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Summary 

A two-frequency correlation reflectometer has been designed, built, and op­

erated on the Advanced Toroidal Facility (ATF) to measure plasma density fluc­

tuations. This reflectometer uses quadrature phase detection to allow true phase 

measurement of the reflected microwave signal (probing beam). By measuring the 

phase fluctuations in the reflected probing beam, it is possible to estimate the am­

plitude of the density fluctuations. Simultaneous two-frequency operation makes it 

possible to measure the coherence between fluctuations at two radially separated 

cutoff layers, from which the radial correlation lengths and wave numbers can be 

estimated. 

This reflectometer has been used to study the density fluctuations in the edge 

density gradient region in low-density ATF plasmas with electron cyclotron heating 

(ECH). These studies have revealed globally coherent turbulence having a radial 

correlation length ~ 5 cm, a radial wave number h? ~ 0 c m - 1 , and a poloidal wave 

number kg ~ 1 c m - 1 . The fluctuation rms amplitude reaches a maximum (~ 5%) 

at the plasma edge and decreases with radius to a level of < 1%. Simultaneous 

measurements with the reflectometer, heavy ion beam probe and fast reciprocating 

Langmuir probe, provided verification of the measured fluctuation amplitude. 

A comparison of the results of these measurements with theoretical models 

shows that the pressure-gradient-driven resistive interchange instabilities are a likely 

cause of the observed turbulence. 

xvi 



CHAPTER I 

INTRODUCTION 

The goal of magnetic fusion energy research is to produce a safer, cost-

effective energy source. Net energy is produced when high-energy isotopes of hy­

drogen fuse to form helium. The realization of this goal will require the solutions to 

many technical obstacles. The technical problems stem from the high temperatures 

and pressures required to make the nuclei in the plasma fuse. These problems can 

be classified as engineering and physics problems. The engineering problems include 

such things as what structural materials to use in a fusion reactor and how to main­

tain the reactor after activation by the neutrons released by the fusion process. The 

physics problems are more basic to the whole fusion process. Mainly, the plasma 

is not as well confined by the magnetic field as neoclassical or diffusion theory pre­

dicts. The lack of particle and energy confinement is a common area of research 

in the fusion community. Some sources of particle and energy loss have been ex­

plained, but the majority of the losses have not yet been successfully explained and 

are categorized as resulting from anomalous transport. 

Fluctuations in the plasma parameters — density, temperature, magnetic 

field, potential, etc. — are thought to be one source of the anomalous transport in 

toroidal plasmas.1 Measurements of these fluctuations can provide the information 

necessary to identify the instability or instabilities, and may make it possible to 

avoid the instabilities through better plasma control or a change in the magnetic 

configuration. One technique for measuring density fluctuations inside a plasma is 
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microwave reflectometry.2-3'4 

The advantage of a microwave reflectometer as a density fluctuation diag­

nostic is its ability to internally probe the plasma without disturbing it. Since the 

phase information in the reflected signal is localized to the cutoff layer, localized 

measurements of the density fluctuations can be made, and by scanning the reflec­

tometer in frequency, a radial profile of the fluctuations can be obtained. These 

fluctuation data can be combined with other fluctuation data to develop a more 

complete picture of the plasma fluctuations and the instabilities driving them. 

The Advanced Toroidal Facility (ATF) is a magnetic plasma confinement 

device with the mission of studying the plasma confinement in a steady-state mag­

netic configuration known as a stellarator. This is an important mission because 

the more common devices — tokamaks — are not steady state and are not likely 

to achieve reactor-relevant plasma pulse lengths much longer than one day. This 

could greatly limit their use as energy-producing reactors. An important part of 

any plasma confinement experiment is the measurement of the plasma parameters 

and their fluctuations. In ATF, reflectometry can provide important information 

on density fluctuations in the plasma interior to help determine their importance or 

relevance to the plasma confinement or lack of confinement. 

Fluctuations and Instabilities 

The fluctuations observed in toroidally confined plasmas are thought to 

be driven by saturated states of fast-growing instabilities.5 Most low-frequency in­

stabilities are thought to be magnetohydrodynamic (MHD) instabilities and drift 

wave instabilities. MHD instabilities are large-scale disturbances, while drift waves 

are small-scale toroidal microinstabilities; both are thought to enhance transport 
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over that predicted by neoclassical theory. Both types of instabilities are driven 

by plasma currents or gradients in the plasma parameters, such as pressure, tem­

perature, density, potential, etc.; however, the instability mechanisms are different. 

