code. The discrepancy between
the DPy approximations and DEGAS in cells 4 and 6 is related toy, representa-

tion functions. Recalling from section 3.3 that all tBé¢y representation functions are
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spatially independent, it assumes that the angular flux is uniformly distributed over each
interface. In fact, the strength of the flux at an interface strongly depends on the spatial
variables for short mean free path cases. Taking the interface between cells 2 and 3 as an
example, the flux at the right end is much smaller than the flux at the left end. Obviously,
the neutral particles emitted from the right end have higher probability to be transmitted to
cell 6 than those emitted from the other end. As a result, the assumption of the spatially
uniform flux leads to th®Py over-predicting the uncollided flux from cell 3 to cell 6. A
similar explanation can be applied to cell 4. For i@, approximation, the error produced

by the uniform flux assumption tends to balance with the under-prediction introduced by
the isotropic assumption, consequently the agreement betweBrPghegpproximation and

DEGAS can be seen clearly in cells 4 and 6.

3.8.2.2 A uniform nine-region problem with realistic background plasmas

In order to test the accuracy of tiEPy approximations for 2D geometries with realistic
background plasmas, the same geometry as in the previous section is used. The only dif-
ference is that in the problems of this section the charge-exchange fraction is set to 0.9.
Vacuum boundary conditions are imposed on the four surfaces of the box. An isotropic
and uniform flux with unit strength is injected from the left boundary of cell 2. The en-
ergy of the incident neutrals and the plasma temperature are 10eV. Again, three cases with
AJA =0.26,A/1 =1 andA/A = 2 are tested.

The comparisons are presented in Figures 3.26-3.28, respectively. For the case with
long mean free path, similar results are obtained as those with a purely absorbing medium
because of the domination of the directly transmitted flux. In the cagg/ bf= 1, the
DP, approximation actually agrees the best with Monte Carlo. This is due to the fact that
for this situation the errors of the isotropization and the directional escape probabilities
almost cancel with each other. However, the cancelation is broken fdbfheor DP,
methodology because of its higher order approximation.

For the case oA /A = 2, as a result of the isotropization of charge-exchange events, the

65



920 = V/Vpue 602 Yum [opow uoibai-aulu e Jo} Alsuap [ennau Jo uosuedwo) "9z s ainbi4
uolbay

6 8 L 9 S 14 € [ T
_ _ _ _ _ _ _

Areunoq wwnaep
6 0=X2
92'0=\/V

Lo
L
—

‘dq --A--
'da —v—
on_o -@ -

Svodd —m—

66

(SLU/#) AlIsuap jennapn



T = V/VPUe 602 Yum [pow uoibai-aulu e Joj Alisusp [esnau Jo uosuedwo) "2z S ainbi4

uolbay

8 L 9 S 14 € [ T

Areunog wwnoep
6°0=X2

Lo

/a\\ N

‘dq --A--
'da —v—
°da -e -

Svodd —m—

L
—

((Ww/#) Ausuap [ennaN

67



Z = V/VpPUe 602 Yum [apow uoibal-auiu e 1oy Alisusp [esnau Jo uosuedwo) gz s ainbi4

uolbay

Areunoq wwnoep
S~ \ 6°0=X9

¢=\\V

‘da --A--

'da —v— i

°da -e - -
Svyo93d —m—

9-d1

Lo
L
—

N
L
—

e-a1

(W/#) Ausuep [eansn

68



calculations of the TEP method with thefférent level approximations approach the same
results. However, all of them over-predict the collided flux because of the flat collision

source assumption.

3.8.3 Test of the simplifiedDP; methodology
In Section 3.7, a simplified version of tlXPy approximation was proposed. Essentially it
is assumed the collided neutral flux at an interface is isotropically distributed. In order to
test this approximation, the nine-region problem shown in Figure 3.22 is used to compare
the calculations of the full and simplifiddP; approximations. The model problem has a
uniform background plasma and vacuum boundary conditions at the four external surfaces.
The plasma ion temperature is set to 10eV, the charge-exchange fraction is adjusted to be
0.9. An isotropic and uniform flux with unit intensity is injected from the right boundary
of region 2.

In the first case, the mean free path for neutrals=i%$.17 m, resulting im/1 = 0.26.
In Figure 3.29, the comparison of the predictions of the full and simpl@iBg approxima-
tions is presented. Since the mean free path is much longer the characteristic dimension of
the regions of interest, the flux at each interface is predominantly composed of the uncol-
lided neutrals. The discrepancy between the full and simplified approximations is expected
to be negligible as shown in Figure 3.29. In the second case, the mean free path for neu-
tral is 2=0.15 m, resulting imM\/A = 2. For optically thick regions, the collided neutrals
play a more important role. However, charge-exchange events tend to isotropize the neutral
distribution function. As a result the simplifiddP; approximation should not introduce
any extra significant errors. As we can see from Figure 3.30, the results of the simplified
approximation are almost the same as those of théfajl approximation. In the last case
the ratioA/A is set to equal 1. The comparison is presented in Figure 3.31. As in the
previous two cases, the simplifi€&P; approximation is stlicient to represent the angular

distribution of neutrals crossing interfaces.
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3.9 Conclusions

TheDP, andDP, approximations have been derived and implemented to take into account
the anisotropy of the angular flux at each interface, driven by the presence of sources,
boundaries or attenuation. The angular flux crossing each interface is assumed to be lin-
early or quadratically distributed over both the inward and outward hemispheres, respec-
tively, in these approximations. The moment of the exiting partial current crossing each
interface is coupled to all the moments of the incident currents from the adjacent regions
via transmission and escape probabilities. To improve the computatiicaecy, an ad-
ditional assumption that the collided flux is isotropically distributed at each interface was
made to further simplify th®Py method.

In order to exclude the discrepancies introduced by the assumption of the uniform
charge-exchanged sources and the reflection model, a number of specially designed model
problems with artificial purely ionizing background plasmas and vacuum boundaries are
exploited to test the accuracy of ti#P; and DP, approximations. This study has indi-
cated that theDP,; approximation significantly improves the agreement with the Monte
Carlo simulations, while there is little advantage to further extend tdtRgapproxima-
tion.

The comparisons of the full and simplifi&@Py approximations have revealed that the
assumption of the isotropic collided flux is a reasonable approximation for all the range of
A/ A ratios considered.

Finally, though the angular distribution of neutral flux crossing each interface can be
adequately represented by th&y expansion functions, the error produced by the assump-
tion of the uniform charge-exchanged sources leads to an over-prediction of the collided
neutrals, due to the failure to take into account the predominant escape of particles back
across the incident surface for optically thick regions. The approaches to addrefe¢he e

of non-uniform collided neutral sources will be presented in the next chapter.
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CHAPTER 4
CORRECTIONS TO DIRECTIONALITIES

4.1 Introduction

The flat collision source approximation assumes that charge-exchanged or elastic scattered
sources, which are responsible for the collided term in the balance equations of partial cur-
rent moments, are uniformly distributed in each computational cell. Detailed comparisons
with Monte Carlo indicate that the flat collision source assumption is a good approxima-
tion for optically thin regions, where attenuation can be neglected. However, if neutrals can
penetrate into the inner plasma region, whose characteristic dimension is much larger than
neutral mean free path, the charge-exchanged or elastic scattering sources are preferentially
located near the incident surface. In this case the flat collision source approximation leads
to an over-prediction of collided neutrals in the forward direction.

Since the TEP method is based on a particle balance over each computational cell,
the problem of interest can be broken into a number of smaller problems, in which the
collided neutral particle current distribution leaving each cell is determined as a function
of the neutral partial current entering the cell. With each small problem solved, total and
directional escape probabilities are determined, then a global calculation can be carried out
to obtain the partial current moments at each interface. With the partial current moments
known, a local calculation can proceed to determine the neutral densities or ionization
rates. A variety of techniques such as the discrete ordinance, the collision probability
method, the dfusion theory and the Monte Carlo method can be utilized in evaluating
escape probability matrices. The choice of methods depends on the physics of the problems
under consideration and the level of approximations.

In this chapter, the following three approaches will be proposed and tested: (1) subdi-
viding optically thick cells; (2) expansion of collision sources; and (&udion approxi-

mation.
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Figure 4.1. Schematic diagram of subdivision of an optically thick region

4.2 Approach I: Subdividing optically thick cells

The easiest and most straightforward way to addréfests of the non-uniformity of col-

lided neutrals is to subdivide an optically thick region intdfsiently small cells, within

which the charge-exchange sources can be approximated to be uniformly distributed. The
following strategy of dividing an optically thick region shown in Figure 4.1 can signifi-
cantly improve computationalfiéeciency. First, any polygon witim sides can be divided

into mtriangles. Each triangle can then be sub-divided into identical smaller triangles as
illustrated in Figure 4.1. Finally, TEP balance equations for partial current moments are

applied to each smaller triangle.

ry, = Z Z TN, + Z Z [6n 0 - Z T,”k:?) IY,GPIAY 60 + ShyPiAl 0. (4.1)

Since all the small triangles within a large triangle are identical, the problem of interest
is subdivided into a large number of cells—but only m cell types. If the plasma properties are
uniform, only one transmission and escape probability matrix is required to be evaluated
for each cell type. Therefore, the computatiorfé&e to numerically evaluate transmission
and escape probability matrices is substantially reduced. However, this technique usually

results in a large matrix for the final linear system. For example, in order to make the flat
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collision source assumption valid for a computational region with = 3, it is required

to subdivide this region into more than 100 subregions with = 0.3. Furthermore, as
stated in the previous chapter, the finer the grid, the higher ordddyeapproximation
needed. The number of transmission probabilities for each pair interfaces increases as
N4 as the ordeiN of an approximation increases. The requirement to use higher order
DPy approximations makes it unattractive to implement this method for a realistic tokamak
plasma configuration.

To overcome the diiculties in evaluating expensive high order transmission probabil-
ities, an alternative way is to apply the collision probability method to subregions within
each optically thick region, so partial current moments are be used to link the solutions in
the cells of an optically thick medium. This method is called as the multi-cell interface cur-
rent method in neutron transport theory. However, the multi-cell interface current method

results in a dense collision probability matrix within each optically thick region.

4.3 Approach Il: Linear expansion of collision sources
4.3.1 Balance equations

To formulate TEP balance equations with an expansion of collided neutral sources we begin
with the two equations relating the angular flux leaving a ¢dlt, ), and the scalar flux

inside the cellg(r),

U(r, Q) = Yin(rs, Q) exp(—7(r,rs)) + fRS dIM exp(—7(r,r —1Q)), (4.2)
0 47T
3 ,q(r’) exp(==(r,r")) , exp(=7(r.rs)) .,
o(r) = fdr y T + fdswm(rs, Q)—|r rr (-n). (4.3)
Di oD;

To solve the above system of equations, we expand the incoming and outgoing angular

fluxes at each interface and the scalar flux within each computational cell. We write

w(r, Q) = Z I yh(r, @), (4.4)

i,j,n

o) = ) V{47 (r). (4.5)
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Wherel,//i’jj(r,ﬂ) and ¢!'(r) are the locally defined angular and scalar flux representation
functions,l‘{jj and @ are the expansion cfiients associated with these representation

functions. The expansion functions satisfy the following orthogonality conditions,

’ 6n 6"/6/
(Uit Q) = =, (4.6)
i
4 600’5ii’
(o7 (O).u () = =5 (4.7)

whereS;; is the area of interface between cellend j, V; is the volume of cell, and the

inner products are defined as

<w1(r,n)|wz(r,sz)>:fdsfdszwl(r,sz)wz(r,sz)mn+|, (4.8)
R2 A

@1 (0), w2 (1)) = f dr (1)), (4.9)
R3

Making use of the orthogonality conditions 4.6 and 4.7, expansiofficeats of the

angular and scalar fluxes can be expressed as
7y = 7Sy (u(r, Qu(r, @), (4.10)

O = Vi (¢7(r), ¢(r)) . (4.11)

If we choose the zeroth representation functions to be a conﬁf?m,the total partial
current fromi to regionj, and®? is the total scalar flux in region

To obtain the n-th moment of the angular flux from regitmregionj, we multiply both
the sides of Eq. 4.2 by a fact@Sija/r{jj(rij,Q)(Q - njj) and expand, and the volumetric
sourceq(r), then integrate the equation over the interfdBg and the solid angle/2 The

result is
M= ) TRTI) + > PErQr (4.12)
k,n o

WhereTi’]’(jj‘ is the generalized transmission probability defined in Eq. 3.BE; is the

generalized escape probability, which is the probability that neutral particles emitted in
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regioni and in moder will escape into region in moden without a collision within region

T( 1> )
E”"—nS.,de.,fdr;b,J [ Q) 6 (r )eXp( ! )(Q-nij), (4.13)

aDj;

andQ is the n-th moment of the total volumetric source, so

Q" =Vi((¢i'(r).a(r)))

(4.14)
=2 + S},
where we expand the external volumetric SOUBEE.
Si' = Vi (¢ (). ST(r)). (4.15)
Substituting Eq. 4.3 into Eq. 4.11 yields
= Vi(¢'(r). 6(r))
q(r') exp(=7(r.r"))
_vfdrfdr #0(r)? Zar —1E (4.16)
+vfdrfdw“(r)lp.n(rs,g)mgr';s»(g.n_).
Di abh;
Expandingg(r’) andyin(rs, £2) in the above equation, we have
= Vi(#7(r), ¢(r))
o exp(-z(r.r’))
SN f dr f e ()0 (1) .
VY fdrfds,k¢, (N (i, 2 )ex'o( Tgr l;'k))(ﬂ-nki).
km B, by
Define
ad’ eXp(—‘r(r, rl))
P1; V.fdrfdr () (r’ )—47r|f TR (4.18)
and
P =i [ar [ dsmerouiin 2B @ ) (4.19)

Dij 0Dik
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P1; is the generalized volume-volume collision probability matR®, is the general-
ized surface-volume collision probability matrix. The higher moments of these matrices
have no direct physical meaning, Bt is the probability that neutrals emitted isotropi-
cally and uniformly in region will make their first collision within regiom, and similarly
P22 is the probability that neutrals injected isotropically and uniformly from the interface
0Dik will make their first collision within region.

