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SUMMARY

The kinetic theory of ion transport in axisymmetric
tokamak plasmas has been extended to include the effects of
strong plasma rotation and radial viscous momentum transfer
due to unbalanced neutral beam injection. To accomodate
particle flow speeds which are comparable in magnitude to
the ion's thermal velocity, the kinetic analysis is carried
out in a coordinate frame which is moving with the plasma.
As a result, the kinetic transport equations are a simple
generalization of the kinetic equations valid for
non-rotating plasmas with the radial gradient of the
toroidal angular velocity appearing as a driving term like
the temperature gradient,

An ordered hierarchy of kinetic eguations are obtained
for both the gyroangle dependent and gyrotropic components
of the particle distribution function by expanding the
particle distribution function, electric field vector and
particle flow in powers of the gyroradius parameter. The
lowest order kinetic equation governing the gyroangle
dependent component of the particle distribution function is
solved and the result is used in conjunction with the
definition of the toroidal wviscosity to obtain the
functional structure of the gyroviscous momentum drag force,

The c¢ollisional response o©of the plasma to intense

momentum injection is obtained by use of a linearized
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Fokker-Planck collision operator which accounts for both the
direct and indirect effects of beam particle collisions with
the background plasma species. This operator is used in the
0(51) drift kinetic equation to obtain a solution for the
gyroaveraged component of the particle distribution function
in all collision frequency regimes, The lowest order
neoclassical friction~flow and parallel stress constitutive
relationships are computed from a knowledge of the 0(61)
particle distribution function.

Finally, the fluid equations are used in conjunction
with the kinetically derived constitutive relationships to
obtain an expression for the radial particle flux for a
mixed regime beam injected plasma. In this regard, the
theory of particle transport in the presence of an external
beam momentum source 1is evaluated for a two specie plasma
composed of a high 2 impurity ion and a dominant hydrogenic

ion species,



CHAPTER I

INTRODUCTION

1.1 REVIEW OF PREVIQUS WORK

The principal challenge of controlled nuclear fusion

8

research is to attain thermonuclear temperatures of 10~ to

102

K and confine the plasma sufficiently long so that the
thermonuclear energy produced significantly exceeds the
energy input. Unfortunately at such extreme temperatures,
the plasma ions which escape the plasﬁa and associated
charge-~exchange neutrals fend to erode the tokamak's first
wall thereby resulting in impurity ion production [1]. It
is well known [2-6] that in a closed system without external
sources or sinks of particles and momentum, the classical
{2,7] and neoclassical ([3,4,2-8] transport theory predicts
that the net impurity flow will be inward. In essence, the
uncontrolled inward flux of cold impurity ions can lead to
excessive radiation cooling resulting in a sgignficant
reduction of the fusion power output or premature termi-
nation to the plasma discharge altogether [9-12] as well as
a reduction in the plasma pressure, alteration of the radial
current distribution'gnd charge accumulation that may lead
to a disruption. However if the influx of impurities can be

reversed or the position and concentration of the impurities

can be controlled, then the impurities can be used to shape



the.plasma temperature profiles thereby allowing the plasma
burn dynamics and wall erosion rate to be controlled.

The use of an external source of momentum as a means of
impurity control has been studied extensively and a vast
number o©of experiments have been performed in order to
confirm the feasibility of this method of impurity control,
In particular, it has been predicted theoretically [13-18]
and confirmed experimentally {19-21]) that coinjected neutral
beam momentum (momentum injection directed along +the
magnetic field lines) will inhibit and in some cases reverse
the inward flow of impurities in a tokamak plasmé. The use
of neutral beam injection as a method of impurity control as
well as a source of auxillary heating warrants a more
thorough understanding of the fundamental mechanisms which
govern the transport process during the external momentum
injection sequence. Of particular interest for present
generation tokamaks is the effect of strong rotation and
radial momentum transfer on particle, momentum and heat
transport. In this thesis, the existing kinetic theory for
particle, momentum and heat transport is extended to account
for the effects of unbalanced neutral beam injection such
as strong plasma rotation, radial momentum transfer, and
other effects which become important in a beam injected
plasma.

The transport theory for a toroidally confined axisym-

metric plasma represents a fundamental departure from clas-



sical transport theory in that the magnetic field of a
toroidal confinement system is necessarily nonuniform. In
tokamaks, the crucial effects of magnetic field inhomo-
geneities are the field curvature and gradient-B- drifts,
and the magnetic trapping effects due to spatial variation
of the magnetic field strength along the field lines. These
effects, in conjunction with the random scattering due to
coulomb collisions, result in neoclassical transport across
the magnetic surfaces, the magnitude of which is signif-
icantly enhanced in comparison +to the corre5ponding
classical values. The theoretical consequences of the
neoclassical effects in a tokamak plasma can conveniently be
discussed in terms of the single collisionality parameter

which is defined such that [22]

B
Y; = naB/ (mtaas)
{1.1-1)

here i i = -
where n, is the collision frequency, 6B Bmax Bmin

is the magnetic field modulations on a magnetic surface with

Bmax (Bmin) being the maximum (minimum) value of the

magnetic field on the surface and

B

@e

" - 2 2
2 = |sds/| V.|| = /tha/(ZBiB)
(1.1-2)



is the bounce frequency of a deeply trapped thermal particle
(Here £B==wqR is the magnetic field connection length with
g being the safety factor). If the time between collisions
is less than the time required for a particle to complete an
antrapped orbit, then the form of the orbit can not be
relevant to the diffusion process and the plasma is in the
fluid-like Pfirsch-Schluter or collisional regime
[23,24,25-27]. In the context of the collision parameter’Y;,
this regime is characterized by the inequality (6B/B)—3/2

-3/2
kB/pa >> Y; >> (8B/B)

where the lower bound on Y;
signifies that the mean free path along the magnetic field
line is short enough so that the particles are spatially
localized and the upper bound ensures that the particles are
strongly magnetized [7,8,28,29].

At the other extreme, the long mean free path or banana
regime is characterized by particles wliich become trapped in
magnetic wells due to the spatial variation of the magnetic
field strength along the field lines. 1In essence the banana
regime is governed by the inequality. y; << 1 implying
that this regime is applicable to that range of collision
frequencies for which the effective collisional scattering
rate of trapped particles is less than the trapped particle
bounce frequency so that the particles execute collisionless
orbits ({30-35]. Physically, the trapped particles excute

"banana® shaped orbits because the magnetic gradient and

curvature drifts are in different directions for each leg of



the orbit. 1In this regime the particle's bounce motion in
the parallel magnetic well is slowly interrupted by pitch
angle scattering intce circulating particle space resulting
in particle diffusion.

The remaining neoclassical regime, namely the plateau
or tranéition regime, exists for values of v} for which

v: < (sB/B)73/2

. In this regime the particle transit time
around the magnetic axis is equal to or greater than their
effective collision time. As a result, trapped particles no
longer persist and resonant particles dominate the diffusion
process when the magnetic field modulations are small. These
resonant particles do not have their toroidal drifts
compensated for by the rotational transform resulting in a
net radial excursion from the magnetic £flux surface
[7,8,36-39].

In the absence of unbalanced neutral beam injection
there are two major contributions to the neoclassical flux
which remain distinguishable throughout all the collision
frequency ranges [25,40,41]. One such contribution, which is
applicabkble primarily to the Pfirsch-Schluter regime, arises
from wvariations in <the adiabatic wvariables (pressure,
temperature, etc.) and the electrestatic potential within a
magnetic surface. In essence the pressure stress anistropy
is kept small by collisional randomization but the mean free

path is short enough to allow pressure, temperature and

electrostatic potential variations along the magnetic £field



lines. Therefore the finite c¢ollisional resistivity along
the field 1lines causes poloidal gradients in the thermo-
dynamic variables and electrostatic potential which in turn
drive the Pfirsch-Schluter fluxes. Furthermore since these
fluxes are independent of the poloidal plasma rotation, then
they can be determined uniquely from flow incompressibility
and from +the perpendicular component of the momentum
balance. As a result, the Pfirsch-Schluter fluxes can be
obtained directly from the £fluid equations in which the
viscous stress forces are neglected.

The second contribution to the neoclassical fluxes in a
plasma devoid of external influences arises from stress
anistropies and is the dominant effect in the long mean free
path regime. In an axisymmetric plasma the wviscous forces
are directly proportional to the magnitude of the poloidal
rotation [8,41]. As a result, the banana-plateau fluxes are
driven by the polcocidal component of the hydrodYnamic flows
and therefore are a consequence of the magnetic field
nonuniformities and insufficient collisions to isotropize
the pressure tensor.

The effects of magnetic field inhomogeneities on
classical transport processes in the absence of unbalanced
neutral beam injection and associated strong plasma rotation
and radial viscous transfer have been treated extensively in
the literature and are well summarized for a pure plasma in

a review paper by F. L. Hinten and R. D. Hazeltine [7].



Similarly, a unified treatment of impurity transport in
which the macroscopic fluid aspects of neoclassical
transport theory are stressed can be found in a review paper
by S.P.Hirshman and D.J. Sigmar [8].

As stated earlier, one of the most promising methods
of impurity control (and explusion}) is by the use of an
externally imposed source of momentum such as neutral beam
injection. The principal of impurity control with neutral
beam injection can easily be understood by noting that since
the particle and heat fluxes depend primarily on the
interplay beﬁween the coulomb force and the magnetic field
inhomogeneities, which are inherent in a toroidal config-
uration, then any external agent of sufficient strength to
perturb the particle drift motions is capable of affecting
the transport process. When external momentum is injected
into a tokamak plasma, a myriad of new effects arise which
alter the conventional transport process. In particular the
total effect of momentum injection on the radial particle
and heat fluxes can be attributed to at least four
mechanisms. First, there is a direct collisional
interaction of the beam source with the background plasma
which drives cross field fluxes in a manner analogous to
that of collisional momentum and heat exchange among
different species [13,17]. Secondly, momentum injection
produces a toroidal plasma rotation. Once steady state

rotation is achieved the external source of momentum is



balanced by a drag force. In essence, the external momentum
source and the associated drag force alter the lowest order
particle flows within the flux surface, thereby indirectly
modifying the particle and heat transport fluxes [17,18].
Furthermore, the external momentum and drag source also
contribute to the radial electrostatic potential gradient
which leads to a potential gradient driven transport flux
[17,18]. Finally, experimental evidence has indicated that
the toroidal rotation speeds in momentum injected devices
can be comparable with the thermal ion speed for certain
heavy 1ion species [42,43]. As a result, the ensuing
centrifugal inertial effects lead to density and
electrostatic potential variations along the magnetic field
lines [8,44,45]. This in turn modifies the 1lowest order
flow patterns and therefore the cross field particle and
heat transport fluxes ([8,45,46,47].

The experimental response of present generation
tokamaks to unbalanced neutral beam injection indicates that
central rotational velocities of approximately 10° m/sec
have been obtained [42,43]. During the initial phase of the
beam injection sequence, the plasma is acceierated on a time
scale of ten to thirty milliseconds, a value slightly larger
than the rise time of the beam power, Physically, the
initial buildup of toroidal rotation sequence is determined
by a FxB force which arises as a consequence of prompt

momentum transfer [48]. In essence the creation of fast



ions by the ionization of injected neutrals 1leads to a
radial current and therefore produces a buildup of charge.
Since a plasma is a polarizable media, a polarization
current, which results from the changing radial electric
field, cancels the fast ion creation current, and the
ensuing force due to the polarization current transfers part
of the injected momentum to the plasma. Since the prompt
transfer of @ injected momentum is proportional to the rate
of fast ion creation, then this transfer mechanism occurs
immediately after the momentum injection source is turned
on whereas the direct collisional interaction between the
beam particles and background plasma occurs on a slowing
down time scale. When steady state is achieved, the time
variation of the radial electric field vanishes, and there-
fore the polarization current goes to zero. As a result, the
fast ion creation current must now be balanced by other
currents. It is then these forces, which result from the
plasma currents necessary to balance the ion creation cur-
rent, which cancel the momentum losses in the steady state.
Although the prompt transfer mechanism provides a simple
physical explanation for the transfer process of injected
momentum to the bulk plasma, it does not address any
momentum drag mechanism which also could be occuring
.during the initial injection sequence. In addition, the drag
forces, which balance any net momentum input during steady

state rotation must be accounted for. Now there 1is clear
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experimental evidence that momentum drag losses are exper-
ienced during momentum injection and that the drag force
appears to be due to a radial transport of momentum [49,50].
In particular, experimental measurements in PLT [42,49] have -
revealed that the velocity profile is parabolic rather than
centrally peaked which is the depositioﬂ profile of the
injected momentum thereby implying <that the injected
momentum was being lost from the center of the plasma.
Furthermore, using the experimental data from PLT in a
diffusion model yields a momentum transport rate which is
roughly the same order of magnitude as the particle and heat
diffusion rate [49]. Similarly for mid-range wvalues of the
controllable plasma parameters, gquasi-steady state global
values of the momentum diffusion rates in ISX-B [43,50]
indicate that they are comparable to the energy and particle
diffusion rates,

As a general rule, the most commonly used-barameter.to
quantify the effects of momentum drag is the total momentum

confinement time which is defined as

conf r - - 5 A
T = I fin.m.v.- -
a 3 o (nymyvy-ng)dr/(s ng)
(1.1-3)
where $-n is the toroidal momentum deposition from the

¢

beams and r is some radius. The momentum confinement time
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can be determined experimentally from either a force balance
at steady state rotation or from the rotation decay time
after the momentum injection is terminated. Using the first
technique, confinement times of 10-30ms and 10-20ms have
been inferred in PLT [(42,49] and 1Is8X-B (43,50], respec-
tively. Furthermore, rotation decay measurements of
titanium impurity ions in PDX [51]) have led to inferred
momentum confinement timeé of 80-100ms for a beam power
range of 3.5 to 7.2 MW.

To gain some physical insight into the fundamental
processes which are responsible for this drag phenomena, the
drag mechanisms can be categorized into two classes, namely
the true external drags and the momentum diffusion drags.
The true plasma drags consist primarily of localized
collisional interactions with the plasma wall and limiter,
~ and charge exchange effects.wifh the background neutral gas
[62,53]). O©Of these true drag mechanism only charge exchange
-effects are significant enough to remove the diffused
momentum from the plasma. In this regard, it has been shown
experimentally [42,49] that with neutral densities on the

order of 1010

/m3 , ¢harge exchange 1is sufficient to
maintain a near zero plasma rotation at the limiter.

The momentum diffusion draé mechanisms are responsible
for the radial transfer of momentum from the plasma interior

to the plasma edge. Included in this class of drag mech-

anism are the convective processes such as ripple induced
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[52], drift wave i54,55,56) and turbulent convective
transport mechanism [57), and conduction drag mehanisms due
to wviscous momentum transfer [34,52,58,59,60,61,62,63]. It
has been shown that with the large torcidal rotational
speeds developed during momentum injection and all coils
operational, the ripple induced convective effects are too
small to account for the momentum confinement times inferred
from experiments on PLT and ISX-B {64]. A similar result
has been obtained for the other convective drag mechanisms.
In essence, convection only reduces momentum at the center
of the plasma by reducing the number of particies but does
not change the momentum per 'particle. Consequently the
convection transport mechanisms cannot adequately explain
the magnitude of the momentum drag experienced in the
interior of the plasma during neutral beam injection.

In reference to the conduction mechanisms, early
theoretical calculations [34,52,58] of the perpendicular ion
viscosity, which were based on the assumption that the
parallelhion flow was much less than its thermal velocity,
have yielded a radial transport rate §wo orders of magnitude
smaller than was actually observed. Refinement of the neo-
classical perpendicular viscosity calculation to the high
flow regime [59,60,63) still resulted in radial transport
rates of one to two orders of magnitude smaller than those
inferred from experiment. In this fegard Hinton and Wong

[60] and Catto (63] have recently generalized the conven-
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tional nebclassical perpendicular viscosity calculation to
account for the effects of strong plasma rotation. In the
former case, a calculation of the cross field diffusion of
momentum was made for a.strongly rotating plasma in which
the large ExB drift formulation was assumed. The results
of this investigation indicated that the lowest qrder
perpendicular viscosity scales with collision freguency, and
therefore the calculated momentum transport rates were one
to two orders of magnitude too small to explain the
magnitude of the observed confinement times. In reference
[63], a gyrokinetic evaluation of the torocidal viscosity was
made for a strongly rotating plasma for a small ExB drift
case by retaining finite poloidal gyroradius effects.
Unfortunately, the results of this analysis yielded momentum
transport rates which were in gualitative agreement with
reference [60] in that the lowest order toroidal viscosity
scales with collision frequency and therefore is unable to
explain the experimentally observed momentum confinement
times., In a different vein, Hogan {62] has shown that the
viscosity itelf drives an poloidally asymmetric 0(61) flow.
This in turn leads to a perpendicular viscosity which is
functionally identical to that of Braginski but where the

perpendicular viscosity coefficient is given by the

expression nggff= {1+2'31q2)“;a + where. 2.31q2 is
the well known Pfirsch-Schluter factor. Since this

coefficient is a function of na , then 1t scales with
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collision frequency and again is too small to account for
_ the radial momentum transport rates which have been deduced
from experimental measurements.

On a positive note however, evaluation of the gyro-
viscous component of the classical viscosity tensor, cor-
rected for toroidal geometry and rotational effects, has
yielded the right order of magnitude for the experimentally
observed confinement times [6l]. In essence it was shown
that for a rapidly rotating plasma where the density and
electrostatic potential can exhibit relatively strong
poloidal variations over a flux surface that the angular
freéuency of rotation of the flux surface can vary
poloidally. The toroidal geometry misaligns the surfaces of
constant angular frequency with respect to the flux surfaces
thereby resulting in a departure from rigid-body rotation.
It is then this deviation from pure rotation within a flux
surface which drives the gyroviscous force. This result was
first obtained by Stacey and Sigmar [61] using the classical
Braginski expression for the viscosity stress tensor [65].
Upon associating the viscoqs toroidal force with the momen-
tum drag term used in the fluid formulism and making a large
aspect ratio approximation, then it was shown that the
gyroviscous force is approximately a hundred times larger
than the perpendicular viscosity fbrce [61]. This is indeed
the order of magitude of the drag force needed to explain

the experimental observations indicating that the gyro-
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viscous drag mechanism is the dominant mode of radial
momentum transfer from the interior of a strongly rotating
beam injected plasma. In particular, Stacey et. al. [66]
have calulate& momentum confinement times for PLT, ISX-B,
and PDX using the gyroviscous drag force and have achieved
excellent agreement with the experimentally measured values.

| One major difference between the expression for the
gyroviscosity expression given in reference [61] and the
perpendicular viscosity drag relationships obtained by other
authors deals with the poloidal dependence of the lowest
order collisionless flows. In both reference [60] and [63]
the lowest order flows were soley a function of the radial
coordinate, with poloidal variations in the angular
frequency arising only in the 0(62) approximation. As a
result <R2;¢-$fﬁ;> vanishes to the lowest  order
approximation implying that the lowest order nonvanishing
radial wviscosity scales with collision frequency. However
in reference [61], the lowest order flows possess 0(61)
peoloidal variations, and consequently <Rzg¢-3’fﬁ;> #£ 0 to the
lowest approximation. Since the lowest order gyroviscous
component of the viscosity' tensor is obtéined from <the
gyroangle dependent component of the particle distribution
function in the 1limit na/Qa << 1 (then this component
will be the same for all collision frequency regimes.

The original development of transport theory in the

presence of strong plasma rotation, radial momentum transfer
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and other beam induced effects was carried out in a fluid
framework. In this regard, Burrell, Ohkawa and Wong [44]
have developed a fluid formulism for calculating the effect
of strong rotatioh on the radial particle flux in the
collisional regime with the assumption that the torodiél
velocity and radial electric field were given. Assuming
that the toroidal mass flow was on the same order as  the
thermal ion velocity, these authors focused on the transport
effects associated with the convective inertial term and the
resulting poloidal- variation in the density and electro-
static potential., However they omitted the direct effect of
the external momentum input and its radial transfer in their
analysis. As a result, they obtained a poloidal rotation
velocity which was independent of the magnitude and
direction of the net external momentum input. Furthermore
their expression for the cross field particle flux
contained spurious resonances when, mavﬁ = Ta where
V, 1is a common flow velocity driven by radial gradients in
the density and temperature for protons and impurities.
Finally, their theory neglected a self-consistent treatment
of the ambipolar potential and the flows in the surface,

The fluid description of transport theory was further
extended by Stacey and Sigmar [47,67] to include the
effects of strong radial wviscous transfer, radial electric
field, strong plasma rotation, direct momentum input and

other effects which become important in a beam injected
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plasma. In essence, this fluid theory embodies a self-
consistent formulism from which all vectorial plasma flow
components, the amipolaf potential, and the inertial driven
poleidal variations in the particle density and electro-
static potential can be obtained. Their theoretical
development demonstrated that in both the collisional and
plateau regimes the cross field fluxes were driven by
contributions from the net momentum input, (i.e. beanm
collisional input and the associated viscous drag force),
pressure gradient, inertial effects, radial electric field
and nonintrinsically ambipolar terms proportional to the
nonlinear poleoidal variations in the particle’s density and
electrostatic potential. In addition, the radial particle
flux in the plateau regime was alsc shown to be driven by
pressure anisotropies modified to account for the radial.
transfer of momentum and for poloidal density variations
over the flux surface.

To obtain a complete macroscopic description of trans-
port theory, kinetic theory is needed to provide constitu-
tive relationships for the coliisional friction and viscous
stress forces in terms of the hydrodynamic flows. Develop-
ment of constitutive relationships, which incorporate the
effects of external momentum injection, strong rotation and
radial wviscous transfer, necessitates reconstructing the
conventional kinetic theory. In this spirit, the pioneering

work of Hazeltine and Ware [45] demonstrated that if a
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substantial variation of the electrostatic potential within
a magnetic surface is included in the conventional kinetic
analysis then the ensuing electrostatic trapping effects
result in enhanced radial drifts for the hydrogen ion
and electrons. Even though the driving mechanism in
their analysis for the electrostatic potential variation was
the presence of high Z impurity species, the ordering
adopted for this investigation is the same as that which
would be obtained for a strongly rotating plasma where the
plasma mass flow is of the same order as the ion thermal
velocity. Their results showed the appearance of a new
particle flux, namely an electrostatic flux, which was
driven by nonlinear terms proportional to the poloidally
varying component of the electrostatic potential.
Furthermore, the magnitude of the transport coefficients
were shown to be substantially increased and dependent upon
the gradients of the equilibrium densities and temperatures
rather than upon the densities and temperatures themselves.
Chang and Hazeltine [68,69] have extended the
conventional kinetic theory in the collisional regime to
account for an pqloidally varying component o©f the
electrostatic potential. 1In a series of papers by these
authors, the attention was focused primarily on the
physically interesting case 1in which the electrostatic
potential variations become as large as the magnetic field

variation on a flux surface such as that resulting from
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the <convective inertial term. It was found that a new
cross field flux, which resulted from a combination of
the electrostatic potential variations and magnetic field
variations over a flux surface, was formally as large as the
usual Pfirsch Schluter flux and nonlinear in the density,
temperature,  and density gradients. However, their
formulism does not provide a self-consistent method by
which the radial electric field can be ascertained.
Consequently no attempt was made to solve the nonlinear
system of eguations for the poloidal electrostatic
potential variations. Furthermore, they neglected the
direct effects of an external source of momentum and
momentum drag effects. Therefore this treatment is
incomplete and lacks self- consistency.

Chang ([70] has extended the conventional transport
theory in the banana regime to include inertial effects due
to strong rotation by admitting a poloidally varying
component of the density and electrostatic potential in
the kinetic analysis. In essence it was shown that a
poloidally varying electrostatic potential in the long mean
free path reyime results in an enhanced electrostatic trap-
ping effect which is similar in nature magnetic trapping.
The net result of this investigation was in agreement with
other authors in that a new term appeared which was driven
by nonlinear terms proportional to the poloidally varying

component of the electrostatic potential and density. As a



20

result, the total banana regime flux was shown to be
enhanced by a factor of 2 or more over the conventional
value. Again however this theory omits the di;ect effect
of the momentum source and the viscous drag terms and
lacks self~-consistency in that the magnitude of ea;/Ta was
assumed given.

With respect to the platean regime,'Wong and Burell ([59]
have exténded the conventional neoclassical kinetic theory
in this regime to include the effect of strong rotation. To
allow for parallel flows which are comparable to the ion
thermal velocity, these investigators retained the mirror
force in the expansion of the drift kinetic equation so that
the zeroth order distribution function contains an arbitrary
parallel  flow. In order that such a distribution can
remain steady in the presence of magnetic pumping in the
inhomogenous field of the tokamak, they alsco required that
the radial electric field be ordered such that (3@/3)()/]3X

v In general these investigators concluded that

ta *
the cross field fluxes obtained from this theoxry are
non-linear functions of the density, temperature and
parallel flow. Furthermore they concluded that with this
ordering the cross field fluxes are second order in
toroidicity or first order in § with the most notable
result being that the angular momentum flux is now obtained

from the first order rather than the second order

distribution function. Finally, they found that ambipolar-
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ity of the leading order particle flux is no longer an
intrinsic property guaranteed by the conservation of
momentum but rather had to be imposed as a condition for
determining the radial electric field. ©Unfortunately, no
allowance was made for the direct effects of the momentum
source itself or the associated drag effects. Consequently
the angular momentum f£flux obtained by these investigators
was much too small to explain the experimentally observed
momentum diffusion rates.

Stacey and Sigmar [67] have extended the constitutive
relationship for the parallel viscous force in the plateau
regime to account for the effects of a strongly rotating
plasma. To incorporate the effects resulting from intense
plasma rotation, these authors used a “"shifted Maxwellian"
in the drift kinetic equation. Furthermore, the parallel
component of the particle's velocity used in this equation
was replaced with the shifted variable v; = v, - u , where
u = «(I/B)ad(x,y) /3¢ is a paréllel flow due to the radial
electric field. The analysis was then carried out in a
manner analogous to that of the conventional theory but with
the éhifted variables. The net result of their analysis
was a constitutive relationship similar in form to that
given by Shaing and Callen {[71] but with a viscosity
coefficient containing a strong rotation correction factor,
an effect which is a manifestation of the shifted structure

of the lowest order distribution function.
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Hinton and Wong [60)] have generalized the necoclassical
theory of ion transport in the Pfirsch-Schluter and banana
regimes to include centrifugal inertial effects due to
strong rotation by allowing the flow speed to be of the
order of the ion thermal speed. In essence, this theory
was developed by carrying out the usual small gyroradius
expansion of the Vlasov Fokker-Planck equation in a
reference frame which is moving relative to the lab frame.
As a reéult the kinetic equation was a simple general-
ization of the drift kinetic equation for nonrotating
plasmas with the radial gradient o©f the toroidal angular
velocity appearing as a driving term like the temperature
gradient. In effect the parallel motion of the guiding
centers and the interparticle collisional effects balance
the radial motion of the guiding center which arises from
the centrifugal and coriolis forces as well as the gradients
and curvature of the magnetic field lines. In the quasi-
equilibrium established by collisional thermalization and
the decay of the polcocidal flow, the ion density is non-
uniform on a magnetic surface having a variation with
poloidal angle given by the Boltzmann factor. Since the
total system potential energy consists of a centrifugal
potential as well as the electrostatic potential, then the
zeroth order electrostatic potential, which is required_for
charge neutrality, inherits a poloidal wvariation. The

equilibrium distribution function in the moving frame was
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shown to be purely Maxwellian, with the ion temperature
being uniform on a magnetic surface, the zeroth order
plasma flow being purely toroidal and each flux surface
rotating rigidly. Their findings showed that the parallel
flows and anisotropy contained in the first order
neoélassical distribution function determine, through
moments of the collision operators, that the radial fluxes
are second order in § . Unfortunately their results
indicated that neo significant enhancement of viscosity
resulted from strong rotation. However in the analysis
carried out by these investigators the direct effects of an
external momentum source term and associated radial viscous
drag were neglected and they only treated a transport case
applicable to a pure plasma.

Recently Catto (63] has generalized neoclassical
transport theory in the plateau regime to account for the
effects of strong plasma rotation. However unlike the work
of previous authors, the perpendicular ExB drift in this
analysis 1is considered small in comparison to the ion
thermal speed., As a result, the toroidal angular freguency
of rotation and radial electric field must now be evaluated
by imposing ambipolar diffusion and toroidal angular
momentum conservation constraints. A gyrokinetic derivation
of the neoclassical transport egquation was carried out in
the lab frame for a toroidally rotating plasma in which

finite poloidal gyroradius effects were retained. In essence
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the particle distribution function was expanded in powers of
the gyroradius parameter where it was shown that the lowest
order solution is a drifting Maxwellian with the lowest
order toroidal flow describing the rigid body rotation of
each flux surface about the symmetry axis. Furthermore, the
lowest order solution was a function soley of the radial
coordinate and the constants of the motion. The 0(51)
drift kinetic equation was similar in nature to that
obtained by Hinton and Wong with the notable exception that
this analysis was carried out in the lab frame with the
velocity space independent coordinates being the total
system Hamilitonian and canonical angular momentum. The
radial particle and heat fluxes were evaluated for a pure
plasma in the plateau regime where again it was shown that
significant enhancements of the cross field fluxes resulted.
Unfortunately, the lowest order toroidal wviscosity, which
controls the radial diffusion of toroidal aﬁgular momentum,
was shown to scale linearly with the collision frequency and
in many respects was very similar to that obtained by
previous authors. Like other kinetic analysis, this
investigation ignored the lowest order direct collisional
and associated drag effects of the momentum source term.

In chapter II of this thesis the fundamental structure
and properties of the kinetic and fluid transport equations
characterizing a strongly rotating momentum injected plasma

are formulated. 1In this regard, a hierarchy of kinetic
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equations are obtained by expanding the distribution
function, electrostatic potential and particle flow in
powers of gyroradius parameter. Since this thesis deals
with flow speeds comparable to the ion thermal speed, the
transport equations will be developed in a coordinate frame
moving with the plasma. The contribution of the differen-
tial test particle and field particle ({including beam
particles) integral collision operators are approximated
by wusing Laguerre polynomials as trial functions and
invoking the conservation properties of the Fokker-Planck
operator.to effectively renormalize the Laguerre expansion.
As a result the integro-differential nature of the collision
operator and external momentum source term is removed.

Finally, the fluid basis of transport theory is
established. In particular, the multispecies moment
equations are developed from a generalized tensor transfer
equation which is referenced to a coordinate frame which is
moving relative to the lab frame. Furthermore, the
functional structure of the radial particle and heat fluxes,
and the hydrodynamic and beam flows in the presence of
intense plasma rotation are elucidated. Specifically, the
mathematical basis and structure of the gyroviscous drag
force is established and the various components which drive
the cross field particle and heat fluxes are identified.

In chapter III the 0(61) drift kinetic egquation

is solved in all collisional frequency regimes. In the
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¢collisional regime a perturbation method, which is similar
to the Chapman-Enskog method [72] of kinetic theory for
gases, is used to cobtain the general functional structure of
the first order perturbation to the particle distribution

function. In essence the analysis is carried out in a

rotating coordinate frame in which Ea is expanded 1in
powers of the smallness parameter ﬁa = mta/na << 1 , where
@i is the transit frequency of the (a) specie particle
around the magnetic axis, and N, is the «collision

frequency. The radial drift motion of +the particle's
guiding center due to the magnetic field inhomogeneities and
curvature, and the centrifugal and coriolis forces, appear
as an 0(&;} perturbation to the guiding center's free
streaming motion along the magnetic field lines in the frame
which is moving with the plasma.

In the long mean free path regime the drift kinetic
equation is solved by expanding the first order perturbation
to the particle distribution function in 'powers of y;'<¢]ﬂ
Consequently collisional effects are treated as a pertur-
bation to the free streaming and radial motion of +the
guiding center. For a strongly rotatiné plasma, the radial
motion of the particle's guiding center as seen by an obser-
ver in the frame moving with the plasma, is driven by
"ficticious forces" as well as the gradient and curvature of
the magnetic field lines. In addition the centrifugal force,

which arises from the beam induced rotation, pushes the ions
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toroidally outward creating a higher electrostatic potential
there., As a result the equilibrium effective electrostatic
field could be as important as the magnetic field inhomo-
genities thereby resulting in effective electrostatic
potential trapping effects as well as modifying the magnetic
trapping boundaries of the plasma. In effect, the location
of the boundary between trapped and untrapped regimes (and
therefore. the corresponding fraction of trapped particles)
becomes dependent on the system Hamiltonién. To accomodate
these trapping effects, the pitch angle variable is defined
in terms of the total system energy and the ensuing analysis
is carried out in a manner which is consistent with the
conventional theory (22,30-35].

In the plateau regime the solution to the 0(51)
drift kinetic equation is obtained by making an asymptotic
expansion of the plateau regime distribution function in
terms of the small effective mirroring force (i.e. the
mirror force plus the effective electrostatic potential)
along the magnetic field lines. To accomodate the effects of
neutral beam injection and strong plasma rotation, the
analysis was carried out in a shifted velocity coordinate
frame with the total collisional response of the plasma
being characterized by a term which represents the effect of
the beam's collisional interactions with the background
particles. Fl.lrtherrr'lore.r this analysis encompasses those

resonant particles which arise from the effective electro-
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static as well as magnetic field detrapping effects.

In the last section of this chapter the functional
expression for the particle distribution function, which was
cbtained in the previous sections of this chapter, are
used to develop constitutive relétionships for the
collisional and heat friction operators, the external
momentum and energy flux source terms, the viscous and
energy stress tensors and the beam viscous stress tensor.
In particular, it is shown that the neoclassical parallel
friction~-flow and viscous stress constitutive relationships
are linearly dependent on the hydrodynamic flows and their
spatial gradients respectively. Furthermore, the lowest
order unaveraged version of these constitutive relationships
vary poloidally over a £flux surface, a result which is
characteristic of a strongly rotating beam injected plasma.
In addition since the beam ions themselves are collisionally
coupled to the backgrodnd ion species, the functional
structure of the parallel friction-flow constitutive
relationship are modified so that they possess an additional
beam flow contribution, Likewise, the parallel
friction-flow coefficients themselves will exhibit a
functional characteristic which reflects the direct coupling
of the plasma species to the collisional momentum exchange
with the energetic beam ions. Finally, the gyroangle
dependent component of the particle distribution function is

used in conjunction with the parallel component of the
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stress tensor and the neoclassical component of the parallel
viscosity constitutive relationship to develop <c¢losure
relationships which characterize the effects of strong
radial momentum transfer as well as strong plasma rotation.

In the last chaptgr of this thesis the experimental
aspects of Dbeam injection tokamaks are reviewed. 1In
particular, plasma rotation experiments are examined and
qualitatively compared to the theoretical results obtained
in this thesis., Next, the relavent experimental data
obtained from beam driven impurity ion flow reversal
measurements are reviewed., Finally, the fluid formalism is
used in conjunction with the kinetically derived constitu-
tive relationships to obtain an expression for the radial
particle flux for a mixed regime beam injected plasma. In
this context, the theory of particle transport in the
presence of external momentum source is evaluated for a two
specie plasma composed of a high Z impurity ion and a
dominant hydrogenic ion species. The analysis is carried
out for the large aspect ratio/low beta limit case for

clarity.
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CHAPTER II

THE TRANSPORT EQUATIONS GOVERNING A STRONGLY ROTATING

BEAM INJECTED PLASMA

2.1 INTRODUCTION

In this <chapter the fundamental structure and
properties of the kinetic and £fluid transport eguations
characterizing a strongly rotatinq beam injected plasma are
explored. In addition the principal components which drive
the radial transport particle and heat fluxes are identified
and the underlying physical processes which are responsible
for these fluxes are exposed.

In section 2.2 a set of kinetic equations is defived
which governs the behavior o©of the particle distribution
function in a strongly rotating beam injected plasma. Since
intense beam injection results in particle flow speeds which
are comparable in magnitudé to the ion thermal speed, the
derivation is carried out in a reference frame which is
moving relative to the 1lab frame. In particular the
particle distribution. function, particle flow and
electrostatic potential are expanded in powers of the
gyroradius parameter and a set of kinetic equations which
governs the functional charactéristics of both the gyroangle
dependent and gyrotropic components of the particle

distribution function, is developed.
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In section 2.3 the functional structure and general
properties of the 1linearized Fokker-Planck collision
operator are reviewed, By expanding the field particle
distribution function in terms of spherical harmonics, the
various components of the collision operator are grouped in
accordance to their harmonic constituents. Next, the
éontribution of the differential test particle and field
particle collision integral operators are approximated by
using Laguerre polynomials as trial functions and invoking
the conservation properties of the Fokker-Planck operator to
effectively renormalize the Laguerre expansion. As a result,
the c¢ollision operator 1is transformed from an integro-
differential to an algebraic operator thereby rendering the
kinetic equations amenable to analytic solution. Finally a
collision operator, which describes the plasma field
response to collisions with the injected beam ions, is
formulated.

In section 2.4 the multispecies moment equations are
derived from a generalized tensor transfer equation which
is referenced to a moving frame thereby establishing a fluid
basis for particle and heat transport tﬁeory in a strongly
rotating beam injected plasma. Once developed, the fluid
equations are converted intoc a form which is conducive to
the study of transport phenomena by averaging these
equations over a magnetic surface, This section is

concluded with a brief discusion outlining the modifications
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which must be made to the conventional transport ordering
scheme in order to accomodate the effects of strong plasma
rotation.

In the final section of this chapter the functional
structure of the radial transport fluxes and the
hydrodynamic and beam flows are investigated. Specifically,
the mathematical structure of the momentum viscous drag
force is elucidated and the various components which drive
the cross field particle and heat transport fluxes are
identified. Finally a general discussion of the £fluid
formulism is presented in which a self-consistent method,
which determines the radial fluxes in terms of the flows and

therefore the thermodynamic driving forces, is outlined.
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2.2 THE KINETIC EQUATIONS GOVERNING A STRONGLY ROTATING

BEAM INJECTED. PLASMA

Traditionally, neoclassical transport calculations have
been carried out for tokamaks in which it was assumed that
the toroidal mass flow was small in comparison to the ion
thermal velocity. With neutral beam injection, toroidal
rotation of the plasma results and the observed velocities
often exceed values required for the existing theory to
remain valid. It then becomes necessary to generalize the
existing kinetic analysis to incorporate the new state
variable of an arbitrarily large torcidal rotation. In this
section a set of generalized kinetic equations, which govern
the characteristics of the gyroangle dependent and
gyrotropic components of the particle distribution function,
are developed for a strongly rotating beam injected plasma.

In the context of statistical mechanics, a multispecies
plasma can be represented by a microcanonical ensemble which
.is composed of many particles, the states of which c¢an be
designated by a point in ‘a. multidimensional phase space.
Characterizing the phase space point density by the
distribution function fa(E,E,t) , then it can be shown
that if the velocity and acceleration of each particle is
finite then the time evolution of the phase space volume

element dGT = J(&,E,t)d&dg can be represented by a contact
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transformation of the canonical coordinates in phase space
[73,74}. Furthermore since Poincare's integral invari-
ance theorem asserts that any volume element of phase space
will remain invariant under a contact transformations, then
d6T cannot vary with time [74,75). Mathematically, this
theorem implies that for any infinitesimal density element

_ 6
dNa = fad T then

d(dNa)/dt = dfa/dt = Bfa/Bt + i(qiafa/aqi + piafalapi) =0
(2.2-1)
implying that the phase space volume element is conserved,

i.e.

d(1ndTt)/dt = £(dq;/3q; + 3p;/3p;) + d(lnJ(q,p,t))/dt = 0

: (2.2-2)
where J(E,E,t) is the phase space Jacobian for the
canonical basis {3,p,t} .

When the ensemble of particles is in statistical
equilibrium the number of particles in a given state must be
constant in time, which is to say that the density of points
in a given location in phase space does not change with
time. Furthermore by choosing the phase space density to be
a function of the constants of the motion of the system,
then the Poisson's brackets with the system Hamiltonian must
vanish thereby insuring energy conservation [75}. Exact

energy conservation and validity of Liouville's theorem are
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both necessary conditions for expressing the equilibrium
distribution function solely in terms of the constants of
the motion [75]. When these conditions are not satisfied
the equilibrium distribution function is no longer constant
along the particle trajectories in phase space. In this
case a Maxwellian-Boltzmann distribution function is not a
legitimate equilibrium distribution function.