MHD instabilities are caused by the fluid-like behavior of the plasma, while drift 

wave instabilities are caused by particle effects.5 

The purpose of fluctuation diagnostics is to determine the spatial struc­

ture of the fluctuations and their wave propagation properties (wave vector, phase, 

amplitude, frequency, and velocity). This information can be compared with the 

theoretically predicted characteristics of MHD and drift wave instabilities to try to 

describe what instabilities are being observed experimentally in the plasma in hopes 

of finding a way to reduce or eliminate them. 

Introduction to Reflectometry 

Reflectometry is a microwave plasma diagnostic technique that can be used 

to measure localized density fluctuations or density profiles. This diagnostic relies 

on the principle of complete reflection of an electromagnetic wave at a cutoff layer, 

i.e., when the local refractive index goes to zero. The simplest case is for the 

ordinary-mode (O-mode) wave where the wave electric field E is parallel to the 

plasma magnetic field B. For this mode, cutoff occurs when the wave frequency u> 

equals the electron plasma frequency ujpe. For example, a 35 GHz wave is reflected 

when it reaches a position where the electron density is 1.5 x 1019 m - 3 . 

A reflectometer is simply a reflex interferometer. An electromagnetic wave 

of generally microwave or millimeter wave frequencies is split into two parts, with 

one part being sent to the plasma and the other part being used as a reference. The 

part of the signal that is sent to the plasma is reflected at the cutoff layer, collected, 
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and compared to the reference signal to determine the phase delay experienced by 

the plasma signal. Any changes in the phase delay are due to propagation path 

length changes resulting from the movement of the cutoff layer. Localization to the 

cutoff layer, i.e., spatial resolution, is achieved since the wave refractive index is 

much more sensitive to variations in the density at the cutoff layer. This means 

that the phase delay due to density fluctuations becomes strongly enhanced when 

the fluctuations are at the reflecting layer. The line-integrated effect of fluctuations 

when the local cutoff frequency is below the probing frequency is small.6 Thus, by 

following this phase difference in time, the movement of the cutoff layer can be 

followed to measure density fluctuations and/or the position of the cutoff layer. 

The Advanced Toroidal Facility 

Toroidal plasma confinement systems, such as stellarators, torsatrons, and 

tokamaks, rely on a helical magnetic field to produce the closed flux surfaces that 

confine the plasma. This helical magnetic field is generated by a poloidal component 

of the magnetic field Bg and a toroidal component B^. BQ goes around the torus 

the short way, while B^ goes around the torus the long way. The average amount 

of poloidal rotation of a helical field line during one complete toroidal rotation is 

called the rotational transform i and when defined in radians is given by 

i Id6\ , x 

*=s=U) (ii) 

where the angle brackets ( ) indicate an average over a magnetic flux surface. The 

rotational transform * can be related to the safety factor q by 

. . • - ; - < £ > . 
where R is the major radius, and r is the minor radius of the plasma. The safety 

factor q gets its name from the role that it plays in the suppression of instabilities. 
4 



In typical stellarators, torsatrons, and tokamaks, Be <C B^, 0 < -t < 1, and 

1 < q < 10.5'7 

The helical field lines are not parallel across the minor radius r of the toroidal 

plasma. In fact, since * is a measure of the average poloidal angle mapped out by a 

field line during one toroidal rotation and is a function of the magnetic flux surface 

and r, a radial profile of * will show that the lines of magnetic force are sheared 

with a change in r. The amount of shearing of the magnetic field at a given radial 

location in the torus is given by the shear parameter8 

rZ dt , x 
9 = ̂ R0Tr M 

where 2irR0 is the circumference of the magnetic axis. Like the rotational transform 

(or the safety factor), the amount of shear plays an important role in the stability 

of the confined plasma.8 

The closed flux surfaces ift generated by the helical magnetic field enclose a 

volume V. The specific volume V of the flux surface ip is then given by8 

, n dV fdt , x 
v = TiT = f ^ (1-4) 

d$ J B K ) 

where $ is the magnetic flux in the toroidal direction <f) inside the magnetic surface 