Then Eqg. 4.17 can be written in a more concise form,
To®f = > GPLQY + > 6P, (4.20)
o’ k.m

Noting that the moment of the volumetric flux is also related to the emission density,

then inserting Eq. 4.14 into the above equation, we obtain, after some algebra,
Z (I = GPL),, Scx®” = Z ¢ P1Y'SY + Z cP2mrT, (4.21)
o o k,m
wherel is an identity matrix with elements
loor = Gaar- (4.22)

Solving the collision rate from Eq. 4.21, then substituting into Eq. 4.12, we obtain the
balance equation,
= Y TETSN+ > GPE [0 -cPL)Y]  P2TY,

k,rv a,a’ Kk,

(4.23)
+ Z PE (1 - cPL)™]

ada

where(l — ¢;P1)™? is the inverse matrix of — ¢;P1, and we made use of the following
identity.
I +( -cPL)tcPL =( -cPL)™. (4.24)
By eliminating the collision rate from the particle balance equation, the outgoing flux

moment from a given region is explicitly expressed in terms of external volumetric sources
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and all the incoming flux moments from all the contiguous regions via generalized trans-
mission probabilities, escape probabilities, volume-volume and surface-volume collision
probabilities.

The right hand side of Eq. 4.23 consists of three terms. The first term is the uncollided
flux directly transmitted from all the adjacent regions. The second term represents all the
neutrals entering from the adjacent regions with one or more collision within regiod
then exiting into regiorj. The third term corresponds to the contribution from the external
volumetric sources.

Since expansion representation functions are locally defined, all probability matrices
for this section, like those in thBPy balance equations, are sparse. However, within
each region, surface-volume and volume-volume collision probability matrices are dense
because of full coupling between thefdrent moments of collision rates. The numerical

steps to solve Eq. 4.23 are:
1. Define representation functions of angular and scalar fluxes.

2. Evaluate all transmission probabilities, escape probabilities, surface-volume and volume-

volume collision probabilities.
3. Invert the collision probability matrix for each region.

4. Solve the linear system and calculate the average neutral density using the particle

balance equation.

4.3.2 Evaluation of transmission, escape and collision probabilities

The construction of angular flux representation functions and the numerical evaluation of
transmission probabilities have already been discussed in chapter 3. Since the magnitude of
collision rates (proportional to scalar fluxes) exponentially decrease away from the incident
surface, it seems reasonable to construct exponential-like functions as representation func-

tions. However, noting that the volume-volume collision probabilities in Eg. 4.18 are 5D
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numerical integrals, tremendous computatiorfébre is required to numerically evaluate

the collision probabilities. For reasons of computatiorfatiency, scalar flux representa-

tion functions must be chosen to ensure that some of the integrals in Eq. 4.18 can be carried
out analytically. Realizing that in 2D geometries Eq. 4.18 can be written in terms of the
Bickley-Naylor functions, the integrability conditions requires that scalar flux representa-
tion functions be a polynomial.

A function linearly dependent on spatial variables can be written as
f(X,y) = ap+ ayX + ay. (4.25)

So the linear representation functions afe= 1, ¢* = x andy? = y. Following the steps

in section 3.3.1, we obtain orthogonal linear representation functions,

$(r) = vi. (4.26a)
O G (4.26b)
V, VX2 — X2
$2(r) = — le)p(y_ ) (4.26¢)
Vi (2 - R - ) - (%Y — )2
S Ak oH(r).
Vi (2 = R - ) - (%5 - )
where
[ xdr
x=" v (4.27)
[ xedr
_ 5
=2 (4.28)
[yar
— Dj
V=" (4.29)
[ y?dr
_
y? = v (4.30)
[ xyar
Xy = 2 v (4.31)
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Figure 4.2. Coordinates used in evaluation of volume-volume collision probabilities

To perform the integration of Eq. 4.18 we start by changing variahiles Ar2dArd€,

PLY™ = Vi3, f dr f g (1) (1) o =2 'Z( e &

_ Vi f dr f dArAr?dQg (r)g (r )%

vy fd f dr f do fo ”d9¢i"(r)¢f"(r+"’9)e’<p(‘§tr|;:9)
2

-2 f dr f Al [ des (x. ) (x+ 1" coste + ). y+ 1" sinfa + @)K (5.
0
Di 2n

(4.32)

Noting that linear scalar flux representation functions have the following property,

III

¢ (x+1" cosg + @),y +1” sin(@ + ¢)) = ¢ (x.Y)

(4.33)
+1” [ (cosg + ¢). sin(e + ¢)) - ¢ (0,0)|
Making use of the following identity,
foin (¥) dx = —XKine1 (X) = Kingo (X), (4.34)
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and integrating over the path parallel to neutral trajectories, the volume-volume collision

probabilities can be written as
o« Vi « o . ,
1y’ = 51 [ do [ crar0ey)(or (ey) (1~ Kios)]
2n Di
: v 4.35
+ [¢¢ (cost + ¢). sin(a + @) - ¢ (0, 0) (4.35)
1 . .
= E _ S Kin(El) - Klg(EtI’)] )
The above equation is a 3D integral and a part of the integration can be performed if we

change dummy variables as follows,

2 21 Zmax |
f dgofdrf:f dgof dzdef
0 s 0 Znin 0

T Zmax T Zmin |
:[fdgof dz+fdgof dz]def
0 Zmin 0 Zmax 0

T |
:SEdgf dcpfdl’f
(o] 0
aD;

Li max($) |
- dé f do f drf.
;‘fov Z ©min(e) 0
It yields

) V f'—ki fsﬁmax(sﬂ) f'
P1¥* = — d d dl'g(x,
| 27T ;J 0 é‘: p ()0 o ¢I ( y)

min()

(4.36)

(¢?'(X, y) [1 = Ki(Zd)] + 67 (cos@ + ¢). sin(e + ¢)) - 47 (0,0)| (4.37)

. zit E _ S Kin(El) - Kig(ZtI’)] )

Since
X=X+ (I =1")cos@ + ¢),
(4.38)
y=VYo+ (I =1")sin(@ + ¢),
we define
As = ¢ (%o, Yo);
(4.39)

B. = ¢7'(cos@ + ¢), sin(a + ¢)) - ¢{'(0, 0).
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Eg. 4.37 becomes

Z Lii Cmax() | [ ]
P = f f d¢f dl' [A, + By(I = I')
27[ @min(¢) 0

(IAw + Bl =11 - Kia(zd)] + (4.40)
i—t [Z — Sl Kip(E) - Kis(S) )])

Integrating ovet’, we finally end with

oda b ‘pmaX(¢) Btm’ 13 By
1—%Zf {3+h% mmymﬂ

@min(p)
+ é AwB(z’ + A(l’ B(x - HBZB :| |2 - _(Aa + B(II) [K|4(O) K|4(|)]
t

1 .
—5§m+ammm+mnh—Kumﬂ (.40
53 + B KIA(0) - BIKIs(S) - Kis()

B B,

= [Kis(0) - ZKis() - Kis()] }
or the more simple form
Plaf @ _ Z T Elpk(j CY’ (442)

jkp

whereT p‘“’ are the ective transmission probabilities. Takd'! as an example, the

effective transmission probabilities are

omax(€)

Lkl
TEML = f dé f deoo [f - Kig(ZtI)], (4.433)
. 275V, \/xz emin(©) 4
2 11 Lii ‘/’max(f) 2 ( )
TEZ = _ f d¢ dexo Sing [— — Kis (=4 ] (4.43b)
ﬂZtVi \% )(2 — )_(2 0 emin(é) 3
311 3 Lii d ‘Pmax(f) d 2 ( I) ( )
TE —_ f £ X0 COSy | = — Kig (X ] 4.43c
. ﬂ'ZtV \% X2 ¢min(£) 3
411 Lii d ‘Pmax(‘f) d T ( 3d)
TE f ¢ goCOS(oz+¢,0+ —) 4.4
. 27T22V \Y} X2 @min(€) 2
2 . )
[é—xmu@M—Ku@My
5, ll Li d ‘Pmax(f) d T ( )
T f & pSsing COS(a'+g0 + —) 4.43e
H A2V, \/xz emin(®) 2
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[i—z — ZthI4(2t|) - KIS (Ztl):| ’

omax(€)

TESM =

3 Li
[«
ﬂthVi X2 — x2 J0 emin(§)

[E — Zt|K|4(Zt|) - K|5 (Ztl)] .

dy cosy cos(a +¢+ g) (4.43f)

16

These &ective transmission probabilities have no direct physical meaning. Similarly,
other elements of volume-volume collision matrix, escape and surface-volume collision
probabilities can be simplified as the sum of a numberfiagative transmission probabili-
ties, which are 2D integrals. However, together with the real transmission probabilities, we

have to evaluate 72 probabilities for each pair interfaces.

4.4 Approach llI: Di ffusion approximation

As mentioned in Chapters 2 and 3, thiEeets of non-uniformly distributed charge-exchanged
sources are important only for optically thick regions, where tiff@ision theory is a good
approximation by noticing that charge-exchange fractions are quite high in edge plasmas.
In this section, diusion theory will be employed to calculate total and directional escape

probabilities.

4.4.1 Dftusion equation

The difusion approximation is simply the lowest-order spherical-harmonics approximation
(P,). Because of the linearity of the neutral transport equation, the problems of interest can
be separated into several relatively simpler problems with a flux injected only from one
side. Taking region shown in Figure 4.3 as an example, it is assumed that an external
flux is injected from the interfacéD;. Since only escape probabilities are concerned, the

diffusion equation for this problem is
—V-D(r)V ¢(r) + Zag(r) = S;(r), (4.44)

where the dfusion codficientD(r) and the transport cross sectibp are defined by
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Figure 4.3. Diagram for calculating the first collision source

3 1 1
3(Et - IIZCX) 32“’ ’

wherey is the average cosine of scattering angigss % — Xy, Sj{i(r) is the first collision

(4.45)

source associated with a flux injected from the interi@dg. If the flux from the interface
dD; is assumed to be uniform and isotropic and with a unit strength, then

ZCX(r ) @max(l)

Sh(r) = o deKiz(Zid(r, ¢)). (4.46)
@min(r
The exact boundary condition is
w(r,Q) =0, r € 0D andQ - nj > 0, (4.47)

wheren;j; is the inward normal to the interfad® ;. However, the dtusion theory gives

only an approximate representationjof

w(r) = %Tgb(r) + %9 -J(r). (4.48)

With such an approximation it is impossible to satisfy Eq. 4.47 exactly. An approximate

choice is to conserve the total number of particles crossing into the interface, so

1= [ do@nue.)

Qn;i>0
fdQ(Q nj,)[ (r)+—Q J(r)
50 (4.49)
_¢(r)  nji-Jd(r)
~ 4 " 2()
_o(r) nij - J(r B
= 3z ¢
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Alternatively, we can solve the filusion equation without volumetric sources and with
the boundary conditiod_ = 1. However in this case the solution to thé&dsion equation
would include the contribution of uncollided fluxes. It should be noticed that Eq. 4.44
reduces the original 2-group problem to a one-speed problem. Initially, neutrals entering
from the adjacent regions may havefédient energies. After charge-exchange scattering,
the energy of all neutrals can be set as the local ion temperature.

An analytical solution to Eq. 4.44 can only be found for very idealized cases with regu-
lar geometries and homogeneous background plasmas. However, such cases rarely exist in
realistic plasmas, where numerical evaluation is generally necessary. Among possible nu-
merical methods of solving Eq. 4.44 with boundary conditions Eq. 4.49, the finite element
method [33, 34] is the most suitable for problems with geometric complexity and can be

easily updated to the higher order approximations.