The inclusion of interspecies collisicnal and external
source effects result in the phase space paths of the
particles being discontinuous. In essence during a
collisional interaction a particle changes its velocity
space vector suddenly which leads to a disapperance of the
representative point in one region of phase space and its
simultaneous appearance somewhere else. Consequently

eq. (2.2-~1) becomes inhomogencus and assumes the general form

dfa/dt = C(fa) + S(fa)

(2.2-3)
where C(fa) represents the Fokker~Planck collision
operator and S(fa) is an external source term. Since
this thesis deals with strongly rotating plasmas, it is

convenient to express the total time derivative operator in

terms of a coordinate frame which is moving with the

average momentum Ea = ma3a . Utilizing the coordinate
. e
basis {r,v,t} where“a =7 ’ P = E - Ea and the canonical

momentum is related to the particle kinetic momentum via the
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. >
expression P=mnyv+ eai , then eq. (2.2-3) becomes

-5

3f /3t + (V + Va)'ﬁfa + (¥ + V) -[(i?v..)n,,-'v"',fa + (V)
Vo VgE, + (Vo) (n x ¥V /v ) V£ ] + [e B/m - 33 /0t - (V +

VT, -8 x (Vo V¥ g, = CUE) + S ().

(2.2-4)

Here the velocity space vector ¥ has the elements {v,,

V,,t} where < 1is the instantaneous gyroangle defined by
the directional unit vector ;* = (cos;);l + (sin;)éz with
the wunit vector basis {;1;;2,;"} forming a local

orthogonal system and

3V!t = e-L"v“n“ ; §V_|_ = "'(vnlv_l_);-l_'ﬁ;lu ; 3; = (Vufv_,_)

de, /3T + (Vey)-e, Vy = nad/3V, + V,3/3V, + (n, xV,/V,)

a/3¢g
(2.2-5)

with v being a configuration space operator taken af
constant V . Unfortunately the effects of interparticle
and beam particle collisions disrupt the Liouvillian nature
possessed by the phase space conservation eguation (c.f.
eq.(2.2-1)}. Consequently a generalization of Liouville's

theorem is needed to accomodate collisional effects thereby
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preserving the desired properties of the lowest order
equilibrium particle distribution function.

In the conventional theory for toroidally confined
axisymmetric plasmas the ion gyroradius and the pitch of the
helical trajectory are small compared to the dimensions of
inhomogenity. Defining the gyroradius parameter § as the
ratio of the ion Larmor radius to a scale length for changes
in macroscopic gquantities, then in the strongly magnetized
limit 6 << 1 the approximate motion of a charged particle
in a slowly varying magnetic field can be described by the
guiding center approximation [76-78]. In essence this
approximation allows the particle's trajectory in a plane
perpendicular to the magnetic field to be represented as a
superposition of the Larmor revolution and a drift of the
gyro-orbit or guiding center. As a result the particle
distribution function can be decomposed into a gyroangle
dependent component E = ;/(2n)&f“fa(c)d; = Dc(fa) and a

a
f

gyi:‘otropic component = f_ - fa + Where [ is the

a a
gyroangle, Therefore to obtain a solution to eq. (2.2-3) the
particle distribution function is expanded in powers of the

gyroradius parameter § , i.e.

{(2.2-6)

where faK v O(GK) and the lowest order average velocity
-

Va0 is assumed to be comparable in magnitude to the ion
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thermal speed. Furthermore the time dependence of the
particle distribution function is assumed to occur on
well separated time scales so that the time derivatives may

be formally expanded [72]:

/9t = é 3/3tK = 3/3t0 + B/3t1 + 3/3t2 +

(2.2-7)

K . _ . .
wherg B/BtK “ O(8 Weq) with Wpqy = Vi.o/% being the ion
transit frequency (here £ is the connection length).

Similarly, the electric field vector is expanded in powers

of 8 such that

(2.2-8)

where here the leading term has been denoted by -1 since it
is one order larger than the drift ordering used in the
small rotation limit. In addition with the assumption that
no rapid temporal changes in the magnetic field takes place,
then the field vectors E-l. and EO must be electro-
static.

Since the ion flow velocity is considered to be as
large as the ion thermal velocity, then the term associated
with the most rapid change in eq. (2.2-4) is (§¢_1 + Bx (V +

$a0))'3vfa0 . The requirement of steady-state on the

time scale of an ion gyromotion yields

Fo_y + Bxv g1V o = (VxB) -Vt
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In order for the above expression to be satisfied for all
values of V sthen
(Fo_, + [(Bxv_ 1)V =
(2.2-10)
implying that the lowest order distribution function is
independent of gyroangle. Furthermore assuming that the
magnetic field wvector in an axisymmetric system can be
represented in the contravariant form (79-81]

~

B = Y‘/(Zﬂ)(;(px;w) + Ie,

.(202-11)
then the constraint 3¢_1 + §:<$a0 = 0 implies that in
general

- - ~
Vao = Ky(W)B + cu_l(w)Rzeclb

(2.2-12)

where Ka(m) is an arbitrary flux function and
w_q(P) = -2W/Y'(3¢_1/3¢)
(2.2-13)

is the angular speed of rotation. Here, the spatial
coordinate basis ¥ = {v,x,¢} has been introduced where
the radial coordinate { labels the magnetic surfaces which
are defined by the relation E-gw =0 , and x and ¢

are angular coordinates defined such that ¥ (poloidal
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angle) increases by 2%  the short way around the torus on
a magnetic surface and ¢ (toroidal angle) increases by
2t the 1long way around the torus on a magnetic surface
[79=-81). In addition y° and I are surface functions
which are related to the poloidal and toroidal magnetic flux

densities and are defined such that Y* = 3y/oy = 2n¢g§-ex

> )
and I = RB.e respectively, where the contravariant

¢
vector basis {e¢ e, e }  has been defined in terms of the

4

gradient of the spatial coordinates

~

ew=$lb ex=$x

-

®
=

(2.2~-14)

To obtain the functional structure of the zeroth order
particle distribution function the zeroth order time scale

kinetic equation [c.f. eq. (2.2-3)] must be solved:

> - - -
3o/ ¥g + (Vu + v ) -VE, 0 - [e Fo /m + n,-(39_,/0¢, +

-

Fu + V)V ) + (V,n,-TlnB/2)n, T £ + (v, T,-F1nB) /2

V- a

2 nn -+ >
+ V2T - Vo5 0010, e = L Cap{fagrtpe) -

(2.2-15)

Note that in obtaining the above expression, Qaafao/a; =

- - ~ > ]

(7 + V) vav*ﬁcy?Vfao =0 since f£_, # f_.(2) -
Likewise since to this order approximation interparticle

collisional effects are dominant in comparison to the direct
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beam particle collisional interactions, then the external
source term is neglected in eq.(2,2-15}, To obtain a
solution to eq.(2.2-15) both sides of this equation are
multiplied by -1nfa0 and the result integrated over

velocity space and flux surface averaged to annihilate the

free streaming term thereby yielding

<asa]at0> > <Ka>

(2.2-16)
where. S, = —f%(faolnfao - fao)d3V 'is the entropy density
(721,

= -5 . 3
Ka = “LaInt0Cp (Fa0r fpp! 47V
| (2.2-17)

and the inequality reflects the monotonic increase of
entropy due to collisions ([72]. After several collision
times a steady state is achieved for which C_, =0 imply-

ing that

2
fa0 = nao(x'w)/("via)3/2e-(v/vta’

(2.2-18)
- -+ - . N ’
where V = v - Va0 is the particle velocity in the frame
moving with the plasma. In essence the above expressions
are a consequence of the well known Boltzmann H-Theorem

[74]. As a result the probability of finding a particle in

a multidimensional unit volume of phase space is uniform
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thereby preserving the desired Liouvillian nature of the
kinetic equation inclusive of interparticle collisional
effects. Upon combining egs.(2.2-18) with (2.2-15) yields a
system of constraint equations in terms of the wvarious
powers of V  and their products from which it can be shown

that [60,63]

- _ 2
(2.2-19)

and

> 2~ . >
Vap = -1 (VIR'ey 5 (i.e. x WB=10) ; T 4= Tao (V)

| (2.2-20)
Egs. (2.2-18) through (2.2-20) imply that the 1lowest order

response of the plasma to beam induced rotation is to act as
a "rigid rotor" with the coordinate frame being character-
ized by a uniform angular speed and the particle
distribution function in the £frame Imoving with the plasma
being Maxwellian.

To account for the direct and indirect beam induced
effects in the 0(61) approximati;:m, it becomes necessary
to depart from the existing literature where it is assumed
that the beam's interaction with the background plasma and
momentum drag effects are treated as small order effects
{ > 0(62) } or neglected altogether. More specifically, the

neglect of the external source term's interaction with the
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background plasma in the 0(61) approximation may be error
since the experimental response of present generation
tokamaks to external momentum injection jindicates that a
radial transfer of momentum (radial viscous drag) occurs
shortly after the momentum injection sequence commences
[49~50). As a result the effect of the beam's interaction
with the background plasma must be examined on an interim
time scale between o(mta) and CHSlwta). In particular,
when a neutral beam is injected into a tokamak plasma the
initial buildup of toroidal rotation during the momentum
injection sequence is determined by a JxB force which
arises as a consequence of the prompt momentum transfer
[48)}. The creation of fast ions by ionization of injection
neutrals leads to a radial current and therefore produces a
buildup of charge. Since a plasma is a polarizable media a
pelarization current, which results from the changing radial
electric field, acts to cancel the fast ion creation current
and the ensuing force due ¢to the polarization current
transfers part of the injected momentum to the plasma.
Since the prompt transfer of injected momentum is
propertional to the rate of ion creation, this transfer
mechanism occurs immediately after the momentum injection
source is turned on. It is only after several slowing down
times that the direct collisional interaction between the
beam particles and the background plasma become a factor in

accelerating the plasma. Once steady-state rotation \is
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achieved the time variation of the radial electric field,
and therefore the polarization current, goes to zero. As a
result the fast ion creation current must now be balanced by
the plasma currents which result from the time independent
fields. It is then these forces, which result £from the
plasma currents necessary to balance the ion creation
current, which cancels the plasma drag forces in the
steady-state.

To investigate the initial response of the plasma to
neutral beam injection, the effects of a time dependent
electric field on the radial motion of a particle's guiding
center must first be examined. In this regard use is made
of the fact that for an axisymmetric system the toroidal
coordinate is cyclic in a Lagrangian sense. Consequently
the applied torgque along the axis of rotation vanishes [73]
and therefore the canonical angular momentum is a constant

of the motion. Mathematically,

aL/at = d(R2e¢-[§ + e R1)/dt = 0

(2.2-21)
where 3 = ma; is the particle kinetic momentum. Noting
that

a(r%,-R)/at = -R%,- (E + ((B-ny)dr/dtle,)
¢ ¢ 8 ¢
(2.2-22)

then it follows that
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dr/dt = 1/(B-ng) (8/(m_n_)dp./at - n,-E]
(2.2-23)

where in obtaining the above equation the large aspect ratio
approximation has been employed (i.e. {y,x} + {r,8} and
therefore E¢ v Ey : ) and the gyrophase averaged value of
the kinetic momentum has been used. To obtain an expression
for the radial exéursion of the guiding center, the above
equation must be averaged over a transit or bounce period.
In particular the time average of the particle's guiding
center along the magnetic field 1lines is calculated in

Appendix A. Using this result in the above equation yields

<dr/dt> = §r = 1/(B-ng) IR/, (du_, (r,t)/dt) - (n,-E)]

(2.2-24)

where

o

©w_y{r,t) = w_j{(r,t) (1 - I[aa(r,ﬁ)]ﬁc)

(2.2-25)
n,-E = E, (1 - Ila,(r,8)16)
(2.2-26)
1 -
Tlo (0] = (1/2) 11 - 9 (1 - o_(r,0)£2)] 71/ 2a¢
(2.2-27)

o, (r,8) = [2u8B/Im, (V. (t=0) - R<w_, (r,t)}>_)2]11/2

(2.2-28)

and Gc = 0,1 for untrapped and trapped particles respec-
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ively. The first ¢term is the neoclassical polarization
drift [48,82]), while the second term is the conventional
Ware pinch [83)]. 1In trapped particle space the radial drift
of the guiding centers is fairly significant, consequently
the toroidal force per unit volume on the plasma resulting
from the Epich  force imparts momentum to the plasma
immediately thereby supplying the initial motive force for a
rapid toroidal acceleration of the plasma. In circulating
space the net effect of an increasing radial electric field
causes an acceleration of the untrapped particles in the
direction of the ExB drift, perpendicﬁlar to the magnetic
field, consequently the'toroidal acceleration of most of the
untrapped particles is small, 'However since the collisional
drag between trapped and untrapped particles is relatively
small on time scales characteristic of the initial prompt
momentum  transfer, then c¢ollisions bhetween untrapped
particles result in their mean parallel velocity to be equal
to that of the nearly trapped particles and therefore the
ﬁrapped particles since continuity is required across the
trapping boundary. The net initial effect of the beam
induced polarization field is then to quickly accelerate the
plasma with a uniform angular frequency of rotation.

On an interim time scale between a time characteristic
of several slowing down times and time scale O(GImta) ,

the direct beam ion collisional momentum imparted to the

background plasma supplies the major portion of the motive
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fdrce to continue the toroidal acceleration of the plasma.
In essence the combined effort of the 3P3{§X force and
the direct beam c¢eollisional momentum exchange with the
background plasma particles accelerate the plasma to its
terminal velocity. However on this time scale the
collisional friction between the trapped and untrapped
particles modifies the polarization current and therefore
the EP:{EX momentum deposition profile, Likewise the
centrifugal inertial force arising from the beam induced
toroidal acceleration of the plasma drives a poloidal
variation in the density, which in turn produces a
poloidally asymmetric flow. The net result of the poleidal
variations in the <toroidal flow is the appearance of a
gyroviscous drag force which orginates from the geometric
misalignment of the flux surfaces relative to the surfaces
of angular frequency {61}. This departure from rigid body
rotation drives a gyroviscous drag force which transfers
momentum radially from the center of the plasma.

To obtain the functional structure of the lowest order
poloidally asymmetric toroidal flow, a kinetic equation
which encompasses the lowest order beam effects must be
developed. 1In this endeavor one is guided by the fact that
the zeroth order distribution function is given exactly by a
pure drifting Maxwellian {(a Maxwellian distribution function

in the coordinate frame moving with a wuniform angular

velocity (c.f. eq.(2.2-18)). Consequently to account for the
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lowest order direct and indirect beam induced effects, the
lowest order particle distribution function can be expressed

as follows:

= £(0) (1)
faO =fo *fa
(2.2~-28)
{0) R (1)
where fao is a pure drifting Maxwellian and fao
represents a perturbation to f;g) ; the magnitude of

which is assumed to be somewhere between zeroth and first
order in § , Furthermore since by assumption f;é) < 0(8)q

then this component of the particle distribution function

will be independent of gyroangle (i.e. since fa v o(Gljfég)
then féé)'b f;é) ). It is desired to construct a kinetic

1)
0

the beam induced polarization drift and beam collisional

kinetic equation for E; which explicitly accounts for
effects. Furthermore this egquation must be constructed in
such a manner that the lowest order equilibrium distribution
will be Maxwellian, fhereby satisfying the generalized
version of Liocuville's equation (conservation of entropy via
the Boltzmann H—theprem). To accomplish this task a gauge
transformation [84-86) of the magnetic vector potential is

made

K + K* = K + mata - GéO})/ea
(2.2-29)

where E 0) _ ;ao = m_1(¢)32e¢ is the zeroth order velocity

(
E
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of the coordinate frame. In view of eq. (2.2-29) it follows
that the system Lagrangian in the frame moving with the
plasma assumes the general form

[73,86]:

(2.2-30)

where

- 2 (0),2
H = ma(V - (uE 15Y/2 + ea¢0

is the system Hamiltonian. Employing the guiding center

. - > + - ~ -
coordinates {Rgc'vgc'v"'t} | where Rgc =T - n.xVv/Q
is the position vector for the guiding center, ch is the
guiding center velocity, and Va is the particle's

velocity along the magnetic field lines, in conjunction with

Lagrange's equations of motion [73] yields the modified

Lorentz force equation:

By

-

~ -+
(tilp..‘?l/dt'.)n.1 = (eaE gc:cB

-+ -
- VH) + eaV

(2.2-31)
where P, = mav“ is the parallel kinetic momentum of the
guiding center in the frame moving with the plasma. Here
the modified field vectors [85,86] EA* and B* are

defined such that

BAv = _ak*/at = -3R/3t - m_/e_ [V,3n./3t - aEéO)/at]
(2.2-32)
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and
= VxA* = B+ ma-V"x (\_?,, - Eéo))/ea
(2.2-33)
respectively. Note that in implementing Lagrange's equation
the scalar magnetic moment is an adiabatic invariant [78] to
this order approximation. Decomposing eq.{2.2-31) into an
equation for the guiding center velocity and its parallel

acceleration along the magnetic field lines yields:

] = -’* +A* - - - .+
Vge = VuB* + (B 3H/ea):<n"/(n" Bx*)
(2.2-34)
and
av,/dt = v, = +g e, EP% - FH)/ (m V) .
(2.2~35)
Now it is shown in"Appendix C that the phase  space
basis {Rgc +gc'v"'t} in conjunction with eq.(2.2-31), the

definition of the modified field wvectors, and Maxwell's
equations are sufficient to satisfy eq.{2.2-2). Conseguently
the resulting collisionless drift kinetic equation will be
Liouvillian. As a result the desired kinetic equation

assumes the form [c.f. egs.(2.2-31), (2.2-34) and (2.2-35)]:

dfa/dt = Bfa/Bt + [Vng*/(;“-ﬁ*} + (EA* - ﬁH/ea)}(aul'[$fé

+ (e, Ehx - TH)V,-V vEa) /(m v")] = g(cab(fa,fb) s, (f(O) £)
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In addition, replacing £ a0 with f;g) . multiplying the
above expression by -lnféo) . heglecting the external
source term and'integrating over all velocity space yields
the same entropy conservation equation as that given
previously. As a result f;g) will be a pure drifting
Maxwellian function as desired. Therefore combining egs.
{2.2-18) and (2.2-31) with (2.2-36), transforming from the

guiding center basis to the energy basis {?,H,u,t} , and

neglecting all terms > 0(61) yields

Vel w 2avasy e Fina- & + 370010880 120 + n_se i1
nes (@ + 88007 (v BN 2 @I en ) o e lY) = 292,

+{0) (0) (1} (1) (0)
auE Jat )fao ¥ ﬁ(cab(fao f ) + s (f fB))

-(2.2-37)

where here it has been assumed that (BX/B¢)2 << 1 . @

condition which characterizes present generation tokamaks.
Further reduction of eq.{2.2-37) to the desired order

approximation can be éccomplished by examining the relative

order of the terms apppearing in this equation. In

particular noting that

T, |$f(0)l

1}

2n1vu/(v’ﬂa)af;g)/aw = B¢tha|Vf;g)|/(9ale¢l)

. (0)
5 f
x a0 (2.2-38)
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and

~ ~

> (0) . 0 |
21TV, (In, -8z ) /B)/ (v 2 ) 3 (R 10D n¢)/aw = B,R%v, _[Tu? (1) |

+(0}

[}

- u 2
logle ) = x (&¥Tu_j ) = G nps

"¢
(2.2-39)

then

~

2n1va/ (170 ) 210" 73w ~ 2nrv. (1n, 510 /) /(v " ) 0 (r7IALO)

-§¢)/aw < o8y
(2.2-40)

since fod = (B/Bx) > 1 for (Bx/B¢) < 1 . Integrating

eq.(2.2437) over all velocity space yields

n %!;"= —2ﬂI/(Y'eaB)(8pa/3w + e

a n 3¢, (x,¥) /8% + m_ /e

a

- >{0},

: 2
(a(uéO) 72)79y - al0) .o 5 (Rr2 af

E ¢)/aw>1)n.. + K (0B

(2.2-41)

where here it has been assumed that to this order
approximation the parallel flow is incompressible. This is
a good approximation since nB/na << 1 . It should be
noted that although the beam particle density is small in
comparison to the plasma ion density, the momentum deposited
per unit volume is quite large. Furthermore since by

assumption fa/féé) << 1 , then v, {v(l) << 1 and there-
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fore V./B N~V /B¢ . As a result, to the lowest order

¢

approximation

<3+
=
n

wo (X'lp)Rzed)

(2.2-43)

where

0o (Xs¥) = —2ﬂfty’eana)(3pa/3¢ e n [3¢,(x,¥)/3y + m /e,

2
(0) - 0 ~ 2+ -~
(rag”’ /20709 = G5 e 2 R%ELD 2 ) 01 1) + k(4187 (nR)

is the angular frequency of rotation. Note that in
obtaining eq.(2.2-43) it has been assumed that to this order
approximation the plasma mass flow is essentially in the
tofoidal direction. In effect, eq.(2.2-43) represents the
lowest order correction to the zeroth order angulax speéd
of rotatién on a8 time scale between O(mta) and 0(61@ta) .
Physically the centrifugal inertia due to the beam ipduced
polarization and collisional acceleration of the plasma has
caused a distortion in the uniform toroidal motion of the
plasma resulting in polcoidal variations in the bulk toreoidal
mass flow.

The results obtained thus far suggest that the kinetic

analysis for beam injected plasmas should be carried out in
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a coordinate frame moving with the average velocity
Vo= = 6 F 2w+ ag GG RPe
(2.2~44)
when obtaining higher order corrections to the drifting
Maxwellian, thereby implicityl acéounting for the lowest
order beam induced effects. Consequently, it follows that
the desired kinetic equation which must be solved is of the

general form:

+ -+ -+ - ~
ag,/0e + (U + U p)-FE, + (F + - (@Van, - Tye, + (v
VoV E, 4 V2, x Y, /v,) V£ ] + (e B/m - 30 /3t - (V

)V £ = I

V-a b

- > -> +
+ uaE)'ﬁuaE - §a:<(V +u Cablfa1rfpy) +

akE

(2.2-45)

Note that in the 0(60) approximation, the solution to the
above equation is a drifting Maxwellian as expected. .

To éonstruct a set of kinetic equations which govern
the behavior of the higher order corrections to the
drifting Maxwellian, the particle distribution function and
electric field vector are expanded in a perturbation series

of the form:
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(2.2-46)

and

E=-Vo, (x,0) + T E
0 ol K
{(2.2-47)

where F, is a drifting Maxwellian (c.f. eq.(Z.Z-lB)) and
fak ~ Ek ~ O(Gk) . The lowest order gyroangle dependent
component of the particle distribution function can be
obtained from eq.(2.2-45) by using the expansion series for
fa and E in this equation, gyroaveraging and' sub-~
tracting the result from eq.{2.2-45) to give [see Appendix
D]
2£, /3L = Vo/a,-(0anr, + 2792 (Fog + $ul?)2/2 - @80 .c

¢!

2+ oy oy . -~ ~ ~ -~
3 (R uéo’-e¢)/aw ey VIF, + [2/vZ ({T - 2v,V, - nunav? /2 +

20V, ¥, 1,1: %0, ) 1F /2 + o(s2).

(2.2-48)

Note here that in obtaining the above equation all terms
> 0(61) have been neglected with the exception of the term
> . . 1 =+ -+

Vo ﬁﬁaE/sa with the assumed ordering 0(87) < V“.vuaE/na
< 0(62) since it is this expression which will give rise to

the lowest order gyroviscous drag force (see section 2.5}.
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Furthermore since collisional effects make a contribution to
the gyroangle dependent component of the  particle
distribution function only in the 0(52) approximétion [see
Appendix D], then the lowest order gyroviscous drag force
will be independent of c¢ollision frequency. The general
sclution to eq.(2.2-48) can be obtained directly by

integration with the result

~ - Ead 2 . e -
£ = (vﬁzcn")/ﬂa'[(ﬁlnFa + 2/via(3¢0-+§(ué0) /2}) - (uéo).e

a )

¢

2 (REG10 e ) v e, NF,1 + (/v 0T, k00,0 Ve T 01 ,0F, +

(higher order terms) .
(2.2-49)

Finally to develop a kinetic equation which governs
the lowest order transport processes across the magnetic
field lines, the O(Gmta) time scale version of
eq. (2.2-45) must be considered. Assuming a steady state
condition to be established@ on +this time scale then
egs. (2.2-46) through {2.2-49) can be combined with
eq.{2.2-45) and the result gyroaveraged to give the desired
result. Upon carrying out the gyroaveraging process and
retaining only terms of order < 0(61) it can be shown
that the desired kinetic equation assumes the general form

(see Appendix D):
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- _1.*

VW) + Vap o, + 2792 (1, @ + 301 /B0 r7310) o))

¢

o

/3 e 1F, - (eaV.,'-V)‘Dl)Fa/Ta=E(Cab(fa1,fb1) + 8, 5 (F,,£5))
(2.2-50)

where in order to facilitate the computations, the phase
space basis {r,H,u,t} has been employed and the
restriction (Bx/B¢)2 << 1 (and therefore RZ ~ (I/B)2 )
which is applicable to most present generation tokamaks, has
been applied. Furthermore all terms greater than first
order in § have been neglected and the radial drift

velocity in the frame moving with the plasma has been

defined such that

ﬁdr-e¢ = 2n§"/y’-§[ln"-(§ + Eéo))lga].

{2.2=51)
The solution to eq.(2.2~50) can be obtained by the method of

o

successive approximations whergby the function fal is
expanded in terms of the collisionality parameter. This
technique will be used in the next chapter to determine the
0(51) particle distribution function in all three collision

frequency regimes,



W(

FIGURE (2.2-1)

I

¢

GENERALIZED AXISYMMETRIC COORDINATE SYSTEM

02



6l

TRAPPED ION ORBIT

UNTRAPPED TON ORBIT

FIGURE (2.2-2)

THE EFFECT OF A TIME VARYING RADIAL ELECTRIC FIELD
ON THE GUIDING CENTER MOTION OF AN ION IN A TOKAMAK



3 = m(w.t);.q,

corx

-+ —
Feent =

62

¥ = -Zma (_t; %X ﬁ)

—ma[EBx (0 xXR)]

A2

trans

FIGURE (2.2-3)

THE FICTITOUS FORCES

= -m_ (dw/dt x R)



63

-+ - ~ >
Vgc = DC [V - d(n,,xvfﬂa)/dt]
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2.3 THE LINEARIZED FOKKER-PLANCK COLLISION OPERATOR

The Fokker-Planck collision operator describes the
manner in which a distribution function of charged particles
changes as a result of collj:_sions with its own specie or
other charged particle species. In this section the
fundamental structure and properties of the Fokker-Planck
collision operator will be reviewed and a collision
operator, which accounts for both the direct and indirect
effects of neutral beam injection, will be developed.

For the relevant case of coulomb collision, the
dynamic behavior of a distribution of charged particles can
be viewed as a Markovian process [87] since the time
interval over which the total deflection process occurs
(i.e. the time of passage of a particle across a Debye
sphere) is sufficiently short so that the change in the
particle's velocity is small, but is long compared to the
continuance of the correlation of fluctuations in the
microfield. In this context it can be shown that the
Fokker-Planck collision operator can be expressed in the
fellowing general form [88,89]):

Cap (farfp) = -rab[$v'(fa$vhab) - 1/2$v6v=(fa§v§vgab)]

(2.3-1)
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where

_ 2 2 2
rab = (eaeb) 1n /(4neoma)

(2.3-2}

and h, and 9on are the first and second Rosenbluth

potential functibns defined such that

— - . 3
hy = ma/mab(f$,fbftlv - v )a’v

- 3Tt g3
Yap =/, |V - vl dy

M (2.3-4)

with the quantity m,, = mamb/(ma +m) being the reduced
mass. Since the Fokker~Planck collision operator is
actually a phase space operator, then eq. (2.3-1) can be

cast into conservation form with the result ([89]:

Cab(fa'fb) + vv'(Kafa) =0
(2.3-5)

where

> = + ;
Ka ’ Fab/(ma + mb) _‘Bab 3v/2
(2.3-6)
is a phase space vector which represents the continuous flow
of phase points. This phase space vector is comprised of a

convective friction term and a diffusion term defined such
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that
>
Fap = ma(rabﬁvhab)
{2.3-7)
and
B
Dab = I1ab§v§$vgal:>
{(2.3-8)
respectively.

To understand the physical significance of these
components, consider the behavior of a stream of test
particles with velocity v injected into a plasma. As the
test particles undergo collisional momentum exchange
interactions with the field particles, the average change in
the velocity vector of the test particles is characterized
by the dynamical friction term whereas the spreading out of
the cloud of test particles is represented by the diffusion

+=
term Dab .

For most cases of interest in neoclassical transport
theory, the (a) species distribution function can be

represented by a perturbed Maxwellian, i.e. f_ = £ + £

a al al

where f_, is a local Maxwellian and f,q represents
some perturbation from equilibrium. As a result, in a state
of quasi-~thermodynamic equilibrium the linearized collision
operator can be expreséed as the sum of two components,

namely the test particle collision operator and the field
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response collision operator

Cap{farfy) = Cp (£, 4,5, 4) + Cop FaprEp1) -
- (2.3-9)

To obtain an explicit expression for the test particle
component of the collision operator, the first and second
Rosenbluth potential functions are evaluated in the presence
of a Maxwellian field distribution with the result (See

Appendix E)

=t NE S
Cab{farrfpg) = Ny L, + v/v '3V(Iabf

al)
(2.3-10)
where
L= (vx¥ %2
(2.3-11)
is the pitch angle operator and
— 3 S Ll S .
Iab =V lIur:l.b/mb(nab + mbnabv'vv/(zmab”

+ ]
ab and Nab

angle deflection and parallel diffusion rate characteristic

with n:bf n being the slowing down, pitch
frequencies, the definition of which are given in Appendix

E.

Now it is of interest to note that since the Legendre

poloynomials are eigenfunctions of the pitch angle operator,



68
then this operator satisfies the eigenvalue eguation

LPl(cose) = -2{(L + l)Pﬁ(cosB)/2.
(2.3-13)

Furthermoré the particle distribution function is symmetric
about the magnetic field 1lines, consequently the test
particle component of the collision operator can be
separated in accordance to its respective harmonic
components. In particular since the majority of this
thesis deals with the development of the friction-flow and
viscous stress constitutive relationships for a strongly
rotating plasma, attention will be focused primarily on the

L =1 and 2 = 2 harmonic components of fﬁe collision
operator. Td decompose the test particle component of the
collision into its ‘harmonic constituents, the particle
distribution function 1is expanded in a cartesian~tensor

series of the form [90,91,92):

= BB () G- T ) et _ (1)
fal - i(Aa (V)R‘(VVV--oVR)/V }fao = ¢a (v) fao
where (2.3-14)
fggﬁ)(V) = (28 + 1)!/[4“)IA($$$...;E)/v£¢;£)dg
; (2.3-15)

with dQ Dbeing a solid angle differential element. Using

the & =1 component of eqg.(2.3~14) in eq.(2.3~10) yields
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(1) (1) _ (1) , =, 4, " 4 2 _
(£a1 1Epg) = “Mopfsy + V/V Vo In v (Lv/v, ) 1/2]

" $.3v/2)f(1’]
(2.3-16)

(1) _ _p(1)

al al has been

where the eigenvalue relationship Lf
used in obtaining eq.(2.3-16). To physically identify the
respective terms appearing in the above expression, the
mavj3/2j moments of the collisional and heat friction
components of eq.(2.3-16) can be selected to give

-

- (1) (1) 3 (1)
R(al,bO)l m fvvC (f fbo)d v = maf3 abvf 1 d

(2.3-17)
and
R = 2
R(al,b0)3 = m /2UVW/V -V [”ab" ([(v/v ) -2+
> (1} _ K _2+_(1)_.3
72y ¥ yeltadvr = my 2/, gV ¥E,y V]
(2.3-18)
where

K _ [? ll. + ;..ﬁ " _ 2( / )2 L _ 2 " o
Mab Nab v"ab VIVial Mapl = 203n,,/2 + n_p

- S )
nab
(2.3-19)

is a characteristic frequency for heat flux generation due
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to the test particle collisional interaction with the field
particles. The first term in eq. {2.3-16) gives rise to
the collisional momentum exchange moment whereas the second
term ih this equation is responsible for collisional heat
flux generation (heat friction) of the test particle
component.

Likewise, using the £ = 2  component of eq.(2.3-14)

in eq.(2.3~10) yields

(2) (2) - (2)
Cap (37 1Epg) = -y €12
(2.3-20)
T _ ..s - " X
where here Nip = 2”ab + (”ab - nab) is the total

characteristic freguency for the relaxation of stress

anisotropy of species (a). Note that in obtaining eq.

(2) (2}
LE ;" = -3f]

been used and all velocity space derivatives in the test

(2.3~20) the eigenvalue relationship has
particle component of the collision operator (except the
pitch angle component) have been omitted since these
derivations do not contribute to the vv moment of the
collision operator. Physically the Xrook like term [93]
represents the test particle collisional stress response.
Selecting the ma($$ - vzﬁfIB) moment of eq.(2,3-20)
yields

-

Ria1,b0), = (W - v¥T/3)c/2) £2) g yadv =

-maf (v - v- I/3)n f(i)d3
v (2.3-21)



71

where the tensor represents the test particle

®
(al,bO)2
collisional stress moment.
The field response component of the collision operator
can be evaluated for a Maxwellian test particle distribution

function to give

_ 2
Cabfaprfpy) = Toplémm £ /m = 2m, /m vy )7 (hy + (1 -

*.I 4++.
ma/mb]? ﬁvhab) + 2/Vtavv'§v$vgab]fa0’

(2.3-22)
To express this component of the collision operator in terms
of its harmonic¢ components, the intergrand of the Rosehbluth
potential functions are expanded in a spherical harmonic
series, which in conjunction with eq.(2.3-14) yields (See

Appendix F):

<~ 9 - - -~ +
h,, = ma/(mabvlﬁ(&g(i) + B Gany VR VeV /(122 + 21v)

(2.3-23)
and

3] “12) FAL) L elR)
Gab = Yl (p42) * Bplqeen) 1/ 2E * 3) = {opgy * By(agy)
/428 = DI ER--T) /0128 + 11vh)
(2.3-24)
where the tensor functions W) and 4§%i) are defined

*b(3) b(j)
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such that [91,92]:

“H{i) _ J veHi) (3+2)
ab(j) dnfv é Abl fbov av
(2.3-25)
and
<{i) _ J i) (j+2)
Bb(j) = An/v Ival fbov av
(2.3-26)

respectively. Note that in obtaining eqgs.(2.3-23) and

(2.3-24) the spherical harmonic egquivalance relation-

ship [94]

By TP ot = gl v
ms

(6.9)

(2.3-27)
has been employed. Using egs (2.3-23) and (2.3-24) in eq.

(2.3-22) yields [91,92]:

_ (%) . +++.-.+ A
Cabfag fp1) = I{Cap o (WVVr ooV} IVIIE,,
(2.3-28)
where the p = 1,2 components of Cab(faO'fbl) are

defined such that

(1) (1), _ 2(1) > 2 _
Cab Faorfp1 ) = 4™, Taplpy "VEpe/ (MpV) + 2T, /Ve, (14D
+{(1) e +.+(1) 2 -

Zma/mb)ab(l) v/ (3v) + 2v ab(-Z)/(5vvta)]) + [(ma/mb 2)

>(1) + 2 + +(1) 2

] v/ {(3v™) + 2v-§ /(5v__)1)
-2 -2

b{-2) bi{-2) ta (2.3-29)
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and
c{B e . elBy = gm r_ K2 vvfbol(mbv ) + 20,/ (5va ) (12
- >« 2) 3 _ 2 e2) ﬂ2)
Bma/mb]vv.ab(z)/v 2vv.ab(2)/(3vv ) + 12vv ab(4)/(?v
2 _ +{2) 3 _ ,3ra(2) 3.2
vta) + [Zma/mb 3]vv Bb( 3)/v Bb( 1)/(3v vta) + 12
%2) 2
Bb( 3)/(7vvta)) .

(2.3-30)

Finally, combining eqgs. (2.3-16) and (2.3-20) with

egs. (2.3-29) and (2.3-30) vyields the following expression

for the £ = 1,2 harmonics o©of the ceollision operator
[91,92]:
(1} (1) (1) = (1) >, 4 - "
Cap' (Fay +Epy ) = g ay) + vt Il vt Livre, 02 - 172

() 1
+ 3@ T« e KD e sy + 2r /vE

1
- 2m /mb)*_g(;)-v/(sv) + 231 *}g}’z)/(svvf;a)] + Lin_/m - 2)

1)
b( 2)-v/(3v ) + 29 5%1)2)/(5v ) 1)

*(2.3-31)

and

(2) ( (2) _ (2) «{2) x> 2 .
(f ) = abfal + 4rm T A .vvfbol(mbv Yy +

4——)«(2) ++-¢--+(2) 2
b/(5vta)([2 - 3m /mb]vv b(2)/v - 2vv: ab(z)/(vata) +
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++-++(2) 2 _ -++.<-+(2) 3 _ ++.4—+(2)
12vv.ab(4)/(7vvta) + (2m_ /m 3]vv.8b(_3)/v 2vv.Bb(-l)
3.2 I+ +(2) 2
/(3v vta) + 12vv.Bb(“3)/(7vvta)).
(2.3=32)

Because of the integro-differential nature of the
collision operator the aétual' solution to the kinetic
equations still remains quite complex. To simplify this
operator, a method developed by Sigmar et. al; [95] and
Hirshman [96] will be used in which the pitch angle
derivatives of the test particle componen£ of the collision
operator are kept rigorously but the integral and
differential velocity space operators, which comprise the
remaining part of the test partic;e component and the field
response component of the collision operator, are
incorporated into global terms which are determined from the
conservation properties of the c¢ollision operator. This
) approach.has the advantage that the pitch angle scattering
process, which is the dominant neoclassical effect, is
kept rigorously whereas the smaller energy diffusion aspect
of the collision operator is retained in a global sénse. In
a beam injected plasma where the field response component of
the collision operator is enhanced by beam particle
collisions with the background plasma species, this method
provides a mechanism whereby the beam induced collisional

response can be implicitly accounted for. In addition, this
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technique allows the collision operator to be put in a form
whereby the algebraic nature of the operator can be
exploited thereby rendering the kinetic equation amenable to
analytic solution. The method is motivated by the fact that
the pitch angle component of the c¢ollision operation has
Legendre polynomials as eigenfunctions for an axisymmetric
system, whereas the velocity diffusion component does not.

Since the null space of the collision operator consists
of the Maxwellian eigenbasis [63]:

(g1 /Mg e 2V Vo IVEG 0oy ITaq (W) %)

" (2.3-33)
then the eigenfunctions of the collision operator must be
some linear combination of the elements of this basis. To
construct a set of trial eigenfunctions, recall that since
the first order perturbation to the Maxwellian distribution
can be accurately expressed in terms of generalized Laguerre
polynomials [63,87,58] for a slowly rotating plasma, then an
appropiate set of trial eigenfunctions characterizing a

strongly rotating plasma should be of the general form {[96]:

-t

(1) _ z(1) = — o7 ,.2 (1) =3/2 2
f01 = A3 viv = 2v/vtU g(ch (v)Lj (v/vtc) )f00
(2.3-34)
and
2 “ - -
fél) = iﬁi);vvlvz = vv:ﬁﬁz)(v)foofvgo

(2.3-35)
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-k 2
where Lj(V/VtU)

being the jth Laguerre polynomial of order K and ¢ = a,b.

_ (K 2 . K
(Gj,o Lj(v/vto) Gj,l} with Lj(v/vto)

Using these trial functions in eq. {(2,3-31) and (2.3-32) and
carrying out the required mathematical manipulations

yields [96)

(1) (1 (1) _ _.5 (1) > z(1) 2
a1 b= mmapfal * 2VeST (V0 (Vi
(2.3-36)
and
(2) (2) -(2), _ (2) I {2} 4
(fal_,f ) = bfal + 5vvis o {v)faol(tha)
(2.3-37)
where the global energy diffusion functions are defined so
that
(1) - (l) (1) = (1} 2
W) = ngpi) + Qi)+ al BN /v )
{2.3-38)
and
%2) = 9P 5(2)
(V) = 2n2pNab
(2.3-39)
with the global velocity coefficients h(é),Léi),*éé) and
ﬁ;;z) being linear combinations of the functional expansion
coefficients é;’ and ﬁﬁg) for j=0,1 « and the
field response heat flux and anisotropic stress relaxation

rates ngb and ngb defined such that [96]:
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Q — s - + " - + o
(2.3-40)
and
p = S - * - " 2
o = 20ng, {ngp = nap! (1 + 3[vtb/vta1 )1,
(2.3-41)

loci i (1) 2(1) (1)
The velocity space coefficients Kab 'Lab 'Mab and

*ﬁgg) can be related to the physical properties of the

collision operator by selecting the various velocity

moments of egs.(2.3-36) and (2.3-37). In particular

selecting the ma$ moment of eq.(2.3-36) and using eq.