•0 and the integration of dt is taken along the field line over the entire magnetic flux 

surface. V is proportional to an average of | 5 | _ 1 , so if V is decreasing with increas­

ing r, then | 5 | B V g must be increasing with increasing r. The central region where 

|£?|avg is increasing with radius is called the average minimum-i? region (magnetic 

well) and is important for plasma stability. A measure of the depth of this magnetic 

well is given by the ratio of the specific volume at a radial position r to the value 

at the magnetic axis; that is, the magnetic well depth is V#(r)/V#(0), where V#(0) 

is the specific volume of the flux surface on the magnetic axis.8 9 

In stellarators, the closed flux surfaces are produced entirely by means of 

external magnetic coils, as opposed to tokamaks, which require a toroidal plasma 
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current to produce a poloidal magnetic field to form the closed flux surfaces. A 

classical stellarator has / helical conductors with alternately antiparallel current 

flow that produces a poloidal field in the plasma.10 The net toroidal field in the 

plasma from these helical conductors is nulled, so a set of toroidal field coils is also 

required to produce a net toroidal field. 

The torsatron device is a subclass of the stellarator. It has / helical windings 

with parallel current flow so that the helical windings produce not only a poloidal 

field but a net toroidal field. This eliminates the need for toroidal field coils; how­

ever, separate vertical field coils are required to provide positioning and stabilization 

of the plasma. The distinct advantage of a torsatron, and of stellarators in general, 

is the intrinsic ability to run in a steady state and the absence of disruptive termi­

nations (an instability in tokamaks due to the plasma current) of the discharge. In 

present tokamaks, a continuous transformer action is required to drive the plasma 

current that produces the poloidal magnetic field. Since this transformer action 

can only be sustained for a finite period of time, the discharge must eventually be 

terminated. This termination can only be avoided if some other reactor-relevant 

method of current drive is found. Since stellarators produce their complete mag­

netic configuration in external field coils, no transformer action is required, so the 

magnetic fields and plasma can be run steady state. 

The ATF device at Oak Ridge National Laboratory, shown in Fig. 1.1, is 

an / = 2, 12-field-period torsatron with a rotational transform -t = 1/q between 0.3 

and 1.0, shown in Fig. 1.2. Also shown in Fig. 1.2 is a radial profile of the magnetic 

well depth — V'(r)/V'(0) in ATF, created by an outward displacement of the vacuum 

magnetic axis relative to the center of the last closed flux surface. This magnetic 

well has a stabilizing effect on interchange modes for -c < 0.5, while the magnetic 

shear, indicated by the rapid rise in -t, has a stabilizing effect for -t > 0.5. The 

plasma size in ATF is characterized by the average radius a of the last closed flux 

6 
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Figure 1.2: The rotational transform -t: vs minor radius in ATF shown with a profile 
of the magnetic well depth. 

surface, beyond which the magnetic field is ergodic (a magnetic limiter) or displays 

a separatrix (a magnetic divertor). The plasma aspect ratio for ATF, RQ/OL = 7.7, 

is defined using this average radius. The ATF device parameters are listed in Table 

l . l . 9 

Although the ATF aspect ratio is smaller than that of most stellarators, it 

is larger than that of most tokamaks. This configuration was chosen after study 

of a large number of stellarator configurations and was specifically optimized for 

high-beta operation in the second stability region and for configuration flexibility.9 

Figure 1.3 shows the magnetic flux surfaces and the magnetic field contours \B\ for a 

poloidal cut through ATF at toroidal angles of (f> = 0° and 15°, while in Fig. 1.4 the 

flux surfaces and \B\ contours are shown for a toroidal cut through ATF. Note that 

(f) = 0° is defined as the point where the two helical field coils cross the horizontal 
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Table 1.1. ATF device parameters (1990) 

Magnetic Configuration 

Poloidal multipolarity, / 2 
Number of field periods, M 12 
Standard central transform, t{0) 0.3 
Standard edge transform, t(a) 1.0 