4.4.2 Finite element method

The finite element method, based on the classical Ritz procedure [34] for solving the vari-
ational form of a diferential equation, has been widely used for the neutron transport
[21, 33, 34]. Although a weak solution to theffdision equation 4.44 can be obtained

by the Galerkin projection, we take the following functional as the starting point,

Fl¢] = f dr {D(Vg)? + Zagp® — 20S9} + % 95 $%dS. (4.50)
Di

dh;
Now we take a small variation @i form the reference functiogy,
¢ = ¢o + 60 (4.51)

Suppose thaE[¢] can expanded as the sum of series as follows:

Flg] = Flgol + 6F[¢] + 6°F4] (4.52)
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Substituting the above two equations into the original functional, we obtain

Flgol + 6F[¢] + 6°F[4] = f dr {D[V(go + 6¢)1° + Za(o + 66)° — 2(¢o + 6¢)S5
Di

+ % g§(¢o + 6¢)°dS;

oh;

1
= f dr {D(Vgo)? + Zatd — 260S;} + > gg $5dS (4.53)
Dj

oD;

+2 f dr [DVeo - Vo + Sagodp — 567 | + 95 dS¢ode
Di

oh;

+ f dr {D(V6¢)2 + Za(60)% - 25¢S§{i} + % 95(5¢)2dsi.
Dj aD;

Separating orders, we have,
The zeroth order:

Flodl = [ dr [D(Va0f + 3a0 ~ 20080 + 5 P oics. (4.58)
Dj

ah;

The first order:

(5F[¢] = 2fdr [DV¢0 . V5¢ + Za¢05¢ - 6¢S?I] + §d8¢05¢ (455)
Di

oD

and the second order:

6°F[¢] = f dr {D(V5¢)2 + Za(6¢)% - 25¢S§{i} + % 56(5¢)2d3. (4.56)
Di

dD;

Noting the identity

Integrating both the sides of the above equation &ethen applying the divergence

theorem to the left hand side yields

fdr DV¢0 . V6¢ = - fdrégbV . DV(]50 + fdrV . (6¢DV¢0)
Di Di Di

(4.58)
= — fdrégbV . DV¢0 + §d86¢(n+ . DV¢0)
Di

dD;
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Then substituting the above equation into Eq. 4.55, the first order variation may be

written as

SF[¢] = Zfdr&/) |-V - DV + Zago - S| - 29§ds(5¢ [n_ - DV — %gbo] . (4.59)
Di

oD;
Suppose that the variation functioridlg] is stationary ay, then it is required that the

first order variation vanish. Sin@® is an arbitrary function, it leads to

~V-D(N)V 6(r) + Zab(r) = SY(). T €D,

@ -n_-D(r)J(r) =0, r € oD;.

The stationary condition implies that a small perturbatiofiyofrom the reference func-

(4.60)

tion ¢ will, to the first order in this variation, have ndfect on the value of the functional.
Noting thats?F[¢] is positive-definite, the functional has the minimum valu@atActu-
ally, the finite element equations can be directly derived by the least-square method. The
treatment of boundary conditions are automatically incorporated into the variation func-
tional, therefore they are usually called natural boundary conditions.

Because of its equivalence to the originaffalsion equation with associated bound-
ary conditions, requiring the first variation of the functional Eq. 4.50 to vanish leads to
very powerful and versatile numerical approximations to the originfé&dintial equation.
To look for an approximate solution to thefldision equation, it is assumed that the trial

function belongs to a finite dimensional subspége

N
6~ ) daha(r), (4.61)
n=1
where{h,(r)ln = 1,---,N} is a set of basis functions of the subspdze and¢, are

the expansion cdicients. Then we choose d@eients ¢, such that the first variation
vanishes when the approximate solution is substituted into the variational functional, or
equivalently, we look for ca@icients such that the linear combination in Eq. 4.61 is the

best approximation available in the subspége
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To write finite element functions in a more concise form, we first definandh, as

component of the vectod® andH respectively,

(I)T = {¢l’ ¢2’ T ¢N}’ (462)

and

HT = {hl’ h2"" ’hN}- (463)
Theng can be written as a dot product of the above two vectors,
p=®"H=H"0. (4.64)

Substituting it into Eq. 4.50, we have

F(®) = fdr {D(VOTH)? + Z(@TH)? - 20THS?, | + % 9§(<1>TH)20|S.i
Di

dh;

1
Y ferVH VHT + 5,007 + 3 SEHHTdSi ® - 207 fdrH so, (469
Di dh; Di
=@P'AD® - 20'S,
where we define cdicient matrixA as
1
A = fdr [DVH - VHT + ZHHT| + > SEHHTdSi, (4.66)
Dj aD;
and the source vector
S= f drH S°;. (4.67)
Di

It is obvious matrix A is aN x N symmetric matrix. To vanish the first variation of

functionalF[¢] or equivalently to minimize functiof (®), we require

OF (@) .
oo i=12---,N 4.68
96, (4.68)
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(%5, 31)

Figure 4.4. Area coordinatesus, Uy, Uz

SubstitutingF (®) into the above equation we have

OF (@) g [EnAm”‘ﬁm‘p” =22 Sndm
g Opi
_ O¢m, O, | _ Om i _q1o... (4.69)
ZA”‘”[&A 09, "’”] 2.8yt 1=12000N
=2 Ambm—25 =0,
or
AD =S (4.70)

4.4.3 Triangular finite elements
To construct finite element equations we first have to partition each optically thick cell into
small regions, in which the neutral scalar flux could be represented adequately by linear
or low-order polynomials. These small regions are called finite elements. Rectangular ele-
ments with bi-linear trial functions have been widely used in the neutron transport theory,
but here triangular subdivisions as shown in Figure 4.1 are considered because of their
computational iciency.

Take the triangle shown in Figure 4.4 as an example, we assume that the three vertices
are represented in the counterclockwise orderxayyy), (X2, y>) and (s, ys). We define

area coordinatesu(, u,, uz) for point P at (x, y) as the ratios of the areas of triangles.

A
U = =2 (4.71a)
A123
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Ap31

U, = =P8 4.71b

2= ( )

Uy = 2P2 (4.71c)
A123

whereaj is the area of a triangle with vertices (), (x;, y;) and &, y«), and

1 x5 vy
Aij = % 1 % Y| (4.72)
1 X W
It is easily seen that
u(r) = o (4.73)

It is assumed that the scalar flux can be approximated by a piecewise linear function,

which is essentially expanded in terms of the three linear Lagrange interpolation functions,

6(r) = > hi(n). (4.74)
|

The linear Lagrange interpolation function associated with ventex/{) has the fol-

lowing properties;

him(r) = dhius + dioUy + digus

(4.75)
= &m + DX + CimY,
and
Pim(rv) = 6. (4.76)
Comparing the above equation with Eq. 4.73, we have
him(r) = u. (4.77)

Combining Eqgs. 4.71, 4.72 and 4.77 with Eq. 4.75, we obtain theficeantsay;, by,

andcym:

1
20123

(X2Ys — X3Y2), (4.78a)

Aim
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Element function

(x17y1) (x2’y2)

Shape functions

(x17y1) (x2’y2)

3
nyg) h3

2
(x17y1) (x2’y2)

Figure 4.5. Element and shape functions for a linear triangular element
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1
20123

bim = (Y2 — ¥3), (4.78Db)

Cim = (X3 — X2). (4.78c)

20123

Inserting these cdicients into Eq. 4.75, we have

1
him(r) = m[Xzys — XaY2 + (Y2 — Y3)X + (X3 — X2)Y]. (4.79)

Similarly, we can obtain the linear Lagrange interpolation functigggr) andhs(r).

1

hom(r) = 2o [Xay1 — X1Y3 + (Y3 — Y1) X + (X1 — Xa)V], (4.80)
1

Nam(r) = le:s[xlyZ — Xoy1 + (Y1 — Y2) X + (%2 — X)Y]. (4.81)

Becauseh(r) is zero outside trianglen, it is discontinuous along sides 12 and 13.
The discontinuity along interfaces between triangles may exist though an expansion of the
solution in terms of such functions will be continuous within each triangle. However, the
sum of all the expansion functions with the common vertewill result in a continuous

expansion for the whole region of interest.

h(r) = ) (") (4.82)
or equivalently

him(r) if | is a vertex ofAm andr € Am
h(r) = (4.83)

0 otherwise
4.4.4 Finite element equations
With the linear triangular element representation functions, we are able to approximate
the solution function as a linear combination of these representation functions. Taking a
polygon withN; side as an example, we first divide it inkg triangles. In order that a
piecewise linear approximation isféiciently accurate, each triangle is further divided into
NZ identical small triangles as shown in Figure 4.1. Therefor, the total number of grid

points isN = 1 + M0 and the total number of divisions I N2,
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Assuming that the scalar flux at vertexs ¢, forn = 1,--- | N, the scalar flux within

the whole region can be expressed in terms of the linear Lagrange interpolation functions

hn(r).

N
6(r) = > dahin(r) (4.84)
n=1
InsertingH™ = {hy(r),--- , hn(r)} into Eqn. 4.50, we obtain the reduced functional:

F[®] = fdr {D(VOTH)? + Z(®TH)* - 20THSJ } + % SE(QTH)ZdSi
Dj

aD; (4.85)
=®'AD -20'S,
where
1
A= fdr [DVH - VHT + Z,HHT| + > SEHHTdSi, (4.86)
Di dD;
and
S= f drH S (4.87)
Di
Assume that0, = Sﬁi(rn), n=1---,N, wherer, is the grid pointn, we approximate

the first collision sources‘ii in terms of the linear Lagrange interpolation functions.

N
i) = Z SO.hn(r) = HTSO (4.88)
n=1
So it leads
S= f drHH "S0= BSQ (4.89)
Di
where we define
B= fdrHH T (4.90)
Di

If we now require the reduced variation functional, Eq. 4.85, to be stationary with

respect to the variation in vectdr, we obtain a set of linear equations,

A Ap - Al o1 S1
Axr Ay - A ¢ _ S, . (4.91)
| Ant Anz 0 A || On »SN_
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Substitutingh;(r) andh;(r) into Eqn. 4.86, we obtain

Amn= [ d [DVho(r) - Tu(r) + Zehn(O (0] + 5 P AS T
Di Di

= Z fdr[Dth|(r)~th|(r)+2ahm(f)hn(r)] (4.92)

I m,l €A A

1 LmnCA

_|_E Z dehm(r)hnl(r)'

LmncaDiLmn
Inserting triangular representation functions into the above equation, we may integrate
these elements analytically.
Amn = Z Al{D(bmlbm + CiCni) + Za[@mi@n + (@mibni + anbm)x*
I'm.Fn€A|

+ (amiCot + BniC)Y + (BmiCat + B Co) Xy

LmnCA|

+ Drbriof + bbryyf  + % S Lodlaman (4.93)

LoD,
+ B X0, + ConiCrty Yo + (@bt + 8nibim) X5,
+ (@miCnl + 8niCrt) Y + (BrmiCal + BriConi) XY,

and

B = Z ArZa[amidn + (@mibn + an|bm|)$ + (@miCnl + amle)%
I'm.Fn€A| (494)

+ (OmiCni + anCmI)X_yﬁ + bmlbnlw + bmlbnlﬁ]

where area\, and average qualities are defined as follows:

A= fdr, (495)
A
oL arx (4.96)
XI - AI ’ '
A
— 1
Y= |[.dry (4.97)
A
A
=t [drx (4.98)
=% | _



XY = L—mndexy

Lmn

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

Assuming the coordinates for the tree vertices of trianglare i, y1), (X, Y2) and

(X3, y3) respectively, we may write the above equations as

X

1
A= é[( X1Y2 = Xo¥1) + (XaY3 — Xa¥2) + (Xay1 — Xay3)l,

— 1
X = §(X1 + X2 + X3),

— 1
yA =

= é()h +Yo +Ya),

— 1
_ 2 2 2
XXt = é(x1 + X5+ X5 + X Xo + X1 X3 + XoXa),

— 1
v = é(yi + Y3+ Y3+ YiYo + YiYs + YoVa),

1
= —[2(X1y1 + XoY2 + X3Y3) + X1Y2 + XoY1 + X1Y3 + XaY1 + XoY3 + XaYo],

12

— 1
Xfl?ln = E(Xm + Xn)’
a1
Ymn = E(ym + Yn),

1
XX, = §(X?n+ X2 + XmXn)»
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(4.107)
(4.108)
(4.109)
(4.110)
(4.111)
(4.112)
(4.113)

(4.114)



Whn = 50+ Y2+ Vb (4.115)

— 1
X¥hin = & (2XmYm + 2%y + XY + XoYim)- (4.116)

Once matriceA andB are calculated, we can use a linear solver to solve Eq.4.91.
Before proceeding to treatments of total and directional escape probabilities, it is instructive
to mention a number of very important properties regarding the finite element matriBes

and linear systems.

1. MatricesA andB are symmetric. It can be easily proved, starting from Egs. 4.86 and

4.90 respectively, thak,, = Aym andBy, = Bom.

2. A is a sparse matrix. The representation functiopg) are locally defined, in an-
other word, they are nonzero only for the triangles, one of whose vertices is grid
pointm. ThereforeA,,,is nonzero only if grid pointen andn are two of the vertices

of a same triangle.

3. The parameters defined in 4.95-4.116 depend only on a single cell. There aM only
different types of triangles as we can see from the subdivisions illustrated in Figure
4.1, because all the smaller triangles within a larger triangle are identical. As a result,
the geometric parameters are needed to calculate and to store ohlytiaangles,

no matter how many subdivisions we actually make.