(2.3-17}) in conjunction with the conservation of momentum

yields.[96]

*(1) - 5 -
¥ab = ®ab®(a0,bl),
(2.3-42)
where
s _ S
Cab ~ {mananab}
and

* % +.(1)

- - - (1) 3
R(a0,b1), R(bl,aO)l = mbf;VCba (£p1 rE59)07V =

bl *

s ».(1) .3
mbf;nbanbl av
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with the integral operator {A(v)!} defined such that [8)

2
_ © 4 -X
{a(v)} = 8/(3/w)£ X Alx v, le "adx, |
(2.3-45)
Furthermore, f;é) and 'ﬁgi, can be related to the field

particle heat flux generation and anisotropic stress. The

physical expressions for these quantities can be determined

by selecting the mav2$/2 and ma($; - Vzﬁ?/3) moments

of the heat friction component of egs.(2.3-36) and (2.3-37)
respectively, and setting the resulting expression equal to
the heat friction component of eqg.(2.3-31) and the ma(33 -

2>

v©I/3) moment of eq.(2.3-32) respectively to give [96]

>(1) _ Q=
Lab = cabR(aO,b1)3
| (2.3~46)
and
«H2) _ P
Nab cabR{aO,bl)z
(2.3-47)
where
Q _ Q 4
Cab = {Ta“abxa}
(2.3-48)
* _ 2> (1) 3. O 2+.(1).3
R(ao,b1)3 = ma/2I$v ve_ (faO'fbl)d v = mb/2f$nbav vfbl a v
(2.3-49)
P P xz}

Cap T {panab a
{2.3-50)
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and

g _ _ (2) {(2) -
R(aO,b1)2 = m fv(vv v' I/3)C (fao fb1 )d v mbf+n (vv

/3)f(2) 3 .

(2.3-51)
Likewise from eq. (2.3-18)
(1) K %
M =
ab CabR(al, /b0) 4
{2.3-52)
where
K _ K _ 4
cab {mana”abxa}
(2.3-53)

Consequently in view of egs. (2.3-36) through (2.3-53)

50 5.3 0 2 K K
(v) = n3 iR (a0, b1y, * (nZpe ab®(a0,b1) ; * MabCab
% 2
(a1,b0).) (V/V,)
3 (2.3-54)
and
**{2) = P P r
(v) 2nab abR(aO bl)z .

(2.3-55)

In essence, eqgs.{(2.3-41) through (2.3-53) define the

restoring coefficients necessary to account for the back-
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ground plasma field collisional response [95,96] to the (a)
species. This technigque differs from a rigorous expansion
of the particle distribution function in Laguerre
polynomials [97,98] in that the restoring coefficients are
determined from moments of the collision operator and the
physical conservation properties of the Fokker-Planck
operator rather than selecting moments of the distribution
function. This renormalization of the infinite series has
the approximate effect of taking account of higher order
polynomials neglected in the trial functions. This 1is
important in a beam injected plasma where the collisional
field response to the {(a) species is influenced by fast beam
-ions as well as the background particles, Finally it can be
shown that [96]) the collision operators given by egs,
(2.3-36) and (2.3-37) preserve the fundamental properties:
possessed by the unapproximated Fokker-Planck operator,
namely it obeys the conservation properties of particle
continuity, momentum and energy, possess an H—theorém, is
self-adjoint and is Galilean invariant [96]. This last
property enables the approximate c¢ollision operator to be
referenced to a moving fréme, a necessary condition when
dealing with a strongly rotating plasma.

In the last part of this section a collision operator
is developed which accounts for the beam ion c¢ollisions with
the background plasma . Unfortunately, the approximate

collision operators given by egs.(2.3-36) and (2.3-37) are
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only applicable to small angle collisional interactions in
which the distribution function is only slightly displaced
from equilibrium whereas in the case of an energetic beam
ion slowing down in a plasma, the beaﬁ distribution function
is highly anisotropic and therefore this approximation
cannot be used. As a result the lowest order collision
operator must be determined directly from eq.{2.3-22).
Combining egs.(2.3-23) and (2.3-24) with (2.3-22}) and

carrying out the indicated differentiations yields

- -'{E) L 2
(2.3-56}
where
4—"’{1) (v) = 41Tma+§_".B(i’)me + Z/VEa[(z‘rZ/via S (0% + 118+ 2]
L 9.
L) _ (1)
+ BB(l E))/(Zv[Zi + 13[28 = 11) + [2 + 1]([2 + 2] AL

- 138+ 4T )/ viae & 12t + 3D - 2 - et

+ [L - l]gﬂ(i 2))/(2v[2£ + 11[28 - 1]) + m ([% + 11&;%;,

B3E) 1)) (2mgvi2t + 1))

(2.3-57)

Now for most present generation tokamaks the beam ions
satisf i i

isfy the criterion Vea << Vgg << Vie

the beam ions initially slow down primarily from collisional

As a result,
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interactions with the electrons. Since vte/vBO >> 1 then

3 3

v .3 v ©
fodv +fchOdV and fvdv+0
(2.3-58)
where vg, is the initial beam velocity and v_ is the

critical velocity. As the beam ions velocity decreases then
the dominant collisional interaction is with the plasma ions
® .3

advy » 0 ana 74

v 3
0 - v-*%BOdv .

c
{2.3-59)

Here it has been éssumed for most present generation
tokamaks where anna << 1 , it is only theose energetic beam
ions whose thermal velocity is considerably larger than the
background ions that drive the distortions in the ion
particle distribution function.

Finally combining egs.(2.3-58) and (2.3-59) with
eq. (2.3-57) yields

= yal(f) (2}, _ &AL 2o 0
%aB(fag’ %8} = %%an (faorfg ) = *Cap g vV v ) £ o/v
{2.3=-60)
where for £ = 1,2 (the dominant harmonics)
(1) (1), _ 52 z(1) 2
Sag (Faqrfp ) = 2V:S, M£,6/V¢a
(2.3-61)

and
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(2) (2), _ .2 22 N e +3{2)
S.p (faO'fB ) = 2xa[3/2(vulv) n,n, IIZI.SaB (v)fao
(2.3-62)
with
% (1) s -
Sy (V) = YaB(V)vB
{(2.3-63)
and
S W) = vB vy spve
(2.3-64)
Here
¥Sp = nglp/306, (1 + 6/5(v /v ) 2viel whadv P/, vi
v v

£28 (vrader
(2.3-65)

and

2 - 2/30v/v )7

P _ : -
YeB = reB/(smez(vn/v)) [f_‘];‘(z + 12/7(‘7 /vte)

v 2el2) (&P, v, vy 22 vy atv
v
(2.3-66)

for a = e and
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2

Yig = [tlwmanthaI‘ané“ (v)/[2rnBv..) + [nBI‘aB/’Bf_‘,}’(ma/mB -2 +

2, (1) .. .3 . 2 A ll) a3 .
6/5(v/vy ) Vg (VI (W) NI/ L, vty (v a7
(2.3-67)

and

vBp = tamm, T 60?1/ mygxZe, (va/vd) + (T, (58, (vasv))

_ 2 _ . 2. .(2),. . .
f;,(zma/mB 3 + 12/7(v/vta) 2/3(v /vta) )fB_ (vi)da v

v 17U, mgve?e, (va /vy 8 (v advd
v

(2.3-68)

for a # e.
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2.4 THE MULTISPECIES MOMENT EQUATIONS

Although the properties of a plasma can be completely
determined by solving the kinetic equations for the
particle distribution function and then computing the
desired quantities from this function, a knowledge of the
macroscopic or averaged properties suffices to describe many
plasma phenomena of interest. In this section the
multispecies fluid equation governing a strongly rotating
beam injected plasma are developed.

To obtain an appropriate set of multispecies fluid
equations, eq. _(2.2-45) is multiplied by the tensor function

-

b
z, = ma(VVG---$£) and the result is integrated over all

velocity space yielding a generalized transfer equatidn of

the form:

et - “ . e -
ST, /0t + VT, + VI 0y + T80T + etel, /ot

- e -+ -+ - -
* YaE 3-ﬁalE)'I.al(R.—l)]J?, + 2'[Ta.?,'-v*uaE:]l - Rlea/ma(E + uaE}{B)
-4-‘1-‘:- ’ ﬁ 4—T-> _4-4 e
a(t-1) a¥Taply = L,y + Ny
' (2.4-1)

where here for notational convenience, the subscripts on the
time derivative operator has  been dropped in order to
accomodate radial transport and other higher order effects

and
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3 i i

ap e : -+
= maf+(VVV-~-V£)fad vV = mana(VVV---Vg)a

T
at T

(2.4~2)
L th ' . <+ < .
is an. order tensor, with Laz and Naz being the

collisional and external source moment operators defined

such that
T, =n (WY, c(g,)a’
Lag =™y 3 TtVIC(E,)aTY
(2.4-3)
and
. _ Sy - 3
Nog = maf§(vvv---v£)s(fa)d v
(2.4~-4)
respectively. Here, the symbol [ ]2 denotes a symmetri-

zation process where a perfectly symmetric tensor is formed
by permuting the tensor in all %! ways, adding the
result, and dividing by 2 S

The individual moment equations can be generated from
eqg.(2.4-1) by ietting £ take oﬁ non-negative integer
values, In particular the lowest order even parity moment,
i.e. 2= 9 r Yields a statement of particle continuity,

namely

3n_/3t + $-Ta = N_,

(2.4-5)

-
where ?a = n vy is the particle flux, Nao is a

particle source term due to ionization, recombination and
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charge exchange and ;a is the average fluid velocity as

seen by an observer in the lab frame

)}
=D
+
o

-+ _ -+ -> 3
v, = [fﬁ(v + uaE)fad V]/na

(2.4-6)
The lowest order even parity moment of eq.(2.4-1) gives

the momentum balance equation

- - -> -
a(mafa)/at - m uaEBnafat + manava-ﬁua

> o
a + 3'(m n_u Va) +

E a'a aE

o -+ > > >
Votmn (W) ,] - e, E+ T xB) =%, +3,

{2.4- )
where here owing to the Galilean invariance of the collision
cperator, the collisional friction and external momentum

source operators have been defined such that

> > 3. _ =+ 3 =+
Ral = maf+vC(fa)d v = maI+VC(fa)d V = Lal
v v
(2.4-8)
and
: -+ 3. > ., _ =
g, = maf$v8(fa)d v = maf§VS(fa)d V=N,
(2.4-9)
respectively.

To cast eq.(2.4-7)}) into a conservation form commonly
found in the literature (7,8], eqgs.{(2.4~5) and (2.4-6)} can

be used in conjunction with eq. (2.4-7) to give
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e

a(ma?a)/at = (R, + §a1 + ea[naﬁ + faacﬁl) - G-Ma

(2.4-10)
where
L i gl - E -> o - -> -+
Py = m (v - V)V - ¥ )&% = mn [T - T )G - T )
(2.4-11)
and

is the total momentum stress tensor which is composed of a
kinetic and pressure stress term. Physically eq.(2.4~10)
exhibits the fact that the time rate of change of momentum
flux is equal to the difference between the source terms due
to momentum flux generation arising from  interspecies
collisions, the external momentum input and electromagnetic
force density , and the momentum loss due to kinetic and
viscous transport (divergence of momentum flux)}. Selecting
the torocidal component of eq.(2.4-10) yields an expression

for the conservation of angular momentum:

2/\ . ” - ey
3 (m_R e¢.fa)/at = e,y (e, T )/ (2m) + R2e¢-(§al +
-+ > ~ +
Sal + eanaE) - R2e¢-(3fﬂa)
(2.4-12)

where the term
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(2.4-13)

is the radial particle flux.
The next higher even parity moment (i.e. £ = 2} of

eqg. (2.4~1) yields the pressure tensor eguation:

> + -+ - + B -
BTaz/Bt + 3'(uaETa2) + ﬁ'Ta3 + mana(va[auaEfat + u, ﬁu

E
> - - > e > o -+ T
+ [Bu,p/at + “aE'%aE]Va) * Tan ﬁuaE + azjuaE) + e, /my
»> = T, e - % - -+ E -ﬁ +
(Bx‘I‘a2 + Tazch} = La2 + Na2.+ eana( a[E + U, X 1 + I
- >
uaExB]Va)

T = . . o

where a3 = m n (VW) _  is an intrinsic heat tensor as
seen by an observer in the frame moving with average
velocity GaE . Contraction of eq.(2.4-14) yields an

expression for the time evolution of the intrinsic scalar

pressure, namely

2 - B e >
a - .
(3T5/2) /3t + V- (myn, (VV) /2) + 37,0 1/2) + T 574 __ +

- -> -+ -+ =+ -
manava (BuaE/at + uaE ﬁuaE) - (Laz + Naz) + eanava'(E +

s

-
U,g X B)
(2.4-15)

where
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P
T, = TRACE(T_,)/3

(2.4-16)
is an intrinsic scalar pressure
2"'. s
mon, (V) _/2 = ma/2f§V2Vfad3v
(2.4-17)
is an intrinsic heat conduction vector and
_ 2 3
L., = mzlzfﬁv Cﬂfa)d v
(2.4-18)
and
- 2 3
N, = ma/2f§v S(fa)d v
{(2.4-19)

are the collisional heat generation operator and external
energy source term due to auxillary heating as seen by an
observer in the moving frame.

To obtain a conservation equation for the energy

density, eg.{(2.4-15) can be transformed from a coordinate

frame moving with the plasma to the lab frame where Ga = aaE

+ ﬁa and the result used in conjunction with eq. (2.4-5)

through (2.4-11} to give

3

2 >
B(manava/2 + 3pa/2)/8t = (Ra2 - uaE-Ral

+ S +

a2)

> - 2 -+ + >
(e,n_v_-E) - 3.(qa + Imgnvy/2 + Sp_/21v, + VT

(2.4-20)
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_ 2
where the term manavafz + 3pa/2 represents the enerqgy
density which is composed of an inertial or kinetic energy

component and an internal energy (pressure) component,

3, = m /20 G -V )PE - et = o (- T2 - T,

v
{2.4-21)
is the conductive heat flux (heat conduction vector)
R = m_/2/ v2C(f_ )a3
a2 a s a v
(2.4-22)
and
8., =m /2f v?S(f )a>
a2 a’“> aldvVv
{2.4-23)

are the collisional heat generation and external energy
source operators as seen by an observer in the lab frame.

Note here that the pressure tensor has been decomposed into

its scalar and viscous components

- . e
P, = p,i +*ﬁa
(2.4-24)

with

P, = TRACE(P)/3
(2.4-25)

and
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> +_+ > > o 2 3_ -
Ha = maf$[(v va)(v va) {v va) I/3]fad v = mana[((v

- VDE =T N, - (- T2 T3]
\ (2.4-26)
being the scalar (isotropic) pressure and viscous tensor
components respectively and the term
S, =3, + mpn vi/2 + sp /v, + ¥,

(2.4-27)
represents the energy flux. Physically, the time rate of
change of the energy density is manifested as the difference
between the energy source terms due to colliéional momen tum
and heat generation, auxillary heating and the power fed
into the system by the electric field, and the energy loss
due to heat conduction, convective and viscous energy
dissipation (divergence of the total energy flux vector).

The next order moment eguation, which governs the time
evolution of the total energy flux vector, can be obtained
from the general tensor transfer equation by setting f = 3
in this equation and making one contraction. Although
tedious in nature, it can be shown that upon carrying out

this mathematical process, transforming to a coordinate

frame which is moving with average velocity $a and using
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the result in conjunction with egs.(2.4-5) through (2.4-27)

yields the feollowing moment equation:

-+ 2 - -+ =
3(qa + (mn v, /2 + 5p,/21v, + v I )/3t = (R, +
3 + e_/m [(a 1+ [m_n v2/2 + 5 /2]+ v T B
a3 a'a a a a a pa Va + va' a)}{B
> R - ‘e
+ - — -
(E-[3p,T/2 + M_1)] - (VE))
{(2.4-28)
where
e
R . = ma/2f$v2$C(faJd3v
(2.4-29)
and
$ . = m /2 v¥is(£)ad
a3 - My ;v vS ( a) v
(2.4-30)

are the collisional rate of heat flux generation (heat

friction) and external source of energy flux as seen in the

lab frame respectively, and ﬁE; is a complex energy

weighted stress tensor defined such that

F 2 . - -+ > 2> -+
Ga = (manava/Z f PRACE(Pa)/2)vava + yaPa/Z + 2([va

> 4 -+ -+ - AR >
(va-Pa)]2 + [vaqa]2 + va-(mana(v Vv )a} + Oa

(2.4-31)
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with
> - > 2 - > -
0 m R /20y = v )" (v - v )(v - vy,
being an energy weighted pressure stress tensor and

mn (VVV) =nn ((V-V ) -9 )F -V,
is an intrinsic heat tensor,.

Now the moment equations as developed thus far are
applicable to each point in configuraiion space. To obtain
a form of the momentbequations which are amenable to the
study of transport theory in a toroidally confined axisymme-
tric plasma, the multispecies moment equations can be
spatially averaged over a magnetic surface thereby reducing
the set of non-ignorable spatial coordinates from two to one
{recall that for an axisymmetric configuration the toroidal
‘coordinate is c¢cyelic in a Lagrangian sense). In particular
the flux surface average operator 1is defined such that

[82,92]

<A> = fz“/gAdx/IZ“/gdx
0 0
(2.4-32)

where
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~ Fat ~

_ . -1
/g = (ew [ex}ce¢])

(2.4-33)
is the «coordinate basis Jacobian. In view of this
definition it c<¢an be shown that ([(82,92] the flux surface

average operator obeys the following identity relationships:

<§.¢i> = 0
(2.4-34)
and
F.E> = 1/u'a(u*<é¢-ﬁ>)/aw
(2.4-35)
where
v’ = 2n&f“/gdx
(2.4-36)
and

vip) = &fg‘[w")dw”’ is the volume enclosed by the
flux surface ¢ =

constant. By use of eqgs. (2.4-32) through
(2.4-36) the angular momentum conservation equation can be

flux surfaced averaged to give

2A R — - l!J 2A . - -
a<m R7eg Fa>/at = y’e,TY/(2m) + <R ey (Ryy + 5, +
eanaEA) - (1/u‘3(u‘mﬁ)/a¢)

{(2.4-37)
where
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w — - .+ 3 — N - lp
Pa <Ige¢ vfad v> = <e¢ ra>
(2.4-38)
and
Ma = <maR e¢ew.f+vvfad >
v (2.4-39)

are the flux surfaced averaged radial components of the
particle flux and angular momentum respectively. Likewise

flux surface averaging the energy conservation egquation

gives
2 - = ’
8<manava/2 + 3pa/2>/3t = <(RaL2 - VR + 5.5+
+ -+ - U
eanava-E)> - (1/U'3(U Qa)/3¢)
(2.4-40)
where
o¥ = <m_/25 (e, -9)viE_advs
a a >y v a% Vv
v (2.2-41)

is a radial kinetic energy flux. The above egquation can be
recast into a form which is more appropiate to a strongly
rotating beam injected plasma by including the electrostatic
potential into the expression for the energy density. 1In

particular noting that

v -E=0eV-(nv) -¥-(nv o) +nv -E
NaVa - NaVa NaVa NaVa

(2.4-42)
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then eq.(2.4-40) can be expressed as follows:

o M

2 _ > A
aﬁmanavalz + 3pa/2 + naea¢>/8t = <R 5 * 8,5 - €NV E> +
- 10780 0Y) Jap
<eanaa¢/at> 1/uv73 (v Qa)/aw
(2.4-43)
" where
- _ 2 3
42 = f$(mav /2 + eaQ)Cad v
(2.4-44)
g = [ (m v2/2 + e $}5 d3v
az. ; a a a
and
Qa = <f+(mav /2 + ea¢}(v-ew)fad3v>
(2.4-406)
~y

is the total radial flux. Physically, Q. encompasses the
radial components of the total energy flux vector due to the
conductive and viscous heat transfer as well as particle,
inertial and elect?ostatic enerqgy cénvection.

To obtain a moment equation which governs the radial
component of the total stress tensor, the toroidal tensor
product is taken with the pressure tensor equation and the
resulting equation is transformed from a coordinate frame

moving with the plasma to the lab frame and flux surface
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averaged to give:

s

B<R4e¢e¢.M >/9t = vy e M¢/(2nm ) + <R4

e4eg (Ryy +

00/ + <en rle e T B - (17078 (u71!) fau)
(2.4-47)

where

Ig = <n_/2(R

{ >
(11
M >

+%4 ¢ (vvv)f s | v)b
{2.4-48)
is the radial component of the energy stress tensor as seen
from the lab frame.
Finally to complete. the set of moment equations
required for transport calculations in tokamaks,the toroidal
component of the energy flux equation is selected and the

resulting expression is flux surface averaged to give

2" - 2 - O _ .
<R e¢‘(qa-b(manava/2 + Spa/2)va + va-Ha)/at = ¥ ea/(Zﬁma)
v 2 N S ox e 20z
(qa + <(mava/2 + 5pa{(2na))ew fa + ewva.na>) + <R e¢ (Ra3

+ §a3)> + <ea/ma[R2$¢E=(3p;E72 +‘Eg)1> _(1/u'a(u’eg)/gw1

(2.4-49)

where

qi = <ma/2(f+($ - $a)2($ - $a)-;¢fad3v)>
v (2.4-50)
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and

2e e :f+v2$3fad3v)>

Vo
Ga = <ma/2(R 6y >

{(2.4-51)
are the radial components of the heat conduction vector and
the energy weighted stress tensors respectively. Further-
more since this thesis focuses primarily on particle,
momentum, and heat transport, it is more convenient to
express eq.(2.4-50) in terms of the toroidal component of
the heat conduction vector, Noting that on the transport
time scale-the average frame velocity is EaE==m0(x,¢)R%;¢,

then using eq. {(2.4-38) in conjunction with (2.4-50) yields:

~ -+~

- - = - — )

3<R°ey+ (3, + U - M - p Th)>/8e = y eaqu(nma) +

. ~ v 27 A e =
y ea<e¢uaE.Ma>/(nma) + ea/ma<R e¢E :(Ma - paI} +
<R%. - (& sp_ R, /(2 e (3 3

e¢ a3 PaRaz1 ( mana))>'+ <R e¢'(Sa3 - BPaSalf
_ “3tu-1c? - Y
(2mana))> 1/u”3iv [Ga SpaMaf(Zmana}])
{2.4-52)

where

(2.4-53)

and therefore
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9 = <ew-(qa T Palae 51/2)> .

(2.4-54)

In principal eq. (2.4-52) gives a detailed expression

from which the radial conductive heat flux can be obtained,

however its present form is very Iinconvenient for the

kinetic analysis which is’to be carried out in this thesis.
To obtain a more desirable form, eqs.(2.4-47) and (2.4-48)
can be combined with (2.4-52) to eliminate the term Y’ea

Mi/(Zwma) and the result transformed to the rotating frame

to give
27 e Q)22 +(0) <> .
a<R e¢ (qa - 3u Ug r /2 + ug -Ma)>/3t = ¥y eaqillznma) +
22 2A. > - >(0)2 (0 24
ea/ma<R e¢EA.(3PaI:/2 + P, - mn_ug }}> + <R%e e (La3
_ 2/\ - ~
5pa al/(Zmana))> + <R e¢-(Na3 - Spa al/(Zmana))> + <R2e¢°

+(0) . .= -
g (L, + N_,)> = 1/u73 (u [eg - SPaHg/(Zmana)])/iil.’J

(2.4-55)
where
=1 - 2~ ~ . > > 3
Ha <2maR e¢ew.[I§V"V*fad V]2>
(2.4-586)
and
gw = <2 (m /2 20 2 . oI e 3
a ( a/ R €48y [I‘?v..va f_d v]2)>

(2.4-57)
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with

25 =+

<R e¢-uE(:0)(La2 + N ) >

2
(2.4-58)

being that component of the total energy due to the
non-inertial coordinate frame's collisional heat generation
with the background plasma species and beam particles.
Furthermore, all terms > 0{61) have been neglected in
formulating the above expression.

TO render the multispecies moment eguations
analytically tractable, some type of ordering scheme must be
employed. Traditionally the moment equations have been
reduced by using a transport ordering scheme in which the
particle distribution function was expressed as a Maxwellian
plus an 0(51) correction. Consequently to the lowest
order $&';¢ ~ 0(61) . However with the large toroidal
fotational speeds attained during external momentum
injection it becomes necessary to modify the usual transﬁort
ordering [7] to accomodate centrifugal inertial effects.
In this case the lowest order flow is zeroth order ip 8 .
Consequently all gquantities which are a function of the
lowest order flow will be modified accordingly. Furthermore
with strong rotation, the 1lowest order density and
electrostatic potential are no longer constant on a flu%

surface but instead possess poloidal variations over the

flux surface. As a result the lowest order contribution to



102

the collisional and heat friction operators, and the viscous
and energy stess tensors will similarily posses poloidal
variations., Finally even though the order of the external
momentum and energy sources is dependeﬁt upon both the type
and strength of the source employved, for most transport
applications of interest the external sources can be
assumed - to be of the same relative order as that of the

collisional and heat friction operators.
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2.4 THE FLUX-FRICTION RELATIONSHIPS

One of the primary goals of transport theory is to
obtain fundamental expressions for the cross field particle,
momentum and heat fluxes in terms of +the thermodynamic
driving forces. In this section the multispecies fluid
equations are used in conjunction with the lowest order
gyroangle dependent component of the particle distribution
to obtain the functional structure of the lowest order
radial particle, momentum and heat fluxes in a strongly
rotating beam injected plasma. 1In particular, the physical
mechanisms responsible for these fluxes will be exposed and
their implications discussed.

To obtain the flux-friction relationships the steady
state version of the flux surface averaged angular momentum
conservation equation and torcoidal component of the heat
balance equation [c.f. egs.(2.4-37) and (2.4-55)] are solved
for the lowest ordef radial particle and heat fluxes
respectively yielding the general expression:

b omd - . 22 .
Tag/Ta = ~27/{y7e,) <Ry~ (Fy o941y + ga(2j+1))>

(2.5-1)

for 4 = 0,1 where

s - =3/2
Fa(zj+1) = [m ILVES

3 )c(l’(ftl) f{l))d V]
V

(2.5-2)
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are the frictional forces and

- _ P - - . w . o~
“a(23+41) = Wa(2j+1) T MVTBOTR (4410 /30 ey
{2.5-3)
are the net momentum and energy flux input terms with
e - 3/2 (1) (1)
Wa(2j+1) =m J’VVLj {x )C. (F, g yadv
(2.5-4)
and
v - 22 2 e =3/2,.2, (1) ;3
Ka(2j+1) 2m_R e¢e¢.[f§V“V;Lj (xa)jfal d vl,
(2.5-5)

being the pure beam input and drag terms respectively. Note
that in obtaining the above expressions the electric field
induced by the time variation of the magnetic field has been
neglected since the ¢time scale which characterizes the
dynamical evolution of the flux surfaces is higher order in
5

In view of the functional structure of eqg. (2.5-3), it
fellows that the lowest order nonvanishing contributian to
the momentum and energy £flux drag forces arise £from the
gyroangle dependent component of the particle distribution
function. Therefore upon combining egs.(2.2-49) with

(2.5-5) yields:

KV = R {x2 3/2

a(23+1) d {x )}/(/g{?iz})B(R u aE n¢)f3)(

(2.5-6)
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where N4ga = palﬂa is the gyroviscosity coefficient.

Combining eqs.(2.5-3) and (2.5-6) yields

>

- _ _ 23 3 .- iy a4
Ca(29+1) = Ma(23+¢1) = MamaVa Yaa(2j+1) Vane)/(2)7) e

(2.5-7)
for j = 0,1 where
_ j 2j - "" =1 3 2—3/2 2 2
Vaa(2i+1) = ~(2) /nm Ve~ (Va g} (R "3[ng,R {xaLj ()3 /)
-1+ ”
3 (R uaE-n¢)/a£x]/3£wl
{2.5-8)
is the viscous drag coefficient. Here
C1/Vg = Iewllexl/R PooR/8s, = feyla/ay
afagx = ]exlafax ;U o= R/Iewl
{(2.5-9)

In effect, eq.{2.5-8) is a statement of external momentum
balance in which the pure momentum input is compensated for
by a radial wviscous drag. Note that in obtaining
egs.(2.5-6) and (2.5-8), the total lowest order correction
to the 0(60) plasma mass flow (i.e. eq.(2.2-44) has been
utilized.

Now since the gyroangle dependent component and the
gyrotropic component of the particle distribution function
give rise to different contributions to the radial fluxes,

it is convenient to segregate the lowest order «cross field
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by the gyfotropic and gyroangle dependent components of the
particle distribution function. In this regard the
geometric relationship R2e¢ = In,/B + Y‘(ew}cn“)/(2nB)

can be used in conjunction with egs. (2.5-1) to give

¥ j_ -¢ 3 nc,..j. B J
Iaj/Ta Iaj/Ta + Iaj/Ta + Iaj/'Ta

{2.5-10)
where
c j"_I\. J\'+
Iaj/Ta = <(ew>cn“) Fa(2j+l)/(maga)>
{(2.5-11)
are the classical particle and heat fluxes,
nc,.j _ _ - -
Iaj/Ta = =2n/(y e_)<In, Fa(2j+1)/B>
{2.5-12)
are the neoclassical fluxes and
B J oo . 22 2
Iaj/Ta = 27/ {y ea)<R e¢ gal2j+l)é
{2.5-13)

are the beam driven flux components.

The classical fluxes are driven by the perpendicular
components of the frictional forces arising from the
diamagnefic counterstreaming of the various species on the
flux surface [99]). Because of the rotational invariance of
the c¢ollision operator, the classical fluxes arise solely

from the gyroangle dependent component of the particle
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distribution function.
Now with respect to the neoclassical component of the
total <cross field fluxes, it follows that since this
component is proportional to the parallel component of the
frictional forces then it will dJdepend on the gyrotropic
component of the distribution function. However since the
frictional forces themselves will be dependent on the lowest
order flows, then the neoclassical component of the cross
field fluxes will differ significantly from the neoclassical
component obtained in the weak rotation case since the bulk
plasma flows will exhibit functional dependencies
characteristic of a strongly rotating momentum injected
plasma such as inertial and drag effects. 1In this respect
eq. (2.5-12) represents a "modified“ necclassical component.
To understand this concept in terms of the thermodynamic
force which drives this component, consider the neoclassical
compeonent o©of the c¢ross field particle flux. Using the
parallel component of the steady state momentum balance
equation in the j = 0 component of eq.({2.5-12), adding and
subtracting <I>B/ (I<B>) times the resulting equatibn and
rearranging yields [100,101]:
¢ = rgs + TBP

a
(2.5-14)

where
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~ -5 - e
rgs = -2ﬂfly'ea)<n"/B-($pa + manauaE'TG’ruaE + eana$¢ - £,q)

(1 - <1>B%/<%>) + terms > 0(62)

{(2.5-15}
igs a modified Pfirsch-Schluter flux and
Bp _ _ . 2 e I
Ta = «27<I>/ (v ea<B >)<B (3 Ha + manauaE vuaE + naeav¢ -
-
ta1)>
{(2.5-16)

e

is a mbdified banana-plateau flux. Here 'ﬁ; denotes the
component of the viscous stress tensor which arises from the
gyrotropic component of the particle distribution function,
In the collisional regime the pressure stress aniso-
tropy is kept small by collisional randomization but the
mean free path is short enough to allow pressure and
electrostatic potential variations along the magnetic field
1ines. indeed in the weak rotation case where Eal‘ and
ﬁaEzﬁaaE can be neglected, the polcoidal gradients in the
pressure and electrostatic potential are solely responsible
for the Pfirsch-Schluter flux. However in a strongly
rotating beam injected plasma the conventional
Pfirsch-Schluter flux is now modified by the beam and beam
- induced inertial and drag forces.
In the long mean free path regime the effective

collisional scattering rate of trapped particles is less
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than the trapped particle bounce frequency so that some of
the particles become trapped in collisionless banana orbits.
As a result the shear for the particle viscosity is
increased and the pressure stress anisotropies dominate the
flux mechanism., The neoclassical particle fluxes in this
regime are therefore governed by eq.(2.5-16), the banana-
plateau flux. In the weak rotation case the banana-plateag
flux 1is driven solely by viscous anisotropies which are
obtained from +the gyrotropic component | of fa and
therefore c¢an be adequately represented by the CGL
approximation [102]. However in a strongly rotating plasma
the conventional banana-plateau flux is modified by an
inertial term, a pure momentum input term and a dissipative
shear force which results from a gyroviscous momentum
transfer, A similar analysis can be carried out for the
cross field component of the heat flux to show that both the
conventional Pfirsch-Schluter and the banana-plateau fluxes
are modified by the beam and beam induced forces.

It is noteworthy that the net external momentum input

term ‘E appears in both the Pfirsch-Schluter and

al
banana-plateau components of the neoclassical cross field
flux. This is quite reasconable since when dealing with
parallel momentum injection, the pure momentum input portion
of E v

is present in the neoclassical component of Fa
any time unbalanced beam injection occurs. The lowest order

al

drag component of €a1 is obtained from the gyroangle com-
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ponent of f_ and is independent o©f the collision
frequency. As a result, the viscous drag component will
always be present any time unbalanced beam injection occurs.

Finally eq.(2.5-13) represents the direct contribution
to the cross field particle and heat fluxes from the beam
and beam induced fdrces. .Physically eq., (2.5-13) implies
that the cross field particle and heat transport fluxes are
partially driven by torgues due to the toroidal components
of the beam and beam induced viscous dissipative forces when
unbalanced beam injection is present.

Since the collisional friction and external momentum
source operators depend on the lowest order particle and
heat flows, a detailed knowledge o©of the functional form of
these flows will be required to complete the formulation of
the cross field particle and heat fluxes. To obtain the

functional structure of the particle flow, eq.(2.2-50) can

be integrated over all velocity space to give

BT, Va/B(E /P, + 2n/y " 11/0 tn, - [V + GO 1) o1nr /3y +
v

~ - - 0 2 _T ~
my/e (In,- (7 + 51017 v 30 2o 7T ) 70w - 2e 0 (1)
/(m vi ) E a*v) = 0
{2.5-17a)

Note that in obtaining the above expression it has been

assumed that to this order approximation the external source



111

of beam particles can be neglected since, nB/na << 1
Likewise, multiplying eq.(2.2-50) by H and integrating over

all energy space yields

> - - - + (0}
B $[I§(fa1/Fa +2m/y IT/R, (n, - [V + ug ' 1)31nF_ /3% + m_/e_

~ e > (0) mvy 28 (p=17(0) 7
(Taa - 0+ G2 1/ vy ;30 %0 (RTIEL on ) /99) = 2e 0, (x,9) 7 (m

2 .
vta)lZnFaHdeu] =0
(2.5-17b)

where here the heat generation rate due to collisional
interactions has been neglected since the 0(61) collision-
less heat flow 1is ‘desired. The integro-differential
equations for the particle and the heat flows can be
combined into a single integro-differential equation of the

general form:

~

&. . - 2 > (0)
B $[IGV"/B(fa1/Fa + 27/ (Y "R,) [VWOLnF, /3% + 2V./v}, (In,-Ug ')

Fal

=1+(0) j=3/2,. 2 3 _
/B3 (R Ug -n¢)/3¢)TaLj (xa)Fad v] =0
(2.5-18)

Althought it has been assumed that the 0{61) particle
and heat flows ;are incompressible, the presence of an
external source of momentum will be accounted for in that
the poloidal variations in the density and electrostatic

potential over a flux surface and the radial gradient of the



112

centrifugal potential will be retained when evaluating the
collisionless particle and heat flows. Equation (2.5-18)

X . 1
can be solved directly by integration to give the O(d87)

parallel component of the hydrodynamic flows

-+ ~

_ = X B/ (1-3)
Una1y = Uaps (¥)B/n, + US4 40
(2.5-19)
where
X o o +.“ _ . 3j
Ualj = Ualj eX/(B ex) = (2n/y )(2/(5Pa)) Kaj(w)
(2.5-20)

is a surface function which arises from the constant of

integration and

FaY ”

X -'—+ QA - F— -
U ex/(n“ ex) 2L/ (y eanaB)[(apa/Bw + eana[a

+alj U-'-alj

00 (xe¥) /00 + myle, (3iR%02 (4)/2) /3% - w_y ()3 (RPa_y (9)) /04
MIYey o + (naaTa/3¢)6j'1]

(2.5-21)
is associated with the poloidal component of the diamagnetic
hydrodynamic flows. The perpendicular component of the 0(61)

hydrodynamic flows can be obtained by selecting the (2/5)J§¢

ﬁgfz(xg)/na moment of eq. (2.2-49) to give
o> _ joo% oe3/2,.2,72 33 - oon
U¢a1j = (2/5) I§V*Lj (xa)fad V/na (nubcew)/(eanaB)[(BPa/3¢+
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e n 138,00, 0) /30 + m_/e_ (3 (B2’ 9)/2) /00 - w? (112 (RPu_ (¥)

~

- — (X 27 _ X
}/aw)])aj’o + (“aaTa/3¢}5j,1] = (ULaljB/I)R e, U&aljn" ]

{(2.5-22)
Therefore upon combining eq. (2.5-19) and (2.5-22} yields

the desired result, namely

U .. = Uk

(1-3) X o

Lal

¢
(2.5-23)

To obtain an expression for the lowest order beam
particle flows, it is more convenient to use the fluid
equations. In particular since §Pp = P, - P_ Vv 0(50) for
the beam injected species [103], then the lowest order beam
particle flows will exhibit pressure anisotropy effects.
Proceeding in the usual manner [17], the lowest order beam

particle continuity equation can be integrated to give

n.V,-e, = 3(8I)/3y + cg ()
(2.5-24)

where the function

5T = uOIGPB/Bz
(2.5-25)

results from the cross field component of the lowest order
particle flow and Ka(w) is a surface function which

arises as a constant of integration. Utilizing the lowest
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order perpendicular component of the beam momentum balance

equation yields

S5 _ XA X 2A lbh ~
npv,p = nBVBn“ + (nBVBBfI)R e¢ + naVBeXxe¢
(2.5-26)
consequently
-+ o == - -+ 'A ~ ~ _ X w
ngVug = (vp = v p)-e /(e -na) = (UF(Y) + UL(x.¥))B + nyvy
_ (2.5-27)
where the functions Ug(w) and Ug(x,¢) are defined such
that
X _ > ." —.r-._" _ "
Ugly) = Vg ex/(B ex) = 2me (¥) /vy
U (X, ¥) = =21/ (v uge,) 3 (1) /2y
(2.5-29)
respectively,

VY = -27I/(Y tegngB) [(8P, /0% + 8P /B3B/3Y) + ((1 - Tl

ap/oy + eBﬁBra¢/a¢)1 _
(2.5-30)

is associated with the poloidal component of the diamagnetic

beam particle flow,

T =1 ~ uOGPB/B2
(2.5-31)
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and

Vg = 2n/g/(y’uoeBnB}§-$I

(2.5-32}

is the 1lowest order cross field component of $B .

Finally combining eqs.{(2.5-44}) and (2.5-45} yields the

lowest order beam flow

- X P * X 27 d;“ -
= (Ug (¥} + Ug(x,¥})B + (ngVpB/I)R ey * nBVBexxe¢ .

.

n,v

B'B

(2.5-33)

With the functional structure of the £fluid moment
equations and the hydrodynamic and beam flows formally
established, the fluid approach to transport theory becomes
apparent. In particular egs.(2.5-1) through (2.5-13)
represent closed form expressions for the radial fluxes in
terms of the collisional and heat £friction operators, and
the net external momentum and energy flux source terms.
These driving forces are in turn related to the hydrodynamic

and beam flows by the friction-flow constitutive

relationships. Therefore once the surface functions Uglo '
Uéll and Ué are eliminated from the expressions

for the hydrodynamic and beam flows, then the radial fluxes
can be expressed in the desired form, namely in terms of the
radial gradients of the thermodynamic driving forces and
electrostatic potential. In this regard, the parallel

component of the momentum and heat balance egquations can be
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used in conjunction with the parallel viscosity constitutive
relationships to eliminate the surface functions. Finally
by requiring that the radial fluxes be ambipolar, then the
electrostatic potential can be eliminated from the final

expression for the c¢ross field fluxes.
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CHAPTER II1

GENERAL SOLUTION TO THE 0(51) DRIFT KINETIC EQUATION FOR A

STRONGLY ROTATING BEAM INJECTED PLASMA

3.1 INTRODUCTION

The primary objective of transport theory is to express
the radial component of the particle, momentum and heat
fluxes in terms of the thermodynamic forces. To accomplish
this task, the fluid formalism is used to express the radial
particle, momentum and heat fluxes in terms of the
collisional friction, heat friction, external momentum and
energy flux operators. Next, the friction-flow constitutive
relationships are used to provide the necessary closure
relationships to express these operators in .terms of the
hydrodynamic and beam flows. Consequently, once the flows
are completely quantified in terms of the thermodynamic
forces, then the radial fluxes can be functionally specified
in the desired form. 1In this regard, the fluid theory can
provide expressioﬁs for the hydrodynamic and beam flows in
terms of the radial gradient of the thermodynamic forces and
electrostatic potential to within arbitrary surface
functions., By employing kinetically derived constitutive
relationships, which relate the viscous and energy stress
forces to the hydrodynamic and beam flows, in conjunction

with the parallel component of the momentum and heat balance
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equations, the surface functions can be expressed in terms
of the radial gradients of the electrostatic potential,
pressure and temperature. As a result, the surface
functions can be eliminated from the expressions for the
particle, heat and beam flows. In this chapter the kinetic
equations, which govern the behavior of the particle
distribution function for a strongly rotating momentum
injected plasma, are solved in all collisional frequency
regimes and the resulting particle distribution functions
are used to develop friction-flow and viscous stress
constitutive relationships.