Size 

Major radius, R0 (m) 2.1 
Average minor radius, a (m) 0.27 
Plasma volume, V (m3) 3.0 

Vacuum vessel volume (m3) 10.5 

Magnetic Field 

Maximum field on axis, B0 (T) 
Field flattop time at 1.9 T(s) 
Field flattop time at .95 T (s) 

1.9 
5 
20 

Plasma Heating 

ECH 0.4 MW, 53 GHz, steady state 
NBI 2 MW, 30 kV, 0.3 s 
ICH 0.1 MW, 29 MHz, 0.1 s 

9 



midplane. One field period begins where the helical field coils cross the midplane 

and ends when they cross it again (i.e., when they undergo 180° of poloidal rotation). 

Outline of Dissertation 

In the following chapters, the theory and application of reflectometry are 

reviewed, and then the ATF reflectometer and the results obtained with it are dis­

cussed. In Chap. II, the basic theory of wave propagation and reflection is presented 

with special attention paid to the calculation of the phase delay experienced by the 

wave. A geometrical optics approximation is sufficient to model the wave propaga­

tion in the plasma, except near a cutoff where an exact solution of the full wave 

equation is required. The assumptions or conditions necessary for the applicabil­

ity of the theoretical treatment of the wave propagation are not always satisfied 

in all plasmas. The failure of these assumptions and conditions and their possible 

implications for reflectometry on ATF are discussed. 

In Chap. I l l , the application of reflectometry as a density diagnostic on 

toroidal devices is discussed. Reflectometer experiments have two basic operational 

schemes. The first is fixed-frequency operation for measurement of the phase delay 

due to movement or fluctuations of the cutoff layer. In the second scheme, the 

reflectometer probing beam frequency is swept, and the density profile is determined 

from the measured phase delay. The basic theory used on existing experiments to 

interpret these reflectometer fixed- or swept-frequency data is reviewed in the first 

part of this chapter. In the next section of Chap. I l l , the experimental techniques 

and microwave hardware used on existing microwave reflectometer experiments are 

reviewed. In the remainder of Chap. I l l , reflectometer experiments are discussed, 

10 
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Figure 1.3: The flux surfaces and the magnetic field \B\ contours for two poloidal 
cuts through ATF at the beginning of (<f? = 0°) and halfway through a field period 
(<t> = 1 5 ° ) . 
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Figure 1.4: The flux surfaces and \B\ contours for a cut through ATF in the hori­
zontal midplane showing one full field period. 
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concentrating on experiments in toroidal devices. A summary of present and past 

reflectometer experiments is given. 

A review of instability theory with application to ATF is given in Chap. IV. 

This chapter begins with a discussion of the importance of fluctuations to transport 

in toroidal devices. Next, the basic concepts of instability analysis and the charac­

terization of instabilities are discussed. Finally, the major categories of instabilities 

presently predicted by theory are reviewed, with consideration given to the ability 

of a reflectometer to observe their presence in ATF. As discussed in Chap. I l l , re-

flectometry can measure the amplitude, radial width, and correlation length of the 

density fluctuations. In the discussion of each instability, equations are given to 

allow estimates of the fluctuation rms amplitude produced by an instability. Also 

given are estimates of instability mode frequencies and radial widths. The chapter 

concludes with a summary of the instabilities and gives estimates of their fluctuation 

rms amplitudes, mode frequencies, and radial widths. 

Chapter V reviews fluctuation data analysis with application to reflectom-

etry on ATF. The primary tools of fluctuation data analysis, the Fourier transform 

and the cross-correlation function, are reviewed and discussed. Attention is given 

to the common mistakes made in fluctuation data acquisition and analysis. 

After this review of theory and techniques applicable to reflectometry on 

ATF, a thorough discussion of the ATF two-frequency reflectometer is given in 

Chap. VI. The basic design criteria are discussed, and the final reflectometer sys­

tem as installed and operated on ATF is described. The important elements of 

this reflectometer, i.e., the antennas, quadrature phase detectors, and differential 

amplifiers, are discussed in detail. The significance of the helical magnetic structure 

of ATF with respect to the alignment of the dual antennas is summarized, and the 

problems with mode selection in moderate- or high-shear devices such as ATF are 

reviewed. Also discussed are the estimates of the spatial resolution of the probing 
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beam and the system noise limitations. Finally, the phase detection technique that 

makes two-frequency operation possible and minimizes the potential for cross talk 

is discussed. 