4. MatricesA andB depend only on the geometry and background plasma properties.
Keep in mind that the solution to thefflision equation 4.44 is the scalar flux associ-
ated with the collision sources due to a unit current injected from regionorder
to evaluate escape probabilities associated with currents entering from other adjacent
regions, we may have to repeat the same process. However, matraoedB need
to be evaluated only once because of their independence on source distribution. And
more importantly, LU decomposition, which is responsible for a significant portion

of effort to solve a linear system, is needed to be carried out only once. Therefore we
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just need to recalculate the first collision source at each grid point when evaluating

probabilities associated with currents entering from other adjacent regions.

4.4.5 TEP balance equations
Once the dtusion equation is solved, we can easily calculate total and directional escape

probabilities using the following equations.

95 dSi(n+ ’ J+(r))
i ah;
hi= [onar (117
D;

and
f dSik(n+ ’ J+(r))
j _ 9D

ko § dSi(n+ ' J+(I’)) ’

dD;

(4.118)

where the total escape probabiIWis the probability that the first charge-exchanged neu-
trals, originally entering regionfrom regionj, have zero or more collision within region
i and finally escape from regian The directional escape probabili@{k is the probability
that neutrals escaping from regigrassociated with the neutrals originally entering region
i from regionj, escape into regiok

As discussed in sections 3.1.3 and 4.3.1, for each interface between two adjacent cells,
a moment of the total partial current can be explicitly expressed in terms of all the incident
moments from contiguous regions via transmission and escape probabilities. Taking the
n-th moment of the total partial current from regibto region j, I, as an example, it

consists of three distinct contributions:

1. The n-th moment of uncollided neutrals

It is the sum of neutrals entering into regiofrom all contiguous regionk in mo-
mentn” will be directly transmitted into regionin momentn without an interaction

withing regioni. The n-th moment of uncollided neutrals can be written in the usual
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form,

= Z o, (4.119)
k.n’

2. The n-th moment of collided neutrals

The n-th collided moment is the sum of neutrals entering into regfoom all the
contiguous regionk in momentr’ will undergo one or more charge-exchange scat-
tering within regioni and finally exit into regionj in momentn. Since the collided
flux is almost isotropic, the n-th moment of the collided flux, according to the defin-
ition of total and directional escape probabilities, can be expressed as

me= 'y, (5@ - Z T,"k:?] KPEAL 10, (4.120)

k.n

Wherecik is the charge-exchange fraction for the neutrals entering into regiom

regionk.

3. The n-th moment of external source neutrals

The n-th external source moment is the contribution from the uniform external vol-
umetric sources and their progenies. It will remain the same form as the original
equation,

r” X = S PiAi o, (4.121)

whereSL,, is the external volumetric source, aRdand A;; are the total and direc-
tional probabilities associated with a uniform and isotropic source in regishich

have same meaning as those defined in Chapters 2 and 3.

Combining the three contributions the final balance equation for the n-th moment cur-

rent from region to regionj can be written as

= 3 T+ Y1 o0~ D) T8 ding s Pty (4222
k,ny k,ny
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4.5 Linear representations of an angular flux at interface

The difusion approximation and the finite element method have been exploited to evaluate
total and directional escape probabilities in the previous section. These approximations
allow us to take into account the fact that charge-exchanged sources are preferentially dis-
tributed near the incident surface for an optically thick region. The new approximations
are expected to and should be more accurate than the original flat collision source ap-
proximation, and their improvements will be tested in the following sections. However, the
representation functions defined in 3.35 are spatially independent, this implies that the neu-
tral angular flux are uniformly distributed over each interface, while in the previous section
it was assumed that the scalar flux within a region is piecewise linear. Errors introduced by
the assumption of the uniform angular flux over interface had already been observed for an
optically thick region with a purely absorbing media in section 3.7.2. The comparisons in
the next section will also show this approximation leads to an over-prediction for regions
where the neutral mean free path is much smaller than the characteristic dimension and
with strong charge-exchanged sources.

To relax this limitation, a spatially linear function is added to the original representation

functions. The orthogonal representation functions are

Upi(%, Q) = i (4.123a)
’ 7T|_ij
23
wt (%, Q) = = (x; — 0.5L), (4.123b)
JTL”-
2 2 .
i (X, Q) = —— sing; singyj, (4.123c)
) 7TLij
3v2
wﬁj(xij,ﬂ) = _7rLij sing;j cosgij — Zﬁwﬁj(rij,g), (4.123d)

whereL; is the length of the interface.
wﬁj is a spatially-uniform and angularly-isotropic representation functidRp}, Aﬁil,,-
is a spatially-linear and angularly-isotropic representation function (spatially-IDEg,

l//ﬁj and://f jare spatially-uniform and angularly-linear representation functibi®s). Here
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spatially-linearDP; representation functions are not taken into consideration because they
can always be regarded as higher order approximations either for optically thick or thin re-
gions. Apparently, for optically thin regions, all the spatially-linear terms can be neglected,
while for optically thick region, it has been shown that@P, terms can be safely ignored
because of the randomization of charge-exchanged scattering events.

Substituting these representation functions into Eq. 3.13a and changing dummy vari-
ables, the four-dimensional integrations can be integrated analytically in the direction par-
allel to neutral trajectories and leads to two-dimensional numerical integrations, which can
be evaluated using adaptive numerical integration techniques. Since some of the integra-
tions are the same as those in Egs. 3.31, here we just list the transmission probabilities

associated with the spatially-linear representation function,

01 4\/_ Lkl ‘Pmax ]
T = AL f Xij — 0.5Ljj)cosyyi - Kiz (i (%, oxi)) dewi,  (4.1244a)
i $min
5 4\/@ Lkl ‘Pmax )
T = 7TL2 f f Xqi — 0.5Lki)CcOSypy - Kiz (Zel (Xai, ¢xi)) A, (4.124b)
¥min
Lkl thax
i = f f % — 0.5L;)(%i — 0.5L;) (4.124c)
ﬂ.LkI L'J $min
cosyyi - Kiz (Xl (X, ¢ki)) dewis
83 Lk| somax
T3% = AE — 0.5Ly) (4.124d)
T[Lil $Pmin
Sing;j cosyy - Kia (Zdl (X, ¢ki)) deii,
. 12\/6 Lkl ‘ﬁmax
Ti = 2 f j; — 0.5Ly)) (4.124¢€)
COSpii COSpi;j - Kia (Zd (X, i) dipwi — 2V2T520 i»
8 Lkl ‘Pmax
T = v f ~ 0.5L3;) (4.124f)
J ﬂ-Lkl i $min
Singyi oSy - Kig (Zel (X, ¢xi)) depii,
12 6 Lkl ‘Pmax
Tk = V6 f f —0.5Ly) (4.1249)
: ﬂ-Lkl 'J $Pmin

0052 (" K|4 (Ztl(xkla Cki ) d‘pkl 2 \/_T|Ok_fj
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Notice thatx;; is the length from the starting point of interfad®;; to pointr;; in the
clockwise direction obD;, X;; is not equal tox;, but alwaysx;; — 0.5L;; = —(X;i — 0.5L;).

The non-uniformity of uncollided fluxes is embodied in the above transmission prob-
abilities. Obviously the flux at interfaces due to the contribution of charge-exchanged
sources is also nonuniform for an optically thick region. To take the collided flux into
account, the total and directional escape probabilities associated with the nonuniform rep-
resentation functions must be evaluated and be embodied in the partial current balance
equation. Though the higher order approximations can be easily extended, here only the
lowest nonuniform order, spatially linear, approximation is made. To the lowest order
the following two linear contributions for the collided flux at an interface of a given re-
gion must be considered: (1) the spatially-linear outgoing collided flux associated with a
spatially-uniform flux entering into that region, where non-uniformity is driven by material
attenuation; (2) the spatially-linear collided angular flux associated with a spatially-linear
flux entering into that region, where non-uniformity is driven by the nonuniform incoming
flux and material attenuation.

The finite element method to solve &fdsion equation with the first collision source
associated with a spatially-uniform incoming flux has already been discussed in the pre-
vious sections. For the second case, we just need to replace the source term with the first
collision source associated with spatially-linear incoming flux, which can be written as in

the following form,

Sjl,i(r) =

2¥3%er) f " 4oKia(EI(r. )y - 05Ly). (4.125)

nilj min)

Then, following the same steps we can solve tHeudion equation and calculate the
outgoing current. As before the generalized total and directional escape probabilities are
denoted a@" " andAikj’”'_>n respectively, whereis the region of interesk is the inci-

dent region,j is the exiting regionp’ is the incoming partial current moment ands the
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outgoing partial current moment. These escape probabilities can be written in the form,
Y [ dSi(ng -8y (%)

I oDy
[ Sy.(r)dr
Dj '

PN = : (4.126)

and

I dSij(nij - 3 ()Ll (%)
kn'—n _ 9Dij

ij Ty f dsi(n; .Jifll’(r))ﬂani'](Xil)'

I oDy

(4.127)

And accordingly, we can write the balance equation for the n-th total partial current
from regioni to regionj as

I = Z TR + Z Iy [5% - Z Ti?’k:?) CPKAST ™" + SpPiAijro.  (4.128)
k,n k,n/ |

4.6 Comparisons and tests

In the previous section, theftlision approximation and the finite element method had been
employed to correct directional escape probabilities. In this section the validity of these
approximations or assumptions will be tested. First the specially-designed problems with
a linear or exponential volumetric source will be used to test the accuracy of directional
escape probabilities. Then a nine-rectangular regions withrdnt ranges ol/A ratios

will be used to explore the validity of the linear approximation of angular flux and the

overall accuracy.

4.6.1 Test of escape probabilities

For optically thick regions, the scattered or charge-exchanged neutrals are preferentially
located near the incident surface because of material attenuation. Even for optically thin
regions, geometric attenuation, which is inversely proportional to the square of the dis-
tance between the point of interest and the source, leads to the nonuniform distribution
of charge-exchanged sources. Consequently the probability that these charge-exchanged

neutrals escape back across the incident interface is greater than the probability that the
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Figure 4.6. Computational model used to compute the total and directional escape probabilities

collided neutrals escape toward any other direction. The nonuniform collided sources can
be easily taken into account by thefdsion approximation, which is based on the assump-
tion that the neutral flux is linearly anisotropic. The purpose of this section is to assess, by
comparison with Monte Carlo calculations, the accuracy of the total and directional escape
probabilities predicted by thef@usion theory.

In order to verify the accuracy of total and directional escape probabilities predicted
by the difusion theory, a square region shown in Figure 4.6 is considered to investigate
effects of non-uniform volumetric sources. With reference to FigureM,6\,, A andAy
represent the directional escape probabilities that neutrals escape across the left, right, top
and bottom interfaces, respectivelyis the total escape probability.

First, a spatially linear volumetric source with the highest strength at the left boundary
and the lowest strength at the right boundary is taken into account. The study has been
conducted for a variety of/ A ratios and charge-exchange factions. For example, Table 4.1
shows the comparisons of escape probabilities calculated by the Monte Calor method and
the difusion theory in a square with/A = 3 andcx = 0.9. For all the range oA/ ratios

and charge exchange fraction, the agreement between the two is very good, with an error
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Table 4.1. Escape probabilities predicted by the Monte Carlo method and the ffusion theory in a

square with a linear volumetric source,A/A = 3andcx= 0.9

Monte Carlo| Diffusion | Error(%)
A 0.3454 0.3401 -1.53
Ap 0.2494 0.25 0.24
A 0.1546 0.1599 3.43
At 0.2494 0.25 0.24
P 0.8549 0.8727 2.08

Table 4.2. Escape probabilities predicted by the Monte Carlo method and the ffusion theory in a

square with a linear volumetric source,A/A = 3and cx = 0.6

Monte Carlo| Diffusion | Error(%)
A 0.3631 0.3589 -1.16
Ap 0.2499 0.25 0.04
A 0.1371 0.1411 2.92
At 0.2499 0.25 0.04
P 0.6015 0.6351 5.59

of less than 6%. It is clear that neutrals preferentially escape across the surface with the
highest source, with contrast to the original non-directional assumption. It is also important
to note that the shorter the mean free path, the more importanfféeéseof a non-uniform

volumetric source.