In,K section 3.2 of this chapter, the 0(61) drift
kinetic equation is solved in the collisional regime. A
perturbation method, which 1is similar in nature to the
Chapman-Enskog method (72] of kinetic theory for gases, is
used to obtain the general functional structure of the 0(61)
particle distribution function, In essence, the analysis is
carried out in a coordinate frame which is moving with the
plasma, where the distribution function is expanded in

powers of A= mta/na << 1 , with being the

a ta
transit frequency of the (a) species particle around the
magnetic axis and 0, is the collision frequency. The
0(51&;1) solution describes the collisional relaxation of
the (a) species to a local Maxwellian, whereas the O(Glag}
and O(GIA;) solutions describe the diffusive random walk

motion of the (a) species in the rotating frame due +to the



119

free streaming motion of the guiding center and the radial
motion of the particle guiding center resulting from the
gradients and curvature of the magnetic field, the
fictitious forces (centrifugal and coriolis forces), and the

interspecies and beam particle collisional effects. To

.facilitate the calculations to be carried out in section 2.5

of +this chapter, the 0(51ﬁ2) solution to the drift
kinetic equation is expressed in terms of the hydrodynamic
flows and a distortion function which account for the field
response to momentum exchange effects with the background
and beam particles.

In the next section of this chapter, the drift kinetic
equation is solved for the first order perturbation to the
particle distribution function in the long mean free path
regime. Since the cellisional frequency is small compared to
the bounce frequency for trapped particles in this regime,
the 0(61) particle distribution function is expanded in
powers of Y, = na/wta << 1 . The O(GlYg) Solufion is
obtained in the conventional manner (22,30-351, with the
notable exception that the radial drift of Fhe guiding
center is driven by fictitious forces as well as the
gradient and curvature of the magnetic field lines. One
novel feature of this analysis is the inclusion of the
trapping effects due to the effective electros£atic

potential. 1In essence it is shown that the conventional

magnetic trapping boundaries can be significantly modified
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by the presence of a poloidally varying effective electro;
static potential. The interspecie and beam particle
collisional effects, which are treated as a perturbation to
the particle's orbital motion in_ the banana regime, are
obtained by averaging over a bounce or transit period (for a
trapped or untrapped particle) and ;equiring that the
distribution function be single valued. Like in the
analysis carried out in section 3.2 for the c¢ollisional
regime, the solution to the O(GIﬁg) kinetic¢ equation in
this regime is expressed in terms of the hydrodynamic flows
and a distortion function.

In section 3.4, the 0(51) drift kinetic equation is
solved for the - plateau regime particle distribution
function. In this regime, trapped particles no longer
persist and the well untrapped particles are nearly
collisionless. Consequently the diffusion process is
governed by the resonant region of velocity space [36-39].
As a result, the solution to the KkKinetic¢ equation is
obtained in a manner consistent with conventional techniques
[36~39) in that an asymptotic expansion of the particle
distribution function is made in terms of the sméll mirror-
ing force along the magnetic field. In addition, there is a
small perturbation due to the effective electrostatic field
which must be accounted for when V¢ v Vi, - Consequently,
both the mirror force and the effective electrostatic

potential produce small modulations in the parallel velocity
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of the resonant particles. In this analysis, the effects of
strong rotation and radial viscous transfer are accounted
for by employing a shifted velocity coordinate frame which
is characterized by poloidal variations. This analysis alseo
encompasses those resonant particles which arise from
electrostatic and centrifugal potential well detrapping
effects. Finally, the background field and beam particle
collisional momentum exchange effects are incorporated
explicitly into +the computation of the plateau regime
distribution function.

In section 3.5 of this chapter, the results obtained
previously for the particle distribution function are used
in conjuction with moments of the collision operator and the
definition of the parallel stress forces to develop
friction~-flow and parallel stress constitutive relationships
for a strongly rotating beam injected plasma. Since the

£ = 1 harmonic component' of the particle distribution
functions is expréssed in terms of a component which 1is
a function of the hydrodynamic flow and a component which
encompasses distortion effects due to beam and beam induced
collisional interactions, then the resulting friction-flow
constitutive relationships are cast into a form which are
similar to that obtained in the slow rotation limit [8,104],
and therefore are amenable for use in the fluid formulism.
It is shown that the lowest order version of the friction

-flow relationships are characterized by components which
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possess poloidal variations, a result which is
characteristic of a strongly rotating beam injected plasma.
In addition, since the beam ions themselves are
collisionally coupled to the background plasma particles,
then the functional structure of the parallel friction-flow
constitutive relationships are modified so that they posses
an explicit beam flow contribution. Finally, the
friction-flow constitutive relationships are determined for
the beam particles themselves by selecting moments of the
beam momentum and energy source terms.

In the last part of this sectien, the functional
expressions for the L =2 harmonic component of the
particle distribution function is used to develop
constitutive relationships for the viscous and energy stress
tensors, and the bheam viscous stress tensor. In particular
since the parallel viscous stress constitutive relationships
are linearly dependent on the spatial gradients the 0(61)
hydrodynamic flows, the Ilowest order version of these
constitutive relationships will possess poloidal variations.
Furthermore, the parallel viscosity coefficients themselves
possess poloidal variations as well as exhibiting a
functional characteristic which reflects the field response
of the ion species to the collisional momentum exchange with
the energetic beam ions. In addition the gyroangle
dependent component of the particle distribution function is

used in conjuction with the definition of the parallel
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stress force to develop closure relationships which
characterize the effects of strong radial gyroviscous
momentum transfer. Finally, parallel viscosity constitutive

relationships are developed for the energetic beam ions.
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3.2 KINETIC DERIVATION OF THE ION DISTRIBUTION FUNCTION IN

THE PFIRSCH-SCHLUTER REGIME FOR A STRONGLY ROTATING

BEAM INJECTED PLASMA

In the Pfirsch-Schluter regime, the particle collision
scattering rate is much greater than bounce or transit
frequency. As a result, these particles have their orbital
effects dominated by collisional momentum and heat exchange
effects with the background plasma and beam particles. 1In
essence, free particle motion occurs on the short time scale
of the gyroperoid, therefore after a time T, r before the
particle has transversed an appreciable distance along the
magnetic field 1line about which it is gyrating, the
particle magnetic moment and energy will have diffused
sufficiently for an effective scattering (23,24,25,27].

To obtain a solution to the 0(61) drift kinetic
equation in the collisionél regime, the particle
distribution function is expanded [105,106] in powers of
A = wta/na << 1 , where a and n are the particle

a ta a
transit and collision frequencies respectively:

~ Eat o~ ~

al = Ja(-1) Y a0 Y 9ay * 7 T 9amy t o
(3.2-1)

£
with g, . * o(s'a”) . insertion of eq.(3.2-1) into
(2.2-50) yields the following hierarchy of steady state

kinetic equations:
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1,-1

0(87477) Cab{9a(-1)'9p(-1)) = ©
b (3.2-2)
1 0 . - . e _ 2 ~
08787y VurTlgy_y) = 2e,81F /(m v )) = £C (5, (o)
(3.2-3)

o(slaly. G"-G(ga{o) + 2nIn,- [V + EéO)]/(Y’Qa)alnFa/aw +

2mm_/ (v e ve ) (Ing - IV + 55001/8) 20 (RGO o0 )

/30)F, = }Eca;b(ga(l)'gb(ll) t SapFyurfyp)

(3.2-4)

etc.

Physically, eq.(3.2.2) describes the collisional relaxation
of the (a) species to a local Maxwellian. As a result, the
general solution to this equation is a distorted Maxwellian

due to pressure, flow and temperature perturbations [107]

o

(-1)

(-1) ( 1) =3/2 .2
Ja(-1) [lpg17 /P 0} * 2V, -V /v Ty /T O)L (x)1F,
where
—3/2 3/2
(x = {§. -

for 3 = 0,1 and
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( 1) {(~1) {(-1)
al oo %al and Tal

mined from velocity moments of the higher order kinetic

v will be deter-

and the functions
equations. Integrating eq.(3.2-3) over all velocity space

yields

BV, Vag, (_q,@ v/B) = s,
{3.2-8)
which is a statement of the particle continuity egquation.
Since nB/na << 1 for most present generation beam
injected tokamaks, then to the lowest corder approximation
the external source of particles can be neglected. As a

result, the poleidal 'component of the O(Glﬂgl) parallel

particle flux is incompressible, i.e.

(-1) _
3'?“a1 =0

(-1} _ 3= _ ;3 - . 1,-1
where T.77' = n V. 7' = L5, @V s the  0(574.0)
parallel particle flux in the frame moving with the plasma

and K;-l)(w) is the constant of integration. In view of

eq. (3.2-9)
s(-1) _ X( 1)
Veal = Uho (WB/n,
(3.2-10)
where XD ) = 2nc{™D )y is a surface function

which arises as a constant of integration. Here the flow

6&;%’ represents the 0(61&;1) lowest order perturbation
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to the bulk paraliel mass flow in the frame moving with the
plasma.

The next higher order kinetic equation describes the
diffusive random walk motion of species (a) along the
magnetic fields lines in the rotating frame, Combining

eqgs(3.2-5) and (3.2-10) with (3.2-3) yields

[

3/2 2 2

aK 3 (x } - VTP

) (Ve e () (n, -F)

5 2
2Va/viy LIA (K+1

=

”~

~ _ ~ 2
GK,ln“/(nav"”Fa = anb(gaw) ;gb(O)) + SaB(Fa'fB) + 2Ka[

o

P (V. /XY @) B/n - @inn, 4 e /m_ (v Fe ) 0F,

(3.2-11)

where in obtaining the above expression terms > 0(61) have
been neglected and the generalized driving forces Kaj " for

j = 0,1 have been defined such that

R = —vi 20 b0 - e o /m - e 25V sz, 1¥0 /2, )
{3.2-12)
and
% -1
Ao = ve d itV 2
(3.2-13)

respectively and the effective electrostatic potential has

been defined such that
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200w = ¢ 0L - mul®?/(ze )
o'~ o'Xr a " E €3’ .

(3.2-14)
A solution to eq.(3.2-11) can be obtained by observing that
the driving terms on the L.H.S. of this egquation can be
associated with either the £ =1 or L = 2 harmonic
components of the collision operator. As a result
eq.(3.2-11]) can be decomposed into its respective harmonic

constituents:

1 N a

=1: - 2 .53 §3/2..2 - pel2) 2(1) (1)
= 1: 2Vatv, EAaKLK (X)Fy = Ecab 9210y Ip(0)) *

(1)

S (F_,£)

B ‘"a'"B (3.2-15)
_ . 2 x (=1) o _ e a(2) 2(2) 2(2)
= 2:  2x P, (V./VIUZ 7 (V) (n, 3B)Fa/na = E‘Cab (92 (0) " Ib (0)

(2) (2) 2..2 x (-1) * 2
+ S,g (Fa,fB Yy o+ Zxa[Pl{V"/V)Ualo {(V)B (Vlnna +

ea/ma(V/v")2$$0)1Fa/na i
(3.2-16)

Now with respect to eqg.(3.2-15), the results of section
2.3 can be used to express the & = 1 harmonic component
of the collision operator and external momentum source term

as follows:

_ _.5-(1) =, 2 ozl
neagat(OJ + ZV"/Vta Esab

(1) (1) (1)
ZC.p }

(9210) "% (0) ()F,

(3.2~-17)

)
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and

(1) (1), _ 2 .2(1) 2
(F f ) = 2V, SaB (V)Fa/vta

(3.2-18)
for vta/vB << 1 , where
s _ s
Ny = gnab
{3.2=19)
is the total slowing down freguency and
(1) _ .5 8 2 Q Q2 K K
vy = "ab€ab®(a0,b1), * (nabcabR(aO,bll * NabCab
* 2
Real, 1:>0)3’x

is a global function of velocity which represents the

background plasma (excluding beam particles) response to

the collisional momentum exchange effects of the (a)

species. Here, (aO,bl)l' R(aO p1).’ R(al,b0)3 are the
Q

K
ab and 2b are

characteristic slowing down and energy exchange frequen-

field restoring coefficients, and nzb, n

cies, the definitions of which can be found in section 2.3

of chapter II. Likewise

(1)(V) = YaB(V)V

(3.2-21)

is a velocity function which characterizes the response of
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the background plasma to collisional momentum exchange with

the beam particles. Combining egs.(3.2-17) and (3.2-18)

with eq.(3.2-15) and solving for g(%é’ yields the general

solution
S op 02 k532 s 2 (1)

(1)(V)}F /n

(3.2-22)

In essence the above expression indicates that to this order
approximation the perturbations in the particle distribution
function are due to poloidai gradients in the pressure,
temperature, and effective electrostatic potential as well
as collisional momentum exchange with the other plasma
species and the beam ions.,

The. solution to the £ =1 harmonic component of the
O(Glﬁg) drift kinetic equation in the collisional regime
can be expressed in a more natural form for transport
calculations by expressing the generalized driving forces in
terms of the parallel hydrodynamic and beam flows. To
functionally quantify eq.(3.2-22) in terms of the hydro-~
dynamic and beam flows as seen by an observer in the

=3/2

rotating frame, the V"L (x Y/ (n {[i§/2]2}) moments of

eq. {3.2-22) for j = 0,1 can be selected and the result
solved for the driving forces in terms of the parallel

flows to give

1

A_. = I[u,
a’ ¢

3/2 ~s
S -
a12%y,5 - {13 (x2) /1 }(53 0°2,1 * %5,18¢, 0
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- zin,- B+ 3D wnEd2ad) mEn s gy 2 d)n?

(U“all b

MmN - ot B w0 + 3D o} Pedis, md 1/ cuE] 2ol
b

2

s =3/2,.2,,°8,2 -3 =3/2,.2..2,"s
176 -/na})[(l - {L (xa)/na} /({l/na}{[Ll (xa)] /na})])-

2,3
(3.2-23)

Using eq.(3.2-23) in eq.{3.2-22) and rearranging the

resulting expression yields the simplified solution

3/2

& (1)
'alj 3 93

- 1.,
(1) _ oo 2
ga(O) = zv"/vta § (x )F + a

(3.2-24)

where the distortion function gé{é;. is defined such that

1
93(0) - 2V"fvta ?U'aljcagLJ (%) F,
(3.2<25)
Here
o - 3/ “(1) .3 -3/2.2
{(3.2-26)

are the O(ﬁlﬂg) parallel hydrodynamic flows in the frame

moving with the plasma and czg are the distortion

coefficients defined such that
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1
Cy - S _ S;.73/2,.2,,2 ’s 3/2, 2, ,7s,2
Caf = ZQA/MD I8, 5 - UL x5, y/nlb (1 = (L)% (x0) /)

MmDUE 2622 mEnyy - (B2 S e} 212 as)
(85,085,1 *+ §5.154,9) + (g{n.,-(“s’;é) (V) + 's’efé’ (V))iﬁfztxj)/az})

(UE} 2 Q) S UEY 212 /m%h) (6, g6, | +

5,0%2,1 5p 4!

S . -
3,151,0) 2,3

/2.2, 2 S0y ~ I
(1%, /st - (237262 /%127 (1mSrEd/?

/Ungig + {[L3
2 2.%s A.—+(1) +(1 -

1/ @ ns @)+ 35 v, 01/ HE) 2 6 2

S,4/m31 (1 = UEY 22y /022 (@rnSHEY 2 (5212 /251 1))

(3.2-27)

where

As =
na n /{[L

RSB

(3.2-28)
Note that’ if the distortion functions were neglected
altogether, then eq. {3.2-24) would correspond exactly to the
Grad thirteen moment approximation [108]. Furthermore in
the slow rotation limit, Vug > 0 and the coefficients
cS ; can be diréctly related to the matrix coefficients of

the collision operator, where to a good approximation the

restoring coefficients are degenerate in that they <can be
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expressed in terms of the fundamental moments of the field
particle distribution function [106]. However with
unbalanced beam injection the beam induced field distortion
may be of such a magnitﬁde that the c¢ollisiconal restoring
moments of the field particle distribution function may have
to be renormalized or weighted by their réspectivé
characteristic frequencies,

In a similar manner, eq.{3.2-16) can be solved for the

r =2 harmonic component of In particular,

Ja(0) )
using the results from section 2,3 of the previous chapter,
it follows that the & = 2 component o©f the collision

operateor and external source term can be expressed as

follows:
(2) “{2) ~(2}) _ “(2) 20 0 4
( a(o)f b(O)) - abga(O) + 2X [3/2(\7 /V) nnnn I/2]
=212)
'Sab (V)Fa
(3.2-29)
and
(2’(F f(z)) = 2x [3/2(V,/V) 2nun, - T72]: '“2)(v)p
(3.2-30)
where
B2 (W) = 5nP PR /(2v2 )

ab®ab (20,b1)," *“Vea
(3.2-31)
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is the field stress response to collisional interactions
with the (a) species, and the functional structure of the
. T
characteristic frequencies TN,y and ngb and the
3
anisotropic stress restoring coefficient R(aO bl) are
! 2
given in section 2.3 of Chapter II. Likewise

“+(2)

_ p ~
aB ) = YaB(V)avav

(3.2-32)
is the field stress response to collisional interactions
with the beam particles. In view of eqgs.(3.2-29) and
(3.2-30), the general solution to eq.(3.2-16) is given by

the following:

g;%%) = 2x§P2(v"/V)U§{61’(w)Ag*(n“-ﬁa)Fa/na + g;{%}
(3.2-33)
where AZ* = —1/ﬁz = ~T§ and

a5 ia) = 2x2p, (vu/V) L(cBrop, + cBrory) + (22 (v, /muXSH ()

B-Vlnn,/(n P, (V,/V))IF,/n_
(3.2-34)

with the distortion coefficients cgg and cp*

2B defined

such that

Pr = £(n_[3/2(V./V)2nan. - T721 52 (v)/ (0T, (Vu/v) 8P _))

ab b a " " 11 - ab a 2 " a
(3.2-35)

and
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Psx - P T
caB naYaB(V)/na

(3.2-36)
respectively. Note that in obtaining eq. (3.2-33) that all

terms which do not contribute to the ngz(V“lv) moment

~ 2 .

of g;(%) have been neglected. It 1is noteworthy that if
the distortion function were neglected then eq.(3.2-33)
would reduce to the same result as that obtained by

Braginskii [97] in the computation of the parallel component

of the ion viscosity stress force. More specifically,
2

selecting the 2m,V'P,(V,/V)/3 moment of eq.( 3.2-33) with
g;:ﬁ; =0 . integrating over all velocity space and flux

surface averaging the result yields

BIT> = —2a, 0D ) (a, - TB)In >

(3.2-37)

where here only ion-ion collisions have been considered
T T

{i.e. Ti = Tli ) and
2 2, T n
uy o= 2pi{xi/({xi}ni)} 5 0.96p T,
' (3.2-38)
with Ty being the ion-ion collision time as defined by

Braginskii [97}.
~ In the O(BIﬁ;) approximation the radial drift of the
particle's guiding center, due to magnetic field inhomoge-~

nities and curvature, the electric field and the fictitious



136

forces (centrifugal and coriolis forces), perturbs the
particle's free streaming motion along the magnetic field
lines. Since this order approximation is only needed to

compute the wviscosity and energy stress constitutive

2 harmonic

It

relationships, only the lowest order 2
component of 9a (1) will be examined and all terms which
do not contribute to the x2p (V./V) moment of 9(2)

a2 a{l)
will be neglected. In this regard eq.(3.2-24) can be
combined with (3.2-4) and the result solved for the desired

distribution function to give

~ 1
(2) _ ,.2 x{0)£3/2 2 e, -~ 1-3
92 (1) 2xaP2(V../V)§Ualj L3 % (xQ)az (n,,-iFB)Fa/na‘l 3,
(2)
g*m
(3.2-39)
where Agg = AZ* = -1/n§ = -Tg and
g*{2) = 2u2p (v /v;%{u 3/2(x ycC# aC* (n ﬁa)n‘l Dyp o+
ga(l) a~2*'" 5 "alj 3 aj "aj "
(1 j) aC 3/2 (1- J) 3/2
n, agPl(V"/V}B 5(0 1553 (x ) /n] + Ougy 513 (x )c 2
P j (1-3)
/BY/ (B, (V,/V)) + cPxsp_/(n ) 1F /n}
(3.2-40)

Observe that in obtaining the above expression the results

of section 2.3 have been utilized in formulating the & = 2
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harmonic component of the collision operator, and smaller
order terms, such as Céé)(gé%i),fél)) have been neglected.
Furthermore, if the beam induced distortion coefficients
were set to zero, i.e. ng = cgg =0 , then the resulting
expression would reduce to the same result as that obtained
by other authors [8].

Finally, the results of this section can be consoli-
dated into a simple form by combining egs. (3.2-24), (3.2-33)

and (3.2-3) with eq. {3.2~1) to obtain:

fal - fa1 + fal
N 1
(1) _ 2 (1) _ 2,2 Yo 372 2 ~ (1)
fa1 = 9a(0) T WValViat EUa,ay 403 TIXQF, + 920
3 (3.2-41)
o~ Fal Fa 1
(2) _ 7(2) (2) _ 2 x =3/2, .2, .c
far’ = 9530 * Faq) T P2 (Ve/V) }J?Ua1ij (x) 23
. 1-3) , 2,(2)
(n“°38)F /n( B
| a a al (3.2~42)
with
X = x (=1} x (0)
Ualj Ualj * Ualj
(3.2-43)
Ty _ T ___T
Aag 1/na T

(3.2-44)
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and

£x(2) _ 22) | ~(2)
fa1 = 950y + 94 -

(3.2~45)
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3.3 KINETIC THEORY DERIVATION OF THE PARTICLE DISTRIBUTION

FUNCTION IN THE LONG MEAN FREE PATH REGIME FOR A

STRONGLY ROTATING BEAM INJECTED PLASMA

In the banana regime the effective c¢ollisional
scattering rate of trapped particles 1is 1less than the
trapped particle bounce frequency so that some o©of the
particles remain trapped in collisionless banana orbits
[22,30,35]. In essence, the particle's parallel bounce
motion in the magnetic well is slowly interrupted by pitch
angle scattering into circulating space. As a result the
effects of collisional interactions due to interspecies and
beam particle collisional momentum exchange can be treated
as a small perturbation to the particle's orbital motion in
this regime. For a 'strongly rotating beam injected plasma,
the particle bounce motion is considerably different from
that characterizing a slowly rotating plasma in that the
particles expefience beam induced trapping effects resulting
from the effective electrostatic potential. As a result, the
conventional trapping boundary 1limits and fraction of
trapped particles are significantly modified in comparison
to the conventional values [60,70]. In this section, the
steady state version of the 0(61) drift kinetic equation
is solved in the banana regime for a strongly rotating beam

injected plasma.
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To solve the 0(61) drift kinetic egquation in the

long mean free path regime, the particle distribution

function is expanded in powers of L ='na/mta << 1  where
n, is the collision frequency and ., = v, /%, is the
bounce frequency (Here QB = TgR 1is the connection length): -
= = + -
fa1 L%k = %) *%an * Ja(n) *
(3.3-1)
Using the expansion series for fal in eq.(2.2-50) yields

the following hierarchy of kinetic equations:

o(slyg): 3“.3(ga(0) + 27In, - (V + GéO))/(y'na)aFa/aw +

~1+(0) ~
ug -

amm_/ (y“e_vi_ ) (tn,- 1V + 30 1/8) 22 (r n )

¢

/3BYF. =0
VFs (3.3-2)

LYy, 3.5 - 2 9. (013
0%y )t Vu-Tlg, (1) = 2e,8/F,/(m,v = I Cb %0 (0!

£a)]

+ SaB(Fa'fB)
{3.3-3)

A solution to the 0(6172) equation can be obtained

directly by integration with the result:

A 1
= 20 Jul . X =3/2
Ja(0) 2V"/vta ?U Lj

2 ~ ~
+alj (xg)Fqna + Ug*Fa *+ b, (V)

(3.3-4)
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where

-~

. > (0 |
uX* = —2m/y (In.,-uFE )/QaalnFa/aw + (m_/e_(1/B)2(vE +

2
0 _ A
wi®y 2 e lﬁéo’-n¢)/a¢)
(3.3-5)

and ﬁa(wl is a surface function which arises £from the
constant of integration. In essence, the first term in
eq. (3.3-4) represents the collisionless diamagnetic response
of species {a) to its own gradients whereas the second term
represents a distortion to the particle function which
arises from the radial gradient in the angular frequency of
rotation. The surface function ﬁa(w) describes the
response of the (a) species to collisional momentum exchange
with the background plasma species and the energetic beam
ions.

To obtain an equation for the surface function ﬂa(¢) ‘
the boundary conditions governing this function must first
be specified. Now with intense plasma rotation the centri-
fugal forces pushes the 1ion species toroidally outward
creating a higher electrostatic potential there. As a
result the equilibrium effective electrostatic field may be
as important as the magnetic field in establishing the
particle trapping boundaries. To accomodate the magnetic
and the effective electrostatic field trapping effects, the

pitch angle variable X is defined such that {[60,70]
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2,1/2

A = u<B /H

(3.3-6)

where

= (v2 . ,(0)2 .
H (v up V/2 + ma‘bo(x,w)/ea
is the system Hamiltonian for a strongly rotating plasma.
In view of the above definition, the magnetic well trapping

boundary conditions become {60,70]:

1/2 (0)2

A > (<BBTEBY L - e/ m ) [0 00, ¥) - muud® T/ (2e 001

B
c

= A
(3.3-8)

where <Bz>1/2

is the magnetic strength at the magnetic
axis. Note here that the poloidally varying électrostatic
field and centrifugal potential have a definite effect on
the magnetic trapping boundaries. In particular as the
particle's kinetic energy decreases in comparison to the
effective electrostatic potential then Ag + 0 implying

that the particle is trapped for any pitch angle. At the

2 0)2
other extreme where Vs >> 2ea{ma(¢0(x,¢) - maué ) /(2ea))
then kg + <B2>1‘,2/B|X=1T which corresponds to the conven-
tional (energy independent) result ([22]. Furthermore as the

angular frequency of rotation increases or ea¢0(x,w)/ma < 0
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on the inside of the torus ( x=# ), then the trapping
region gets smaller resulting in particle detrapping.
Another trapping condition which can arise in a
strongly rotating beam injected plasma occurs when the
effective potential is greater on the outside of the torus
than on the inside [60,70]. Under these conditions trapping
occurs on the inside of the torocidal cross section where-

(0)2 2
(@00 ¥) = mup® "/ 2e 0] g > (0g 00w - mud® e |

(3.3=-9)
leading to the trapping condition ([60,70]

2
x> (<8525 (1 - e,/ (m_H) (2, (x,¥) - mauéo) /12e )11, _q

(3.3-10)

Note here that as the Kkinetic energy of the particle
increases Xz - <32>1’213(x,w>lxzo corresponding to the
conventional magnetic trapping minimum field reflection
limit [22,23]. Conversely as the kinetic energy of the
particle decreases Ag - 0 implying that the particles are
trapped in the effective potential well regardless of the
magnitude of the pitch angle.

In summary, two distinct particle trapping mechanisms

are responsible for the trapped particle population in the

long mean free path regime of a strongly rotating beam
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injected plasma, namely energy dependent magnetic field
trapping and energy dependent trapping due to the effective
electrostatic potential. If
(64 (x,¥) - mauéo’z/(zea))l o> @0 - mal® % ey |
x=0 0 a’'E a X=T
(3.3-11)
then trapping can occur on both the inside (effective
electrostatic field trapping) and on the outside (energy
dependent magnetic field trapping) of the torus whereas if
) - @ e ] g < @t - mauéo)zf(Zea))|X=ﬂ
{3.3=-12)
then trapping occurs only on the outside (energy dependent
magnetic field trapping) of the torus [60,70]. As a result

the pitch angle variable can be bounded by the ineqguality

o <d
(3.3-13)
where 1 = B or & and
~ ' 2
= (<85 2By - e fm ) (0 (o) - m_ul® /e
(3.3-14)

It is noteworthy that both types of trapping effects for all
magnitudes of the effective electrostatic potential at
different poloidal 1locations on a flux surface have been

included in eq. (3.3-13). 1In particular since the trapping
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boundary limits are dependent on the effective electrostatic
potential, it will indeed be dependent on the angular
frequency of rotation. If the plasma rotation is large
then magnetic detrapping effects can occur. O©On the other
hand strong rotation can also cause a significant enhance-
ment in the electrostatic field at the outer part of the
torus causing trapping on the inside of the torus with the
boundary limit on the trapped regime being dictated by the
magnitude of the effective electrostatic  potential,
Consequently in general the total particle trapping will be
a combination of magnetic and effective electrostatic field
trapping, thereby significantly modifying the fraction of
traéped particles. 1In view of the trapped regime boundary
limits, the desired boundary condition for trapped particles

assumes the general form (22,23,60,70]:

Cal

9a(0) (X=txg M se=1) = g_ o) r=tx2 (A) se=-1)

(3.3-15)
where tx;(A) for i = B, ® are the turning points where V,

vanishes.

A second boundary condition arises from the untrapped
or circulating particles. 1In particular ;a(O) must be
single-valued and continous over the full range of the

poloidal angle, i.e.

~ ~

Jaq0) (X) = 94(0) (X+2m)
(3.3-16)
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In view of eqgs.(3.3-15) and (3.3-16), a set of constraint
equations which govern the behavior of the surface function
ﬂa(wl' can be formulated by applying the bounce-average
operator ( §(d%/v,} ) for both trapped and untrapped
particles, The net result of this operation process yields

the following set of constraint equations:

i
0 < X < A

2“ ~ ~
2o (Cap 9a(0) 1 Ibi0)! * Sap(Farfp))BY9AX/Vy = 0
(3.3-17)

< A< i

1 . .
X )
§=*1 (ﬁfxlz (Cab(ga(O)'gb(O)) + SaB(Fa’fB))B/ng/IVltl) =0 .

(3.3-18)

Note Lere that in obtaining both eqgs.(3-3-17) and (3.3-18)
the free streaming and electrostatic components of these
equations are annihilated by the bounce average operator,
therefore the effects of these components on the trapped and
untrapped particles vanish on the average in the frame
moving with the plasma. Near the boundary between trapped
and untrapped particles the analysis becomes invalid since
the scattering angle to untrap a trapped particle becomes
very small and the bounce time becomes very long for the
trgnsition particles existing in the vicinity of the maximum

field boundary limit. As a result a closer examinaton of
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the finite boundary layer effects is needed to solve the
complete problem, However in this thesis the small
correction due to the existence of a finite boundary layer
will be ignored and the boundary layer will be taken into
account only to the extent that a finite Jjump jxxaﬁalal
occurs across it.

To obtain the functional structure of ﬁa(w) the
2 =1 harmonic component of the collision operator and
external momentum input term can be used in conjunction with
egs. (3.3-17) and (3.3-18) and the resulting expression
transformed into a set integro-differential equations of the

form [108]:

i
0 <X < Al

AIA<V.>3h, (W) /X1 /3% = 2HK_ (v, V)F_/ (n vZ )

(3.3-19)

a e

atAtgfz /gV.dx) 3h_ (¥} /3R] /3% = 0
. 1 (3.3-20)

Here H is the total system Hamiltonian and the surface

function - Ka(w) is defined such that

1
K, (4,V) = Z(<ul_,.L

2>1f2 > > +
j +alj™j

2
(xa)naB/<B

<p2>172y,,

(3.3-21)
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the diamagnetic particle and heat flows,

W, = (1= S/mn 0l v/ (2x2) + E@;y Wy + 311w

_ (3.3-22)
is a global velocity function which accounts for the & =1

velocity ({energy) diffusion components of the collisional
friction and external momentum source operators, and the
=1 harmonic component of the collision operator has

been expressed in terms of the pitch angle operator ,i.e.

(1) _ - _ s - L 5 .""V
(ga(o),gb(o)) = nabLga(O) + (1 ”ab/"ab)”abv“ Ual(v)

F /v% + 20, /vE -8 (1)(V)F
(3.3-23)

where

= 2(v,/v) (v?/ (20) <B%>1/2 /B3 (av. /va /30) /92
(3.3-24)

is the pitch angle operator and

- ~

07, (V) = 3/(4nF )fAv"g a(0)d2 R
(3.3-25)

Furthermore the term naLUg*Fa o Pz(vu/V)n;Fa has been
neglected in formulating eqgs. (3.3-19}) and (3.3-20) since the

3/2 . :
VaL (x ) moment for j = 0,1 of this expression vanishes.

Note here that in obtaining a solution to egs.(3.3-19) in
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the well-untrapped regime it has been assumed that to the
lowest order approximation the poloidal variations of the
effective electrostatic potential is small in comparison to
the the kinetic energy of the passing particles and

consequently

L = V"<B2>1/2/(BH}B(kV“B/BA)/BA

(3.3-26)
thereby allowing an approximate solution to be obtained.
This assumption has been necessitated by the fact that the
collision operator is not a function of the total energy but
rather a complicated function of the particle kinetic energy
which is not a constant of the motion.

One solution to eqgs. (3.3-19) and (3.3-20) which is well
behaved as A >0 (free circulating particles) is [22]:

~

_ - Sl 2
ha('l’) = 2U“(A,V)H(lc - A)Ka(quv)Fa[ (navt

)

a
(3.3-27)

where

~ i 1 y
Up (A, V) = —5}0(Hdk/<vu>) = -V/2f%c(dX/<[1 - XB/<B2>1/2]1/2>)

b |

(3.3-28)
with H(z) being the unit step function ( H{(z) = 1 for z > ¢

otherwise H(z) = 0) and

_ 2
A = 2u<B2>1/2/V2 = x/(1 - ea/(maH)(Qo(x;w) = mauéO) /(Zea]]),
(3.3-29)



150

Physically eq.(3.3-27) vanishes in trapped particle space

. . i
and is continuous at A=A

c {(This is in adherence to the

neglect of the Dboundary 1layer effects). Combining
eqgs. {3.3-4) and (3.3-27) yields

~ 1

= 2 £3/2 -
ga(o) = 2?’."/"1: g(U

Xy P ednarE, + 2808 - N0
K_(y,V)F_/(n_v> ) + uXsp_ .
a a’"‘a'ta a a

(3.3-30)
Before cqntinuing with the present analysis, it is
instructive to compare the results obtained thus far to that
of previous authors., In particular, a simple calculation of
the ion heat flux for a two species plasma consisting of a
heavy impurity ion and a hydrogenic ion species so that the
Lorentz model is applicable is made. 7To compare the results
of this analysis to that of the literature, only the
effective electrostatic trapping effects will be considered.
Consequently the direct beam collisional effects and the
collisionai field particle response to momentum and energy

diffusion effects will be neglected in computing Kitw,V)

In addition, only ion-impurity collisions will be considered

( ﬂiz 11 ) and in keeping with the previous assumptions,
the ion~impurity collision operator will be approximated by

the Lorentz pitch-angle scattering operator

(1 e ot on .
ez’ 5109300 * Nigl93(g) = Mg B > Val (B (O,

aA. ] P
9i () /3 /3% . (3.3-31)
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In view of these simplifications, eqg{2.5-12) for j3 = 1 can

be combined with egs. (3,3-21) through (3.3-31) to give

vo_ v
q' = KiaTi(¢)/3w

1
{3.3=32)
_where_
=2, () /v < (201 (e, 807 Tt eh vl i d)
v“/Ha(AV"B[ﬁ(Ai - A)a“(A,V)<niB>/(niB)]/aw)/aw]Fid3V>
(3.3-33)

is the ion thermal conductivity coefficient. To cast
eq.(3.3~33) into a form which can be easily compared to that
of the literature, the large aspect ratio approximation is

made where

n; = N, (r)e /Ty 8o (x:8) = <¥g(x.0)>1 N, (r) [1 - rX,cos/R,]

(3.3-34)
ﬁi(r) - (r)e i @ {r, e)>/T

(3.3-35)
ei/Tilao(r,B) - <$O(r,9)>] = rxocosB/RO

{3.3-36)
-~ (0)2
@0(1',8) = ‘IJO(r,e) - mqu /(Zei)

{3.3-37)

B = <B >1/2/(1 + rcosB/Ro) ¥ <B >1/2(1 - rcos@/RO)
(3.3~38)
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B,./B << 1

8/Bs (3.3-39)
- 2.1/2 2.1/2
{3.3-40})
and
_ 2.1/2 2.1/2 2.1/2

Qei - (ei<B > /mi) (<B8> /(_B¢} / ) = ei<B§>1/2/mi »
{(3.3-41)

Combining egs. (3.3-34) through (3.3-41) with eq. (3.3-33) and

carrying out the indicated mathematical operation yields

Kf . 3/3<{n;zxiz(v1}>
(3.3-42)

where

=3/2 /2

- 1/2
I;,(V) = 2[L3 |1

(xH 121 r/Ry) - 2x,7, /V?| (1 - cose)?