Because the ATF reflectometer made substantial gains in readily providing 

the phase fluctuation data from the probing beam and radial coherence data, new 

data analysis techniques were necessary. In Chap. VII, the techniques used and 

the problems with obtaining the phase data from fringe counting of the quadrature 

phase signals are discussed. Equations for converting these phase data to an esti­

mate of the density fluctuation amplitude are derived, as are equations for estimat­

ing the uncertainty in these amplitudes. The determination of the cutoff location 

and its uncertainty due to random errors are discussed. The use of two probing 

beam frequencies simultaneously provides the signals necessary for radial coherence 

measurements. The technique used to estimate the radial correlation lengths from 

these coherence measurements is given, as is an estimate of the uncertainty for the 

calculated correlation lengths. Finally, estimation of the radial and poloidal wave 

numbers from the reflectometer phase signals is discussed. 

Chapter VIII presents two sequences of electron cyclotron heated (ECH) 

discharges in ATF. (The reflectometer data from these discharges are analyzed in 

detail in Chap. IX.) First, the sequences are described and their parameters given. 

Examples of the reflectometer data for these sequences are shown and key features 

discussed. Similarities in the fluctuation spectra with measurements made simulta­

neously with the fast reciprocating Langmuir probe (FRLP) and the heavy ion beam 

probe (HIBP) are shown and their significance discussed. Further comparisons of 

the measurements made by all three diagnostics are given in Chap. IX. 

Chapter IX includes the detailed analysis of the reflectometer data for the 

two sequences described in Chap. VIII. The data analysis methods presented in 

Chap. VII are used to quantify the measured fluctuations as completely as possible. 
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The density fluctuation profile and its uncertainty are calculated and compared to 

the HIBP and FRLP measurements. The radial coherence data are used to calculate 

the radial correlation lengths and the radial wave numbers. Also calculated are the 

poloidal wave numbers, which show good agreement with those values measured 

at the plasma edge by the FRLP. Finally, the instability models expected to be 

important in ATF, as discussed in Chap. IV, are analyzed for these sequences. 

The density fluctuation amplitude profile calculated for the resistive interchange 

instability is found to show good agreement with the reflectometer measurements. 

The importance of this instability and its consequences are discussed. 

A summary of the material presented in this dissertation and the results of 

the ATF reflectometer is given in Chap. X. The advances of the ATF reflectometer 

in providing quantifiable fluctuation measurements are summarized, and the limi­

tations of the diagnostic are discussed. The significant unknowns that still exist in 

the theory of reflectometry lead to the potential for systematic errors in the data 

presented in this dissertation. Suggestions for future reflectometer experiments with 

the ATF reflectometer and/or reflectometers of similar design are given. 
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C H A P T E R II 

REFLECTOMETRY THEORY 

Wave Propagation and Reflection 

Cold P l a s m a Dispers ion Relat ions 

At present, most plasmas under study in fusion experiments have electron 

temperatures below 5 keV. In this case the electron thermal velocity VTC is much less 

than the speed of light, VTe/c <C 1, and the cold plasma approximation is used to 

study the propagation of most electromagnetic waves, as long as absorption can be 

neglected. Another simplification made in studying high-frequency (a; ^> a/ci) elec­

tromagnetic wave propagation is to neglect the ion motion since mi/me «C 1, where 

rrii is the ion mass, me is the electron mass, and o;cl- is the ion cyclotron frequency. 

Finally, it is assumed that there is no collisional damping on the time scale of the 

plasma electrons (u>pe, o;ce), as required for a cold plasma approximation to hold. 

This assumption is valid since the natural electron frequencies are > 1010 s_ 1 , while 

the electron-ion collision frequency is ~ 10~5 s_ 1 . These assumptions greatly sim­

plify the electromagnetic wave propagation problem; however, they do not remain 

valid near the electron cyclotron resonance. Wave propagation and interaction near 

resonances are discussed later. Miyamoto8 gives a derivation of the cold plasma 

dispersion relations beginning with Maxwell's equations and the electron equation 

of motion. The rest of this section is based on Miyamoto's development. 