When the mean free path is smaller than the characteristic dimension of computational

Table 4.3. Escape probabilities predicted by the Monte Carlo method and the flusion theory in a

square with a linear volumetric source,A/1 = 1andcx= 0.9

Monte Carlo| Diffusion| Error(%o)
A 0.2758 0.2714 -1.60
Ap 0.2501 0.25 -0.04
A 0.2241 0.2286 2.01
Ay 0.25 0.25 0
P 0.9287 0.9417 1.40
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Table 4.4. Escape probabilities predicted by the Monte Carlo method and the flusion theory in a

square with a linear volumetric source,A/1 = 1andcx = 0.6

Monte Carlo| Diffusion| Error(%o)
A 0.279 0.2741 -1.76
Ap 0.2499 0.25 0.04
A 0.2212 0.2259 2.12
Ay 0.2499 0.25 0.04
P 0.7666 0.8019 4.60

Table 4.5. Escape probabilities predicted by the Monte Carlo method and the ffusion theory in a

square with a linear volumetric source,A/1 = 0.3and cx= 0.9

Monte Carlo| Diffusion | Error(%)
A 0.2627 0.2558 -2.63
Ap 0.2494 0.25 0.24
A 0.2385 0.2442 2.39
At 0.2498 0.25 0.08
P 0.9786 0.9841 0.56

Table 4.6. Escape probabilities predicted by the Monte Carlo method and the flusion theory in a
square with a linear volumetric source,A/1 = 0.3 and cx = 0.6

Monte Carlo| Diffusion | Error(%)
A 0.2633 0.256 -2.77
Ap 0.2495 0.25 0.20
A 0.2379 0.244 2.56
At 0.2493 0.25 0.28
P 0.9201 0.9395 2.11
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Table 4.7. Escape probabilities predicted by the Monte Carlo method and the ffusion theory in a
square with an exponential volumetric source $0(x) = exp(-%)), A/ = 3and cx = 0.9

Monte Carlo| Diffusion | Error(%)
A 0.4083 0.4036 -1.15
Ap 0.2345 0.236 0.64
A 0.1226 0.1243 1.38
At 0.2346 0.236 0.59
P 0.7921 0.8097 2.22

Table 4.8. Escape probabilities predicted by the Monte Carlo method and the flusion theory in a
square with an exponential volumetric source $0(x) = exp(-3)), A/A = 3and cx= 0.6

Monte Carlo| Diffusion | Error(%)
A 0.4431 0.4419 -0.27
Ap 0.2293 0.2308 0.65
A 0.0983 0.0966 -1.72
A¢ 0.2293 0.2308 0.65
P 0.5045 0.5309 5.23

regions, a linear model may notfigiently represent the non-uniformity of the charge-
exchanged neutrals. Since the first collision source exponentially decreases as it is away
from the incident surface, it is necessary to verify the validity of the new approximation
for problems with an exponentially non-uniform volumetric source. Tables 4.7-4.12 shows
the results for the cases with an exponentially non-uniform source &iedestitA/A and

charge exchange fractions. The results predicted by tifiesthn theory agree very well

with those calculated by Monte Carlo, with an error less than 5%. Is also evident that the
directional escape is significant, with the preferable escape toward the surface near to the
highest volumetric source, and that the directional escfipetencreases as the mean free

path decreases.

4.6.2 Test for 2D 9-region problems
In the previous section, the accuracy of total and directional escape probabilities was stud-

ied. In this section, the cumulative accuracy of the approaches to correct directionality on
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Table 4.9. Escape probabilities predicted by the Monte Carlo method and the flusion theory in a
square with an exponential volumetric source $0(x) = exp(-3)), A/A = 1and cx= 0.9

Monte Carlo| Diftfusion| Error(%o)
A 0.29 0.2825 -2.58
Ap 0.2485 0.2492 0.28
A 0.213 0.2191 2.86
Ay 0.2485 0.2492 0.28
P 0.9295 0.9419 1.33

Table 4.10. Escape probabilities predicted by the Monte Carlo method and the ffusion theory in a
square with an exponential volumetric source $0(x) = exp(-%)), A/1 = 1andcx = 0.6

Monte Carlo| Diffusion | Error(%)
A 0.2946 0.2954 0.27
Ap 0.2482 0.2491 0.36
A 0.2089 0.2064 -1.12
At 0.2483 0.2491 0.32
P 0.7679 0.8025 4.50

Table 4.11. Escape probabilities predicted by the Monte Carlo method and the ffusion theory in a
square with an exponential volumetric source $0(x) = exp(-%)), A/A = 0.3 and cx = 0.9

Monte Carlo| Diffusion | Error(%)
A 0.2589 0.2544 -1.73
Ap 0.2499 0.25 0.04
A 0.2412 0.2456 1.82
At 0.25 0.25 0
P 0.9789 0.9841 0.53

Table 4.12. Escape probabilities predicted by the Monte Carlo method and the ffusion theory in a
square with an exponential volumetric source $0(x) = exp(-3)), A/A = 0.3andcx = 0.6

Monte Carlo| Diftfusion| Error(%o)
A 0.2595 0.2545 -1.92
Ap 0.2499 0.25 0.04
A 0.2417 0.2455 1.57
At 0.2499 0.25 0.04
P 0.92 0.9395 2.11
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a 9-region model will be evaluated.

The geometry of the problem is shown in Figure 3.22. The background plasma is
assumed to be uniform. The plasma ion temperature is 10 eV. The vacuum boundary con-
ditions are assumed on the four external surfaces. An isotropic and uniform neutral flux
with the unit strength and the energy of 10 eV is injected on the left boundary of region
2. Charge exchange factions for all the regions are adjusted to 0.9. The same geometry,
plasma properties and neutral parameters are used to run DEGAS and GTNEUT with the
linear source expansion orfflision approximation. The results for variatigl ratios are
shown in Figures 4.7-4.14.

For the problem witlA/2 = 0.26, in which the mean free path is much longer than
the characteristic dimension of computational regions, the assumption of uniform charge-
exchanged neutrals has no obviodkeet on the calculations of neutral density for the
following two reasons:(1) the charge-exchanged neutrals are almost uniformly distributed
because of little attenuation; (2) the neutral transport is dominated by the uncollided neu-
trals. Consequently, there is no obvious improvement observed by the approach to correct
escape probabilities via either the linear source expansion or fifusidn approximation
as shown in Figures 4.7 and 4.8.

When the ratio\/A increases to 1, the collided neutrals play a more important role on
the neutral transport and the non-uniformity of collided sources is obvious. The assump-
tion of non-directional escape results in an over-prediction of neutral densities for regions
away from the external source, though this trend is compensated to some extent by under-
estimations introduced by th2P, approximation. Itis clear from Figures 4.9 and 4.10 that
the correction to directional escape probabilities by the linear source expansion dfuhe di
sion approximation significantly improves the agreement with the Monte Carlo simulations
because the non-uniformity of collided sources is taken into account.

If the ratioA/A increases to 3, the neutral flux is dominantly composed of the collided

neutrals, which are almost isotropic and consequently result in no improvementb{?the
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approximation. In addition to the preferential distribution of collided neutrals near to the
incident surface, the non-uniformity of the angular flux across each interface has a very
important €fect on the neutral transport. For example, there exists a strong gradient of
angular flux on the interface between regions 2 and 3, and thus the probability that the
neutrals escape to the left boundary is larger than the probability that neutrals escape to
region 6. Although the correction to directional escape probabilities by the two approaches
improves the agreement with the Monte Carlo simulations, they still over-predict results
for regions away from the incident source due to the failure of taking into account the non-
uniformity of angular fluxes. It can be clearly seen from Figure 4.12 that the linear angular
flux expansion, together with theftlision theory, predicts neutral densities very well for

all the regions.

When the ratioA/A is extended to 5, the collided neutrals are highly located near to
the incident surface. The calculations of the new approaches are shown in Figures 4.13
and 4.14. It is evident from Figure 4.13 that the linear source expansion breaks down be-
cause the linear approximation can noffiiently represent the strong non-uniformity of
charge-exchanged neutrals. It reveals that a quadratic or even higher order approximation
is necessary. However, the calculations of the GTNEUT code with the correction to di-
rectional escape probabilities by solving thé&wsion equation and the linear angular flux
approximation are in an excellent agreement with those of the Monte Carlo code, DEGAS.

If the ratioA/A is further extended to 10, the spatially linear approximation of angular
fluxes would break down and results in negative fluxes, since the linear approximation
cannot sdiciently represent the strong non-uniformity of the angular flux at each interface.
This issue can be solved by the introduction of higher order approximations or subdivision

of regions.

111



920 = v/Vpue 6" @=4lM [opow uoifial-auiu e uo uoisuedxa a2Inos Jeaul| ay) Jo 1933 3yl "/ ainbi4

uoisuedxg 89IN0S+'d --A--
'da —w—

°da -e -

SvoO3d —m—

uolbay
6 8 ] 9 S ¥ € 4 T
] ] ] ] ] ] ]
Arepunoq wnnoea I
6°0=x3 - -3t
N 92'0=\/V

v-a1

((Ww/#) Ausuap [ennaN

112



92'0 = V/VpPUR 6°0=9 YlIM [9pow uoibai-aulu e uo uonewixoidde uoisngip ayi Jo 109 ayl '8’ 2inbi4

uolbay
6 8 L 9 S ¥ € Z T
] ] ] ] ] ] ]
Arepunoq wnnoea [
‘0=X2 K
o m 0 - G-3T
~ 7\ 9¢ 0=V
=~ X ==
uoIsNYIa+ dq --A-- ”
T L
dd —e -

Svodd —m—

(cW/#) Ausuep [ennan

113



T = v/Vpue g G=YlM [9pow uoiBal-aulu e uo uoisuedxa a2In0s Jeaul| ay] JO 199JP 8yl "6’ ainbi4

uoisuedx3 92IN0S+'dq --A--

'da —w—
°da -e -
Svo3id —m—

uolbay
8 L 9 G % Z T
] ] ] ] ] ]
Arepunog wnnoep -
6°'0=X9 .
A 0'T=\\V .
/7:“\ —

9-d1

Lo
L
—

N
L
—

e-a1

(W/#) Aususp [ennaN

114



T = V/VpUe 6°0=0 YuMm |opow uoibai-auiu e uo uoirewixoidde uoisngip ayi Jo 1089 ayl ‘0T 7 2inbi4

uolbay
6 8 L 9 G 14 € Z T
] ] ] ] ] ] ] o-3T
Arepunog wnnoep -
6°0=X2 I
0'T=\/V :
— G-37
uoisnyid+ dd --A-- - 73T
'da —v— i
°da -e — i
Svodd —m— i

e-a1

(W/#) Aususp [ennan

115



€ = Y/Vpue 6 =YlIM [9pow uoifal-auiu e uo uoisuedxa 32In0S Jeaul| 3y} JO 1098 8yl "TT ¥ aInbi4

uolbay
6 8 L 9 S % € Z T
] ] ] ] ] ] ]
Arepunoq wnnoea i
6°0=X9
0'E=\/V B

uoisuedxg 92IN0S+ ' dq --A--

'dd —w—
°da —e -
SY93q —m—

L-3T

@
N
—

G-d1

v-a1

e-a1

(W/#) Aususp [ennaN

116



€ = v/Vpue 6" 0= yum |apow uoibal-auiu e uo uonewixoidde uoisngip ayi Jo 100 8yl ¢T v 8inbi4

uolbay
6 8 . 9 S ¥ € 4 T
I I I I I I I
Arepunoq wnnoep
6 0=XJ m
oe=ww |

WIOHUNUON-+UOISNIIA+ dQ -—--
uoISNYIa+ dd --A--

'da —w—
°da —e -
Svodd —m—

L-dT

@
L
—

G-d1

v-a1

e-a1

wi/#) Ausuap [ennan

¢

117



G = vV/Vpue 6 @YIIM [9pow uolfai-aulu © uo uoisuedxa 92IN0S Jeaul| syl JO 1098 3yl ST’y aInbi4
uolbay

8 L 9 S 14 € [ T
_ _ _ _ _ _ _

Arepunoq wnnoea
6°'0=X2
0'G=\/V

L-dT

9-d1

Lo
L
—

uoisuedxg 82IN0S+'dq --A--
'da —w—
°da -e -
Svodd —m—

v-a1

((Ww/#) Ausuap [ennaN

118



G = v/Vpue 6" 0= yum |apow uoibal-auiu e uo uonewixoidde uoisngip ayi Jo 100 a8yl T i 8inbi4

uolbay
6 8 . 9 S v € 4 T
] ] ] ] ] ] ] g-3T
WIOHUNUON+UOISNIA+ dd -—-—- |
uolsNpia+'da --A-- |
'da —w— [
dd -e—  Fzar
Svodd —m— I
E 931
G-aT
Arepunoq wnnoep
6°0=X2 I
0'G=\/V '

1a=1"

wi/#) Ausuap [ennan

¢

119



4.7 Conclusions

Three diterent approaches, subdivision of regions, collision source expansion fémd di
sion approximation, have been proposed and implemented to correct the directional escape
probabilities associated with the non-uniformity of charge-exchanged neutrals in optically
thick regions. Although the subdivision of regions is the easiest and most straightforward
approach to implement and does not require to modify the original methodology, it re-
sults in large probabilities matrices, which increase requirements for the CPU time and
computer memory. The collision source expansion does not require to further subdivide
computational regions and has been shown to be accuraAje ik 3. However, its accu-

racy deteriorates for very optically larga /1 > 3) regions, where the non-uniformity of
collision source can not be Siciently represented by linear expansion functions. Further-
more, because of very time-consuming region-region collision probabilities the collision
source expansion are generally applied to periodic geometries, which are highly unlikely
for fusion devices.

Assuming a neutral flux is expressed in terms of piecewise linear element functions,
the difusion equation is solved, by the finite element method, to calculate the total and
directional escape probabilities for optically thick regions. In addition to the gradient of
collision sources, the non-uniformity of the angular flux at an interface is taken into account
by an introduction of spatially linear representation functions.