+ (r/R0)3/2|1 - 2X0Ti/V2|(1 - cos8)3/2)

(3.3-43)

In particular, it can be shown that in the limit o_;{(¥} + 0
the above expression reduces to the same result as that
obtained in reference [60] implying that with a modest
poloidal electric field the neoclassical ion conductivity
coefficient is significantly enhanced over the conventional
value {(magnetic trapping only) due to the electrostatic

potential trapping effects. For the more general analysis



153

carried out in this thesis, the direct beam collisional
effects and all beam induced effects are retained in the

ensuing analysis,

s

The expression for gaiO) can be simplified by multi-
plying both sides of eq.(3.3-30) by  B-V/(2x] 282,172y
integrating the resulting expression over all velocity space
angular distributions (i.e. integrate over scolid angle ﬁ )
and flux surface averaqging the result. In essence, this

2, 1/2 to be

enables the term <ng, B-U l(V)/(Zx <B
eliminated from the global velocity function K~ thereby
vielding the simplified expression:

1

2,1/2
<n B U 1(V)/(2x <s%>1/ )> = g-(<naBU§alj ilztx )/<82>1/2;

Epng/fa) + sen BB v+ 31 (1B 2 - By /78

b
{(3.3-44)
where
fg = <fB>
(3.3-45)
=B _ _=B
fc = <fc>
(3.3-46)
and
-B _ B
a = Ny~ .
(3.3=-47)

Here
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B oo -
£5 = (1 - £2) = 3/4/fc(@%/ (1 - Xp/<e?>1/21/2 ) oy
(3.3-48)
is the fraction of trapped particles and
-B _ _s=B + =B
n, < ﬂafc + n fT
(3.3-49)
is a modified neoclassical cellision freguency [22]. Note

here that since ki encompasses all trapping mechanisms,
then it follows that the beam induced trapping effects can
significantly modify the fraction of trapped particles
.depending on the particular electrostatic field config-
uration and the magnitude of the angular frequency of
rotation. Furthermore observe that in obtaining eq. (3.3-44)

to the lowest order approximation

<l - f232/<B2>> g <1 - f£> + higher order terms in ¢

$> + higher order terms in ¢

where here the large aspect ratio limit, which is applicable

<f

to most present generation tokamaks, has been employed.
Combining eq.(3.3~-44) with (3.3-30) and rearranging the

result yields

~ 1
= 2 2 B,B =3/2,.2 -
ga(o’ = Zv"/vta'g(l = ija*)Ufalej/ (Xa]Fanu + ZG"IVEa.‘v

N_(¢,V))F_/n_ + GX*p
a aa a-a (3.3-51)

B
a
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where

c? = Ufalj glz(x ¥n B- n“>/(U* 13f§/ (x2 J)n <B 2,172,
(3.3-52)

= w0l - 00, 0L eS/ (VaiBin,

a c a a (3.3-53)

Vi* =B VB/<BZ>1/2
(3.3-54)

8 w,v = scm B8 v + 3D w108 A,

b

(3.3-55)

Now in order to obtain a constitutive relationship for
the neoclassical component of.the parallel stress forces,
the & =2 harmonic component of the o(alyg) order
equation must be o¢btained. In this regard, consider the

<maBI+V“---d3V> moment of'the L.H.S. of eq. (3.3-3):
v

1
<m s viB-Tal(]) - 2,0, WIF s v2 1) a3 = —cm B o (g1

V a(l)
_ 1
2e ¢ O WF,/ (m, v ))V..'V’(d v)> - <m B-S (95(1()1) - 2e,%,(x,¥)
F,/ (m v Niviadys = -<2m_f_x2P, Varvyg) a3v (n.-¥B)> =
3 a(1) .
-<§--V’-+]'[+>
a (3.3-56)

where here the term

1
<te /m) (B-To (x, 9317, tg;({, - 26,0 (L, W)F,/ (m_v2 )P

(3.3-57}
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has been neglected in formulating eq. (3.3-56) since only the
lowest order approximation is desired (recall that for a
strongly rotating plasma the parallel gradient in the
effective electrostatic poéential is small in comparison to
the pressure stress). In view of eg.(3.3-56) the & = 2

harmonic component of the particle distribution function can

be expressed as follows:

1

2(V../V} (z [n (n BUX 3/2(x ) + [n_BcBuX

(2) 2x2
j *alj j a”~ "j +alj

Ja(0)

=3/2, 2 2.1/27 = - +
L322 - 8?20, R 0, vIL B v - (e - nS/iBl

n_B-07

2 > > ->
aB U /2xl) + zin B G o « 3D w2

b

Pz(vu/v))Fa/na -
(3.3-58)

Furthermore, in anticipation of the mathematical analysis to
be carried out in section 3.5 of this chapter, egqg.(3.3-3) is
multiplied by Ua(r,v)<B%>1/ 2545 /v, /7 (2x° pz(v"/v)fBBf Td%/B)

and the result subtracted from eq. (3.3-58) to give

~ : 1

(2) _ 2.2 X 3/2 B
9210y = 2xaPl(V"/V)§(I[n (n BUY L (x ) + [n Bcjufalj
=3/2,.2 1/27 = = +
3726y - <@, F 0 L VB v - - n¥iB)n

=+ >V Z2 - > -
ngB Oy /2y + Lin B ) )+ B e e /e,

(3.3-59)

where the integral operator I[A(V)] is defined such that



157

2 B,=-B

I{A(W)] = (n A(V)BED/<B?> - n Vo*nC<BA(V) /V,>/n3)<B?>/ (2x2

=5_2
P (V,/V)ECBYF ) .
2 ¢ 2 (3.3-60)

Equation(3.3-59) can be cast into a more convenient
form by noting that the lowest order parallel stress forces
are weakly coupled to the flow fields of the other species.
This result is a manifestation of the property that the
ratio of the interspecies <collisional field response

component to the test particle component of the collision

operator scales as féi)/(ﬂzf;%)) which exhibits a %72
suppression of the field harmonics even in the presence of
strong momentum injection. For & =1 ; féi) “~ f;i) demands

that the & =1 driving term in the equation for the (b)
species be on the same order as the £ =1 driving term in
the kinetic equation for the (a) species. This equivalence
is understandable since the field particles will posses
velocity space distortions due to the collisional inter-
actions with the energetic beam ions as well as the other
plasma species. However for & = 2 , the condition that
féi) v 4f;§) requires a driving term in the £ = 2 harmonic
component ©f the kinetic equation (stress anistropy driving
terms) for the (b) species to be at least four times greater
than the 2 =2 driving terms in the kinetic equation for

the (a) species. As a result, the lowest order parallel
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stress will be weakly coupled to the flow fields of the
other species in the plasma even in the presence of beam
induced collisional effects. As a result, it suffices to

express eq. {3.3-51) as follows:

N 1
> 2 ~
ga(O} = 2V,,/Vt (§U.La1] 312(}: )nu + A (X v, V)V *)F
X
+ UL*F
a “a (3.3-61)
where the function
K(wV)—N 2,172 : x §3/2
a (X%, V) = IN_(¢,V}<B">"'%/B = z_:nachJ_alj 3 (x )1 B
]
/(n <32 1/2
(3.3-62)

can be specified in terms of the flow fields of the (a)
species by expanding this function in a two term Laguarre

series of the form [8]:

. 1
A 0,9y = 2 eX B3 2 x2) B/ (n < 25172
]
(3.3-63)

Consequently, using this expansion series in eq. (3.3-61) for

3/2(x )/(n {[L3/2 2}) moments

+
Aa(x,w,v1 , selecting the V,L
of the resulting expression and solving for the expansion

coefficients yields [8]

X = 2,1/2
Xy = (m) v, e

{3.3-64)
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and therefore, eq. {3.3-59) assumes the desired form, namely,

~ 1
(2) _ ,. 2,2 X §3/2.,2) By, . (1~-3) " & (2)
9a(0) = 2XoP] (V"/V)gtJ]J ;S xR, VB)F_/n, + 9500)
(3.3-65)
where’
B, _ £3/2 2 (1-5)
Ay = T Wl B f LV F (0 V1 (n ) 0¥
3’2(x %) (n,-VB))
(3.3-686)
and
(2} _ 2 1 X 3/2 s ,-B

3

- = ' 2 > 1 >
non B-0Y. (V) /(2x2) + g[naB-(géb)(V) + Séé)(V))])Fa/na])Fa/na

(3.3-67)

In summéry, egs. (3.3-51) and (3.3-65) represent the
general solutions to the o(sh) kinetic equation in the
banana regime for a strongly rotating beam injected plasma.
However to obtain friction-flow constitutive relationships
in terms of the parallel hydrodynamic flows, it is more
convenient at this point to express eq.(3.3-51) in terms of
the hydrodynamic flows. In particular, selecting the V..]Z.gl2

2 -
(xa)/(na{[ngzlz}) moments of eq.(3.3-51) for j = 0,1 yields

1 . <A
'G . - E( J UX + M;)nu
(3.3-68)



160

where

¢l = 3/2(x )L3/2(x§)[1 - £BBn%n/ (7B<n2s 1x2)]}/{[L3/2]
(3.3—69)

and

[l B - 2 ! - .
wy = oo, 0, nEF 2 ) ey i 7Een B 2 0@ 2 Dy
(3.3-70)
Using the above expressions in eq.(3.3-51) and rearranging

gives

Lad

Hl—‘

= 2?7“/"2 El 3/2

X

a t 93(0)

el

(3.3-71)
where the distortion function is defined such that

- 1
- 2% vd en . D32
g;(o) - 2Vn/vta ;.:U"alej )CagFa
(3.3-72)
with
1
B, _ BoBE3/2 (k2458 __-BB/ B _
(R} 2621708 /8% + (522 xdy 1 (] (xg))z}/igfztxg))

(1 - <8%/5e?) - (ERepE 2By P ading/alhiey ok g,

2.1/2

32 x2)ng8/ (n,nnen®> 1 20, )

B2/ (U, 5<B5>) + [(EDN, 0, WE]
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85,0 =~ om0, nEY 2 DnZes (n 72?20, 00+ 1E) 2

s,=B _ =3/2,.2 8 _2.1/2 X 2
na/n, Na(tb.V)Lj (x )n_<B™> ‘Sj,o/(n n By al?,”B /<B"> -
B
cpvars, (32 (d) - w,vinSe® 12 (m BiBeuX ok,
/U, )/{[L3/2(x§l]2} i
(3.3-73)

Finally, upon combining eq.(3.3-71) with eq. (3.3-65)
yields the following general solution to the 0(61) kinetic

equation in the long mean free path regime:

2 _ = =(2)
fa1 = fa1 * fa3
(3.3-74)
(1) =1{2) - _ _
where fal and fal are the % 1 and £ = 2 har

monic components of the particle distribution function
respectively, and are defined such that
(1) -

_ X
fa1 T 9a(0) - Ya*Fa
(3.3-75)

and

£(2) _ 2(2)

= X%
al ga(O) + Ua Fa

(3.3-76)

2

(x,)
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A (0) UNTRAPPED UNTRAPPED
max '
AB
c
-7 0 : T
CASE I
2 ~
ve >> 2ea¢0/ma
lmax(o)
UNTRAPPED
TRAPPED TRAPPED

- .0 i
CASE 1II
2 ~
vo o< 2ea¢o/ma
&A -~

Polx=r < %olx=0

FIGURE (3.3-1)

MAGNETIC AND EFFECTIVE ELECTROSTATIC FIELD
TRAPPING BOUNDARIES
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UNTRAPPED

.
A
f,'.-’!':-‘\

i) 0 T
CASE 111

ve < 2ea¢0/ma

- 0 b

CASE IV
2 2
2ea¢0/ma < v
& A .
*oix=n < %olx=0

< 2eea¢0/ma

FIGURE (3.3-1)

MAGNETIC AND EFFECTIVE ELECTROSTATIC FIELD
TRAPPING BOUNDARIES
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where

y = uep2 172y

b L) = 6 e - mul®?/ e )
oXr¥) = 2 Ixs¥) = myug /{2e,
A (0) = <B2>1/2/p

max | x=0

_ 2.1/2

lmax(n) = <B“> /B|X=0

and AE & Ai are given by eqgs.(3.3-8) and (3.3-10}

respectively.

FIGURE (3.3-1)

MAGNETIC AND EFFECTIVE ELECTROSTATIC FIELD
TRAPPING BOUNDARIES
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3.4 DETERMINATICN OF THE PLATEAU REGIME PARTICLE

DISTRIBUTION FUNCTION FOR A STRONGLY ROTATING

BEAM INJECTED PLASMA

In the plateau regime the effect of the magnetic field
modulations along the field lines due to the mirror force’
are small. Furthermore for a étrongly rotating . bean
injected plasma, the parallel gradient in the effective
electrostatic potential 1is small in comparison to the
kinetic energy of the particle, As a result, the parallel
component of the particles velocity:- is approximately
constant in the absence of c¢ellisional interactions [36-39].
In this regime trapped particles no longer persist and the
well-untrapped particles are nearly collisionless, therefore
the diffusion process is governed by particles in the
"resonant region" of velocity space [36-39]. However
unlike the conventional theory (slow rotation limit), the
resonant region of velocity space and therefore the fraction
of resonant particles becomes energy dependent when v¢ﬂ:vta.
In essence, the particles scatter out of the resonant region
in a time comparable to the poloidal transit time, i.e., the
time required to travel a distance of rB/(g-;x)along the
magnetic field 1lines times a rotational correction factor
which is essentially the ratio of the effective electro-

static field divided by the particle kinetic energy as

seen by an observer in the frame moving with the plasma.
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For a strongly rotating plasma, the torcidal drifts of the
resonant particles due to the gradients of the magnetic
field and the fictitious forces are not compensated for by
their motion around the minor c¢ircumference, and therefore
experience a net radial excursion from a £flux surface. 1In
this section the conventional technigues of neoclassical
kinetic theory will be employed to obtain a solution to the
drift kinetic equation for a strongly rotating momentum
injected plasma.

To solve the 0(61) drift kinetic equation in the

plateau regime, eq.(2.2-50) can be expressed as follows:

G“.ﬁ[%al + (2&13“-§/(y‘na)alnFa/a¢ + 2wma/(v‘ea)(13"-3/(5

~

-lﬁéO) (£

vy )20 (R ng)d /3% = 2.8, (X, 4)/ (m I F] = 5C

!
b al

ab

£,1) + Syp(F,.fp)

(3.4~1)

where v = V - Eéo) is the parallel velocity as seen by an
observer in the lab frame. To gain some_insight into the
lowest order solution to the above expression, eq.(3.4~-1)
can be integrated over all velocity space to obtain the

following intro-differential equation:

&+ - ~ ~ - ~

2, -1x(0) *
BVea)) T RTUL ny) /00 - 2e 8, (x, 9}/ (m v2 ))F yadv) = 0.

(3.4-2)



167

Solving this equation by integration and retaining terms

< 0(61) yields

S Va/BUE

~ > - el » -
> 1 1 (2nIn, v/ (y Qa)alnFa/aw + 2nma/(y ea](In“-v/(B

V2R 0y /sy - 2e 0 G /w2 ) )a%Y = b ()

(3.3-3)
where here the surface function ﬁa(w) arises as a
constant of integration. Now to account for collisional
effects, the surface function ﬁa(w) can be expressed as

follows (38,39,67,71]):

i} ' 1/2,_ .3
a(w) = IGV"/B(J (¢ V)B V/<B g )Fad V/na

(3.3-4)

‘where the global velocity function V"Ja(w,v)/v accounts

for the combined effects of the velocity space diffusion and
field response components of the collision operator and the
external source term. Consequently in view cof egs. (3.4-3)

and (3.4-4) it follows that

Gv"/B(f 1 + (ZﬂInﬂ'V/(Y’Qa)BlnFa/aw + 2ﬂma/(Y’ea)(Inu'V/(B
2 -1->(0) + 7
ve 1 2R n ) /oy - 2e 0, 6wy /vy - 3 (e, BV
(n_<8*>1/2))p yadv = o

(3.4-5)

implying that
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A 1
= 2 -
£, = 2Va/vi . §Ufalj J" (x2)F_n. + J_ (4, VB v/ (n <821/ 2)p
+ UkHp
where

aXx = X 2
uk* = uX* + 2e 0 (x,¥)/(m_vi,) -

Finally to account for the localized pitch angle effects,
the arbitrary function 9, is added to the solution for

~

fal to obtain the following general solution:

~ 1
_ X  13/2 2 1/2
fal ZV /v ta ?U*alj 3 (x )F n" + J (¢, V) B- V/(n <B

(3.4-7)

Note here that in the small rotation limit ( w_l(w) - ),
eqg.{3.4-7) reduces to the same expression as that obtained
in the conventional theories ([38,38,67,71] as expected.

To determine the functional structure of the surface
function Ja(w,V) r recall that in the plateau regime the
resonant particles exist in a localized portion of phase

space for which V,/V ~ (n;/wta)1/3

<< 1 [38,3%], where
Wy = V/(rgR) is the transit frequency. Consequently, upon

combining eq. (3.4-7) with (3.4-1), dividing both sides of
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the resulting equation by V and neglecting terms of order

ot /w123 yields:

2 1/2 ~ > L 2
Vu/V v[(J {(y, V}B- V/<B )Fa/na + ga] + 2v"na/(vvta)' (

e [

X -3/2 2.0 L 2,1/2 3
U*alj j (x_ Iny}F_ + J W, V)B- Vna/(V <B ]Fa/na = 7

a ™ _ =3 A i '-)V 3 - 2
n,Lg /v + (1 na/na)naV.. Ugg WIF /VT + IE;(.?V../(Vvta)-(

={(1) 2 (1)
sab (V) + S.m (V))Fa
(3.4-8)

where here the & =1 harmonic component of the collision
operator has been expressed in terms of the pitch angle
operator. Multiplying eq. (3.4-8) by (V/V,)B , neglecting

all terms of order (V../V)2 4" (n;/mta)2/3 (including the

localized solution 9, } and f£flux surface averaging the

result yields

1

J (0,V) = 2v/v L L<n uX_.13/2(4%)3. n,>/<B2>1/2

a *alj 3 a + (1 -

2,1/2 2 ~ +
n, /n )<n B- U 1(V)>/(V<B } + 2v/vtat}:)<nan..'(sa(lé) (v} +

(1){V))B n">/(n <Bz 1/2

(3.4-9)

With the functional structure of Jatw,V) formally

established, an equation for ga can now be determined.
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In this regard, it is more convenient to transform the
velocity space coordinate basis from the energy basis to the
velocity basis {(v,,Vv} . Therefore expressing eq.(3.4-8)

in terms of the desired velocity space coordinate basis

yields

Varvedg, + [P, (Vu/v) = e na (05000 - mul®?/(2e 1)/,

v?) (n,+¥1nB)) ] (n, - ¥1nB) 3 (v, V)BF,/ (<B%>1/%n ) - nlrg /v =

[1 -P(Va/V) + 2e,n,-T (g 0x, %) - mui®?/(2e )/ ((m v?)

(nu+¥108)) 1 (n,-T1nB) W, - T q_/2
(3.4-10}

where here the term

£3/2 (x ) - <n_uX__ . 13/2

a0%a15L3 22y n">B/(n <8%>)1r,

X
Vang /v§[U+a13

= e/ = 2/ v el ) - <n B0 a1V >/ (n_<%1/2)p
a

2

- 22l ey (Gl + 30w - wE g P w

(1)(V))nu>/(n <B%> 1/2)] F_
(3.4-11)
has been neglected since in the large aspect ratio limit,
(i.e. € =1r/R << 1 ) which is applicable to most present

generation tokamaks, this term is an order ¢ smaller than

the other terms appearing in eq. (3.4-10).
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To éompare eq.(3.4-10) to that obtained by various
other authors, observe that if the field response component
of the collision operator and the beam collision operator in
eq. (3.4-9) for Ja(w,V) were neglected then the resulting
equation for ;a would be the same expression (to within
the context of their notation) as that obtained by Wong and
Burell [59] in their extension of the neoclassical transport
of tokamak plasmas in the plateau regime for a strongly
rotating plasma. In addition if the angular frequency of
rotation in eq.(3.4-11) was also set to zero, then the
resulting equation would be similar in content to that
obtained by Hazeltine and Ware [45] in their analysis of an
impure plasma with substantial poloidal variations of the
electrostatic potential within a magnetic surface. In the
more complete analysis carried out in this thesis, both the
direct beam collisional interactions with the background
plasma and the indirect beam induced collisional momentum
and energy field restoration effects are retained in
formulating the functional structure of the particle
distribution function for a strongly rotating beam injected
plasma in this regime.

To solve eq.(3.4-10), the conventional technigques of
neoclassical transport in the plateau regime are utilized in
that a coordinate transformation from V., to o = (V,/V)
(n./a )_1/3 is made thereby implying that o " 0(61) for

a ta

resonant particles. Upon neglecting terms of order (V../V)2
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+ 2/3 . . .
v (na/mta) , making the desired coordinate transfor-
mation and using the large aspect ratio approximation yields

the following differential equation {38,39]:

1{282Ka/3a2 + YSin@3K_ /3a = adK_/d6 - sind

(3.4-12)

o~ o~

where g, is related to Ka via the expression

9y = €[l + e, (<0 (4,0)> - m_RE (W), (1) /(2¢,))/ (m_v?)]

- - 1/3
I 0 MK/ (20 /e, )13
(3.4-13)

and the smallness parameter v is a measure of the
influence of the mirroring force and the effective electro-
static potential on the resonant particles in the plateau
regime and is defined such that

-~ -2/3 '
Y= e/ T30 2e (<00 (v,8)> - mRZ ()02, () / (2e,))

2
/m v 1.
(3.4-14)

Note here that in obtaining eq.(3.4~-12) the cosine component
arising from the poloidal variations of the zeroth order
electrostatic potential has been lneglected since it is an
order € = r/R smaller than the other terms appearing in

this equation. Furthermore in constrast to the slowly
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rotating case, the mirroring parameter is energy dependent,
and therefore a function of the centrifugal and
electrostatic potentials, This result is a direct
consequence _of strong plasma rotation. Physically,
eq. {3.4-12) states that the free streaming motion of the
particles in the frame moving with the plasma are resonantly
intefrupfed by collisional interactions with the mirroring
force and effective electrostatic potential acting as a

perturbation. In adherence to the existing literature, the

function Ka can be expanded in a perturbation series of

the form [38,39}]:

S

_ 22
a - Xa(o)

K + P
Y Ka +

+ YKa (2) .

(1)
(3.4-15)

Inserting this expansion series into eq. (3.4-12) and solving
for the lowest order component (i.e. vy = 0 ) yields the

well known resonance function ([38,39,67,71]

A

T3/6

o

Ka(O) = Q)sin(e - at)e at -

(3.4-16}
The next order solution can be found by combining

egs. (3.4-14) through (3.4-16) with eq.(3.4-12) to give

2A

2 [+a) —3
3 Ka(l)/aa + a/aa[ﬁ][cos(aT, - cos(26 - at)]e~" /Gdr

= 203K /36 - 2Sin03Ka

a(l) /oo .

(0}
(3.4-17)
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Now for most cases of interest Y/e = [1 + Zea/(mavz)(<¢0>

- maRg(w)mfl(wi/(Zea))]/(n;/mta)2/3 >> 1, consequently only
that component of ﬁa(l) which is uniform on the flux surface
will make a significant contribution to the friction-flow
constitutive relationship in this regime. Since it is those
driving terms which are independent of the poloidal angle
which give rise to the flux surfaced averaged component of

el

Ka(l)' then it follows that

A 3
Z @ -17/6
BKa(I)/Bu + &)cos(ar)e dt = 0
(3.4-18)
where ia = <K, > . The solution to this equation can be
obtained by integration with the result [39]:
A o _.3
Ra(l) = =fysin{av)e T /GdT/T .
(3.4-19)

The total solution to the 0(61) kinetic equation in
the plateau regime, can be obtained by combining

eqs. (3.4-13), (3.4-16) (3.4-19) with eq.(3.4-7) to give

1 .
. (T uX 53/2(x§)F n,) + (B/<B
j a

S

fal

It

2V, /v2 2,1/2

ta + D[sint -

+alji™j

”~

aT) - Ysin(atl/‘t])Ja(‘l’;V) (;‘u'v)Fa/na + G?E(l*Fa
(3.4-20)

where the integral operator D[A(V)) is defined such that
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DIA()] = eVIL + e, (<058 ¥)> - m R (W)a?, (9)/(2e,))/(m_v?)]

" - S .3
/(2. (10, 33 A e/ Sar
(3.4-21)

Following suit with section 3.3 of this chapter, eq. (3.4-20)

1/2

can be multiplied by B- V/(Zx <g%> ) , integrated over

all solid angles in velocity space and flux surface averaged

to give
<n_B-0Y (V) / (2x 2.52,1/2y5 o ;:—(<n BUX 3/2(x y7<B2>1/2,
a al - 3 a o+ 1] j
om0y + ren B8 vy + {1 w1/t - £ /RE)
b
(3.4-22)
where
Eg = <fp>
(3.4-23)
and
P _ P
ng = <n_>
{3.4-24)
Here

£ = 3medo, /(16N ) Y[1 + e (<0 (X, ¥)> - m RE (W) a? ) (1) /(22 )

/ (m_v))
(3.4-25)

is the fraction of resonant particles and
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nz = (1 - fg)ni + an;

(3.4-26)
is a modified neoclassical collision frequency ([39]. It is
of interest to note that the fraction of trapped resonant
particles is energy dependent in the presence of strong
rotation and is proportional to the product

f

g = [(Ve) (T}) (1 + 2ea/(maV2)[<¢0(X:¢)> - maRg(W)w31(¢)

/(2e)1) %]
(3.4-27)

where

. o + 372
T3 (mta/na)e .

(3.4-28)

In essence the first term in the above expression represents
the fraction of trapped particles whereas the second term
denotes the fraction of time that the particles are trapped
in the magnetic well. The third term, which arises as a
consequence of strong rotation, represents a correction to
the conventional trapped particle population due to the
electrostatic and centrifugal potentials. With respect to
the latter term, it 1is noteworthy that the beam induced
effects can signficantly modify +the total fraction of

resonant particles as the particle kinetic energy varies
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in relation to the effective potential. In particular, if
2e,/m (<00 (8,¥)> - m_RiwZ /(2e,)) >> V’, then the fraction
of resonant particles diminshes in relation to the conven-
tional wvalue., Finally it is to be noted that in obtaining
eq.(3.4-22) to the lowest oxrder approximation in the large
aspect ratio . limit

2

<1 - ngzl<B »>> = <1 - f$> + higher order terms in

=1 - <fg> + higher order terms in € .
(3.4-29)

In view of egs. (3.4-20) and (3.4-22), the desired 0[51)

solution can be expressed in the conventional form [39]:

- _ 2 2(2)
fal - fa1 + fal
{3.4-30Q)
where
ﬁ(l) = 2% /Vz . ;(1 - cPyP#yyX 3/2(x )F n + 2V /v - {
fa1 " j 3V5 1 0sarsby " “"Tta
vP*N_(y,V)9F_/n
a a a’'a (3.4=31)

and

(3.4-32}
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with
2~ (2 _ X
f* = Ur*F
al (3.4-33)
P _ 1/2 _ X 3/2 3/2
cj = jB/<B > = <n BU-'-alj 3 {x )>B/ (n U"alj 5 (x )<B >)
(3.4-34)
V?* = B-(n, - Vp)n /(np<32 1/2,
(3.4-35)
+D o) . L 1/3)A
vE = 4VfTD[51n(ut}/T]/(3nEV“(wta/na) Ng
a (3.4-36)
and
Ig = (n"?V)D[sin(B - qr)]/(ngPz(V“/V)(n“-ﬁB)}
{(3.4=37)

In order to formulate constitutive relationships for
the collisional friction moﬁents and the viscosity stress
tensor, it more convenient to cast the expressions for the
2 =1 and % = 2 harmonic compcnents of the particle

distribution function in terms of the hydrodynamic flows.

In particular, the £ =1 harmonic component of f can

al
be reformulated in terms of the hydrodynamic £flows by

=3/2
3

for j = 0,1 to give

selecting the V,L; (xz)/(na{[fglez})moments of eq.(3.4-31)

1 3 s A
= X ]
= Z (cElkUJ'alj + Ma)nu

-

U“
alj (3.4-38)
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where
el = {L§/2(x )L3/2 a’[l - (1 - EB)chn® B/(np<32 1/2)13

/U3 2 (k212
B a (3.4-39)

and

MJ = 11 - Byn_w, V)L3/2(x }B/ (n_AP<B >1/2)}/{[L3/2 a)]2}

(3.4-40)
Using eq.(3.4-38) in conjunction with eq. (3.4-31) vields the

desired result, namely

1
fé}’ = 2$"lv2 2l ,.L 3/2(x2)F + f;{l)
j 73 (3.4-41)
where the distortion function f;{l) is defined such that
g2 (1) o 9%, /42 -21:'13 £3/2 (& 2ycPsr
al " Tta 3 "alj™j aj a

{3.4-42)

cPr = B(L(ERL) 2 xdyny/RB) - (EBPT/ 2 ixdyin /ABN16S o -

3/2

(R 2012185 /8% & (B2 2 62) (L @3/ 2201 21/23 21l

(1 - <e®/cfs?) - (ERRE 2Ly 2 (x2)nZ/RB sy Uk,
82/(U"a1j<32>) + [(fgma(w,V)i /2 (x21n3B/ (n,7P<B?> 1;2""@113‘”

B2»17/2y

6. o - {EBN_(v, V)L3’2(x ynSB/ (n 7B 11+ [(L3/2(x§)

3,0
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na/nf - N, (0, I3 2 x2)n3en >1/263 o/ (n 788X 1)8%/<8%> -

chvEs, (2 (2 x2) - N_(¥,V)n® $8%2/(n _chnPeuX . nuX_ .,
3/2 2

[Oug ) 1EY 2062012 5. 4-13)

To reconstruct the £ = 2  harmonic component of Eal ,
the same argument given in section 3.3 of this chapter can
be used to effectively decouples the parallel stress forces
for the (a) species from the flo& fields of the other plasma
species (recall +that the localized pitch angle effects,
which are the dominant neoclassical collisional effects in
this regime, are encompassed in the higher order term %a ).
"As a result, it suffices to express the collisional response

velocity function Jaiw,V) in a two term Laguerre series

of order 3/2 [67,71]:

1 _
_ 2 X =3/2 .2

J (v, = 2V/vta§;ca.(w)Lj (x,)
] (3.4-44)

Using this expansion series in eq.(3.4-7) for Ja{w,V) ;
=3/2
3

ing expression, neglecting the smaller order localized pitch

selecting the V,L: (xg)/(na{[ﬂg/zlz})moments of the result-

angle terms and solving for the expansion coefficients

yields
céj(w) = {11a):'U§13<B2>1’(2
{3.4-45)
and therefore the £ = 2 harmonic of £ assumes the

al
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general form:

~ l Fal L} el
(2) _ .2 x =3/2..2. .p ) (1-3) (2)

£.1 = 2xaP2(V"/V)§;Ua1j : (x2)AP* (n, ﬁB)Fa/na + £x
(3.4-46)

where

Pe _ 2.1/2
Aa* = I§<B > /

(3.4-47)

It is of interest to note that with the exception of the
appearance of the distortion function %;{2) . which
arises from the radial gradient in the toroidal .angular
velocity, eq. (3.4-46) is equivalent in form to that obtained
by Stacey and Sigmar [67] in their calculation of the
parallel viscous force in the plateau regime for a strongly

rotating plasma.
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3.5 THE LOWEST ORDER FRICTION-FLOW AND PARALLEL STRESS

CONSTITUTIVE RELATIONSHIPS

In order to functionally guantify the cross field
particle and heat fluxes in terms of the thermodynamic
forces, the collisional and heat flux generation operators,
and the external momentum and energy flux source terms must
be expressed in terms of the hydrodynamic and beam flows.
As a result, friction-flow constitutive relationships must
be developed for these operators in terms of the hydro-
dynamic and beam flows thereby providing the necessary'
closure relationships. Furthermore to express the
hydrodynamic and beam flows exclusively in terms of the
thermodynamic forces and effective electrostatic potential,
constitutive relationships for the parallel stress forces
are needed to express the arbitrary surface functions Uélj
in terms of the radial gradients of the thermodynamic forces
and effective electrostatic potential. In this section, the
flux surface averaged friction-flow and parallel stress
constitutive relationships are developed for a strongly
rotating beam injected plasma.

To obtain a general expression for the friction-flow
constitutive relationships, egs.(2.3-36), and (2.3-54) can
be combined with eq.(2.5-2) and the result flux -surface

averaged to give
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<§a(;}+1)> =T i[<maf§n§b$£§/ (x )f(l,dB - <2mac§b/via
/ “:b 3/2"‘2’%‘ *(a0,b1) Fa v - <am 3 /1ve ”ab a 3/2
TR 0, b1) ,Fa &> - <am K vl nabxaL3/2( DR g,
b1}3Fad3V>]'

(3.5-1)

Furthermore, upon exploiting the momentum conservation

property of the Fokker-Planck operator yields:

> - s z2=3/2,. 2, .(1).3 Z=
<Fa(j+l)> g[<mafgnabVLj (xa)fal av> - <mbf-*nga ?/2
v
(x )f(l)d V>4, - <m_n (c {n 3/2(x2j}§ Q
j.0 a"a'CabtNaph Jj a (aO,bl)1 * Cap
{ 3/2 K K 2= 3/2 2
T]ab a 3 (x )}R( O,bl)3 + cab{nabxaLj )}12(611,.1:;0)3)>
S5, -
(3.5-2)

Now since the collision _operator is rotationally
symmetric in wvelocity space, then this operator can be
decomposed into components which are soley a function of the
gyroangle dependent (classical} component and gyrotropic
(neoclassical) component of the pafticle distribution:

function, i.e.
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~ LS ~ ~

<-§ > = < F F
a(j+1’ = n..XFa(j+1)) Xn,> + <(n“.E‘a(j+l))n"> .

{3.5-3)
Here, the classical component of the collisional and heat

friction moments are computed in Appendix G and therefore
will not be pursued in this section.

To develop the neociéssical component of the friction-
flow constitutive relationships, the parallel component of
eqg. (3.5-3}) can be used in conjunction with the functional
structure of the g =1 harmonic component of the
neoclassical particle distribution  function in all
collision frequency regimes of interest. In particular, as
shown in the previous sections of this chapter, the 2 =1
harmonic component of the particle distribution function

assumes the general form

1
(Y _ L3 2 o= 3/2 (L),
fal - 2V||f’vta ;EU“al:] J (x }F + fal
(3.5-4)
where the distortion function f;{l) encompasses the

collision frequency regime dependence of the particle
distribution function. Therefore'upon combining eqg. (3.5-4)
with the parallel component of eq.{3.5-3), then in view of

egs. (3.2-24), (3.3-71) and (3.4-41) it follows that

. . 1
'((nn'F )I'l,.> = -LI< (Y
bi

Jﬂ + Y oY (3.5-5)

a(j+l) "p1”
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where

Ji+ 3/2

<
Ya ab® j

pUvp1e” = <man, (Ing G E 2 Qo) - mpny/tmn )

3/2

/2
{nba 3

)}a

3
(x b’L (xp) 185 o

3/2 3/2 2
+ {nS {x )}{nba (x b)}é.

b J.1

] B 2= 3/2 2 3/2 Q
/{nab}] (pb/p ){nabxaLj )}{ Tba b L (x }::u)}6 /{ ab a}

K 2 3/2
ab® a 3j

2=3/2

_ K
{n (x ) Hn abXaly ~ (x a);ab}a a}]U

K
j,17Ingpx "p11,”

and (3.5-6)

2
jb U"b12> = <2m [f T] ZCL*L3/2

=3/2, 2 2 3 L _
V ab®a~at 3 (x )L (xa)(cose) Fad v ;ab

2 =3/2

8 i =3/2 2., 53
(mb/ma)[f$nbaxbcbgLJ (x )L (x ) (cos8) °F, d

s =3/2, 2
Vaj,0+{nabLj (xa)

s 2.i,=3/2 2=-3/2
Jr§nba bChily (xb)(cose) °F pd V5J 1/{n -t/ ){nab al3

4 i,=3/2

(x2)15 @ xicisg 3 K 25372
a 6 ba

4
} - {n ab¥aly

(x } (cos8) F d ab%a

*5Cha Ly, V6 ,1"{n

K

N xa cl*L3’2(x } (cos8) F advs,

(x] )}f n X, }]U

i, 1/{n ab "h1g”

3.4-7)
with (

L

“ab = Wagyg/Uupag)

Here i = C,B or P represents the various collision frequency
- regimes. Note that the first term in eq.(3.5-6) is similar
in nature to that of the conventional [8] expression forx

the friction-flow constitutive relationship, whereas the
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second term represents a distortion or perturbation to the
conventional relationship due to the structure of the
various collision frequency "regimes and the effects of
collisional interactions of the beam particles with the
background plasma (the latter effect is actually encompassed
af )

To gain some insight into the content of eq. (3.5-7),

in the distortion coefficients C

a calculation of the lowest order parallel c¢ollisional
friction moment (i.e. j = 0} is made for the physically
relevant case of a beam injected mixed regime plasma in
which the dominant hydregenic ion resides in the banana
regime. For the sake of clarity, suppose that the plasma
consists of two species system (excluding the beam ions) in
which the second species is a collisional impurity ion. In

this case

1

<In, R, /B>= ~F[(<Iy?* 0L 02,
1z 2

0%
Ung10/B> = <I¥,*Wuppp /B2)) (3.5-8)

Now to calculate the distortion component of eqg.(3.5-8),
egs.(3.2-27) and (3.3-73) can be used in conjunction with

eqg.(2.5-23) for j = 0 to give

11
0%, - Lkm_ . ¥ Lkm '
<IY *Unjq,/B> = ii(uiz ngT0 /B> + uy < (ny)TI0 > 4
Rkm
Yiz <niIVnB/B>)

(3.5-9)
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and

X Lkm L_ox
<
nzIU+212/B> + Mo <(nz) IU212

' 11
<172§*U"z12/5> % ZE‘“£
km

km '
>+

Lkm

Y8 /8>)

<
nsz"B

{3.5-10)

where

uizm /{[L3/2(x )]2}[{nlz E/Z(x )[(fg i ifz(xi)n /nE

B
£

- {£2cTL (x In. /nB})am 9.0 - ({L3/2 )L3/2( gy} + c

=B-B-

3/2
c k k (x )

372 x2) (1E} 2 (2 )12}/L3’2(x N - 1788 - (B

2, (7km
(x i)[Ail + D

/2 2AS/AB 6, (6,0, + (ERE

{E53/2 (2 (R E?]/ﬁ?})]} - m A /() (73532 x2)

3/2,,2,,2,%s
(x)17/M 3NV 8y o8y 4 * 8y 4

r

(/S (32 (2 )/ns}/({[L

) 23 =3/2..2,.2 Zs =3/2
8 kaz)([h 2/noh) + L “x)) ] Sy /N1 - L]

x,0) ~
2y /S 271 EY 26201 2m8 ) GE) (e 221 D)

=3/2

PER 26l ?s, msta - (B3 26 A2 R G ol

12/3%Hhmh
(3.5-11)
=5

Lkm =3/2,.2, .2 £3/2 2 =S
vy = m /{[L (xz)] }[{nZl 3 (xz)[(llnz)(éktgam'k -y

UL 2 ?sy B a - B 26 A% @RS GEY 2 6d)
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2 e, - (E26R RSUEY 2 AV RN (8, 6 4 +

¢ 15%.0) 00 * (((E372 (x2 ]/ns}/{[L3/2(x§)]2/ﬁ§})(él'oﬁk,l

" e B /ash + UE 2P, 4/

+ 6£,16k,0) - Gk,k){{[Azz

k,2

A5 a - (23262 12 (amSUES 23 12/751)) BED + BE)

3/2,.2,.,2 =3/2,.2. .2 s 3/2 =5
B2 el g P edn s, iy a - (5726l iy iy
ASHE 26201%/08 ) - (e GER 2312 18D 2
2 3/2 =B-3/2, 2.7km B =B- 3/2 2
(x )) })){n (x VUECLY T (x]1A 56y (/0] - (£ L) 7 (x})
B/ h
(3.5-12)
Lkm _  Lkm 3/2 3/2 =B-3/2, 2
Bi, = Vi, "™ /{[L (x )] }[{nlz 2 (x ) (£l " 7 (%7)
TL/RE - (EBE3/2 (x2)t/aP o U3 2232 (52
TPV AT {f “‘_i’”i""i}”m,k%,o ({L )L (x3)
FB-3/2 312 -B
- £ L " (x i) (x )N’ /n })Gm e 11}
(3.5-13)
Lkm _  fLkm
N = U .
Z1 1l
{(3.5-14)
vigt = m /LR 2 e D (RS, E 2 D (BB 2 )Y S, s, g
% - (B2 s, on /By

(3.5-15)

and
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Lkm

o = my/UE 2 6212 1S £372 2y 11/nS) ((ER/ 2 (x2) /RS

=3/2,.2,.2 285, | s z
ML TG IR (8 o8y 5 + 8, 18, o) = & ) HYS (M /aS))

3/2
+ {52 d)) ak JA2¥a - (£3/%0x2) %) /({1/ns}{(L3’2(x )

2,25 3/2,. 2, .2 = = =
P MG TS e 1 2 ()P i %s,  asha - (232

2 ~ ~ - ~
) MmIFE UASUE 2 21 2/85 ) 1)

{(3.5~16)
where
EKR - 75 (m 5, 75 22202 Am n 7S ) + i i tmn, nl 2832 () )
= —Q 4
/{mana ab a}
{3.5-17)
and
pkm _ =K 2 £3/2 “K 4
Dab i b {nab m (x )}f{nab a}
{3.5-18)

Note here +that in obtaining the above expression the
distortion component of the particle distribution function
has been neglected in thé evaluation of the collisional
field momentum restoring term associated with the function
fgil) since only the lowest order coupling is desired.
Furthermore the large .aspect ratio 1limit, which 1is
applicable to most present generation tokamaks which are of

interest in this thesis, has been involked in obtaining a

lowest order approximation to the friction coefficients. 1In
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this context, the bar above the functions abpearing in the
above expressions denote quantities that are flux surface
averaged or uniform on the flux surface.

Finally, combining egs.(3.5-6) through (3.5-18) with
eq.(3.5=5) and using the resulting expression in conjunction
with eqs.(2.5-23) for the hydrodynamic £flows vyields the

desired result, namely

~ 111

. - Lkm X _ JAkm X
<In,‘R, /B> -LLIZ[(v;, ~<n IUL., /B> Voi <n IUL 1../B>) +
fkm
2km X _ . 2km X Lkm
("iz (n;) IUllm L <(n ) IUzlm>) + (Y5 <n; IV“B/B> -
Lkm
Yop <N IV.g/B>)]
(3.5-19)
where
ylkm o tkmo o Skm
iz iz iz (3.5-20)
vﬂgm - Yﬂkm + lkm
Z21 1 ZJ. (3.5_21)
Lkm _ _Rkm 2km
Njg T Yip * Vi, (3.5-22)
and
2
-
(3.5-23)
with
Lkm = Ola
Yiz iz m,%

(3.5-24)
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and

ﬂkm _ YORG .