In reflectometry experiments in toroidal plasmas, the electromagnetic waves 
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are usually launched and received with the wave vector k perpendicular to the 

local magnetic field B. In this case, two types of wave modes are possible. In the 

simplest mode the wave's electric field E is parallel to B so that the wave propagates 

as if it were in an unmagnetized plasma. This "ordinary" wave is referred to as 

the "O-mode." If the wave propagates with E perpendicular to B, it is called an 

"extraordinary" wave and is said to be propagating in the "X-mode." 

The refractive index N of a wave determines whether the wave will propa­

gate, be reflected, or be absorbed. TV is related to the wave number k by N = ck/u>. 

For the O-mode, the index of refraction is 

w i 7Vz = l - - f (2.1) 
iV 

where LU is the wave frequency, and 

w. 
V e0m( 

(2.2) 

is the electron plasma frequency. In this equation ne is the electron density, e is the 

electron charge, me is the electron mass, and eo is the permittivity of free space. If 

absorption is neglected, the relative permittivity of the plasma er can be written as 

er = TV2. When N becomes purely imaginary, the wave is evanescent and is totally 

reflected. Thus the wave is cut off at N = 0, i.e., when the wavelength becomes 

infinite. For an incoming O-mode wave, cutoff occurs when iv = ivpe. The reflecting 

point or cutoff layer is then defined as the density layer at which iv = ivpe. We can 

solve for the density at the cutoff layer by letting N = 0 in Eq. (2.1). The cutoff 

density is then 

nc = — (2.3) 

For the X-mode, the index of refraction is 

U* (V2 — LJ* 

N2 = l - - ^ — , pe , (2.4) 
<v2 <v2 - iv2

pe - u2
cc 
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where u>ce = eB/me is the electron cyclotron frequency. If we solve Eq. (2.4) for 

N = 0, two separate cutoff frequencies are obtained: 

1 

" L = 2 L 

1/2 
-u,cc + (u£ + 4u£) (2.5) 

and 

u>fi = ^ [ o < „ + ( a 4 + 4 a £ ) 1 / 2 ] (2.6) 

where UJ^ is the left-hand cutoff and u>R is the right-hand cutoff. Thus, an incoming 

extraordinary wave will be reflected when it approaches a region in the plasma 

where LU = LUL or u> = u;^. The left- and right-hand nomenclature is derived from 

the direction of rotation of the wave polarization. Note that the left-hand cutoff 

occurs at a much lower frequency than either the right-hand cutoff or the O-mode 

cutoff and is usually of no interest in present reflectometry experiments. It may be 

of interest in high magnetic field experiments. 

Resonances occur when N —-> oo, i.e., when the wavelength becomes zero. 

From Eq. (2.1), it is seen that an O-mode wave has no resonance. From Eq. (2.4), 

an X-mode wave will have a resonance at 

<**=(<£+ <£)'" (2.7) 

where u;^ is the upper hybrid resonance. The lower hybrid resonance can be ob­

tained by including the ion motions in deriving the cold plasma dispersion relations. 

For reflectometry experiments, any of the three wave cutoffs given above can 

be used to reflect a transmitted wave. Figure 2.1 shows these three reflecting layers 

vs the plasma minor radius in ATF at a toroidal position of <j> = 15°. This toroidal 

location is shown because this is the center of the large vacuum vessel ports where 

access for a reflectometry system is available on ATF. Also shown are the electron 

cyclotron frequency and its first harmonic and the upper hybrid resonance. 
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Figure 2.1: A plot of the O-mode (u)pe) and X-mode (u>R and u>L) cutoff layers in 
ATF for ne{r) = 1.5 x 1013[1 - ( r / a ) 2 ] 2 cm"3 , B0 = 0.95 T, and </> = 15°. Also shown 
are the fundamental (tt>cc) and first harmonic (2a>ce) electron cyclotron resonances 
and the upper hybrid resonance (wuh)-

Phase De lay in P lasmas 

Geometr ica l Optics Approx imat ion The geometrical optics approxi­

mation can be used to calculate the phase delay of an electromagnetic wave in an 

isotropic inhomogeneous plasma. In general, this approximation is good for toroidal 

devices, since the effects of the toroidal curvature can be neglected if the wave is 

launched along a minor radius and the beam width at the reflecting layer is much 

less than the major radius at that point. It is assumed that ne and B have only 

a radial dependence, which is a good approximation for the horizontal midplane 

(symmetry plane at (j> = 15°) of the plasma and for the central rays of the beam. 