A number of calculations of the specially designed models have indicated that the direc-
tional error could be eliminated by solving thdéfdsion equation with a non-uniformly dis-
tributed first collision source. Its accuracy and computatioffadiency have been demon-
strated for all range oA/A ratios. The study has also shown that a linear angular flux
expansion significantly improves the accuracy of the TEP methodology for very optically

large regions.
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CHAPTER 5
NEUTRAL ENERGY TREATMENT

5.1 Introduction

The original TEP methodology is based on the local ion temperature (LIT) approximation,
which assumes the energy of neutrals from each computational region is equal to the lo-
cal ion temperature. If neutrals originate from boundaries, their energies are set by the
corresponding boundary models (such as albedo, mirror or wall material boundaries). As
mentioned in Chapter 2, the local ion temperature assumption would be reasonable if the
most of the neutrals entering a region underwent one or more scattering or charge exchange
collisions before leaving the region. However, if the neutral mean free path is much longer
than the characteristic ion temperature gradient lehgtlefined ad. = 1/"('jixT, the neutral

flux from a region is primarily attributed to uncollided neutrals, which could have very dif-
ferent energy from the local charge-exchanged neutrals. Consequently, a significant error
may be introduced by the local ion temperature assumption because the majority of neu-
trals are assigned the wrong energy. A two-group treatment of the energy dependence [26]
has been already implemented in the GTNEUT code to treat the energy dependence of wall
reflected neutrals, and very encouraging results have been obtained. In that approach, the
neutral population is divided into two distinct energy groups: a slow energy group con-
sisting of Franck-Condon atoms and externally injected neutrals with a few electron volts,
and a fast energy group consisting of collided neutrals in thermal equilibrium with the lo-
cal plasma ion populations. However, the two-group approximation may notfie et

to represent the neutral energy dependence when background plasmas are characterized
by strong gradients. Of course, this situation could be addressed by a full multi-group
implementation which, however, would require time-consuming evaluation of probability
matrices for each energy group. The average neutral energy approximation introduced in

this thesis is intended to provide a more computationdtigient approximation.
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5.2 Average neutral energy approximation (ANE)

In the average neutral energy approximation, all the neutrals crossing an interface are as-
sumed to be monoenergetic and are assigned an average energy corresponding to the region
from which they come. According to the particle balance equaﬂgn,the n-th moment of

the total partial current from regiano regionj, can be written in the following expression,
O =0+ I

_ Z Tn’—mrn’ L ren (5'1)
= ikojlki TLij-
k,ry

where[ " is the total uncollided partial current from regioto regionj, I is the total
collided partial current from regionto region | andTi':‘l'(jrj‘ is the transmission probability
from regionk, moment’ to regionj, momentn through region.

If the angular flux at the interface between regions i andij, E, Q), is assumed to be

variable-separable, then it can be expressed as

u(r, E, Q) Zr{jjl//{jj(r,g)f(E)

(5.2)

D TR wlo(E — B + > Tl io(E - o).

kn,n n
where f (E) is the neutral energy distribution function at the interfacs;, andw{jj(r,ﬂ)
are angular flux representation functions. In addition, we assume that uncollided neutrals
from regionk to regionj through regiori are monoenergetic and have an energEgf
and collided neutrals from regianhave an energy of;, which is equal to the local ion
temperature in region

We define the average energy of neutrals from regtorregionj as

[ds; [ do [dEE(r,E, Q) ;)

— dbhjj Q-n;j>0

E =
' [ds; [ de [dEy(r,E Q)(Q-ny)
ODj Qn;j>0 (5.3)

nSijdeE< Ej(r,g)';zq,,-(r,E,Q)>

)
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wheren;; is the outward normal at the interfad®;;.

Substituting Eq. 5.2 into EqQ. 5.3, the average neutral energy can be expressed as

S deE<¢/ﬁj(r,sz)
I
) §n Ti'j;(jj'rpji OnoExi + % I 6n0T,
_ ke, = (5.4)
i

n—0710 E . c,01
% Tl,k—)Jrk,l Ek,| + FI,J T|

iy {jj(r,ﬂ)f(E)>

n—0 10 c,0
%Ti,k—qu,i +17

Since the average energy of the outgoing neutrals from a given interface is coupled to
the average energy of the incoming neutrals through each interface bounding that region,

the neutral transport equation can be solved by an iterative process as follows:

1. AssumeEi’,- = T, (the local ion temperature assumption);

2. Calculate the neutral mean free path, transmission and escape probabilities, then

solve the linear system;
3. Calculate the collided and uncollided fluxes;
4. Use equation 5.4 to update the average neutral erErgy
5. Repeat steps 2-4 until convergence;

6. Calculate the final neutral densities and the ionization rates.

5.3 Test of the average neutral energy approximation in a 9-region
problem

In DEGAS code, a neutral remains its initial energy before a collision. The energy of a

newly created neutral from a charge exchange scattering event atscedimpled from the
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Maxwellian distribution with the temperatuile = T;, whereT; is the plasma ion temper-
ature in celli. Since DEGAS calculations are continuous in energy and more accurate, a
9-region problem with nonuniform background plasmas is used in both the GTNEUT and
DEGAS codes to compare the accuracy of the local ion temperature and average neutral
energy approximations. The geometric configuration and cell arrangement are illustrated
in Figure 3.33. Vacuum boundary conditions are imposed on the four external surfaces. An
isotropic, uniform and unit strength neutral flux with an energy of 10 eV is injected at the
left boundary of cell 2.

In the first case, the ion temperature, electron temperature, ion density and electron
density vary linearly from 10 eV, 6 eV, 2 x 10 m=3 and 17 x 10 m=3in cells (Cells 1,

2 and 3) adjacent to the left boundary to 100 eV, 10 e¥210*¥ m3 and 27 x 108 m—3

in cells (Cells 7, 8 and 9) adjacent to the right boundary, respectively. The resulting mean
free path varies from 0.85 to 0.94 m, and the charge exchange factianes from 0.88

to 0.92. The results of the GTNEUT and DEGAS predictions are shown in Figure 5.1,
in which the five curves correspond to calculations of the Monte Carlo (labeled as DE-
GAS), GTNEUT with theDP, and local ion temperature (LIT) approximations (labeled
asDPy+LIT), GTNEUT with the local ion temperature aralP; approximations, as well

as corrections to the spatial non-uniformity of collided neutral sources and angular fluxes
(labeled aDP;+Diffusiom+-Nonuniform+LIT), GTNEUT with the DPy and average neu-

tral energy approximations (labeled@B,+ANE), and GTNEUT with the average neutral
energy andP; approximations, as well as corrections to the spatial non-uniformity of col-
lided neutral sources and angular fluxes (labeleDRst+Diffusion+-Nonuniform+ ANE).

Since the neutral mean free path is longer than the characteristic grid dimension, the
DP, approximation, as before, over-estimates neutral densities in cells away from the
source. Since the neutral mean free path is also much longer than the characteristic ion
temperature gradient length the neutral flux exiting across an interface consists predom-

inantly of the uncollided neutrals from the adjacent regions, and therefore, the local ion
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temperature approximation, by which the local ion temperature is assigned to uncollided
neutrals, is a poor approximation. For instance, all neutrals from region 5 to region 8 are
assigned 55 eV by the local ion temperature approximation, but in reality, most of neu-
trals are directly transmitted from region 2 with an energy of 10 eV. As a result, the local
ion temperature approximation leads to a significant under-prediction of the neutral density
in cell 8, since it over-estimates the neutral energy. The same thing is true for regions 7
and 9 as it can be easily seen from Figure 5.1. If the average neutral energy &g, the
approximations, as well as corrections to the non-uniformity of collided neutrals and angu-
lar fluxes, are made, the GTNEUT results agree very well with those predicted by Monte
Carlo. By checking the results, it is found neutrals from region 5 to region 8 are assigned
25 eV, which is significantly lower than the local ion temperature in region 5. It also should
be mentioned that the GTNEUT with the average neutral energy approximation converges
after 2 or 3 iterations, where the convergence criterion is the maximum change of average
neutral energies from the previous iteration is less than 1%.

In the second case, the ion temperature, electron temperature, ion density and electron
density linearly vary from 10 eV, 6 eV,1x 10*° m=3 and 17x 10*® m~2in cells (Cells 1, 2
and 3) adjacent to the left boundary to 100 eV, 10 eV210° m=2 and 27 x 10'°° m3in
cells (Cells 7, 8 and 9) adjacent to the right boundary, respectively. The resulting mean free
path is about 0.09 m, and the charge exchange factisrabout 0.9. Figure 5.2 shows the
comparison of results predicted by the DEGAS code and the GTNEUT code with the local
ion temperature and average neutral energy approximations. Since the neutral mean free
path is much shorter than the characteristic ion temperature gradient length, the local ion
temperature assumption is found to béisient to represent the neutral energy dependence.
It is clear that the calculations of GTNEUT with either the local ion temperature or average
neutral energy approximation, in addition to tBé¢; approximation and corrections of
directional escape probabilities, are in good agreement with the Monte Carlo simulations.

GTNEUT with the average neutral energy approximation converges only after 1 iteration,
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so it is essentially the same as the local ion temperature approximation.

In the next two cases, the ion temperature remains the same as in the previous two
cases, and the other plasma properties are adjusted so that the charge exchange ratio varies
from 0.52—-0.72 and the ratib/A is equal to 0.28 and 1, respectively. The calculations
of the DEGAS and GTNEUT codes are shown in Figures 5.3 and 5.4. As the previous
two cases, if the neutral mean free path is longer than the characteristic ion temperature
gradient length, big discrepancies between the DEGAS and GTNEUT predictions with the
local ion temperature approximation are observed, but the average neutral energy approx-
imation significantly improves the agreement with the Monte Carlo simulations. If the
neutral mean free path is comparable with or shorter than the characteristic ion temperature
gradient length, GTNEUT with either the local ion temperature or average neutral energy

approximation agrees very well with DEGAS.

5.4 Transportin a 15x 20region model

In the previous section, a smalb33 problem was used to test the accuracy of the average
neutral energy approximation. To extend the test to large problems, the model considered
in this section is a 2D rectangular problem, which extends from 0.0 to 0.9 m along the x
direction and from 0.0 to 1.0 m along the y direction. The domain of interest is uniformly
partitioned into 1% 20 identical rectangular regions, in which the background plasma prop-
erties can be treated as constants. The cell arrangement is shown in Figure 5.5. Specular
reflection boundaries are assumed at the four external interfaces. Two localized external
neutral fluxes with a strength 0ofx410°? s* is imposed at the right boundary of cells 290

and 291, respectively.

5.4.1 Problem with a uniform background plasma
In the first case considered, a uniform background plasma is assumea, withn, =
6 x 10 m=3 andT; = T, = 1000 eV. The energy of the incident neutrals is also 1000 eV.

As a result, the charge exchange fraction is 0.75 and the mean free path is 0.058 m, which
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is comparable to the characteristic size of the computational regions. Since the background
plasma is uniform (i.eL — ), the local ion temperature approximation is used in the
GTNEUT code.

The contours of the neutral densities predicted by the Monte Carlo method and the
TEP method with the dlierent level approximations are shown in Figure 5.6. TH®&
simulation (green dot) under-predicts neutral densities when we move away from the neu-
tral sources, resulting from the underestimation of transmission probabilities introduced by
the DPy assumption, though the trend is canceled to some extent by the over-estimation
of directionalities introduced by the flat collision source approximation. The discrepancy
betweenDP, and DEGAS increases as we move towards the left boundary. DFhe
approximation takes into consideration the anisotropy of angular fluxes, leading to an er-
ror dominated by the over-prediction of directional escape probabilities. Therefore, it is
expected that th®P, simulation (red dash) substantially over-predicts neutral densities
for regions away from the sources. When the correction to directionalities is added, the
GTNEUT simulation (cyan dot dash) still over-predicts results to some degrees, mainly
because the non-uniformity of the angular flux at each interface is not taken into account.
Finally when all the approximations (tf&P,; approximation, the correction to directional-
ities and the spatially linear approximation of angular fluxes) are turned on, the agreement
between GTNEUT (blue short dash) and DEGAS (black solid) is excellent for the whole

domain.

5.4.2 Problems with a non-uniform background plasma

In order to evaluate the two assumptions on the neutral energy dependence, three non-
uniform 2D multi-region problems will be tested in this subsection. The geometric config-
uration shown in Figure 5.5 will be used by both the GTNEUT and DEGAS codes. Mirror
boundary conditions are imposed on all the external surfaces. Two surface sources with the
strength 1x 10?? s™* are located at the right boundary of cells 290 and 290, respectively.

The details of the three non-uniform problems are listed as follows:
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1. Inthe first benchmark case, the plasma densities and temperatures are assume to vary

as the following form,

_ _ 2
() = exp| - D497 (/- 09) | (55)
0
_ _ 2
T(uy) = Toexp|- X245 L 0057, 5.
0

whereng = 10°°m=3, Ty = 1 keV andrg = 0.5 m.

The plasmas have the highest density and temperature at the center, and gradually
decrease by about 60% when we move towards the boundaries, therefore, the neutral
mean free path varies from 3.4 cm at the center to 9.2 cm at the four corners. The

temperature of neutral sources is 493 eV.