Yz2i zi'm,L

(3.5-25)
To further simplify the coefficients appearing in
egs. (3.5-20} through (3.5-25), one could make use of the
mass disparity between the background ions and impurity
ions. (This will indeed be done in Chapter IV of this
thesis where the functional structure of the cross field
flux for a mixed regime two species plasma is obtained).
Similarly, friction-flow constitutive relationships can be
developed for a two specie system in which the second
species is also in the banana regime or in the plateau
regime (See appendix I}.

To develop the friction-flow constitutive relationships
for the parallel component of thé external momentum and
=3/2

energy flux source terms, the maV"Lj (xi) moments of

eq.(2.3-60) for j=0,1 can be selected to give

sl ~

- —_ j +
<(neeW, 441y 00> = <A3pVap>
(3.5-26)
where
i s =3/2, 2
AaB - mana{YaB(V)Lj (xa)} .
{3.5-27)

The expression for collisional friction moment (i.e. j = 0)
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can be simplified by use of the conservation of momentum

A‘+ ~ _ A..+ ~ _ s = {1)3
<{n, W_q)n.> = -<(n, WBl)n"> = <maf§nBaV"fB a-v»
(3.4-28)

where here the flow velocity of the background ions and

electrons in response to the beam has been neglected in

comparison with the beam wvelocity. Furthermore in view of
the criterion Vea << Va0 << Veat then
a#e
3, =
ilmitm[nBa] M na B Ba/(m v7) namaraB/(mBman )
{(3.5-29)
and therefore eqg. (3.5-28) becomes
~ _,. ~ _ 0 >
<(n".‘qal)n"> - <A‘BavllB>
{3.5=-30)
where
o _ 2 - .3
ABa - mananaB/ aB(vta/vB)
{3.5-31)
] 3
n =n_T__/v
B aB' "t
aB as ta (3.5-32)
and
= 3 _ (1} .3 (1) 3
. (3.5-33)

To evaluate Aga , the results of Appendix H for the beam
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ion distribution function can be used in conjunction with

the above expression to give

- .3 1 3
(Vea/Tg)7 = 51/ + tax)®0 ¥ Bax 1631+ (o x )%

Mg LA/ (L + (agx, 3y (B/3 + Dgy |
(3.5-34)

where
G = vc/vta
(3.5=35)
B = Z(n_z%/n_ )/ (% (n.2z3m./
a aa ‘e a aa B (nema)))
{(3.5-36)
and
_ 2 1/3
v, = [3/n(§nazamB/(nema))/4] Via
- {3.5-37)

being the critical electron velocity.

In the last part of this section, a general consti-
tutive relationship for the flux surface averaged parallel
component of the lowest order momentum and energy weighted
stress tensors will be developed for all collision frequency
regimes. To obtain the general structure of the parallel
stress forces, the definition of the momentum and energy
weighted stress tensors can be used in conjunction with the

properties of the flux surface averaging operator to give
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<BYH, > = <B-T. (imn, (v2r2) TN 4 3p (00 )V, L2

ak ak "k,2 ak
31,3 5(2) 2(k-1} ,, 2(2) 3 503)
(2[v (T + Vv Tak Vi, + (v a /2)T a(k-1) T Va Tax )Gk'2]>
(3.5-38)
where here the general intrinsic stress tensor.*?;i) is

defined such that

aece B2 - . > - ~
Tl =m0 By (R T) vR Ik (149,300 gf2) o

v
e 3
£a0d7V | (3.5-39)
' - PR - =
for K = 1,2 ; &£ = 0,1,2,3 and Hy, = M and H , = G_ are

the momentum and energy stress tensors respectively. Noting

- -+
that to the lowest order approximation v, ¥ u,p , then

upon neglecting all terms > 0(62] in eq. (3.5~22)
yields
<BUE > = <l 4 e /2m ) ) im0 BT >
2
+ <[6T(2) + (uéo) /2)(k I)GT;%L 1) k 2](n" VB)> + <B.V. [n.1
n,x L) + (@ éo’ 72y (&= 1)ﬁ((k TOWUE
(3.5-40)

where in general

p (L)

(&) _ (1)
ak

(T“ak *ak

(3.5-41)

with
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28 = ms @1y D221 g3y
v
(3.5-42)
T{R) - m /(2k)f v£V2{k-l)E(2) 3
(3.5-43)
and
F(2) _ (k-2) 2 s 2..2.,2(k-1) 3
M = ma/(Z Q. via)] (nw VuaE)fﬁv,.vJ_v F_a"vl
(3.5-44)
for K = 1,2 and = 0,1,2,3.

In essence, the first term in eq.(3.5-40) represents
the kinetic stress (inertial) contribution to the parallel
stress forces whereas the second term is the conventional
[8,101] neoclassical anisotropic stress component. The
third term is a manifestation of the viscous drag force
which arises during intense momentum injection ([61]. To
express this component in terms of the gyroviscous drag

coefficient, eg.(2.2-49) is used in (3.5-44) to give

2
<
mana(v

n
n

BT tnen, x 11> = Beng/ri¥- (zn, < T2 /815

/2)(k-1) B>

A
da(l+6k'2)

(3.5-45)
where in obtaining the lowest order approximation terms of
order (BX/B¢)2 << 1 have been neglected in formulating

eq. (3.5-45) and the gyroviscous drag coefficient Yga 1is
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defined by eq. (2.5-8) of chapter II.
In view of eqg. (3.5-40) and (3.5-45), it follows that
the parallel stress forces are functionally guantified to

within the term GTéﬁ) , where

sri2) = (2/m;k-1))(pa/na)kfﬁxngz(V"/V)Eéi}dBV
(3.5-46)
Now in general, the &£ = 2 harmonic of the 0(61) particle
distribution function in all collision frequency.regimes can
be expressed as follows [c.f.egs.(3.2-39), (3.3-65) and

(3.4-46)]:

1

2y _ , 2 (3=2)5 .x =#3/2,.2. i, .~ 1-3
£12) = 22202, (va/W)] ? u¥15E3 2 dals (n-¥B)F, /n {179
cx(2)
&
i
(3.5-47)
for the «c¢ollisionality regimes i = ¢,B,P. Combining

eq.{3.5-47) with (3.5-46), then in view of egs.(3.2-45),
{3.3-76) and (3.4-46)

1

(2) ~ i ~ 2 .
(6T 06 o= . X N - 1* X
2 (n,-¥B) §[<uaj(k_1)Ualj(nu VB) %> 4 <t o Uk
(n,-¥B)2>]
where
“l

Co oo o= (6/mtkT1) k i, 2k 2 -
aj (k-1) My " e,/ ) M (0 k2 D, (x22 2™ (v, /v)
atsy £3/2,2

a3l L3 (xa)} (3.5-49)
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and

l
Ha¥(x-1) = (Z/m(k 1))(9 /n ) ky x kp (Vu/V)f*(z)d3V/(Ualj

(R, -¥B))
: (3.5=50)

with the integral operator Dp[K(pl{v"/vj)] is defined

such that

I

1
Dp[K(P (V./V))] 5/2/5 P, (E)K (P, (£)) AL

(3.5-51)

Finally combining eq(3.5-48) with (3.5-40) yields the

desired result, namely

12
* I G- - (0)2 (k=1)
< = .
B-V Hak> <uakBuaE'vu g7 * §i<[6 b1 + (uE /2) 6k,2
+ X-A. 2_'-».-1-
2](ua]|k-m] “ajlk ml)Ualj(n“ VB) %> - <B (Ea(Zk-ll

Sa(2k-1)°

(3.5-52)
where
I 2 - -
M = men, Ll 0w an_yam )y k71
(3.5=53)
and
z > 2 (0) (k-1)
=3 - I8
a(2k-1) a(2k-1) m[ m,1 T (g /2) S, 2%m, 2]

2 | k-m|

(m_n_(v°/2) Y . P

a a -m - V]
da (2k-m 6k,26m,2)

(3.5~-54)
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are the net external momentum and energy flux input terms

and S are the pure external momentum and energy flux

a{2k-1)
source terms. Physically, the first term in eq.(3.5-52)
represents the Kkinetic stress (inextial) component of the
parallel stress force. The next term encompasses the
conventional result for the parallel stress forces in that
the parallel stress forces are damped by the poloidal
component of the hydrodynamic flows. Furthermore, the
second term in eq. (3.5-52) also contains a term which is
proportional to the distortion component of the particle
distribution  function. Finally, the last term in
eq. (3.6-52) represents a dissipative gyroviscous momentum
drag force. In essence with the exception of the leading
component of the second term in eqg.{3.5=52), the terms in
this equation are a consequence of strong rotation and
radial viscous transfer due to ihtense momentum injection,
To gain some physical insight as to the content of the
distortion c¢omponent of eq.(3.5-52), a lowest order
calculation of this component is made for the parallel ion
viscosity (k = 1) for all the collision frequency regimes.
Commencing with the collisional regime, then upon combining

eq. (3.2-40) with (3.5-50) yields:

~ 1"'. 2 2 -— ~
1530 * 30a/ny ) dp taxded (v /1232 e2) ) (n, Finn )

/ (ne-T1nB) (3.5-55)
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where here only the dominant term in the distortion
component of %;%) has been retained in formulating the
lowest order approximation. Physically, the lowest order
distortion component of the parallel viscosity force
characterizing the collisional regime arises from the

poloidal variation in the ion density and therefore

1Cx uX_ . (n,TB) 2> = <[K°*UX1.(E,-$B)](E-ﬁlnna}>

“Hajo'a1j aj-a
(3.5-56)
where
xgg = 3(Pa’n;1'3)){xgnp[2k (V"/V)]L3/2(x '} .
(3.5-57)

Now with respect to the banana regime, it follows from

eq.(3.3-76) and (3.5-50)- that to the lowest order

approximation
“230 = -3m_p /e (I/B)*{x2 2D, [x P (Va/VI13 (20 /Y “3 (R™ u(O) Q¢)

/39) /(0% 5 (n,-¥B))

(3.5-58)
and therefore
uBx B, o2,% 2 . ~
<5300k T8 % = —aBr B2 (B 98> (2r/y 2 (R7HELD a ng) /3v)
{(3.5-59)

where
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B, _ 2. 22
Ka§0 = 3nda{anp[xaP1(V"/V)]}

(3.5-60)
with

Nga1 = Pp/%,

(3.5-61)
being the gyroviscosity coefficient. Note that in obtaining

the above expression the annihilator identities [109}:

3

I+V.,I[Ba(V)V"/B,Bb(V)V..)‘B]Fad V=0
Vv
(3.5-62)
and
3
<Bf_6V.,I[Ba{V)V..B,Bb(V)V,.B]Fad V> = 0 |
{3.5-63)

have been employed (Here Ba(V) is an arbitrary function of
the particle kinetic energy}. Physically, eg.(3.5-~59)
represents the neoclassical gyroviscous force contribution
to the parallel ion 'yiscosity in the banana regime, As
expected, this component is driven by the radial gradient in
the toroidal angular frequency of rotation in the long mean
free path regime (See the discussion presented in section
2.2 of this thesis), In a similiar manner, the results of
section 3.4 can be used to show that

D, B
WPx o | By
ajo = Majo (3.5-64)
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as expected. It is noteworthy that in the c¢ollisional
regime the lowest order neoclassical gyroviscous force
EOntribution to the parallel ion viscosity vanishes as one
might expect from the discussion given in section 2.2 of
this thesis.

A more useful form for the neoclassical component of
the parallel momentum stress constitutive relationship is
the guantity

+ D

<(B-V-Ma)/na> .

{3.5-65)

In particular, carrying out the indicated differentiations
and using the result in conjunction with egs. (3.5-40)

through (3.5-54) yields

"

BV M Ba_ .4 (2) . 2
<(B-¥ M.} /n_> <maBuaE.§uaE> + <877 /na(n".ﬁg)> - <Tjai/na

-

-+ >
(B-ﬁlnna)> t <MY 4,18V, -

(3.5-66)
Combining egs. (3.5-48) with (3.5-66) yields
<(E ﬁ*ﬁ"}/ > = %[< Bu o > ~i ~1, X
a'’fa” = 3 MaPUap VU~ *F <(”aj0 + uajO)Ualj/na
(; -WB)2> + <m_y B-v >]
" a'dal a
(3.5-67)

where
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i _ 1 i
Hajo T Hajo * %ajo
(3.5-68)
and
i, _ i i
”aﬁo - a§0 * ca§0
(3.5-69)
with
i - ~
Sa50 = 8(pa/ny) i) 2o, 33T (v, /viaZ 232 x3)) 2, -F1mn )
/ (n,-Y1nB) (3.5-70)
and
cieo = 6(p /n) 1 x2ed A ex P aBy/uX L (n,-Finn_)/(n,-TinB
ajo a’"a'"y"a alj " " g/ (na-VinB)

(3.5-71)
and the integral operator Op[K(Pg(V"/V))] is defined such

that

0, K(Py (Vu/V))] = 5/2/ P2 (E)k(p, (E))aE .
(3.5-72)
Note here that the poloidal wvariations in the particle
density are explicitly accounted for with this form of the
momentum stress constitutive felationship. .

Finally, to develop an appropriate constitutive
relationship for the parallel beam ion stress forces, use is
made of the fact that owing to their high energy the beam
particles are assumed to be predominatly in the banana

regime. As a result, the same type procedure as that used
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in section 3.3 of this thesis for the banana regime can be
used to obtain the desired relationship. 1In particular, the
beam ion kinetic equation (see Appendix H) can be multiplied

by U, (A,Vv)<B3>1/2

(§d£/V")/(f§Bﬂfnd£/B) and subtracted from
from the beam ion kinetic equation and the maﬁ.ﬁvz(k'l);g

moments of the resulting expression selected to give

<uBkV"B(n"-$B)2>

i
<
m
v
n

(3.5-73)

where the beam in stress coefficient is defined such that

Ypx = ?TnemesneBGg(vte/;Bk’3B/(;".$B)2
(3.5-74)
with
Vool V) > = L0 Ve v/ s v, g a0
v v
{3.5-75)
Note that the term Gg(vte/GBk)3 represents that fraction

of beam momentum lost from pitch angle scattering with the
background plasma ions (110,111,112]. Furthermore in
obtaining the functional structure of eq.(3.5-73), the
viscous stress force in response to a nonuniform heat flux
has been neglected since the energy diffusion component of
the collisional momentum exchange operator is small in
comparison the slowing down/ pitch angle scattering effects

of the beam particles with the background plasma species,
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CHAPTER 1V

EXPERIMENTAL CORRELATIONS

4.1 INTRODUCTION

The use of an externally imposed source of momentum to
control or reverse the influx of impurities in a toroidally
confined plasma has been studied extensively. In
particular, it has been predicted theoretically [13-18]) and
experimentally observed f19-21} that coinjected neutral
beam momentum will iﬁhibit or reverse the inward flow of
impurities in a tokamak plasma. In this chapter, the
relavent experimental data dealing with the effects of
unbalanced neutral beam injection, strong rotation and
radial viscous transfer on momentum and particle transport
in tokamaks plasmas is reviewed and the applicable portions
of the transport theory developed in the earlier chapters of
this thesis are applied in an attempt to gqualitatively
explain the observed experimental results.

In section 4.2 of this chapter, a number of relavent
plasma rotation and momentum confinement experiments are
reviewed and the results are compared to the theory
developed in the previous chapters of this thesis. In
particular, it is shown that the theoretical expressions for
the angular velocity of rotation and gyroviscous drag

force can gqualitatively predict the observed rotational
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characteristics and momentum confinement times inferred from
various beam injection experiments. In the last part of
this section, the general nature and fundamental properties
of the gyroviscous momentum flux are explored.

In the next section of this chapter, the relavent
experimental data obtained from impurity flow reversal
measurements are reviewed. In particular, the experimental
data from PLT and ISX-B tokamaks clearly indicates that beam
counter-injection causes a strong build-up of impurities in
the plasma center, while co-injection does not cause any
acculumation, or can even cause a reduction in the central
impurity concentration..

In the final section of this chapter, the radial
particle transport flux is evaluated for a strongly rotating
beam injected two-species plasma in the large aspect
ratio/low beta limit. In this regard, a plasma in which the
ion-impurity collisions dominate the transport process is
considered so that an ion-impurity Lorentz model is
applicable, In this case, the fuel ions enter the long mean
free path regime and the high 2 impurities remain in the
collision dominated regime due to their large self-
scattering rate.  The results of this theoretical analysis
are then compared gqualitatively to the flow reversal
measurements obtained from experiments on present generation

tokamaks.
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4.2 PLASMA ROTATION AND MOMENTUM CONFINEMENT

The experimental response of ©present generation
tokamaks to unbalanced momentum injection indicates that
central rotational velocities of approximately lOSm/sec have
been obtained [42,43,49,50,113-115]. During the initial
phase of the beam injection sequence, the plasma is
accelerated on a time scale of ten to thirty milliseconds, a
value slightly larger than the rise time of the beam power.
The plasma then reaches a state of equilibrium in which the
momentum injection is balanced by drag momentum losses,
thereby maintaining a constant rotational velocity until the
injector is turned off. After the momentum injection is
terminated, the rotational velocity decays back to its
pre-injection value. The toroidal rotation velocity is
generally measured by (42,43,49,50,113-115] three
techniques,. namely from the measurement of the charge
exchange neutral spectra, the measurement of the propagation
velocity of sawtooth oscillations, and the Doppler shift of
spectral lines. Of these methods, the latter technique is
the most popular since it permits the rotational velocity to
be determined at various radial locations within the plasma
and is generally less ambiguous than other techniques. 1In
this section, the relavent rotation and momentum confinement
data obtained from beam injection experiments are examined

and the results compared to the theory developed in chapter
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ITI of this thesis.

To investigate the dependence of the rotational
velocity on controllable plasma parameters such as the beam
input power, experiments were conducted on PLT [ﬁ2,49] and
ISX-B 143,50,114,115) in which the rotational velocity was
measured while one parameter was varied and the others_were
held constant. In both devices, it was aésuméd that a large
fraction of the beam momentum was transferred directly to
the impurity ions, but the coupling of these ions to the
hydrogenic species of the plasma ions is sufficiently strong
to prevent different rotational speeds of different ions.
Furthermore, most of the rotation studies were performed on
the co=-injection discharges - since counter-injection
discharges often disrupt a short time after the beam current
is turned on because of impurity accumulation.

The dependence of the central toroidal velocity on
electron density was studied for PLT [42,49] and ISX-B
.[43,50], the result of which revealed that in both devices
the central rotation speed exhibited a weak inverse
dependence on the average electron density. Unfortunately,
measurements of the central rotational velocity's dependence
on total beam power in PLT and ISX-B were not consistent.
In particular, co-injection experiments conducted on ISX-B
showed that the c¢entral rotation velocity saturated with
increasing input power, rising only by about 50% as PB was

raised from 0.2 to 1.2 MW. Increasing beam power from 1 MW
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to 2 MW did not increase the rotation velocity by more than
20%. However, the experimental results from PLT indicate
that the central rotational velocity varies linearly with
the beam power input of 1.2 MW . To explain this incon-
sistency, it has been suggested [50] that saturation effects
become noticable only when the power per unit volume reaches
a certain level. Since the experimental parameter was
actually the total beam input power, it is possible that the
two groups have actually explored different regions in
parameter space since 1.2 MW in PLT corresponds to about .3
MW in ISX-B.

Brau [(113], ahd Brau, et al.,[51] studied plasma
rotation in PDX for ohmic and neutral beam heated plasmas in
a variety of discharge conditions in both circular and
diverted configurations. The torcidal rotation velocity was
found to scale linearly with Pabs/ne where Pabs and n, are
the power absorbed in plasma and the line average electron
density respectively. On the oﬁher hand, it was concluded
that Vv, was independent of IP in PDX [51], and therefore the
toroidal rotation tends to saturate with P,. This is in
agreemént with ISX-B (43,50] where the central plasma
rotational velocity was relatively insensitive to variations
in the plasma current and saturated with increasing
injection beam power.

To compare the experimental results discussed thus far

to the theory, the lowest order component of the angular
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frequency of rotation can be expressed in terms of the total
beam input power. 1In this regard, the steady state version
of the flux surface averaged angular momentum conservation
equation can be summed over all species to obtain
27 =+ ~
I<m.n. ) . - 27 2
jM3Ya51R 8¢ vyp> = I<R 4 551> -

J j
(4.2-1)

To obtain an approximate scaling for +the lowest order

angular ffequency of rotation, eq.(4.2-1) can be solved in

the large aspect ratio approximation to give

w(r) = (6_j{r) + wy(r)) = (A<n B-v,>)
(4.2-2)

where

= 2 = 3= 2,
A= (me(eB/e) /tee[l + Z(vc/vB) nkek/(gnjeika/mj)])/g(pj

k
k#e
.
K.:(r)/(2R"Q.))
Y ] (4.2-3)
and
Kj(r) = —(ralpj(qu'n¢)]/3r)/([pj(qu-n¢)])

(4.2~4)

is a geometric factor which is dependent on the radial
profile of the angular frequency of rotation. Note that in

obtaining eq. (4.2-2), the radial profile factor has been
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taken as unity since this term is characterized by a
gradient scale factor of 0O(1}).

To relate the slowed down beam particle velocity to the
total injected beam power, the parallel momentum balance
equation for the beam particles can be used in conjunction
with the parallel wviscosity constitutive relationship for

the beam particles to obtain

s N 1/2
<nB§ VB> % <KBPB0 >
(4.2=5)
and therefore
wlry = <gpil2
(4.2-6)
where
g = AKB
(4.2-7)
and
. .2 - 3.,- 2 2 =B - 2
Kp & Vi2mphoe  /Io0) [((v /vp) g(njej)(eB/e} mefT/(Teegnjeij/mj
- 3= 2 - 2 2 -1
+ 2[1 + i(vc/vB) nkek/(gnjejka/mj)]me(eB/e) /Tee)]
k#e
{(4.2-8)

with ﬁB being the number of fast ions injected per unit
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volume with parallel velocity Vago . Since the angular
frequency of rotation is a function of the sguare root of
Phg’ it will tend to saturate at higher beam powers if all
other parameters are held constant. This is indeed in
agreement with the results obtained from experiments
conducted on ISX-B and PDX. Likewise for smaller values of
the injection beam power, the angular speed of rotation will
scale approximately in a linear fashion, a result which is
in agreement with the data obtained from rotation
experiments on PLT where the total beam input power was
considerably less than ISX-B. Furthermore since Ky v Tee
“ (1/n.) , then the angular frequency of rotation scales
inversely with the electron density, and therefore is in
agreement with the data obtained from plasma rotation
measurements on PLT and ISX-B.

The experimental response of both PLT and ISX-B to
toroidal rotation suggests that the toroidal momentum
introduced@ by parallel beam injection is being transferred
radially at a rate of one to two orders of magnitude larger
that the theoretical predictions from neoclassical
perpendicular viscosity calculations. In- essence,
experimental measurements in PLT have revealed that the
velecity profile is parabolic rather than centrally peaked,
which is the deposition profile of the injected momentum,

thereby implying that the injected momentum was being lost

from the plasma center by radial momentum transfer, Further-
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more, using the experimental data from PLT in a diffusion
model yields an effective momentum coefficient of

2 m2/sec implying that the momentum

approximately (1-5) x 10
diffusion rate is roughly the same order of magnitude as the
particle and heat diffusion rate [49].

As a general rule, the momentum confinement time can be
experimentally determined by two methods, namely from a
force balance at steady state rotation or from the decay
time after the momentum injection is terminated. With
respect to the former method, the conservation of angular
momentum eduation can be summed over all species to obtain

_ 2~ e 2~ -+ ~ >
Tqp = NM(R e¢-v)/(R e¢-S) = NMV¢/(n¢oS]

where NM = gnjmj for the bulk plasma ions, % = §§j1 ¢ T4l

is the effective confinement time for the bulk plasma and
Vs is the common steady-state asymptotic flow velocity
observed experimentally. The momentum confinement time can
be inferred from the second method by requiring that the
interspecies and beam particle collisional friction to
vanish in the absence of NBI. As a result, the time
dependent flux surface averaged angular momentum eguation

can be solved to obtain

Ve lt) = v . (0)e %/ Ta;;
¢3 ¢3 J (4.2-9)
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and therefore

lej = t/ln[v¢j(0)/v¢j{t)] . ‘
(4.2-10)

Unfortunely however these two methods almost always give
different results because of the different treatment of the
measured data and also because viscous damping can depend on
the rotation velocity itself [50]. The experimental
evidence in both PLT [42,49] and ISX-B [43,50] have
indicated that momentum confinement increases with n, during
co~injection. This is an expected result since Wb varies
inversely with the average electron density. In PDX [51]
however, the -linear dependence of the toroidal wvelocity on
Pabs/ne implies that the momentum confinement time is
independent of n, - One possible explanation for the
discrepency between PLT {and ISX-B) and PDX could be the
manner in which the rotational data was taken. In
particular, the results obtained from rotational meésure-
ments in PDX were deduced by examining discharges taken
under a wide variety of conditions rather than by taking
single-parameter scans when only one parémeter at a time was
changed. Furthermore, rotational experiments in ISX-B have
indicated that the momentum confinement decreases with the
total beam power. In PLT, the momentum confinement time is

relatively independent of the beam power input for both co-

injection and counter-injection, a consequence of the linear
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dependence of Vg with beam input power. 1In addition, there
is evidence that the momentum confinement time is indepen-
dent of the plasma current in PDX and 1IS8X-B, and conse-
guently distinctly different from the global energy confine-
ment which exhibits a dependence on this parameter in both
of these devices. Finally, the momentum confinement was
found to be generally a function of the total input power
rather than of the directed input power, for all three
| machines. 1In general, confinement times of 10-30 ms have
been inferred in PLT [42,49]. ‘In ISX-B [43,50]), rotational
measurements of composite ions have yielded momentum
confinement times of 10~20 ms. In PDX ({51], rotation decay
measurements. of titanuim impurity ions have led to inferred
momentum confinement times of approximately'80-100 ms for a
beam power range of 3.5 to 7.2 MW.

To explain these experimentally observed confinement
times, a number of theoretical investigations have been made
(34,52,58,59,60-63]. Early theoretical calculations [34,52,
58] of the perpendicular ion viscosity were based on the
assunption that the parallel ion flow was much less than its
thermal velocity. Unfortunately this neoclassical calcu-
lation yielded a radial momentum transport rate two orders
of magnitude smaller than is actually observed. Refinement
of the neoclassical perpendicular viscosity calculation
{(proportional to the self-collision frequency) to the high

flow velocity regime {59,60,63] still resulted in radial
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momentum transport rates of one to two orders of magnitude
smaller than those inferred from experiment.

To calculate the momentum confinement time from the
expression for the drag frequency developed in section 2.5
of this thesis, the large aspect ratio approximation can be
employed to express this frequency in a‘form which provides

more physical insight, namely

n

=2= =
(2m.R Qj/(Tj&j(r)l

Tagr = (Mvgyq) 3

(4.2-11)

where

K. (r) = (rd{p.(n,-u. O T
i { (py(ng uJE)]/ar)/([pj(n¢ up) )
(4.2-12)
is a geometric factor which is dependent on the radial
profile of the angular frequency of rotation. Now since

rsz(r) “ 0(1l) then to the lowest order approximation

gy = (2mgRRY/T)

(4.2-~13)
which ig in exact agreement with the results obtained by
Stacey and Sigmar [61] using the Braginski stress tensor.
Consequently in view of references [61] and [66], it is
concluded that the gyroviscous drag mechanism can account

for the momentum confinement times inferred from experiment.

It is noteworthy that since Ydj is independent of the
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collision frequency, then eq.(4.2-13) will be applicable to
all collisionality regimes.

In the last part of this section, the physical nature
of the gyroviscous drag force is explored. The microscopic
orgin of the gyroviscous element of the total wviscosity
stress tensor has been investigated by Kaufman [113]1 and
Stacey and Sigmar [61]. In essence, it was shown that the
gyroviscous stress arises_ from E;E;g; correlations
resulting from the poloidal velocity gradient, where the
symbol xxx denotes an ensemble average at any point in
phase space, rx is the poloidal position coordinate and
uaE¢==;¢-aaE is the angular speed of rotation., Physically,
£hrough any unit volume defined by surfaces directed normal
to the unit vector ;X , the toroidal component of momentum
due to particle passage through this element will be
unbalanced in that as the particles migrate across the
surfaces, more momentum is taken out than is brought in.
This departure from rigid rotation within a flux surface -
results in a net transfer of angular momentum across the
flux surfaces. Note that this collisionless wviscosity is
not due to orbital distortions or guiding center drifts, but
rather is due to velocitf gradients, In essence, the
inherent toroidicity of a tcokamak geometrically misaligns
surfaces of constant angular frequency of rotation with the

magnetic flux surfaces, thereby driving a cross field

transfer of angular momentum. Note that in the classical
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limit the gyroviscous force vanishes. In this sense the
gyroviscous component of the momentum stress tensor is a
function of the toroidal nature or torodicity of a tokamak.
Finally since the gyroviscous drag force is perpen-
dicular to the magnetic field and the poloidal gradient of
the angular velocity, no work is done therefore this force
does not result in the dissipation of energy. To demon-
strate this fact, the equation governing the adiabatic
g/SU,

entropy variable S = Ip = p3/5u’ {7} 1is examined
a

a

5p/231nS/3t + 1/v°3{u”I<a -o 3 - Ty.3
( q, ew> + <Sp, (v Ug)rey/2 170y =

-
g[<va-3pa> - <]

o 'va"" > o+ ( - = ~
HRL A <{wv - -
a*vva a Ug) ewapa/8¢> + <F_o> + <8_,>]

{4.2-14)
More specifically, suppose the term associated with the

viscous energy dissipation (viscous heating) is evaluated

- > > >
W Vp > - W > = UL T, (W) <B-Tinn_(y,x)> - <O, > =

a a a a

éﬁ*:$; >
a a

(4 .2-15)

Noting that

f 3 N ~
= v 3
Ha maf§ (fal + f&l)d vV =

-%-ﬁb ~ o~ _-;
Ta1 *2Inena. <11,

(4.2-16)



218

and
; _ - -
a” Vag * Va1
(4.2-17)
where
< _ > 3
Hal = maf§VVfa1d v
(4.2-18)

is the component of the viscosity tensor which is associated
with the gyrotropic component of the particle distribution
function and

")
3 .~ 2 2,2, .3
i, = 2m_(n, $uaE)/{ﬂavta)I§V"V*Fad v

(4.2-19)
is the component of the viscosity tensor associated with the
gyroviscous drag force, then to the lowest  order
approximation

- P

A ~
4-—)-‘—» _ -b..-!- _ =3 .-a- - -+ '.4--> X
-<Ha.3va> = <y v al> 2<[n“n“:cﬂa]2.3uaE> <B/na ﬁ Ha1>Ua

a 10

(4.2-20)
or

~ 2
B 2 X
<na:3va> g <ua10(n"-3B) /na>Ualo(¢) .

(4,.2-21)

In essence, eq.(4.2-21) indicates that the viscous heating

in a tokamak is a function only of the decay of the
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poloidal plasma rotation due to frictional drag. Therefore
the gyroviscous drag does not change the adiabatic entropy

or dissipate energy.
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4.3 IMPURITY ION FLOW REVERSAL

Another consequence of neutral beam injection is the
phenomena of impurity ion flow reversal. In a closed system
without sources or sinks of particles and momentum, the
classical [2,7] and neoclassical (3,4,2-8] theories predict
inﬁard’impurity ion flow. However when external momentum is
injected into a tokamak plasma the conventional transport
process is altered. In particular, the direct collisional
interaction of the beam source with the background plasma
drives a cross field flux in a manner analogous to that of
collisional momentum and heat exchange among different
species. The direct effect of beam co-injection (counter-
injection) due to momentum exchange is to drive the impurity
ions inward (outward) [13,17,18). In addition, the external
beam source and associated drag force alter the lowest order
particle flows within the flux surface thereby modifying the
particle and heat transport across the magnetic surfaces
[17,18]. More specifically, the external momentum and drag
éources contribute to the radial electrostatic potential
gradient which leads £o a transport’ flux [17,18].
Co-injection produces a negative radial gradient in the
ambipolar potential which tends to drive impurity ions
radially outward [17,18,47,67]. The effect o©f counter-
injection is opposite to that of co-injection. Finally,

the centrifugal inertia effects arising from the beam
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induced'plasma rotation leads to density and electrostatic
potential variations along the magnetic field lines [8,44,
45]. This in turn modifies the lowest oxrder flow patterns
and therefore the cross field particle and heat transport
fluxes [8,45,46,471. The primary effect of the inertial
forces is to produce an inward impurity ion flux for intense
beam co-injection and conversely for counter-injection {44,
47,671.

In general, the diffusive fluxes (i.e., the modified
Pfirsch-Schluter and neoclassical fluxes) are inward for the
normally negative main ion density gradient. _ Since the net
impurity ion flux is essentially determined by the pressure
gradient, inertial force and electric field components, then
the outward component of the impurity ion fluxes produced by
the inertial force and radial electric field competes with
the inward components produced'by the pressure gradient and
direct beam momentum input components inertial force during
beam co-injection. With increasing co-injection, the
rotational and radial electric: field component eventually
becomes large enough to offset the pressure gradient driven
and beam momentum input components thereby resulting in flow
reversal, With the counter-injection, all of the components
with the exception of the direct beam momentum input
component are inward and additive resulting in impurity ion

accumulation at the plasma center.
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A number of experiments were undertaken to check the
predicted impurity ion flow reversal with beam injection.
The experimental tecﬂnique most commonly used in impurity
transport measurements involves the spectroscopic detection
of emitted radiation in the far ultraviolet and soft x-ray
region of the spectrum. FPurthermore, spectral analysis of
impurity forbidden transitions (charge exchange
recombination spectroscopy (CXRS) of charge exchange excited
CXE spectral lines of fully stripped low z ions) has been
employed to identify various impurity species
concentrations. - Likewise impurity contents can also be
deduced from plasma conductivity measurements and enhanced
radiation measurements.

Impurity ion confinement  experiments have been
conducted on ISX-B for both beam co-injection and
counter-injection using intrinsic as well as test impurities
such as argon and titanium [21,43,116]. The emission
spectrum from intrinsic titanium and iron ions strongly
indicaté that counter-injection always enhances
accumulation, but co-injection inhibits its accumulation so
that there is seldom any buildup of impurities after
adjustment of the plasma to a new equilibrium, about 20-30
ms following the onset of injection. After an initial rise
following the start of co-injection seguence, the radiated
power remains almost constant. Usually 10-20% of the input

power is radiated during co-injection and spatial profiles
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show that most of it comes from the periphery. The soft
X-ray signals increase initially during co-injection because
of plasma heating and impurity influx, and then maintains a
relatively constant average value throughout the shot.
However during counter-injection, the signals rise rapidly
until about 5 ms (40 ms for iron) before a disruption
occurs, then they begin to decrease.

When laser-ablated titanium is introduced into counter-
injected discharges, its presence becomes completely
obscured by the accumulation of intrinsic titanium in the
central interior of the plasma as evidenced by the rapid
increases appearing first in the highest ionization stages.
However, seeding co-injection discharges with laser-ablated
titanium shows that the characteristic confinement time for
the highest ionization stages is only 10-20 ms, a value much
less than the 100 ms that were deduced from ohmically heated
disgharges.

Studies of impurity behavior under differing injection
conditions have been extended in reference [43,117] to
include fully stripped ionization stages by exploiting the
charge—-exchange excited oxygen lines. The results are
consistent with previous investigations of metallic elements
which revealed strong dependences on the sense (co vs
- counter) of injection. In particular it was shown that the
central oxygen content grows rapidly during

counter-injection leading to a disruption while co-injection



224

maintains a guasi-steady level of oxygen.

The introduction of argon as a test impurity in ISX-B
[20,43,115) confirmed the ion flow reversal characteristics
of beam co-injection. 1In essence it was shown that
during co=-injection no accumulation was observed with the
argon flux from the exterior of the plasma being reversed
during this mode of injection. However during
counter-injection the accumulation of argon is so rapid that
the plasma disrupts within 30 ms with an emissivity of about

1.4 W/cm3

[21], thus causing an extreme cooling in the
center [115].

The impurity transport properties of PLT for both
co=-injection and counter-injection have been studied
extensively [19,118,119) for a number of impurities. Eames
{25] measured the chordal distribution of ultra-soft x-rays
orginating from a tungsten 1limiter for a co-injection
experimént with S8SKW of beam power and a counter-injection
experiment with 430 KW of beam power,. The parallel
injection case resulted in a 30% increase in the central
power loss while for counter-injection the central power
loss was increased by a factor of 20. 1In the co-injectioh
case the tungsten profiles remained quite flat out to about

20 cm radius and at all times remained in the range of 1010

to 1.4 x 1010 cm_3. During the counter-injection experiments

it was concluded that the tungsten profile peaked reaching a

maximum value of 6.8 x 1010 cm_3 which is a factor of six
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increase as compared to the pre-injection case. As a result,
it was concluded that the beam co-injection caused the
tungsten flux to <change from an inward to an outward
direction, whereas for counter-injection the tungsten flux
is alwdys directed inward, the magnitude of which is
substantially greater than the flux during co-injection or
ohmic discharges, and increases with time:

Suckewer et,al.[49] studied the chordal distribution of
ultra-soft x-rays to arrive at the experimental values of
the‘iron density distribution and the particle fluxes at
different times during co-injected and counter-injected
discharges., The experiments indicated that the chord
intensity (i.e. the number of photons emitted per cm2 per
second) for Fe XXIII and Fe XV showed that a substantial
difference in the iron concentrations  between  the
co~injection and counter-injection cases. In particular,
the soft x-ray signals from these discharges revealed that a
small increase in intensity resulted for the beam
co-injection case and effectively doubled with counter-
injection. Additioﬁal studies on PLT [119] showed that the
effect of injected laser-ablated scandium and molybdenom
elements yielded central ion densities that were two to
three times larger in the counter-injection case than the
co-injection case.

In summary, there is a fairly large, well documented

experimental data base which supports the conclusion that
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the plasma center, whereas beam co-injection does not cause
any impurity accumulation and in some cases results in ion

flow reversal.
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4.4 FORMAL STRUCTURE OF THE LOWEST ORDER RADIAL PARTICLE

FLUX FOR A MIXED REGIME BEAM INJECTED PLASMA

As an application of the theory developed in the
preceeding chapters, the cross field particle transport flux
will be calculated for a strongly rotating beam injected
plasma. To compare the results of this computation to that
obtained by other authors [44,47,67]), a plasma is considered

in which ion-impurity collisions dominate the transport

_ 2 2 1/2
process ( a = zznz/(zini) > (me/mi) ) and thermal
effects are neglected (isothermal Lorentz model). . In this

case a two species (excluding beam ions} model is applicable
where the dominant hydrogenic ion enters the banana regime
and the high 2 impurity ion remains in the collisional
regime.

To obtain a formal expression for the radial ion
transport flux, the mixed regime friction-flow constitutive
relationships can be used in conjunction with eq. (2.5-1) for

i = 0 to give

TR a = = X - X
Tig = Tf = 20/(eyy )1y (1 + B)<IngULL44/B> = v, <In UL 14

- ¥,5<In V. /B>)] |
(4.4-1)

where in view of the assumed neglect of thermal effects (and
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therefore the heat flow vector)

., = m I{n} ) + ({EEA7RS /75 - (RS, HERRT

-B
TiNig Epng/ngt) + ({f
-8 -s ~B S B~-s ,-B
ny,n ll/n } - {n }{fcnll/n y - (mn_/ (m;n, }){mlnlnlz}
Jmgn s VRS 12/A%E - (RS, /512 /01/a5h ]
(4.4-2)

Vi = m LIRS, /ASH/LL/RSY + (R A5 /A% - (A5, /Ao HES

-3 =8 =B -5 2
/nz}/{lfnz}} - (mini/(mznz))({fc[n {mZnZnZl}/({mlnlnlz}

)} - {73, HERR® (mon 0.1/ Um,n.ns }n 1)1

c:.z ZZZl i“i'iz
(4,4-3)
M, = 9, - m ({Eonyns /Ash - (A5 HESA /nsh)
' (4.4-4)
nzi = Uzi
(4.4-5)
= (¥ig - Xgy) = m (UEBRS 5 Se/ng) - (a5 HERR TR/M3) - Xy
1B iB Bi c 1z c 1B
(4.4-6)
Yop = M UNZY/M5Y - (R /ASHT /RS /11/nsh)
: (4.4-7)
with

Bi = Mi¥341 Vg
' (4.4~8)



229

and

=1

3 T MiYai1/ Ny

(4.4-9)
being the ratico of the drag freguency to the c¢ollision
frequency. Note here that in formulating eq. {4.4-1), the
smaller order classical component of the cross field flux
has been neglected and for the parallel momentum injected
case considered here <R e E > <I;"-Ea/3> .