Note that this neglects the magnetic shear present in ATF, which is discussed later 

in this chapter in the section "Effects of Magnetic Shear." Any rays not propagating 

along a minor axis will be refracted away and are not likely to be picked up by the 
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receiving antenna. Thus, the wave equation can be reduced to just a dependence 

on the minor radius r and can be written as11 

d2E(r) UJ 
+ —eT(u;,r)E(r) = 0 (2.8) 

dr2 & 

where er = N2 is the relative permittivity of the plasma, absorption is neglected for 

simplicity, and an exwt time dependence is assumed. 

In a homogeneous plasma where eT has no radial dependence, the solution 

to Eq. (2.8) is 

E(r) = A0exp (±i-Nr) (2.9) 

where A0 is an amplitude constant and LuNr/c — (f) is the phase change. However, in 

an inhomogeneous plasma eT has a radial dependence, and the solution to Eq. (2.8) 

is not so straightforward. If er changes slowly with r, it is reasonable to replace N 

in Eq. (2.9) with the average of N(r) over the path of propagation. The phase can 

then be written as 

</>= - r N(r)dr (2.10) 
c Jri 

where r^ and r2 are two positions along the same radius. This is the basic approxi­

mation of geometrical optics and is valid when eT varies only slightly over the length 

of an electromagnetic wave, that is, when 

x dtr 

A - ^ < e r (2.11) 

where A is the wavelength of the electromagnetic wave at a position r in the plasma. 

Physically, this condition can be interpreted as X/Ln <C 1 for the O-mode and 

(A/Ln , X/LB) <C 1 for the X-mode. Here, Ln = ne(dne/dr)-1 is the density gradient 

scale length and LB — B(dB/dr)~1 is the magnetic field gradient scale length. 

Ginzburg11 seeks the same solution more precisely by obtaining a solution 

to Eq. (2.8) in the form of the series 

E(r) = E0(r) + -Ex{r) + ^E2(r) + 

21 

exp 
tjj 

±i—tp(r) 
c 
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where ip, E0, Ei, etc., are unknown functions of r. Substituting Eq. (2.12) into Eq. 

(2.8) and setting the coefficients of the successive powers of w/c equal to zero gives 

rise to a series of conditions: 

1) ip{r) = ± rN{r)dr 
Jri 

2) E0(r) = A0[N(r)}-^ (2.13) 

3) £ , ( r ) = [ J V ( r ) ] - ^ Hl.£M[N(r)]-^dr 
Jrj. 

Now assuming that only the first term in the series solution, Eq. (2.12), is 

significant, i.e., \E0\ >> (c/u;)\E1\, and using conditions 1 and 2 from Eq. (2.13), the 

more exact solution for the first approximation of geometrical optics is obtained, 

E{r) = ,40[7V(r)]-1/2exp \±i- H N(r)dr] (2.14) 
L C Jri J 

where if N(r) is monotonic then a sufficient condition for Eq. (2.14) to be valid is 

w N2 2TVL N 
> 1 (2.15) 

c \dN/dr\ X 

where L^ = N(dN/dr)~1 is the refractive index scale length and A is the local 

wavelength of the electromagnetic wave in the plasma. The physical interpretation 

of this equation is that the local wavelength of the electromagnetic wave must be 

small compared to the scale length of the variations in the refractive index. If a 

function 7ff is defined to be 
w N2 

*s ~cwm (2-16) 
then condition (2.15) can be written as 7ff > 1. Figure 2.2 shows j g vs the minor 

radius for an O-mode wave at 35 GHz in ATF. Also shown are the electron plasma 

frequency wpe and the index of refraction TV. Note that the geometrical optics 

approximation is good, i.e., ^g ^$> 1, except for a small region near the reflecting 

layer. A more precise treatment for this region is given below. 
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Figure 2.2: The geometrical optics condition for validity, ^g ^$> 1, for a 35 GHz wave 
propagating in the O-mode in ATF which is cut off at a radius rc. The assumed 
density profile is ne{r) = 2.3 x 1013[1 - ( r / a ) 2 ] 1 / 2 cm"3 . 