2. In the second benchmark case, the background plasmas have a relatively strong gra-

dient. Plasma densities and temperatures vary linearly as the following form,
. 900, .
T(i, j) = 100+ ﬂ(j -1) eV, (5.7)

. 4. o 3
n(, j) = l.0+14(J 1) x 10*° m=3, (5.8)

wherei the row index from the bottom to the topis the column index from the left

to the right.

The plasma temperatures vary linearly from 100 eV at the leftmost region, to 1000
eV on the rightmost region. The plasma densities have the lowest vadu®?® m=3

at the left boundary, then linearly increase ta 40'° m=3 at the right boundary. The
neutral mean free path is in the range 7.8—14.3 cm, longer than the characteristic grid

dimension. The energy of neutral sources is 1000 eV.

3. Inthe last case, the background plasmas have a very strong gradient. Plasma densities

and temperatures vary exponentially as the following form,

T(, j) = 400exg-0.378( — 1)] eV, (5.9)
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n(i, j) = 4.0exp[-0.099( — 1)] x 10*° m3, (5.10)

The plasma temperatures vary exponentially from 400 eV at the leftmost region, to 2
eV on the rightmost region. The plasma densities have the highest val@6'4 m=3

at the left boundary, then exponentially decrease xalD*® m=3 at the right bound-

ary. The neutral mean free path is in the range 5.0-14.1 cm, comparable or longer

than the characteristic grid size.

To test the accuracy of various GTNEUT approximations, the above-described nonuni-
form problems are analyzed by the Monte Carlo code DEGAS, GTNEUT witibfe
approximation, theDP; approximation and the correction to the non-uniformity of col-
lided neutral sources and neutral fluxes. The results of these simulations are shown in
Figures 5.7-5.9.

Since in the first case the ion temperature varies slowly across the region, the results
of the local ion temperature assumption with the corrections to the angular and spatial
distribution of neutral fluxes and collision sources are in good agreement with the DEGAS
calculations as shown in Figure 5.7. It is clear from Figure 5.7 that there is no obvious
improvement to further implement the average neutral energy approximation and that the
local ion temperature assumption is adequate for problems with a small gradient in the
background ion temperature. However, the background plasmas in the last two cases are
characterized by a strong gradient, large discrepancies between DEGAS and GTNEUT
with the local ion temperature assumption are observed in Figures 5.8 and 5.9, since a
wrong energy is assigned to uncollided neutrals. It can be seen from Figures 5.8 and 5.9 that
the average neutral energy assumption significantly improves the agreement with DEGAS
simulations, especially for optically thin regions with a background plasma characterized
by steep gradients.

The CPU time required to carry out the simulations by the DEGAS code and the GT-
NEUT code with various approximations is illustrated in Figure 5.10, where all the calcula-

tions are performed on a SUN workstation (ULTRA-10, 360 MHz), and 5,000,000 particle
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histories were followed in DEGAS to reduce the maximum statistical error to less than 10
%. Itis clear that GTNEUT with th®P, approximation is the fastest, and tBé¢; ap-
proximation will double the CPU time since more transmission probabilities are required
to be numerically evaluated. Thefldision and spatially-linear angular flux approximations
are computationally economic, therefore they will not obviously increase the CPU time.
The average neutral approximation will triple the CPU time since three iterative steps are
required to get converged results, but it is still three orders of magnitude faster than the

Monte Carlo code DEGAS.

5.5 Conclusions

A more realistic approximation of the neutral energy dependence for optically thin regions,
the average neutral energy approximation, has been developed and implemented into the
GTNEUT code. Essentially, this approximation calculates the average energy of the neu-
trals in a region as a weighted average of the average energies of neutrals entering the
region from contiguous regions and the average energies (the local ion temperature) of
neutrals charge-exchanging in the region.

The Monte Carlo and GTNEUT comparisons have indicated that the average neutral
energy approximation improves the accuracy of the TEP method significantly in optically
thin regions when background plasmas are characterized by strong ion temperature gradi-
ents.

Finally, the tests have also shown the energy of neutrals carfib@esutly described by
the local ion temperature approximation if the neutral mean free path is comparable with

or shorter than the characteristic ion temperature gradient length.
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CHAPTER 6

TEST OF THE IMPROVED TEP METHOD FOR REALISTIC
DIll-D CONFIGURATIONS

6.1 Introduction

The accuracy of the improved TEP method has been studied in the previous chapter, where
2D multi-region problems with nonuniform background plasmas were used to carry out
benchmark simulations with Monte Carlo. The objective of this chapter is to compare the
calculations of the upgraded GTNEUT code with DEGAS predictions for realistic tokamak
configurations, as well as with the experimental measurements of neutral densities.

The neutral densities in the divertor of the DIII-D tokamak have been measured in both
L mode and H mode plasmas [35]. In the experimentDhdght emission from the lower
divertor was recorded by a tangentially viewing charge injection device (CID) television
camera. The plasma properties such as temperature and density near the X-point were
measured by a divertor Thomson scattering system (DTS). Two photomultipliers (PMT)
were used to calibrate the tangential TV system. The neutral densities were then obtain by
the relation

|Dl, = NeNo{o(Te, Ne)Ve)exc (6.1)

wherelp, is the intensity of th®,, light emission measured by the tangential oA Te, Ne)Ve)exc
is the electron excitation rate anglis the electron density measured by the DTS.

The comparison with the experimental measurements for the DIII-D L mode or H mode
have been previously conducted by R. Rubilar et al [25] and J. Mandrekas et al [26]. In
the former paper, the neutral densities of the DIII-D L mode discharge predicted by the
GTNEUT code with mirror boundaries were in the good agreement with the calculations of
the DEGAS code, as well as the experimental measurements in the vicinity of the X-point.
The comparisons also identified several approximations in the original TEP methodology

limiting the further improvement of the agreement with Monte Carlo simulations: 1) lack
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of a realistic wall reflection model, 2) the local ion temperature assumption, 3)fge
assumption, 4) the flat collision source assumption or the non-directional approximation.
In the latter paper, a realistic wall reflection model and a two-group treatment of the neutral
energy dependence were implemented to improve the accuracy of the TEP methodology.
The calculated neutral densities were in excellent agreement with the DEGAS simulations
for the DIII-D L mode discharge, but the agreement for the DIII-D H mode discharge was
not good. The simulations also indicated that, in addition to the assumptions of the angular
distribution at each interface and the spatial distribution of collision sources within each
computational region , the treatment of the neutral energy dependence also plays a very
important role in the accuracy of the TEP methodology.

In this chapter, the L mode and H mode discharges will be calculated by both the
Monte carlo code and the GTNEUT code, taking into account the anisotropy of the angular
flux, the non-uniformity of collision sources and a more reasonable treatment of the neutral
energy dependence. The comparisons will be based on the same 2D geometry and the same

atomic rate data.

6.2 DIII-D L mode
6.2.1 Problem description

The geometric model for the L mode DIII-D discharge 96740 at 2250 ms is shown in
Figure 6.1. The X-point height above the divertor floor is 13.8 cm. The domain of interest
is divided into 182 cells to match the local geometry. The shaded regions in Figure 6.1
represents the location where the neutral densities were measured, their heights from the
divertor floor and region index are listed in Table 6.1. Cells 133-136 are located at the
private flux region, Cells 61-63 and 124-125 are located above the X-point.

The problem is bounded by carbon walls, with no wall absorption. The background
plasma data was computed by the fluid plasma code B2.5 [36]. Recycling neutral sources
emerge at the bottom boundary of regions 1-10 and 172-181. Plasma densities and temper-

ature vary from 31x 10" to 3.4x10*® m=3 and from 2.3 to 180 eV, respectively. The typical
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Table 6.1. Region index and height f§ the divertor floor for the measurement locations in the L mode
DIII-D discharge 97640 at 2250 ms

Regions| Height af the divertor floor (cm)
136 5.2
135 6.5
134 8.6
133 11.3
61, 124 17.4
62,125 20.8
63 22.8

neutral mean free path and the charge exchange fraction are in the range of 0.035-4.5 m

and 0.52-1, respectively.

6.2.2 Results and discussion

Since molecule transport is not included in the current version of the GTNEUT code, it is
assumed that neutral molecules, released after the thermal equilibrium with wall materials,
are immediately broken up as Frank-Condon atoms with an energy of a few electronvolts.
DEGAS is aslo run without the molecule transport. The energy @imyand desorbed
neutral atoms is assumed to be 3 eV, same as the GTNEUT reflection model.

To investigate the impact of the nonuniform plasma temperature on the accuracy of the
TEP method, GTNEUT will be run for the following three cases: 1) the DIII-D L mode
with a uniform ion temperature, 2) the DIlI-D L mode with the original nonuniform ion
temperature and GTNEUT with the local ion temperature assumption, and 3) the DIII-D L
mode with the original nonuniform ion temperature and GTNEUT with the average neutral

temperature approximaiton.

6.2.2.1 DIII-D L mode with uniform ion temperature
In the first case, to exclude the error produced by the neutral energy treatment, itis assumed
the plasma ion has a uniform temperature of 10 eV but the other plasma properties remain

the same as the original background plasma. The neutral densities vs the height above the
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divertor floor are shown in Figure 6.2, where the four curves corresponds to the calculations
of DEGAS without molecules, GTNEUT with thBP, approximation, thddP; approxi-
mation and with both th®P; approximation and the fiusive correction to nonuniform
collided neutral sources. It can be seen thatDiRg approximation under-predicts neutral
densities approximately by a factor of two. Théfelience is due to the under-estimation

of the transmission of uncollided fluxes by tB€, approximation. Taking the anisotropy

of angular fluxes into account, th&P; approximation agrees very well with DEGAS both
above and below the X-point. However, the correction to the non-uniformity of collided
neutrals makes no obviousfidirence for all the regions. This is expected since the neutral
mean free path is much larger than the grid size for all the regions. Similar results are also

observed if we vary the plasma ion temperature form 2 to 400 eV.

6.2.2.2 Calculations of GTNEUT with the local ion temperature assumption

In the second run, the original non-uniform background plasma properties are used by both
DEGAS and GTNEUT. The local ion temperature assumption is made in the GTNEUT
simulations. The neutral densities versus the heights above the divertor floor predicted by
DEGAS and GTNEUT with various assumptions, as well as the experimental measure-
ments with error bars, are shown in Figure 6.3.

A quick examination of Figure 6.3 indicates that the GTNEUT code withiRg ap-
proximation agrees very well with the DEGAS simulations without molecule transport in
the private flux region, but a up to 40% overestimation of neutral densities by the GTNEUT
code with theDP, approximation is observed in the main plasma region. These calcula-
tions agree with the experimental measurements within error bars. On the contrary, the
GTNEUT code with higher approximations (ti#?; approximation or the correction of
non-uniform collided neutral sources) under-predicts results by 30—300% compared to the
Monte Carlo calculations, but there is no obvioufeatience between the calculations of

GTNEUT with and without the correction to non-uniform charge-exchanged neutrals. The
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disagreement of the GTNEUT predictions with the higher approximations is due to the lo-
cal ion temperature approximation, which is not valid for optically thin regions. In such

a situation the neutral mean free path is much larger than the characteristic dimension for
each computational region, and it is also found that the uncollided flux is about an order
of magnitude higher than the collided flux at each interface. As a result, a significant por-
tion of neutrals in the shaded regions is directly transmitted from the divertor floor with
an energy of a few electronvolts, while the energies of these particles are assumed to be
the plasma ion temperatures in the contiguous regions, some of which are ¢jigterdi

from their real energies. Taking region 136 as an example, the neutrals entering from re-
gions 53, 135, 137 and 147, based on the local ion temperature assumption, are assigned
an energy of 3.6, 11.7, 2.3 and 15.5 eV, respectively. However, the majority of neutral
population from regions 53, 135 and 147 is transmitted from the divertor with an energy
of 2 eV. Consequently the local ion temperature assumption leads to a under-prediction of
the neutral density by GTNEUT with thBP, approximation for region 136. The same
thing is true for the other regions. If tHeP, approximation is made, on the one hand,
GTNEUT under-estimates the neutral fluxes from region 53 to region 136 and from region
247 to region 136 due to the under-prediction of transmission probabilities across a region;
on the other hand, becauB#, assumes more particles move in large angles, GTNEUT
over-predicts the neutral flux entering from region 53, whose local ion temperature is very
close to the real neutral energy. Consequently, the good agreementPghesults from

a coincidental cancelation between the two errors. It should be pointed out that no ob-
vious diference between GTNEUT with and without the correction to directionalities is
expected for optically thin regions, where the non-uniformity of collided neutral sources

can be safely ignored.

6.2.2.3 Calculations of GTNEUT with the average neutral energy assumption
In the last run, the original nonuniform background plasmas are used by both the DEGAS

and GTNEUT codes. In order to take into account the neutral endfggte, the average
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Table 6.2. Comparison of the energy assigned to neutrals entering into region 136 by the two approxi-
mations for the L mode DIII-D discharge 97640 at 2250 ms (unit: eV)

Approximation LIT | ANE
Region 53 to region 13§ 3.6 | 3.5
Region 135 to region 13611.7| 5.8
Region 137 to region 136 2.3 | 2.7
Region 147 to region 13615.5| 4.0

neutral energy assumption is made in GTNEUT. Since the neutral flux from an optically
thin region predominately consists of uncollided neutrals, GTNEUT with the average neu-
tral energy assumption generally converges in 2 or 3 iterations.