In order to express the radial transport flux in terms
of the thermodynamic forces, the surface functions U?lo
and Uélo must be eliminated from eq.(4.4-1). 1In this
regard, the parallel momentum stress force constitutive
relationship can be used in conjunction with the parallel
component of the momentum balance equation to express the
surface functions in terms of the diamagnetic and beam
flows. However before carrying out this.process, it is of

interest to note that the lowest order non~vanishing kinetic

stress term can be expressed in the simplified form:

<(“;OEEaE‘%aE”“a> = <maE (1) ¢+(0) * ééO}'ﬁﬁél)’> =

) % "

=Y m,/2n< (0 4 (X, W)3>cu(0 + m_l(¢)§:<vél)).ew> = -y m, /27

o OV B- W(Ru“”-n y>
(4.4-10)

where
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Wao{Xe¥) = ~2m/(y"e_n_ ) (3p,/3Y + e n (3¢ (x,¥) /3¢y + m_ /e,

~

2 -1 - ~
@ ug® 25y - RTIEL n 3 (R n,) a0 ) ¢ k_WB/ (1 R) |

¢ ¢

(4.4-11)

As a result, eq.(3.5-67) becomes

e _ ~“c “c ~ . 2 X _ -
<(B-V Mz)/nz> = <lHz00 * Hzdo! (Pw VB) /nz>Uzlo(¢) Y m2/2ﬂ

<o OBV RELY wny)>
(4.4-12)
and
<B-VM)/m> = <u§00(n"-33>2/ni>u§10(¢) + <m?50(BR2)

(ny-¥B) /> (2n/y 73 (RGO o0 1/709) = v7mg/2meng o, 0)

= +(Q) ”
B-V (Rug ‘ny)>
_ (4.4~13)
for the main and impurity ions respectively, with
~“B, _ B B
Kido = <ido * Fibo
(4.4-14)

and

t3h0 = Nas1 u-Tlon,)/ (n,-Tine) Gl x3e] (Va/v) 1)
(4.4-15)

Combining egs.(4.4-~12) and (4.4-13) with the flux surfaced
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averaged parallel component of the momentum balance equation

{divided by the particle density) yields

= Y7/ 2m < (mAo 0 (X, $)/D = mii, w. (X, )<B%/n_>/D)

X
Uzlo(w) i%z0 1 iz%i

B ﬁ(Ru(O)

g ang)> = <89, (1 + B,)/D - VR, <B2/nZ>EZ/(ﬁiD})

21 12

(BU§210)> + <(a;v; n./(n D) - v; A, (1 + B, )<B /n >/D) (B

Uli10)> - <5 o/D + 0, U, <B %/n 2> /D) (BV, ) >]

(4.4-16)

and

U§10(¢) = [y7/(2m)<{mA w4 (x,¥)/D - m_n (x,w)<B2/ni>/D)

. )
z zi z0

E-ﬁtaﬁé°’-n¢)> - <(a,%;, (1 + B /D - 5. n_.<B%/n >R, /(R D))

(BUX.. )> + <(AZGziﬁz/(Ein) -9 (1 + B, )<B?/n, /D) (B

+il0 21 zi

}> - <A B x 0(BR )/D

X
U z 10

-~ <(A /D + 7 <B%/n ;> /D) (BY

210)> 73 zB g

(n-¥8) /ny> 20y 73 (R7ILY -n gy 90))

{4.4-17)

where

OB S a2 - _ 2
By = [<uT,0(na vB) /ng> + Wi, (1 + &.)<B"/n;>]

(4.4-18}
= e ~c ~ . 2 — - 2
A, = [<(ujgy + uz8e) (0u-¥B)*/n > + N, (1 + &,)<B /n_>]



232

and

- _ - = 2 2
b = [AiAz NizNzi<B /ni><B /nz>] .

(4.4-20)
Finally wupon combining egs.(4.4-16) and (4.4-17) with
eqg. (4.4-1), using the result in conjunction with eqg. (2.5-23)
for j = 0 and rearranging yields

A S
1

v Y Y v
i ip - * Piu, + Fi + I'T . + T

I id iv

¢ E B

¥ .= —n/v) <@/ 282 Jedop, sov - £B /(e e )op,/30)>]

(4.4-22)
is the pressure gradient driven component of the ion

particle flux with

- ~ o

P =z 4 a 2 2
£ ¥ Vi, (1 + B3l = (o;, + B, 0B /{0, <B"/n >)]
‘ (4.4-23)
(2" =5 {1 - (o, +B_.)B2/(n <B%/n_>)]
Z Z1 zi zi z - 2
(4.4~24)
a;, = 1+ Y11 + B +a ) - 11/0(1 + X)(1 + ¥) (1 + a;)

(1 +0) = 1] (4.4-25)
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By, = [{1 + X)(1 + Ei)/(l + Ei) S 117041 + X)) (1 + YI(1 + ai)
@ +a,) -1 (2.2-26)

o

o

u

zi = M1+ ML+ B +0a,) - (1 +E)Q+ BN/ +X)

(1Y)l + o)l 4+ a) -
) ( aih(l + o) 1] (4.4-27)

By = [+ )1 + B) (1 + &) = 11/0(1 + X) (1 + ¥)(1 + &,)

(1 +a)) - 1] (4.4-28)

4
]

w0 TB) 2/ (nf, (1 + G )<B?/n )
(4.4-29)

Y= <0 + uSE) (n,-VBY/ (n A, (1 + &_)<B /n>)>

Likewise, (4.4-30)
r§¢, = -(2ﬂ/Y’)21<(I/B)2(£i' - 52’)/eia¢0(x,¢)/aw>]
{4.4-31)

is the radial electric field (radial gradient of the
electrostatic potential) driven component of the ion

particle diffusion flux with

¢ _ p”
Ei - nigl
(4.4-32)
and
¢) _ p;
gz - nzgz

(4.4-33)
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- 2 2 - - 2
rfué = - (2n/y ) 1< (1/B)* (g5Ese2 - £0E/ (e5e,)) (3 (wi® /2) /3y

_ -1+(0) +{(0) *
(R "u 'n,)a(Ru ‘n.)/50) >]
E >
¢ E ooV (4.4-34)

is a component of the ion particle diffusion flux which is

driven by the centrifugal force with

us, ®° p’
5iB = m€; = mn.E7
(4.4-35)
and
u, _ @) _ p;
€ZE = ngz mzanz . (1.2-36)

In addition,

-~

¥ = (<) (€lo x.0) - Eimzoix;w))/eiﬁu-ﬁtRﬁéo)-n¢)>]

(4.4-37)

is the inertial driven component of the particle flux with

I _ °I .2 2
€5 = myn 85,8/ (ny<B"/n;>)
(4.4-38)
gi = mznzciiBzf(nz<B2/nz>)
(4.4-39)
Loy = L+ X1+ 3 + (1 +BOI/IA + XL+ V)1 + )

(1 + az) - 1]
(4.4-40)
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and
83, = [+ ¥)(1 + 0 ) +1J/0(1 + X) (L + ¥)(1 +a,)(1 +a)
- 1]
| (4.4-41)
Finally,
r . 2 - 1. ~
riE = - (21/y")*(1/e ) [<(1/B)ESE c T30 (RTIEEY) wn ) /39>)
(4.4-42)

is a component of the radial ion particle flux which arises

from the neoclassical gyroviscous force with

u, _ % 2,0 2 2
elE = A, R°(n. VB)B / (n;<B*/n.>)

(4.4=43)
and
A, = L+ X (1 +B )+ 3 )1/ + X1+ +4a,)
(1 +a,) - 1]
(4.4-44)
and
rng = 2n/y”[<(1/B) (£]B - Eanz/ni)(ni/ei)V"B>]
(4.4-45)

is that component of the total radial particle flux which is

driven by the pure beam momentum input with
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£iB = [Vl - Giz<IBVuB/<B2/ni>>/<IniV“B/B>)]

(4.4-46)
5VB = [u__(v__/0 - a . <IBV /<B2/n >>/<In Vun/B>)1
2 zB" zB" "zB z1i "B 2 z''g

(4.4-47)
0i, = [+ M+ B +a) - 11/0(1 + X1 + V)L + ay)

(1 + az) - 1]

(4.4-48)
and
Opp = [+ X1 +a;) - (1 +B)M/IL+ X1+ Y1+ 8;)
(1 + az) - 11 . | (4.4-49)

To expose the physical content of eq. (4.4-21), a number
of simplifications will be made. 1In particular, the large
aspect ratio/low-beta approximation (collisional coupled) is

assumed, therefore (f?/fg) << 1 implying that

zB=*~ =B _ ,zB,zB, , =S, =+ zB,zB, .,
Epny/ny = (E/EQD/(RS/A; + (ER/ED)) » 0

{(4.4-50)
-B-s =B _ =B, =B, =% ,-s. . _
Eoni/ny = /(1 + (EQ/E0) ([ /A5H - 1

(4.4-51)
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Eo/ny = M W{R/A] + (E2/ED)) » 1773

c’ i
(4.4-52)
and
ns = -5 = 3
{n,;} = N,y = 4m, T . /(3/mmvi.),
Furthermore since mg/m, << 1 then
Vig ~ {n }
(4.4-54)
- -5 =g
Vi ” {n 21} =Ny 4. 1-55)
- - _ (=S _s
' ' {4.4-56)
- _ s e sy _ ;-s . . _
Vig ® Yig = Ajp ” ({Yanlz/n }o- Any My p/mghy - Xim
Yeg 7 0 - |
(4.4-58)

To further simplify the impending analysis, the large aspect

ratio/low beta limit coordinate basis {r,6} will be used
where
B = Bna/(1 + ecosf) = <B>n,/(1 + ecosb)
(4.4-59)
n_.=n_(1 + icosd + A sind
a a 2C0S n_ sin )

(4.4-60)
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(I/B)2 = R2 = ﬁz(l + ecosB)
(4.4~-61)
with
e = r/R
(4.4-62)
and
~ ~ S
i /na vong/ng << 1
{4.4-63)

In view of these simplifications, the lowest order
pressure gradient driven component of the radial impurity
ion flux can be obtained by combining egs.(4.4-52) through
(4.4-63) with egs.(4.4-22) through (4.4-30) and inter-

changing the indices i and z to give

oy Fat

Y . s _m 5 {R%.1R/(e_B B n -
rzp, x —mznz{nzi}R/(ezBe) [_(1 + B )/ (e n ) [l oy + Byy)

2¢2(1 + 85/ (4e) (1 + [@ziéfézi])]]apz/ar - /(e R 0L = (ay, +

~

8.0 + 26211 + BS/(4e) (1 + Loy, + 8;,11113p;/3r]
(4.4-64)

In essence, the above expression encompasses both the
Pfirsch-Schluter and banana-plateau fluxes of the usual

transport theory, but now modified to account for the beam
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induced radial transfer of momentum and the poloidal
variations in the main ion and impurity densities over a
flux surface. For a negative main ion density gradient
( 9P;/9r < 0 ) the impurity ion pressure gradient driven

component of the total radial flux will be inward since

]Bpi/ar[ ~ e /e |3p, /3r| | Note here that in  the
collisional limit (e;, =8 . =1 ; B;j =o,;, =0} ) and
therefore

0¥ . = —2e%m i {RS.}R/(e B ) I(1 + B.)/(en_)[1 + 55/ (2
zp zz 'zi z-8 /e n, + n_/(2¢}]

— f‘L.c
apz/ar - ll(eini)[1_+ ni/(ZE)]api/Br] 4. 155)

Defining the physical Pfirsch-Schluter flux such that

= ¥ 1
<nzvz>ps - I'zp‘/(RBB)

(4.4-66)

then

- <n_v

2 = = = - -
, Z>ps = -2¢ mznz{ngi}/(eng)[(l + B )/ (e, ) (1 + ﬁg/(ze)]

- we
9p,/3r - 1/{(e;n;} (1 + n;/(2e)]3p,/3r] (4.4-67)

which is in good agreement with that obtained by Stacey and

Sigmar [47]. Likewise in the slow rotation limit § ~ B.
z i

vC

“ n mgc
b4

i + 0 and the conventional result is recovered as

expected.
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Now with respect to the radial electric field component
of the cross field impurity ion flux, the large aspect
ratio/low beta limit gives

~ ~

Y. = m A RS IR/e (1 + B )L - (ayg + 8_.) + 2¢°(1 + BS/c)]

S fal 2 rbc — —
- [1 - (aiz + Biz) + 2e°(1 + ni/s:l]]ErfB5
(4.4-68)

In effect this term will have the same sign as the radial
electric field. Consequently this flux component will be
outward {inward) for beam co~injection (counter-injection).
Note here that in the slow rotation limit this componeﬁt
vanishes as it must in the absence of drags.

$imilarly, the flux component driven by the centrifugal
force can be expressed in the large aspect/low beta limit

approximation as follows:

-m n (RS IR/ (e B ) L(1 + B)IL - (ay; + 8 ) + 2¢2(1 +

rv
ZuE

”~ s

BS/e)Vimy/e,) = [1 - (a;, + By) + 2¢°(1 + K5/€)) (my/e )]

L9 e @ R, sar)

2
(8 i® /2y /0r - (r ¢

(4.4-69)

Here

2 -1 ~ . pad
B(uéo) /2)/3r - (R 1ué0)-n¢)3(Rué0]-n.)/8r = na

= -m_i(w)(ﬁr-ﬁ)
(4.4-70)
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where the direction of the radius
~ & "~ -~
nZ)cR = Rn¢ where the unit vector n

vector R is such that

2 defines the symmetry

axis of rotation. In the context of eq.(4.4-70)

riué = m A, RS IR/ e Bg) 1L + B ) (1 - (o, + B,,) + 262 (1 +
LY ~ ~ 2
ng/e)l(m /e ) = 1 - (a;, + By ) + 2e°(1 + RS/e}](m,/e)]

2 A -
w R .
[wZ; (¥) (n_-R) (4.4-71)
This component of the impurity ion radial flux will be
directed outward, the magnitude of which will be dictated by

the size of the ratio

m_(1 + B_)/e_ 1/(m;/e;) .
(4.4-72)

Combining eqg(4.4-68) with (4.4-71) yields

‘IJA — .y =S - = b=y ” - 2
r’z = mznz{nzi}R/(ezBe}[(l + B - fayy + B;) + 2e5(1 +
%C/e)1EZ - [1 - (a._ + B..) + 2¢2(1 + 5S/7e)1EH
4 r 1z 1z 1 r
{4.4-73)
where
ca _ ooz 2 5
E, = n.-[E + (m /e )o_, (V)R]
(4.4-74)

is the effective radial electric field vector. It is there-

fore apparent from the functional structure of eq.(4.4-74)
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that the outward convective flux arising from the effective
radial electric field is one of the largest contributions to
the net radial impurity flux during beam co-injection,

The next component of the total impurity ion cross
field flux is the convective inertial flux component which

in the large aspect ratio/low beta limit becomes

2 - =, = ~ - - ustd -
rﬁI s e mZnZR/(ezBe3[[E§E§ - (mini/(mznz)kiE;]/ez - 11/ (e f,)

[ (55/e?)0p_/or - (mi/mz)(ez/ei)(Ef/ez}aﬁi/ar]]]a(R'lﬁéo’-ﬁ¢)/ar )

(4.4-75)

Since the inertial flux is actually due in large part to the
effective radial electric field, this component will produce
an outward impurity flux during beam co=-injection.
Conversely  for strong counter-injection, the inward
contribution due to the pressure gradient and electrostatic
potential gradient driven components of the effective radial
electric field offset the outward centrifugal component of
the effective radial electric field thereby yielding a net
inward flux component during this mode of beam injectioq.

The neoclassical gyroviscous component of the +total
impurity ion transport flux is not in present when the
impurity ions are in the collisional regime. However, there
is a contribution to the main ion transport flux from this
component. In essence, this is another new term which

emerges as a consequence of strong beam induced plasma
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rotation. In the large aspect ratio/low beta limit

F?d 5 TaE RndJ_l 1z(n 1e%y3 (R u(O).n )/Br
(4.4-78)
where
q = €B¢/Be
(4.4-77)
and
n - 2 2.2
Ngi1 = Nai1lxj0p (xjP(VW/VIT},
(4.4-78)

Note here that in contrast to the gyroviscous drag force
which arises from the gyroangle dependent component of the
particle distribution function and is dependent on the
peoloidal gradient of the angular frequency of rotation, the
negclassical component of the gyroviscous force is propor-
tional +to the radial gradient of the ¢toroidal angular
frequency of rotation, vice the poloidal gradient. This
component 1is outward (inward) for a beam co-injection
(counter-injection). |
Finally in the large aspect ratio/low beta limit, the
flux component which is driven by the direct c¢ollisional
interaction between the beam ions and the background plasma

ions and impurities beccmes
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V.o o3 =2 - G R G T - 2
rsz = onh g/ e, B} [[(1 - 0,5) = (ng/n )ly;p/i,p = Vspo;g
/A, g)] e7/2{(1 - g, ) (1 + n_/€) {n;/n )y ;g/X,5 = Vip%ip
/A )1 + nS/e)))1<IV, B>

B 1 B (4.4-79)

This contribution to the total radial impurity ion flux is
inward (outward) for beam éo—injection (counter-injection).
This result is again in good agreement with Stacey and
Sigmar [47,67].

Examination of egs. (4.4-16) and (4.4-17) indicates that
the poloidal rotation of the main ijions will be positive
(negative) for beam co-injection (counter-injection) whereas
the poloidal rotation of the impurity ions will be just the
opposite. Furthermore, although the main ions and impurit;es
will both rotate toroidally in the direction of the NBI
momentum input, the main ions will rotate faster since the
beam collisional momentum will be preferentially to the main
ions and the usual negative main ion pressure gradient will
increase (decrease) the difference in the toroidal f£flow
velocities between the main ions and impurities for beam
co-injection (counter-injection). However, as the mass to
charge ratio of the impurity ions increases in comparison to
the main ions, then the difference in the torecidal flows
decreases somewhat. Likewise, the neoclassical gyroviscous
component of the ion toroidal flow also tends to decrease

this difference in the main ion and impurity ion flows .
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To completely specify the cross field impurity ion
flux, the lowest order poloidal variations in the particle
densities and electrostatic field must be solved for and the
radial electric field component must be self-consistently
determined. In particular, the poloidal variations in the
particle densities and electrostatic potential on a flux
surface can be obtained from a simultaneous solution of the
parallel component of the momentum balance equation for each
spécies and demanding that the solutions be constrained to
satisfy charge neutrality. Likewise the radial electric
field component can be evaluated from the flux surface
averaged toroidal momentum balance equation summed over all
species. Both of these mathematical processes for a two
species ion-impurity beam injected plasma have already been
done by Stacey and Sigmar (67] and therefore will not be
reproduced here since the purpose of this section is a
qualitative analysis of the impurity ion cross field flux as
developed from the extended transport theory and f£fluid
equations. However for the sake of completeness a few of
their results, which are applicable to this analysis, wiil
be mentioned. In particular, it was shown that for a
negative main ion pressure gradient beam co-injection

{counter-injection) would produce a downward shift in 3: or

vs

negative n s

(upward shift in Ei or positive Ez ) and an

, . e s vC . . . wC
outward shift in n, Or positive n, (inward shift inn_or

. o .
negative ng }. Furthermore, it was shown that the radial
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electric field scales as the ratio of the NBI input to the
drag frequency and is relatively insensitive to the
neoclassical viscosity coefficients. Also it was shown that
the radial electric field is outward (inward) for beam
co-injection (counter-injection) since its largest
contributor is the pure beam momentum input itself.

In essence, the radial impurity ion flux is essentially
determined by the pressure gradient component, the direct
beam momemtum input component, the rotational inertia
component and the effective radial electric field component.
With beam counter-injection, the diffusive impurity fluxes
{i.e. Pfirsch-Schluter and banana-plateau fluxes), the
rotational component, and electrostatic potential component
of the effective radial electric field are all inward and
additive, Here, the direct beam momentum input flux
component and the centrifugal force component of the
effective radial electric field are outward. Although the
net flux is inward and therefofe results in impurity ion
accumulation at the plasma center, the magnitude of this net
flux will be smaller than that predicted by other theories
[44] which is good since these theories overpredicted the
influx of heavy impurity ions during beam counter-injection
[64]. With increasing co-injection, the convective rota-
tional and effective radial electric field components become
outward and eventualiy become large enocugh to offset the

inward pressure and direct beam momentum input components
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thereby resulting in impurity ion flow reversal. Comparison
of the qualatitive results obtained in this section agree
with the experimental data presented in section 4.3 of this
chapter in that the effects of neutral beam injection is to
increase the inward impurity flow for counter-injection,
while co-injection leds to a significantly smaller inward
flux and in some cases a net outward transport of impurity

ion (flow reversal).



247

¢
W
R
I
I
R = Ro(l + ecosbd) . ]
+
z
B = BO/(1 + £cosb) ¥
2
(Be/B¢) << 1
I
= r/RO << 1 i
J
Ro

FIGURE (4.4-1)

THE LARGE ASPECT RATIO/LOW BETA LIMIT CCORDINATE
SYSTEM
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CONCLUSIONS

The neoclassical theory of ion transport characterizing
a strongly rotating beam injected plasma has been
formulated. To account for the large particle flow
velocities commonly encountered in beam injected plasmas,
the kinetic transport equations were developed with respect
to a coordinate frame which is moving with the plasma. The
drift kinetic equation was shown to be a simple general-
ization of the kinetic¢ equation wvalid for non-rotating
plasmas with the radial gradient of the toroidal angular
velocity appearing as a driving term like the temperature.
Linearization of the kinetic equations was accomplished by
expanding the particle distribution function, electrostatic
potential and particle flow in powers of the gyroradius
parameter. It was shown that the initial (zeroth in § )
response of the plasma to external beam injection is to
rotate rigidly with a nonuniform ion density on a magnetié
surface having a poloidal variation which is given by the
Boltzmann factor. Since the total system Hamiltonian is a
function of the effective electréstatic potential, then the
zeroth electrostatic potential, which is required for charge
neutrality, becomes poloidally dJdependent. As the rotation
sequence proceeds to time scales greater than the ion
thermalization and decay of the poloidal flow, the beam

induced polarization and collisicnal effects accelerate the
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plasma to its terminal velocity. The ensuing centrifugal
inertial effects give rise to a distortion in the uniform
toroidal flow, the magnitude of which is somewhere between
zeroth and first order in § . As a result, the toroidal
mass flow inherits a poloidal character. It was shown that
the O(¢ 1} gyrcangle dependent component of the kinetic
transport equation embodies a term which is proportional to
the poloidal gradient of the angular speed of rotation and
is responsible for the lowest order transport of angular
momentum acreoss the magnetic flux surfaces (gyroviscous
drag) .

The collisional response o©of the plasma to intense
momentum injeétion is obtained by use of a linearized
Fokker-Planck collision operator which accounts for both the
direct and indirect effects of beam particle collisions with
the background plasma species. This operator is used in the
0(61) drift kinetic equation to obtain a solution for the
gyroaveraged component of the particle distribution function
in all collision frequency regimes. In this regard, it was
shown that in the long mean free path regime the particle
trapping due to the effective electrostatic potential could
be as important as the magnetic field particle trapping
thereby modifying the corresponding fraction of trapped
particles. Similiarly it was shown that in the plateau
regime the effective electrostatic field also modified the

fraction of resonant particles,
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The 1lowest order friction-flow and parallel stress
constitutive relationships were computed from a knowledge of
the 0(61) gyroangle dependent and gyrotropic¢ components of
the particle distribution function. It was shown that the
mixed regime friction-flow relationships can be expressed in
terms the hydrodynamic and beam flows with the friction
coefficients containing a component which is independent of
the magnetic field structure, and therefore valid for all
neoclassical frequency regimes, and a beam induced
distortion coefficient which is regime dependent.,
Furthermore it was shown that the parallel stress forces are
a manisfestation of two effects, namely the nonuniformities
of the tangential components (gradient components within a
magnetic surface) of the hydrodynamic flows fields and
nonuniformities in the particle flow fields in the radial
direction. The first effect is similar in nature to the
conventional result in that the poloidal component of the
hydrodynamic flows are dampened by the parallel viscosity.
However, the parallel stress coefficients ére significantly
different since they posses beém induced distortion effects,
In addition, the plateau and banana regimes are character-
ized by a neoclassical gyroviscous force which arises from
the radial gradient of the angular frequency of rotation.
Since this flow is directed tangential to the magnetic flux
surfaces, its effect is to counteract the poloidal component

of the diamagnetic drifts arising from the fictitious forces
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resulting in a parallel viscous drag.

The second effect results from the appearance of
off-diagonal terms which orginate’ from the - poloidal
variations in the toroidal component of the particle flow
within a magnetic flux surface. This departure from rigid
body rotation results in a transfer of angular momentum
across the magnetic flux surfaces.

The extended transport theory was used in conjunction
with the fluid eguations to obtain an expression for the
radial particle flux for a mixed regime beam injected
plasma composed of a high 2 impurity ion and a dominant
hydrogenic ion species. It was shown that for a normal
negative main density gradient the diffusive impurity fluxes
(i.e. Pfirsch-Schluter and banana-plateau fluxes) and direct
beam momentum input fluxes are inward {outward for the beam
momentum input component only) for beam co-injection
(counter-injection), whereas the rotational and radial
electric field contributions to the convective impurity flux
are outward (inward) for strong co-injection. In addition,
two new flux components emerged which resulted from ‘the
radial gradient of the toroidal angular velocity. ©One of
the components, which is driven by the centrifugal force, is
directed outward independent of the sense (co-injection or
counter-injection) of injection, with the magnitude of this
component being dictated primarily by the particle mass to

charge ratio. The second component is a necoclassical gyro-
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viscous force driven by the radial gradient in the toroidal
angular fregquency of rotation. This component, which is
dependent on the direction of injection, 1is outward
(inward) for beam co-injection (counter-injection). A
qualitative comparison of the results obtained from the
extended transport theory exhibited features in agreement
with experimental observations and therefore provides a
reseasonable basis for the interpretation of the rotation,
momentum confinement and impurity ion flow reversal

experiments.
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APPENDIX A

THE LOWEST ORDER EFFECTS OF A POLARIZATION FIELD OK A
PARTICLE'S GUIDING CENTER MOTION ALONG THE MAGNETIC FIELD

LINES

In this appendix the lowest order particle guiding’
center motion aléng the magnetic field lines is calculated
for a strongly rotating beam injected plasma. To make the
desired computation, the particle's velocity vector as seen

by an observer in the lab frame can be expressed as follows:

¥ = (xds/at)ng + Ra_y (x,t)n,
(A-1)

Selecting the parallel component of eq.{A-1) and time

averaging the result yields

~

<(n..-$)>T = 2ngR/T + R<m_1(r,t)>T
(A-2)
where <--->T is the time averaging operator,
4 "
aq = rB/(R(B-ne})
(A-3)

is the tokamaks safety factor and

0 Trapped Particles )

<do/dt> ( +2 qR/T Untrapped Particles

(a-4)
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§dt = 8§48/ (ds/4t)

~
0

(A-5)

is the peroid of the motion, To¢ obtain an expression for
the time rate of change of the poloidal angle, one can
employ the concepts of classical dynamics. 1In particular,
the parallel force balance equation can be constructed from
the parallel component of eqg.(A-1) and the resulting
expression integrated over the poloidal angle to give the

energy equation

f(n,-F)de = -U(8) = m_[/qR(d6/dt) (d(d8/dt) + SR(w_; (r,t)

/dtydae]
or
m_qr(d6/dt)?/2 = -U(8) - m,Ridw_,(r,t)/dt)6 + H
(A-6)
where U(8) is the potential energy of the particle as

seen by an observer in the frame moving with the plasma and
H is the system Hamiltonian which is a constant of the
motion since the system Lagrangian is cyclic in time.

To compute the potential energy function in the frame
moving with the plasma, recall that at this point in the

plasma rotational sequence the acceleration of the particles
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guiding center along the magnetic field 1lines arises
primarily from the parallel components of the gradient in

the magnetic field and the electric forces. As a result,

0(8) = -m_f (d(n,-V)/dt)d8 = Slu(n,-¥8) - e (n,-E)1de

-{u8Bcosd/ (2grR) + eaEu)
(a~7)

where here the large aspect ratio limit ( £ = r/RO << 1) has

been used with 8B = 2<B2>1/2r/R being a measure -of the
magnetic modulations across the minor diameter. Combining

egs. (A-7)} with (2~6) and solving for d8/dt yields

as/dt = [2/(maqR)[H + (uﬁBcosG/(ZqR) + eaE“) - maR(dw_lir,t)

ratye11t/? .
(A-8)
In view of eq.(A-8), the peroid of the motion can now
be calculated from eq. (A-5). In this regard, the Hamiltonian
can be eliminated from eq.{(A-8)} by use of the initial
conditions: at t =0 ; § = 0 and 46/dt = [V, (t=0) -~ Ru_q
t=0)]1/gqR to give

de/dt = [[(2/a§ - 1) + cc:se]IJ‘SB/(ma(qR)Z)]1/2

(A-9)

where
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a, = [2u8B/[m_ (v, (t=0) - R<w_, (x,t)>)°111/2

(A-10)

and’ the term 28le Es - m Rdw_, (¥)/dt]/{m_ qR) has
beeﬁ neglected in obtaining eg.(2-9) since to the lowest
order approximation the initial parallel kinetic energy of
the particle in the coordinate frame moving with the plasma
is greater than the work done by the accelerating force in
one transit peroid. Finally, carrying out the indicated

time averaging operation gives

= 4qRK(a_)/|va (t=0) - R<w_j(r,t)> |
' (A-11)

and therefore

o

<(apV)>p = v, (£=0)Tla, 16, + R<w_;(r,e}> (1 - Tla,18.)

(A-12)
where K(aa) is an elliptic integral operator defined such
that

_ 1 .2 _ 2,,-1/2
Ka(aa) = &J[(l 7)Y (1 et M dt

(A=13)

and the integral operator I[A] is defined such that
_ _ 1 _ L2 _ 2,,-1/2
Ila )l = n/(2K(a)) = n/(20/F ({1 - £ (1 - o_t7)] dt])

(A-14}
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APPENDIX B

LOWEST ORDER ASYMMETRIC VELOCITY SPACE DISTORTIONS 1IN THE

ION DISTRIBUTION FUNCTION DUE TO UNIDIRECTIONAL NEUTRAL BEAM

INJECTION

Experimental observations {123] on ISX-B have shown
that unidirectional injection of neutral beam ions causes an
asymmetric distortion of the thermal ion distribution
function. In particular, when neutral beam ions were
co-injected both clockwise and counterélockwise into ISX-B,
the charge exchange spectra taken perpendicular, parallel
and antiparallel to the direction of injected indicated that
there appeared to be a distortion of the lowest order
(Maxwellian) 3ion distribution function in the direction
parallel to that of the neutral beam injection but no
distortion in the antiparallel and perpendicular direction.
The purpose of this appendix is to provide a theoretical
explanation of this observed distortion.

The lowest order response of the thermal ion
distribution function to collisional momentum exchange with
the energetic beam ions can most easily be understood by
examining the fundamental velocity space eguation

.

F

-5
i Vyfig/my = E CiplE5/EL)

(B-1)
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where

e

Fip = dp /dt = my lBﬁvhlB

(B-2)

is the average force exerted on the thermal ions as a result

of collisions with the beam ions,

_ 2
fi0 = ni/(“3/2 i ) e (V/vtl)
(B-3)
is a local Maxwellian and
CiplEirp) = Voo (P €, T0hy (V1) + VF e r 6.0 90g;5 (1) /2
(B-4)
is the Fokker-Planck collision operator with
Pib = (e, eb) lnﬂ/(qm: )
(B-5}

Note here that since the plasma ions are often superéonic
when sujected to beam injected, eqgs. (B-1)} through (B-4) have
been referenced to a coordinate frame moving with the
plasma. Using the results of Appendix E and F in

conjunction with eq. (B-4) gives

"

(1) (yF() G (y)1:3(8) )y (2)
Cip (5 8 ) /£y = Ty LT F /g0 + 50 0100 v

(B-6}
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where

*fég’(v) = 4nm?§*£’/mb + 2/vii[(2v2/vii ~1) (12 + 1112 +2]

i"bl
(pthazy * Botdyay)/2vize + 11022 + 310 -2 - 1 {5it)
+ By /(2vI2e + 11020 - 11) + (8 + 21 (12 + 2f&§%£+2)
- [32 + 4f€ﬁf}£+1))/(2v[2a + 11028 + 31) - 2([1 - 32?&ﬁ%1)

-

(L) +{2)
+ {8 = 11Bpqgy) /(2vi28 + 11(22 = 1]) 4 my (02 + 1Tep gy -

L)
B per) )/ (2movi2e +11))

{(B-7)
and

(2) ()
Iib (V) = K

8wy + kB ) G T+ k) o v T
| | {B-8)
with
(%) - _ay (0} (0) _ (0)
Rgip(V) = 4mm £, 0/m  + 202 + 11 (=30, gy + (5 28y <1y
3
(6V™) (5-9)
() = (0) _ o0 o (0)
(B-10)
and
(L) - (0) (0)
Kysp (V) = (@ 0) * Bb(_l))/(BV)

21ib
(B-11)
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Equation (B-6) can be simplified by noting that since
the field response component of the c¢ollision operator
scales as % times the test particle component of the
ceollision operator, then for harmonics ¢ > 2 the velocity
space driving term, which is responsible for the lowest
order distortion effects, must be at least four times
greater than the pitch angle scattering term. As a result,
the £ = 1 harmonic component of eq.(6) 1s adequate for

the lowest order approximation considered here. In view of

this result, eq.(6) reduces to the following:

. > 1 - -+
Ciplfs E) = gf;bfv"Iib)‘V’Fil)/‘Vfio’ + 31wy v

(B-12)
where Iié)(v) is given by egs.(B-8} through (B-11l) for

£ =1 and

S W = am F D 4 2792 v R, - 1 @ AFTR ATLINS'
(1)
/(5V) + 1/(15V) (385 (), - (5 - 1om, /mb]aé%;) - (7 - 5m,/m]
E(l)
b{- 2) . _ (B-13}

To further specify eq. (B-13), the individual collision
operators which comprise the vector functions of this
equation must be functionally guantified. In particular for

ion-electron collisions
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1
( )(V)F(1) =o' vy (- U, vV g (F‘l’/v)]) +mg (0
e{-1) e{0)
U, E D) v
(B-14)
and
(1)
sy = 2/v ; [, aé})z)/(BmeV)]
(B-15)
For ion collisions with high 2 (massive) impurity ions
(1) =(1) _ (0) ={1)
(ME™ = oy 0 Fit /v
(B-16)
and
(B=17)

Likewise for ion-ion collisions the appropiate collision
operator is given by egs.(B-7) through (B-11) for 2 =1
and m_=m, ; Fél"= ?{1) . Finally combining eqs.(B-14)
througﬁ (B-17) with eq.{B~12) and making use of the mass
disparity me/mi << 1 and mifmz << 1 vyields the 1lowest
order equation:

- 2 _ sz =) s g.¢(1) 2
-2V F /(mlvt ) = n;v Py /(Vfio) + 2niiv Lii (V)fvtl

{B-18)
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where

s _ S = _ (0) (0) 3
ng = Mys *nig) = T * %0 Tig /Y
(B-19)
is the total slowing down frequency and
(1)(V} - . V [v v 401, pl0) ) (-0 (3 (1) 5,02
i2) Y Pi¢-n y{Fi7-V/VT) o+

2% F‘l’/vtl)]/(GVa‘o’)) + 2myv2

(1) (0)
(0 1 /o

2. 2
t igoy ¥ @vi/vg,

TS N YsY > (1)
D@y + Bily) /6 + GIEL 7w w53 sy -

=(1} (0
284 (- 2)’]V/“i(%)

(B-20)
is a global velocity space vector function which encompasses
ion-ion velocity space energy and momentum diffusion
effects.

In order to proceed ﬁith the computation, the average
force exerted on the thermal ions as a result of collisions
with the energétic beam ions must be specified. 1In this
regard, recall that the beam ion's velocity ﬁust be
considerably larger than the background plasma ions in order
to drive a distortion in velocity. space when nB/ni << 1

Conseqgquently a distribution function of the form [124]:

f5 = ST 6(cos6 ~ cosby)/(21vO[1 + <z>(v_/V )3])

(B-21)
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can be used for the energetic beam particles. Here

— 2
<Z> = ;(minj/(mjne))zj

J (B-22)

SB is the beam ion source rate and the term GB is a fixed

angle of injection. Cdmbininq eq. (B~21) with (B-2) yields

— ___-».-» 2 __-n-.-r 2
Fig-Vylio/My = "2V-Fip/imvi 0,4 = V-V (V)£ /vy
{B-23)
where
VB(V) = nBFiB(I + mi/mB)coscv/(2EB(V))
{(B=24)

1/E5 (v) = 2srs(anBv2)g:?0(xdx/[(1 - 2xcosey + %) (1 +

3
Y, x17) 1)
(B-25)
Ve © vc/V
(B-28)
and x = V/VB PoX, = V/vc P Xpg T V/VB0 ; with v, being the

critical velocity, v being the initial beam ion velocity

BO
and cosg = ?.ﬁr being the angle between the ion's velocity
and the relative velocity §r =V - GB‘

With the funectional structure of the ion-beam particle
collisional effects formally established, eq.(B-18) can be

combined with eqg.(B-23), the v moment of the resulting
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equation selected to eliminate the global velocity function

Lii)(V) and the result rearranged to give

£ (1)

> 2 S Z
i = 2V vy Vi /g /mEh ¢ /s -l )

/mEY (3. /meH )£,
i 1" 11 1 10 (B-27)

where fil)

= ?-ﬁ{l)/v is the & =1 Tharmonic component
of the beam ion distribution function, the integral operator
{ } is defined such that

-

{a(V)} = 8/(3/n)&?ng(xavt Ye

dx
a aaxy

{(B-28)

and vy is the ion flow which arises from the plasma field
response to the ion collisional effects. However to the

lowest order approximation

(n7; (Vg VI/n3} - niivi)/(vB(V){nii/nj}; << 1

(B-29)

and therefore

=

1 >
e e 2T v/ S, -

iVei
(B-30)
Finally, to a good approximation

S .
ny & (n;Tgs + 0T 0 /W

(B~31)
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therefore the total ion particle distribution function can

be expressed as follows:

- (1) _
fi - flo + fi = [1 + 2(1 + mB/mi)nBFiBCOSC/(nI'i))(Ei/Eti)

(E./E_)]E,
i’ B i0 (B-32)

where

nlT, = EnjF.. for j = 1,2
{B-33)

In essense, eq, (B-32) clearly indicates that an asym@etric
shift of the equilibrium thermal ion distribution function
has resulted from the average collisional force exerted on
the ions by the injected beam ions, the magntiude of which
is dependent on the the angle of injection and the ratio of
the mean ion energy to the mean beam ion energy. A
numerical evaluation of thé analytical solution has been
preformed [125) and the results of this evaluation was then
compared to the experiqental data where it was shown to be

in excellent agreement [125].
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APPENDIX C

VALIDITY OF LIOUVILLE'S THEOREM FOR THE KINETIC EQUATION
GOVERNING THE LOWEST ORDER GYROTROPIC COMPONENT OF THE
PARTICLE DISTRIBUTION FUNCTION FOR A STRONGLY ROTATING

BEAM INJECTED PLASMA

In this appendix it is shown that the collisionless
version of eq. (2.2-36) satisfies Liouville's theorem for the
phase space basis {ﬁgc’ﬁgc'v"'t} . To this end it

suffices to prove that

-~ > - - - ~ - ~on = -
- - L) - - * =
5 (ng-B*) /ot + V- [, B¥IV 1 + Vu-Vy(nun,:B*dV  /dt) = 0
(C-1)
Combining egs. (2.2-34),(2.2-35), the modified Maxwell
equations

V.B* = 0
(c-2)

and

L

3B*/ot + VxE* = 0B*/3t + VxE'* = 0

(C~3)

5 *

and the definitions for the modified field vectors ﬁ* and E

with eq. {C~1) gives the desired identity relationship

B*-3n./0t + n,-0B%/0t + n,-(TxBP*) - B2 T xn,) + VH-(Txn,)
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/ea + (ea/ma)G,,-ﬁv[E*.(EA* - ?;"'H/ea)] = (ea/ma) ['B"*{}":(ﬁvﬁA* +

(ma/ea)ﬂ"a;“/at) + (EA* = §H/ea)'({\;||'§v§* - (ma/ea_)_ﬁx;ln)] = 0

(C-4)
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APPENDIX D

RECURSIVE DERIVATION OF THE 0(51) DRIFT KINETIC EQUATION FOR

A STRONGLY ROTATING BEAM INJECTED PLASMA

In this appendix, a derivation of the O0O(§ l) drift
kinetic equation is carried out for a strongly rotating beam
injected plasma. The starting point of this derivation is
the fundamental assumption that for a strongly magnetized
plasma ( § << 1 )} the particle distribution function can be
decomposed into gyroangle dependent and gyrotropic
components, thé magnitudes of which are ordered such that .
g; ~ 0(61)§a . In view of this ordered decomposition of the

particle distribution function, the Vlasov Fokker-Planck

equation can be expressed as a set of coupled eguations

R,3£,/38 = D II(£,) - (CIE,) + S(£,))] - [I(£,) - (C(fy +
S(E.))]
a (D-1)
and
DC[I(fa) - (C(fa) + S(fa))] = 0
(D-2)

where the differential operators DC[X(C)] and I(fa) are

defined such that
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D [X(5)] = 1/2nf " x(z)ds
(D-3)

and

I(fa) = dfa/dt - QaQ/BC
(D-4)

respectively.

To construct the desired drift kinetic equation the
particle distribution function can be expanded in powers of
¢ and used in egs.(D-1) and (D-2) which are then solved by
the method of succesive approximations. In particular since
;a ~ 0(51)Ea , then the first step in the computation is
to set fa equal to Ea in eq.(D-1) and solve the resulting

v

expression for f,- To facilitate the ensuing analysis the

enerqgy coordinate basis {f,u,H,t} will be used where

du/dt = -u/B(3B/3t + ZV“BﬁL-(B;"/Bt}/VE) - pv- (VB + 2V,B

@*A "" 2 - ‘-:— _ ~ 2 Z . ~ -
( ng) V_L/V_._)/B + eav-l_ E/(maB) 2(e¢ uaE)V"' (EZXV..)/B
(D-5)
and
dH/at = e, /m_[V-E + (3¢/3t + v-Ve)]
{D-6)

with
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(D-7)

and

" 2
® = ¢ - ma/ea(uaE/Z)
(D-8)

being the effective electric field vector and effective

electrostatic potential respectively. Using eqgs.{D-3}
through (D-8) in conjunction with eq.(D-1} for fa = fa
yields
e > 7 > > > - > = 2
Bfalac = -(V*-Vfa)lna + [(2[V..VL]2 *Vu e+ VY, - VI/2

. A A

I - nen)sfu - e V.- + Vo) /m 1/ (3£, /5H) + [uV-VB/B

> ~ - ~ > _’; ~ ~
+ VoV, - (3n,/0t + V-¥n,)/B - e, V,-E/(m_B) + 2(e¢'GaE)$*-(ez

i - ~ A

x\n.)ls + (V (V + uaE)/B - uff'— n"n“}}:3ﬁaE]/na(3§a/au))

(D-9)

where in obtaining the above expressions use has been made

of the gyroaveraged expressions

Dc[du/dt] = -y3lnB/3t
(D~10})

and

D, [aH/at] = e /m, (¥, E + (56/3t + V,-T8)]
(D=11)
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and the texrm D [C{fa) + S{fa)] - (C(fa) + S(fa)) has been
neglected since this term is > 0(52). Equation (D-38) can

be solved directly by integration with the result

o

)+Vu__1/B

akE

¥ F oxm /R ) (E - (0. (e xV. ) - (V. + 0
a - (VJ_xnu/Qa)'[ a - a n“ dr # u

ak

~ - - -: -~ ~ T -
B8E_/0u - [U,p-Vu_ o - e (E + Vo)/m 12, /3R] - 2[(V, xn./Q,)
Vol,:¥0__3f_/3H - u/0_(V, xB)V,:90__9f_/OH - n/Q_(V, X na)

nlpiV\¥apta W/, (Vo xB)V, :Vu,paf, HIEG TV X M

~ ~ Eal

~ - Fal ~ +A -5 Lal Fal
V*:ﬁuaEafa/Bu - V"u/Qa[(VL:cn")V$:Vn“ - n"-(V:cn")f2]3fa/Bu

(D-12)
where
s _ ~ ~ > 27 ~ 2>
Var = Mu X [UVB + V,(3n,/0t + V,-¥n.) - (e -u ) R +
~ ~ - - > 2
(e¢-uaE)(ez:{V")]/Qa + ExB/B (D-13)

is the particle's radial drift velocity as seen by an
observer in the coordinate frame moving with the plasma.

To obtain a drift kinetic egquation which is first order
in &8 , only the‘lowest order distribution function needs to
be used in eq, (D-12) in the determination of ga. In this
regard setting Ea =F_  in eq. (D-12) gives

- - 2 *{0} ~1>(0) ~ -
fa = (V*:{n“/ﬂa)o[ﬁlnFa + 2/vta[(RuE n¢)3(R up n¢)/mbew

11F, + 4/v§a[(G*j{n"lga)g":ﬁaaE]2Fa + (higher order terms in &)

(D~14)
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where the higher order terms

ol (B e x 1
2/vi (Vv xn./Q,) (e /m 3A/3t)F > O(57)
(D-15)

and

2 -~ +".++ 1
(Zu/(gavta)(v*}{B)V*'VuaE)Fa > Q(87)
(D-186)

have been neglected in formulating eq. (D-14}. Noting that

(nwllew|)-§lFa = 31nN_ (¥) /3% + (2H/vZ_ - 3/2)31nT_/3% =

H
- (0)% 2
dlnp, /3y + e /T 200/3% - m /T3 (ul®/2) /09 + ((v/v )2 -
5/2131nT, /3y = (“wflewl"ﬁlFa + e [T, 38 /0y ~ 2/v2_
v
2
3 (ui® 72y /3y
| (D-17)

then in the velocity basis {v_,v.} , eq.(D-14) becomes

> 2

A, ~

> - 2 >
f = .

(Vchn"/Qa) (VinF_ + 2/vta[ea/mav¢ B

a o

>(0) ° -1>(0) 2 . 2 (¥ xn
(Rug™' -n;)8(R “ug "NV e VITF, + 4/vi [V, xn./9,))

- e
Vu:Vu_nl,F, + (higher order terms in §) (D-18)

which is in agreement with eq. (2.2-49) of chapter II.
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The 0(61) drift kinetic eguation can now be obtained
~ 4N AT
from eqg. (D-2} by noting that fa = Fa + (fal + fa) with fa

being given by eq.(D-~14). In this spirit, to the first order

-~

_ - -~ -+ : +{0}
D IT(E )] = BE_ /0t + v"-ﬁfal + v"-(ea/ma$¢l + 3ug /3t)

2
BFa/BH + 0(67) (D-19)

and therefore

ad

3 /3t + Voo FE | + Vo- (e /m Vo, + aﬁéo’/at)aFa/aH = c(f,,)
”~ a,
S{E,) = D II(£,)]

(D-20)

where here the terms proportional to a%aljap , a%al/aH ,

ny A
C{f,) and S{f_) have been neglected in formulating the above

expression since they are 2> 0(62) . Likewise, retaining

only the o(sl) terms in eq. (D-14) gives

" > -~ -+
£ = (U, xn./02,) -k,
(D-21)
where
> 2 >{0) = -1=(0) 1 -
B, = [Glnra + 2/vi [(ROG n )3 (R Tag n¢)/8¢s§¢1Fa )
(D-22)

In view of eqg. (D-22) it follows that
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B -+ ~ > - -~ - >
D II(£,)) = b (¥, xn,/a)/ae) b, + D (¥, xn./2,)V,):¥h,

- ~ > _ - 1
+ DQ[(V_‘_XD,./Qa)dH/dt]'BhafaH =V ha + 0(87)

dr
(b-23)
or
_1+(0)..«
(R Up n¢)/3w1Fa
{D~24)
where
-‘;dr.;]" & 211?7../1("6[]:;“- (6 + _ﬁéO))/Qa]
(D~-25)

It should be noted that in obtaining the above expression it

has been assumed that (BX/B¢)2
2

v R . Finally combining eqgs,{D-25) with (D-21) yields

<< 1_and therefore (I/B)2

the desired result, namely

~

* 32 . 2 .0z =(0)
BE /3¢ + V. $fa1 + Vg, [ﬁlnFa +2/vE (In,~(V + ug '1/B)

-1>(0) |

¢ (R E

ny)/3v ey 1F, + Varle Yo /m_ + aﬁéo’/at)aFa/au -

Clf ) + S(f,,)
(D-26)
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In adherence to the multiple time analysis carried out in
the text of this thesis, the lowest order 0(61) version of

eq. (D-27) becomes

)5,

* -~ -+ . 2 -~ T + {0} -1
v, 'V’fal + Yy, ['v’lnFa + 2/vg (In,-1V + W7 1/BYa (R ug on,

~ -+ ~ Eal .
/3¢ eﬂJ ]Fa - (eav"'§¢l)Fa/Ta = }E(Cab(fal’fbl) * saB(Fa'fB))
{D=-27)
where in obtaining the above expression it has been noted

that Bfal/at1 > 0(61) and there is no new physics to be

gained in the terms aFa/atl and 8Eé0)/3t1
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APPENDIX E

THE TEST PARTICLE COMPONENT OF THE FOKKER-PLANCK COLLISION

OPERATOR

In this appendix, the functional structure of the test
particle component of the Fokker-Planck collision operator
is obtained. 1In this regard the first and secohd Rosenbluth
potentials must be evaluated for a Maxwellian distribution
function. To facilitate the ensuing analysis, a spherical
coordinate system like that shown in figure E-~1 will be
used. Commencing with the first Rosenbluth potential it
follows that

-~ 2
3/2,3 )f & (Vv 33

= .|
hab-nbma/(“ tb ab V/lV-V | = 21n

bma

G IRV TS ~2UVE0Se/ Ve, inaste™ (VoY) /ey vay =

VibMab
2...2 2 2
1/2 ® - -
nym_/ (m / vvtbmab)ﬁj[e (vo+v 2V Vi - (v v +2vV}/vtb]
v - PRV o~ (V-v)2/vP - (V+v) 22
= ngm, (7 vvtbmab)ﬁ)[e th - thlav
(E~1)
Now letting
X = (V - v)/vtb and y = (V + v)/vtb
(E-2)

then eq. (E-1} becomes
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h_, = n.m /(wlfzvm y[1f° e—xzd - 57 _yzd ] =
ab =~ "ba ab’ ' _ /v X v/v © Yl =0y
tb tb
v/v 2 viv, . _.2
/(ﬁllzvm )/ tb e ¥ dx = 2n.m /(ﬁlfzvm Y/ tbe X ax =
ab b a ab
-v/v
tbh
n,m_/(vm_, ) [(¢(v/v, . )]
b a ab tbh (E-3)
or
viv 2
¢(v/viy) = 2/¢n43 tb =X"ax
(E-4)
where here the error function ¢(v/vtb) is defined such

that [94,98]

hap = PpMa ¢ (V/vey ) /{m, v)

The second Rosenbluth potential can be evaluated in a

similiar manner. In particular, one can make the same

variable change as that used in the calculation of hab to
give
- 2
3/2_3 > o= (vi/v 3.~
g, = D/ (T / vtb)f;,;’]v - v le IVep) a3y = 2nb/(“1/2‘713:b)
» T _~(2vVcos8) /vZ, _. - (v +v?y v 3 1/2
&)[ﬂje tb sinfddle th v dv = nb/(n v
o {22 2 a2 2 2
vtb)ﬂ)[e (vo+V 2vV}/vtb - e (v +V +2vV)/vtb]v2dv _ nbvib
/2y i (x + v/iv )%™ ax - f (y - vivy)2e™
VIV, AL
dyl .

(E-5)
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Upon expanding the integrand and rearranging the result

yields
v/v 2 /v 2
g, = N J 20 10T ke ax 4 (uiv, )l P e7E dx])
ab bV tb —v/v th —v/
tb ViV%h
viv _.2 viv,, _.2
= 2nbvib/(w1/2v)[&] tbxze ¥ ax + (v/vtb)ﬂ) tb-x dx] =
v/v o2 .2 viv
nVep/ (20 Lo )2 e ™ ax - xe™ /2] P 4 172
v/v 2
.% tbe-x ax]
or
-0 v2 2 “(v/v, )2
Jap = nthb/(ZVl[(l + 2(V/th) )¢(V/vtb) - ve tb’' /
1/2
(TT vt’b)] .
(E-6}

With +the functional structure of the Rosenbluth
potentials formally established, the dynamic friction and
velocity diffusion terms characterizing the test particle
component of the collision operator can be obtained. In this

spirit, combining eq. (E-4) with (2.3-=7) gives

-+ -

— - 2 o
Fab - marabvvhab - nbmarabvfmab[¢ (V/vtb)/({v/vtb’vib)

25
¢(V/th)/v ] = -2n, m a ab/(mab tbl[¢(v/v - (v/vtb)¢’(v/vtb)

1v/(2(v/v,)?

Qor
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2> - - 2 ~ 2
Fap = 2nbmarab€(v/vtb}V/(mabvtb)
{E-7)
- where g(v/vtb) is the Chandrasekhar function which is

defined such that [94,98]

E(v/vyy) = 0(v/vy) = (v/v ) 67 (v/v )1/ (2(w/v ) ?)

(E-8)

Defining the characteristic fregquency which character-

S
nab
izes the slowing down rate of the test particle due to

dynamical friction with the field particles such that [89]

s _ 2 ‘
Nap = 200, T B (Vv )/ m v Ve (V70 ))
(E-9)

then eg. (E-7) assumes the physical form

3 __s -
Fap = nab(mav) :
(E-10)

In a similiar manner, the diffusion tensor can be

caléulated from eq. (E-6) and (2.3-8) as follows:

e 2

Dab = Tap?y¥y9ap = T apVent vy (9 (V/V ) /vl + 2(v/vy )2

—{v/v

2
- (/v e tb) 7 (v’ 2y

(E-11)
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Carrying out the indicated differentiation yields

o

B, = nbrab/vtb[(zéfzzazfazz + (122 - 321/238/82) (12 +

2
1/(22)14(2) - e % /71/2)) = nbrab/vtb[EE/z2(¢(z)/z3 + 201 -

2 2
1/(22%)147(2) -+ [z + 1/(22)14”"(2) - 272 /272 + 42272

w12y b {122 - 32720 (2 + 17221 10(2) + (22 + 172147 (2) -

2
222e"2 77172y, (E-12)

where here

T, > V0, = 192 1327281077027 + ((66 + $8)/2%)20/02]

(E-13)
and
(86 + 6¢) =T - vv = (T22 = 33)/2°
(BE-14)
Noting that
2 .
$°°(2) = -dze ® Jnt/? (E~15)
2
- _ -2 1/2

2
$°7(z)/(22) = -2¢"% /7Y? = _47(2) (E-17)
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then eq. (E-11) becomes

>

Dab = nbrab/vtb[;;/zz((¢(z) - z¢’(z)}/z3 + ff%z - EE)/z4
(z6(2) - [(6(2) - 26" (2))/(22) )] = n. T, /v, [223E(2) /2"

v+ {T22 - 22)/2°0(2) - E(2)))

or

Dap = M ap/VIZWE /v ) /v2 4 (T2 - T /vP (e tvlvy) -

g(v/ 1)1
Vb (E~18)

For an isotropic distribution function such as a Maxwellian

the diffusion tensor is diagonal i.e.,

D 0
ab ~ Dab E )
0 0 Dab

(E-19)

where

Pap = 20l 8 (V/vy ) /v
(E-20)



282

: ahd

AL

Dab = nbrab/v[¢’(v/vtb) - E(V/th)]

(E-21)

n £L

Defining the characteristic frequencies Nap and .y for
the parallel velocity diffusion and pitch angle deflectioen

rates respectively such that {[89]

" _ [ 1] 2 _ 3
Nab = Dap/V™ = 20T Elv/v ) /v
(E-22)
and
+ 2 3
N,y = Dab/v = nbl"ab[Cb(v/vtb) - E(,v{vtb)]/v
(E-23)
then
- "o o L e 2 ++)
Dy, = NapVV *+ nab(IV - vv).
{E=24)

Finally, using egs.(E-10) and (E-24) in eq. (2.3-5) and
{2.3-6) yields the desired result for the test particle

component of the collision operator, namely

£L -+ 3.
Copfa17fpo) = Ngplfag + V/V I )

(E-25)

where
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L= (vxV)-(Vx¥)/2 = 1/(25in6)3/36 [sinB3/38] + 1/(2sin20)
2,..2
/3¢ (E-26)

is the pitch angle operator and

_ 3 s " ,_,_.
Iab =V mab/mb(r'ab LY $v/(2mab))
(E-27)
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~
R =3

2. 2 2
v =v. + V" = 2vVcosy = v2 + V2 + 2vVcosd

FIGURE (E-1)

VELOCITY SPACE COORDINATE SYSTEM FOR THE TEST
PARTICLE COMPONENT OF THE COLLISION OPERATOR
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APPENDIX F

THE FIELD RESPONSE COMPONENT OF THE FOKKER-PLANCK COLLISION

OPERATOR

In this appendix, the linearized field response
component of the Fokker-Planck collision operator is
calculated. To accomplish this tasgk, the Rosenbluth
potentials functions can be expanded in terms of spherical
harmonics. Commencing with the first Rosenbluth potential

then [88]:

- i R 3., (8-1
hab E(ma/mab)%,fbl‘v }v<P£(z)d \AVAN ) - i(ma/mab)

v - (2 - o
Uy fpy (v (42) gy - (4D ﬂ,fbl(v’)vldv’/v’(l-l)]

IIZ“ 5T SinG'PR(z)dB’d¢‘] _
¢"=08 ’=0 (F-l)

where z is equal to the cosine of the angle between the test
and field particle vectors (see figure F-1 ) and v 1is ﬁhe
greater and v_ is the lesser of v and v'. Likewise the
field particle distribution function can be expanded in a

spherical harmonic series of the form:

= zzzalt) ¢4

L} .+ () )
blmn mn LA £ /v( o

£ . - e -
b1 v’} (07,47 £, PAp1 eV g

Lmn
(F=2)
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Combining egq.(F-2) with (F-1) and employing the integral
identity
Tr - rd - - - e
1" 57 sine 13 87,0710, (21a07a” = anx B (0,008 , /(20 + 1)
¢ =086"=0 !
(F-3)

gives

- Lev o (2) L) ~(2+2 .
h,, iiiéwma/(mabv(2ﬁ+l))[1/v Al g Yén (8, 0yv- 2 gy

¢ oyt op () ¢ Yéﬁ’(9,¢)V’(l-£)dv']

v blmn b0 (F-4)
or
= L overl). > (%) _.(L+2) - L
hab = §4nma/(mabv(2£+1) [1/v fo [Abl 2V v fbodv /v( )]
L 0o . {1~
£y B ) S0 e Qe oy By
(F-5)

Introducing the integral operators *Eg:}'%) and +82?%) which

are defined such that

i) § v eri) . (5+2) i
ab(j) dn/v Q) Abl v fbodv

(F-6)
and
7f{i) = 4n/vjfm*igi)v’(j+2)f dv”

b{i) ~ 0 b0
(F=7)
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then eq. (F-5) can be expressed as follows:

Im/ (m_ v) fagt) o+ i) v 21y v )

h " (L) b-{2+1) 72V

ab ~

(F-8)

In a similar manner, the second Rosenbluth potential

function can be expanded in terms of the generalized
Legendre polynomials to give

9. = 3 v /v (l 1)

EE; 1 V) [v /v,) /(2£+3) - 1/(2£+1)]v Py lz)a’v

= i([fovfbl (v™) [V’(£+4)/((2£+3)V(£+1)) - va(£+2)/((22_1)v(£—1))

tav + 178, vy v )/ (2aa3)vs BT Wb (2am1 v 73,
]dv'][f21T 5T sin6 "P, (2)d8°d¢”])
$7=06"=0 (F~9)

Combining the expansion series for the field particle

distribution function with the above expression gives

(2+1) v, (2) (1)

0 blmn mn

= LIE47/(22+41)11/ (22+3) (1/v -(2+1)

Lmn

9ab (6,0)v

£, dv7+ v 2o Aéi;n (2) (g, gyv-(1- De avi) - 1/(22-1)

(2-1) vy (£) ,(R)

(1/v . Ablmn mn

(6,8)v ’(2+2)fb0dv + v Aéi;n 4 (0, 4)

(£+2)fv[*"%£) +(£)

;(3—.?:) - -
v fipdv) ] = i4vn/(2£+1)[1/(2£+3)(1/v ATV

/V(ﬁ)]v,(l+l)f dv-+ v(£+1)fm[*ﬂ{1) (2)/v(1)]v,(1—2)f

b0 Bp1 gV dv~)

b0
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- 1/(22-1) (1/v”“f0"[*p?gi"ﬁ”"/v‘“1v““2’fb0dv‘+ ALt?

w L) (R) , (L), .(3-2) .

Finally using egs.(F-6) and (F-7) in eq.(F-10) yields the

desired result, namely

CoporEtE) “12) 20 s
Jab Ev[(ab(£+2) * By (ae1))/ (2243) - gy * éﬁ(i-z))
72e-131,5 M/ 2041y 0 M)y

(F-11)

With the functional structure of the Rosenbluth
potential functions formally established, the field response
component of the collision operator can now be constructed

by combining eqgs. {F-8) and (F-11) with eq.(2.3-22)

= pictd).2(R) , ()
“ab'faprfp1) = E(C,p v /v E,

0
(F-12)
where
<%}y _ <L) 2 2
Cap = 4™ T pAny Fpo/My + 2T /v (2 v/v )7 - 1 (le + 1]
(2 + 2) {at®) + g Y/ (2v(2% + 11(2% + 3]) - £[% - 1]

b(2+2) b~ (2+1)
L) )

*b(2) b(1-g))/ (2v028 + 11120 = 1]) + [& + 1)1 ([% + 2]
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“%)
%p(a+2) ~ 134 41§ﬁ£}£+1))/(2v[21 + 1102% + 31) - ({1 -

£ .
T PAL I T B )V (2vi2e + 11028 - 1) + m_ ([% +

Pk -’{Fv)
(F-13}

Note that in obtaining the above expression the following

tensor identities have been used

*Eg%;)/dv = 4rv’ R -zi)fbo - Jig?))/v

dSi v = - B e - EEL v

5D - Gt -vm'ﬂm, PRI

AR TSR A AL s I AL & Al
7,18, Y = (G R 1 FINIT ¢ ey Y
?v.["z{?(i-l-l)] = (/2 - $;++ (3+9v)+1?),1-\'r(9‘)

'v’v.["'}?;(“z)] = ((v/v3) - ‘;' b (aenfR) o (D)

ﬁv-fﬁ}£;1)$fﬂ1] = (3/V2)'3;H}3(2+1) +*§1£_1)$(2_1)

v -K ; 3(“11‘ = ((v/v ) oV K + (2+£)K)M Hyv (2 1)
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s Gro?) T 2y, T

- . -*(f.) T > 2 - . o _
VK(£_1]V 17 = (vv/v )'-VrvK(sz,—l)VM 1)
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Zz = cosbcosh” + sinbsind cos(d ~ ¢7)

FIGURE (F-1)

VELOCITY SPACE COORDINATE SYSTEM FOR THE FIELD
PARTICLE COMPONENT OF THE COLLISION OPERATOR
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APPENDIX G

THE CLASSICAL COMPONENT OF THE FRICTION-FLOW CONSTITUTIVE

RELATIONSHIP -

In this appendix, the lowest order classical component
of the total friction-flow relationship is computed. To
this end, the £ =1 harmonic component of the O(é 1)
gyroangle dependent component of the particle distribution

function can be expressed as follows:

" 1
(1) > 2 5 3/2
fa = 2V_,_/vta gU-'-alj J (x }F
where thé perpendicular flows ] . are given by

+alj
eq. (2.5-22). Combining eq.({(G-1) with egs.(3.5-1) and

{3.5-3) yields

Y

e B L
<(n“:cFa(j+1)):{n"> = -EE<YJ BYib1s”
(G-2)
where
3o, = < S B3 26D B} 2 ey el ) - mypn/mn )0
3!2 2,=3/2, 2 3/2 3/2 2
{nba 3 ()17 (xb)}aj’o + {nab 3 (x )}{nba 3 )}5j’1
Q _2=3/2, 2 Q 2= 3/2 Q 4
/{n Bl - (pb/pa){nabxaL] (x a)}{nba bl (xb)}G 1/{nab 2l
K _2-3/2 K 2- 3/2 i
- {n Nab aLj (x )}{nab a R x }53 l/{nab a}]U-'-blﬂ,> *

(G-3)
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APPENDIX H
THE BEAM ICON DISTRIBUTION FUNCTION

In this appendix, the drift kinetic equation, which
governs the behavior of the fast beam ion's distribution
function in a tokamak plasma, is develoﬁed and solved in the
banana regime. To obtain the desired kinetic equation, the
beam ion Fokker-Planck collision operator must first be
constructed, Now for most present generation beam injected
tokamaks the beam ion injection speeds satisfy the criterion
Vea << VBo << Viar consequently the flow velocity of the
ions and electrons in response to the beam can be neglected.
In essence, this implies that the total beam jion collision
operator can be adequately represented by the test particle
component of the collision operater. Another consequence of
the injected beam ion's velocity, which serves to simplify
the functional structure of the beam ion collision operator,
is that the slowing down, parallel diffusion and pitch angle

scattering rate characteristic frequencies can be

approximated by their asymtotic forms. 1In particular,

BEAM ION-ELECTRON INTERACTIONS

.. s
Limit {n2 ) > nm /{m., T)
x_ o bPe e e Be s

(H-1)
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Limit (ng_) = Limit (TS’B ) -~ 0
x_ =+ 0 x + 0 €
e e (H~-2)

BEAM TON-BACKGROUND ION INTERACTIONS

. s - 3
leitm(nBi] mi/(mBiTs)(vc/v)
X (H-3)

"

X, - o

i (H-4)
Limit (ngi) > mi/(mBTS)(Vc/V)3 = (mBi/mi)ngi
X + @ (H~5)

where in obtaining egs.(H~1) through (H-5) the following

limit relationships have been employed:

Limit (£(x_)/x,) > 4/(3/1)

Limit (£(x;)) + 1/(2x2)

X, > (H-7)
Limit (6(x;) - £(x;)) ~ (1 - 1/x3)

X, *

i (H-8}

and have defined the Spitzer slowing down time ({107] T and

the critical velocity [110]} Ve such that

3 _ 2 3
Ts = 3'/ﬁ“'levtez/UhuB”eFB«a) - 3'/ﬂzimevte'/(‘q'mBnerBi)

{H-9)
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and

- 2 1/3
Ve (3/wzinime/(4nemi)) v

te’
{(H-10)

respectively. Finally combining egs.{H-1) through {(H-5)

with eq.{(2.3-10) of chapter II yields

Cplfy) = jch(fB,Fj) = Cp (£5F ) + IC

(f.,F_)
a#eBa B’ a

Vi Py T+ TEg] 4 B/ (21) (W /v Ly

(H=-11)
where
_ 2 2
8 aiénaza/ne)/( aiénazamB/(nema)))
(H=12)
and
v. = Iv
¢ c .
ae’ (H-13)

With the functional structure of the beam ion c¢ollision
operator formally established, the desired kinetic equation
can be now constructed. For the purposes of thesis, only

those beam ion velocities which lie in the velocity range
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Vig ¢V < v will be considered since the emphasis in the
text of this thesis is on ion transport. BAs a result, the
effect of the electric field on the beam ion distribution
function will be neglected in formulating the beam ion
kinetic equation. In addition, for the Jlowest order

approximation considered here, the charge exchange effects

{T

cx >7 Tg) will be ignored in this analysis. In view of

these assumptions the beam ion kinetic equation can be

obtained by combining eqs.(2.2-3}) and (H-11) to give

- - 3 - -
BER/RE + Vu-TEy = T/ (r )T v+ T )£ + B/ (20 ) (F_/v) ey

+SB

(H-14)

where S(fB) is the external source term.
To obtain a solution to the beam ion kinetic equation
in the banana regime, the beam ion distribution function can

be expanded in powers of Yg 3

+ + e

f8 = X9%m ~ 98 * IB(1) * * 98 (n)

(H-15)

where Y. = nS/m with being the bounce frequency

B tB tB
of the beam ions Ny is the Spitzer slowing down frequency
and 9B (n) O(Y;) . Using this series in eq.(H-14)

gives the foilowing hierarchy of kinetic equations:
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0 - >
Of{y.): vaVg =0
B B(0) (H-16)
Olrg):  3gg gy /2t + Vu-Vgg ) = v/t vV w? + $eg )
+ BT /) Lay 5/ (21,) + S5
(H-17)

etc.
The solution to eq.{H-16) can be obtained directly by

integration with the result

(H~18)
Using this .solution in eq. (H-17) yields
-+ -+ - -3 3 3 3 _3
BhB/at + V.."VgB(l) = V/(TSV )‘vv[(v + Vc)hB] + B/(ZTS)
(Vo/v) Lhy + s, ..
(H-19)

To obtain the functional structure o¢f the surface
function hB’ the bounce averaging operator is applied to

'both sides of eq.(H-19) yielding

PASSING BEAM TONS

TNy /at)BYgdx/va = TR/ (1 v T (P g+

- 3
B/ (21 ) (v /v)"Lhy + S)BYgdx/v, (H=20)
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TRAPPED BEAM IONS

! 1
L X2 (3h, /3t)BYgdx/|ve] = T SX2(% 3, 3 -3
o1 X1 g/3t)BYgdx/|v.] cj=_l.i')(l(v/('rsv ) ﬁv[(v + 92)

hgl + 8/(2t ) (V_/v) Lhy + S;)B/gdx/|v.|
. (H-21)
where here the pitch angle basis {i,v} has been employed
in constructing er.(H-ZO) and (H-21). Now since the
functional structure of the beam ion distribution function
is only needed to calculate the quantity (vc/vB)B, which is
relatively independent of the toroidal effects inherent in
tokamaks, the smaller order toroidal trapping effects will
be neglected in this analysis, and therefore only the
passing regime will be considered here. In order to
facilitate the ensuing analysis, a change of velocity space
variables from the pitch angle basis to the velocity basis

{z,v} is made where

(H-22)

In terms of this coordinate basis set the pitch angle

operator assumes the general form

L = 2<Bz>1/2vu/(VB)3(kv“/v8/8A)/ak - <B2>l/2v"/(vgB)8((1 -

2
goyv. /(vg}ad/acy/ag (H-23)
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and therefore eq. (H-20) can be expressed as follows:

_ > 3 3, - -
Phg/at = v/ (r v ) T 107 + Tyl + 8721 ) 5_sv) 3 (1/a(2)

201 -t c(z)ony/921/32) + §

(B-23)
where
a(z)y = z<8%2/ (2nysae/15%8 - (B - <B2>1/2)1/2 _
2
2L /mK(2e/2°)
(H-24)
and
€(2) = 1/7(2nz<B® 1/ 2)5 1028 - (3 - «82>1/2);1/249 =
2
2/TE(2e/2%)
{(H~-25)

with the functions E and K representing elliptical integrals

of the first and second kind and S_, is a bounced averaged

B
source function, Note here that for the sake of simplicity,
the to large aspect limit has been assumed in obtaining
eq. (H-23). Now for the lowest order approximation
considered here, the functions «a(L) and x(Z) will be
approximated by their limiting values near r =1 . Now
upon using this approximation for eq.(H-23), transforming
the result to a coordinate frame which is moving with the

plasma and using the Galilean invariance property of the

collision operator yields
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> 3 - -
Tedhp/at = (W)U + St v B G_md26a - o)

5h./3z1/3C) + 1 8
B s°B (H=-26)

the solution of which can be obtained by separation of
variables. In particular since the angqular component of
this eqguation reduces ¢to Legendre eguation, then the

solution to eq.(H-26)} can be expressed in the separable form

hp(r,z,v,t) = i hpo (X, V,£) P, (5)
(H-27)
where P, (L) are the Legendre polynomials. Combining

egs. (H-26) and (H-27) gives

_ = 3 > 3 -
BTy (B)ohge /ot = DIRy (2) (W/v2) -0, 0007 + @ngy1 + By /m

2 ~
hpe /2301 - )P, (5)/881/88) + 1_S_,P, (2)]

(H-28)

Noting that-

ar(1 - t¥)ap, (z)/ac)/ac = -2(2+1) P, (%)
(H=-29)

and

1
3 Po ()P _(z)dr = Z‘Sm,a/(“ + 1)

(H~30)
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then multiplying eq. (H-28) by Pm(€) and and using the above

>, 3 3. -3 -
Tgdhg /3t = (/T 0+ Fhpe + 87N Ly /2

(H-31)

where here the source function function has been defined

such that [120]

Sglr.5,v,t) = ESBR(r,V,t)PR(;) = ES(I)H(t)KEG(V = Vgq)

2
P, (2)/V (=32

with H(t) being a step function which is unity only when the

beam scurce is turned on and

S(r) = By = (I,/e}H(r)/((21Ry) (1a))

(H-33)

with I0 being the neutral beam equivalent, (ZnRO)(naz) being
the plasma volqme and H(r) being the spatial shape factor
(121].

To solve eq.(H-31), the order of the differential

equation is reduced via the transformation [122]:

VBt = —(V° + Gg)/(rsvzl
(H-34)

therefore
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3, =3 3, =3, _ _
-1/(3TS)B(V + vc)/(v + vc) = -3t

(H-35)
or

(Ts/3)ln(v3 + 52) + t = k = constant
' (H~36)

Upon making the dependent coordinate transformation from

(v,t) to (k,t) gives

an /3 , 3, =3 ,2°% v
T 3hy, /3t v = (VT + V) /v athfavlt = rs(ath/atlk + 0k/ot

v 3, =3, ,42 ~ iy
dhpe/0k) = (V7 + v ) /V"(3k/3V) (3hy,/3k) = 1 _3h, /3t

k
(H=-37)
where
Y
_ 3 =3
th = (V~ + Vc)hBi
(H~-38)
and
N,
_ 3 =-3.
SBR = (V" + vc)SBR
(H-39)

In view of egs. (H-34) through (H-39), then eq. (H-31) reduces

to the following:
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A, . N
T dh  /3t] + B(V_/V) 2 (n+1 -
s°"BR . e (2+1)hp, /72 = 1 _s.,
(H-40)
the standard solution of which is {122]

U
h =

= 3 LN = 3
a2 e-f[B(vc/V) 2(£+1)]dt1(2TS)(ISBEeI[B(Vc/V] £(g+1)]dt

/(ZTS)dt) . ,
(H-41)

Using eq. (H-36) for dt in the above expression and carrying

out the indicated integrals gives

FB (/31 1t/ (21 ) = -B2 (2+1) /6 (S (7, /v) *A(v) /(07 +

V2)) = - (BL(L+1)/6) InT (V> + T2} /v - (H-42)

and

n 3 '
fSBlef[B(vc/V) E(1+l)]dt/(2Ts)dt _ STSKRI[(V3 + 52)/V3]£(1+1)Bf6

_ 3 -3, ,.3 J2(2+1)B/6
(Vv - vBo)dV = STSKQ[(VBO + vc)/vBO] e13)

Finally combining eqs. (H-42) and (H-43) with eq. (H-41) gives

the desired result at time t = 0, namely
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_ =3. 2(L+1)B/6
hBE = [8T K (VBO + vc

L(2+1)B/6

) 171 (v +

(V/VBO)

3+ 2{2+1)8/6)

(H-44)

or in view of eq. (H-27)

- -3, %2 (2+1)B/6 2(2+1 6
£, = (ST Kg(vho Vo) (L+1)8/

z 1713 +

(V/vg0)

(H-45)
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APPENDIX I

CALCULATION OF THE PARALLEL FRICTION-FLOW CONSTITUTIVE
RELATIONSHIP FOR A TWO SPECIE BEAM INJECTED PLASMA IN THE

LONG MEAN FREE PATH REGIME

In this appendix, the lowest order parallel collisional
friction moment (i.e., j = 0) is calculated in the banana
regime for a two specie beam injected plasma consisting of a
dominant hydrogenic ion and a light impurity ion. For
simplicity, the large aspect ratio /low beta limit will be
assumed in this calculation. Using eq.(3.5-5) of the main
text of .ihis thesis, then it follows that the desired

neoclassical friction-flow constitutive relationship becomes

~ 1
s _ =0 =08 by
<In, RiZ/B> = E[(<IYiZU“i1£/B> - <IYZiU“212/B>) + (<IY2§*

—02
Unj19/B> = <I¥,{*Uu,q,/B>)) (I-1)

where the coefficients 7-2 and 7 0%

iz Y,; are given by

eq. (3.5-6) for j = 0. To calculate the distortion component
of eq.(I-1l), eqg.(3.3-73) can be used in conjunction with

eq.(2.5—23) to give

11
-0 . —2km -
I¥;,*Vnjq9/B> = ii(uiz <n T, /B> + ”§§m<(ni)£IU§1£> +

- Lkm
Yig <njIVup/B>) (I-2)
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and
11
-0%, _ 4k

“TVgiUngye /B> = ii(u <nzIUX 12/B> + Hoat<(n ) vk > 4
=Lkm
Y,g <n_IV, /B>)

zB z B (1-3)
where

pikm _ glkm , glkm
12 12z 1Z
(I-4a)
and
-fkm _ =fkm =%km
Vzi = Kzi * M,
{I-4b)
with

tkm _ =3/2 3/2 =B=- 3/2 2, -+ ,-B _
ki, = m/lILy (x2 ) }[{n (x2 §) UEE “xpny/ag -

Br3/2,2 7 /B _ 3/2 2,.2y _ (sBs3/2,.2
,{fT X (xi)ni/ni})ﬁm,ksl,o ({[L (x)] } {chk (x])

23/2 ) RS/MEN 6, (64 1))

(I-5a)
| iim = m, /ULy 2212 (RS T2 2y LEBEY /2 2yt /il -

B- 3/2 2 -B _ 3/2,.2,.2y _ [eB=3/2,.2
{f (xz)n /n 18 'k 2,0 ({[L (x)] } {E L “(x))
=3/2, 2, -s5,-B
Li (xz)nz/nz})sm,kaﬂ,ll}]

(I-Sb)
-2km 3/2 $3/2 B-3/2 =B
Bt = m A 2 e 1P ag T 2 (D) 1(2RE) 2 (o d) afTe g, 0/M1 -
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Br3/2, 2 n
[E L, " (x .)A]:T B}) - m,n_/(mn, )(fB 3/2(" )Az1 2,0/"2 2 "
3/2(x2)Akm/ 1] (I-6)
gkm _ 3/2
2i ® mUE 261?522 ) ((BBEY/2 (2 BETs 0,0l
- {F L3/2(x )AX 2/Moh) - mon./(mn ) (EBE3/2 (2) phm n
2!V - omyng/mn,) (L U GIaTsy ofn)
- (E5)/2x3)ak /3B 1)
(I-7)
Vit = m E 2612 1R L0322y (382372 (x2) 7S
iB [ n (x )[f L, (x )YlBGR 0
=B B- 3 2 -
/R% - (5% /2 (2 )YLB/ n3)1}]
(I-8)
ZB ’] [ nz:. £ (X )[f (x )YZBGR 0
/B - {f §3/2 (x2 )Y /-B}]}]
z i N2 (I-9)
and
km _ 3/2 s
Aap = NapUmpyipaE f () 3/ mn 3t
(I-10)

Note here that in obtaining the above expression the
distortion component of the particle distribution function
has been neglected in the evaluation of the c¢ollisional

field momentum restoring terms associated with the function
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C?E and CEE since only the lowest order coupling is desired.
Finally, combining egs{I-2) through (I-10) with

eq.(I-1) yields the desired result, namely

A 111
. _ £km X _ Shkm, X
<In,:* R /B> = :El}iz[(vlz <ngTULL o /B> Vi <n IU+Zlm/B>) +
m
=Lkm, X _ =ikm x =Lkm _
(niz <{n i) IU11m n,i <(n)) IU o)+ (¥ig <nyIV.,/B>
£km
zB <nzIV"B/B)”
(I-11)
where
Stkm _ ;%km + Ghkm
1z lz 12
—gkm _ -%km . —Lkm
Voi T Ygi T Vi
=Lkm _ -f&km =2km
Niz = Yiz ¥ Vi,
and
=-2km _ -2km =Lkm
Nzi = Yzi F Mzi
with
=Lkm _ -0%
Yig = Yiz‘s
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and

-2k -0%

Y, o =¥

Z1l 8 .

zim,%

Note that the above expression for the parallel friction
moment can be generalized to the case where one (or both) of

the ions are in the plateau regime by simply replacing fT

with  £,(V) = f?/(l + {fglfgi) .
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