The results of DEGAS and GTNEUT with a variety of approximations, as well as the
experimental measurements with error bars, are shown in Figur®Bgagrees very well
with DEGAS without molecule féects in the private flux region, but it under-predicts re-
sults by 30—-40% in the main plasma region. It can be seen that the agreement between
the DP; approximation and DEGAS without molecule transport is excellent for the entire
domain. As before there is no further advantage to correct directionalities for the fine-mesh
DIII-D L mode discharge. The comparison of the energy assigned to neutrals entering into
region 136 by the two assumptions is shown in Table 6.2, from which it can be seen that the
local ion temperature assumption substantially overestimates the energy of neutrals from
regions 135 and 147 to region 136. A more detailed comparison of the results predicted
by DEGAS without molecule transport and GTNEUT with th®; and average neutral
energy approximations is presented in Figure 6.5. The comparison indicates the agreement
between DEGAS and GTNEUT is very good in all but a few regions near the upper-left cor-
ner, where GTNEUT slightly over-predicts the neutral density. The discrepancy is mainly
due to albedo boundaries assumed by GTNEUT, in contrast DEGAS treats these regions as
a part of the SOL. The neutral density achieves its maximum value near the divertor floor,
where neutral gases are recycled, then gradually decreases by several orders of magnitude

when we move toward the main plasma region.
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Figure 6.5. Comparison of GTNEUT with the average neutral energy assumption and DEGAS simula-
tions for the analysis of the DIII-D L mode discharge 97640 at 2250 ms with the original nonuniform
background ion temperature
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Table 6.3. Region index and height f§ the divertor floor for the measurement locations in the H mode
DIII-D discharge 96747 at 3940 ms

Regions Height df the divertor floor (cm)
38,156 4.2
37,155 5.2
35,36,153,154 8.5
49,50,140,141 14.8
51, 142 18.9
52 21.9

6.3 DIII-D H mode
6.3.1 Problem description

The geometric model for the H mode DIII-D discharge 96747 at 3940 ms is shown in
Figure 6.6. In this case the X-pointis located 10.6 cm above the divertor floor. The problem
consists of 188 regions. The shaded regions in Figure 6.6 represents the location where the
neutral densities were measured, their heights from the divertor floor and region index are
listed in Table 6.3. Cells 35-38 and 153-156 are located at the private flux region, Cells
49-52 and 140-142 are located above the X-point.

Carbon is assumed as the wall material. The external neutral sources emerge at the
bottom boundary of regions 1-14 and 175-188. Both the background plasma densities and
temperatures are higher than those in the L Mode discharge. For instance, the electron tem-
perature varies from 3.8 to 59 eV in the private flux region and from 100 to 430 eV inside
the separatrix, and ion temperature is in the range 57-218 eV in the private flux region and
in the range 120-600 eV in the main plasma region, respectively. As a consequence, the
neutral mean free path varies from 0.7 m to 26 m outside the separatrix and from 0.06 m
to 0.5 m in the plasma region, much longer than the grid size for regions both outside and

inside the separatrix.
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6.3.2 Results and discussion

As in the L mode discharge, the DEGAS code is run without molecule transport. All
the molecules recycled and desorbed from wall segments are assumed to be dissociated
as Frank-Condon atoms with an energy 3 eV at the plasma-wall interface. Again, three
cases of the energy dependence, a uniform plasma ion temperature, a nonuniform plasma
ion temperature and GTNEUT with the local ion temperature or average neutral energy
approximation, are investigated to compare the DEGAS and GTNEUT calculations.

In the first case, the background plasma is assumed to have a uniform ion temperature
10 eV, while other properties remain the same as the original plasma. Neutral densities
calculated by DEGAS without molecule transport and GTNEUT witffiedent level ap-
proximations are illustrated in Figure 6.7, from which it can be seen thdd Byeapprox-
imation leads to the underestimation of neutral densities, especially in the main plasma
region. The higher order angular approximatdR; either with or without the correction
to directionalities significantly improves the agreement with the DEGAS simulations.

In the second run, the original nonuniform background plasmas are used by both the
DEGAS and GTNEUT codes. The local ion temperature (LIT) approximation is assumed
in GTNEUT. A series of comparisons of the various GTNEUT simulations with the DE-
GAS results are shown in Figure 6.8, where the experimental results are also presented.
DEGAS with molecule transport under-predicts neutral densities in the private flux region,
mainly due to the error of background plasma properties calculated in the B2.5 code. Our
simulations have shown neutral densities in the private flux region are very sensitive to
the background ion temperature. In reality, the local ion temperature approximation used
by GTNEUT cannot correctly represent the neutral energy dependence in optically thin re-
gions, since the approximation is based on the assumption that the majority of neutrals have
at least one collision with the background ions in each computational region. This is the
reason that a large discrepancy between DEGAS without molecule transport and GTNEUT

with either theDP, or DP; approximation is observed in Figure 6.8.
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Table 6.4. Comparison of the energy assigned to neutrals entering into region 136 by the two approxi-
mations for the H mode DIII-D discharge 96747 at 3940 ms (unit: eV)

Approximation LIT | ANE
Region 24 to region 38 74.9| 6.0
Region 37 to region 38 71.2| 10.7
Region 39toregion38 59 | 4.6
Region 156 to region 3897.3| 6.8

In the last run, the average neutral energy (ANE) approximation is used in GTNEUT to
take into account the nonuniform background ion temperature. The comparison of DEGAS
and GTNEUT calculations is presented in Figure 6.9. To show endfggtg, the energies
of neutrals entering into region 38 assigned by the two assumptions are listed in Table 6.4,
from which it can be seen the average neutral energy is an order of magnitude lower than
the local ion temperature. Figure 6.9 indicates that the average neutral energy approxima-
tion significantly improve the agreement between DEGAS and GTNEUT compared to the
local ion temperature approximation. With reference to the DEGAS simulations without
molecule dects, theDPy approximation over-predicts neutral densities in the private flux
region and slightly over-predicts results in the deep plasma region DPgecalculations
are observed to be in better agreement with the experimental results, resulting from the
coincident balance between errors introduced byCtRg approximation and the calculated
background plasma parameters. The, calculations are in excellent agreement with the
DEGAS simulations without moleculefects for the entire domain. As in the L mode
case, there is no obvious advantage to correct directionalities for fine grid meshes. The
detailed comparison of DEGAS without molecule transport and GTNEUT wittDiRe

approximation is shown in Figure 6.10.

6.4 Conclusions

Simulations of GTNEUT with a variety of approximations in DIII-D L and H mode dis-

charges are performed. The agreement between the GTNEUT witbRhand average
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Figure 6.10. Comparison of GTNEUT with the average neutral energy assumption and DEGAS simu-
lations for the analysis of the DIII-D H mode discharge 96747 at 3940 ms with the original nonuniform
background ion temperature

159



neutral energy approximations and the DEGAS simulations without molecule transport is
excellent for both the L mode and H mode discharges. Both the DEGAS and GTNEUT
predictions are in good agreement with the experimental measurements.

The comparisons in both the discharges indicate the neutral energy dependence has an
important impact on neutral transport in both the private flux region and the main plasma
region. It has been shown the average neutral assumption is superior to the local ion temper-
ature approximation, especially for regions with strong ion temperature gradients. Bench-
marking calculations with DEGAS in realistic DIII-D configurations indicate Bfe, ap-
proximation is significantly better than the origindP, approximation, but there is no

advantage to correct directional escape probabilities for optically thin regions.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Neutral particles can have important impacts on the performance of tokamak plasmas. An
efficient and accurate method simulating neutral transport in diverted plasmas is indispens-
able to analyze experimental phenomena in the current fusion devices and to predict the
performance of next generation fusion reactors.

In this dissertation, a number of refinements have been made in the TEP methodology
and implemented into the original GTNEUT code. The accuracy of the upgraded code has
been investigated by comparisons with the Monte Carlo code DEGAS. The major contri-

butions of this work are summarized as follows:

1. The extension of the origindd P, approximation to linearlyP,) or quadratically
(DP,) angular distributions has been made to take into account the anisotropy driven
by the presence of sources, boundaries, vacuum regions, etc. Extensive comparisons
with Monte Carlo have shown that tieP; approximation significantly improves the
accuracy of the TEP method if anisotropiteets are important, while there is little

further advantages to extend to th&, approximation.

2. Three approaches, subdivision of regions, collision source expansion fansiah
approximation, have been proposed and implemented into the GTNEUT code to ad-
dress the fect of non-uniformity of collided neutral sources on directional escape
probabilities. Solving the dliusion equation via the finite element method has been
shown to be computationallyfficient and accurate for optically thick regions by
comparisons with Monte Carlo simulations, has been shown to be the preferable ap-

proach.

3. To take into account spatial non-uniformities in the angular fluxes along interfaces,
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a linear spatially dependent set DPy representation functions has been adopted.
Benchmark simulations with Monte Carlo show that this approach significantly im-

proves the accuracy of the simulations for optically thick reigons.

4. The average neutral energy (ANE) approximation, which assumes that the average
neutral energy from a region is the weighted average of the energy of neutrals inci-
dent from contiguous regions and of the energy of neutrals resulting from charge-
exchanged ions within the region, have been developed and implemented into the
GTNEUT code. The average neutral energy approximation has been shown to be
more accurate than the original local ion temperature assumption for optically thin

regions, where neutral fluxes dominantly consists of uncollided neutrals.

5. Extensive benchmark simulations with the Monte Carlo code DEGAS have shown
that the improved TEP methodology is accurate and computationally economic for a

broader range ok/A ratios than was the original TEP method.

6. Simulations with the refined GTNEUT code agree excellently with the DEGAS pre-
dictions of recent DIII-D L-mode and H-mode discharges, and the results of both the

codes are in good agreement with the experimental measurements.

7.2 Recommendations

While the validity of the TEP method has been extended to extreme cases with a broader
range ofA/A by the refinements in this work, the improvements in the following aspects

could further enhance its computationii@ency and accuracy:

1. The present version of the GTNEUT code is two or three orders of magnitude faster
than the DEGAS code, but its computationfii@ency can be significantly improved
by the adoption of fast integration algorithms for the evaluation of transmission prob-
abilities. By the mean cord method [37] the original 2D numerical integration of

transmission probabilities can be analytically reduced to 1D numerical integrations,
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which are independent on the neutral mean free path. Furthermore, symmetric and
conservation relations can be used to further reduce the time to compute transmission

probabilities because of the independence on neutral mean free path.

. Since in the TEP balance equations the exiting partial current moment from a given
region is only coupled to all the incoming partial current moments from the contigu-

ous regions, a large problem can be easily decomposed into a number of relatively
independent small problems. This local nature of the TEP method makes it very

suitable for parallel computing in a multi-processor computer.

. The local ion temperature or average neutral energy assumptiofhi et for most

cases, but under some special conditions the two assumptions may break down. For
instance, if a problem is very sensitive to the charge-exchange fraction, a minor error
of the charge-exchange fraction introduced by either of the two energy approxima-
tions could lead to a significant error in the calculated neutral densities or ioniza-
tion rates. In addition, the energy distribution function may be needed to couple
with a plasma fluid code. In order to remedy this issue, a full multi-group treatment
of the energy dependence is recommended. The implementation of the multi-group
methodology should be straightforward, and the number of energy groups is expected

to be small since the reaction rates in fusion devices vary relatively smoothly in en-

ergy.

. Molecule transport is not explicitly included in the current version of the GTNEUT
code, which basically assumes all the desorbed molecules from material surfaces dis-
sociate immediately as Franck-Condon neutral atoms. Since the dissociative ioniza-
tion of molecules are ignored in the GTNEUT code, it over-predicts neutral densities
in both the DIII-D L mode and H mode discharges. To remedy molecfiiéets,

the implementation of molecule transport in GTNEUT is suggested. It is believed
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that the implementation of molecule transport is ndkiclilt conceptually. In prin-
ciple, adding a molecular specie is the same as adding an extra energy group to the

GTNEUT code.

. It is assumed in the present TEP methodology that charge-exchanged neutrals are
isotropically emitted in the laboratory system. This assumption is not valid for the
case of a strong plasma flow. In such a situation the charge-exchanged neutrals are
preferably emitted in the plasma flow direction. To take tHfea into account,

the preferential scattering of charge-exchanged neutrals in the plasma flow direction
could be addressed by solving a extendetlidion equation with th&3 or higher

order approximation via finite element methods.

. The current version of the TEP method is based on 2D cylindrical configurations,
but the GTNEUT code will most likely be used to model neutral transport in toroidal
configurations. This is not an issue for most cases, where the neutral mean free path
is shorter than the characteristic dimension in the toroidal direction. Benchmarking
tests [25] with the DEGAS code in DIII-D configurations have shown that toroidal
effects are not important. However, if the mean free path is longer than the char-
acteristic dimension in the toroidal direction and, at the same time, fusion reactors
have a very low aspect ratio configuration, the toroidédas may not be ignored.

In addition, a strongly localized external source may also break the symmetry in the
toroidal direction. For these cases, an extension of the TEP method to 3D geometries

IS necessary.
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