Exact Solut ion of the Wave Equat ion The exact solution of the wave 

equation near the reflecting layer has been derived for radio waves in the ionosphere 

by Budden.12 The conditions necessary to use Budden's solution are that the plasma 

density increases continuously and monotonically with decreasing minor radius r, 

the plasma is collisionless, and ne(r) varies linearly in a small region including the 

reflecting layer. Applying the condition of Eq. (2.16) to the small region where ne(r) 

varies linearly, we find that j g —> 1, so the geometrical optics approximation is not 

valid here, and the exact solution of the wave equation must be found. 

If rc is the plasma radius at the cutoff layer, then as we proceed away from 

the cutoff layer, ne(r) remains linear until \r — rc\ is large enough for asymptotic 

(geometrical optics) approximations to be used and departure from linear ne[r) does 

not matter. However, exact linearity of n e ( r ) is not necessary. A sufficient condition 
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on ne(r) near the reflecting layer is that1 2 

d2ne(r), dne 

Then in this region of linear ne(r), the permittivity of the plasma can be written as 

eT = a0{r-rc) (2.18) 

where a0 is an unknown constant. Then the wave equation [Eq. (2.8)] can be written 

as 
d2E(r) u> + -TO„(r - rc)E(r) = 0 (2.19) 

dr2 c2 

This is in the form of a Stokes' differential equation, and its solutions are found 

in terms of Airy integrals.13 The physical condition that the amplitude of the wave 

must decrease as the path length increases (spherical expansion) is used to obtain 

the final solution. 

Finally, Budden shows that for a wave reflected at the cutoff layer,12 the full 

wave solution matches the geometrical optics solution exactly except for a phase 

advance of | associated with the reflection. Thus, the geometrical optics solution 

in Eq. (2.14) is correct except that the phase term must be written as 

2a; CTl 7r 
<f>= — N(r)dr - - (2.20) 

C Jre 2 

where r1 is some arbitrary reference point outside the plasma. The factor of 2 comes 

from assuming symmetrical paths to and from the cutoff layer, i.e., reflection back 

to the transmitter/receiver along the path of propagation, so that only half of the 

total path need be calculated. 

Cutoff Layer D e p t h 

Once the propagating wave reaches the cutoff layer, it becomes evanescent; 

i.e., its amplitude decays exponentially with radius on the high-density side of the 
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layer. The scale length of this exponential decay defines the cutoff layer depth and 

is given by11 

(^\A,\ V 1 ' 3 

(2.21) "-(i 
deT 

dr 
e r =0/ 

where the derivative of the permittivity is taken at the cutoff layer, i.e., where er = 0. 

For the O-mode, er = TV2 is simply defined in terms of the density [Eq. (2.1)], and 

its derivative is 
der 

dr 

- 2 u ; p e du>pe 

er=0 w dr 
Cr=o 

- 1 

c r =0 

The cutoff layer depth for the O-mode can now be written as 

1/3 

W'=\M 

(2.22) 

(2.23) 

where k0 = ~ is the vacuum wave number of the probing beam and Ln is evaluated 

at the cutoff layer. For the X-mode, the permittivity is given by Eq. (2.4) and has 

the derivative 
der 

dr 
Cr=o 

- 2 

1Z 
- A ^ _ ! 

Cr=o LB V^pe 
(2.24) 

tT=0 

where all parameters are evaluated at the cutoff layer. The cutoff layer depth is 

obtained by substituting this equation into Eq. (2.21). The effect of this region of 

exponential decay is to spread out the radial resolution; i.e., the phase information 

in the reflected signal is a result of the sum of many small reflections occurring over 

a region of thickness Wc. 

Problems with Reflectometry Theory 

The analysis of reflectometry data is limited by the approximations made in 

deriving the equations that define the phase delay due to propagation through the 

plasma and reflection at a cutoff layer.14 The first assumption made is in using the 

cold plasma dispersion relations to define the wave propagation in the plasma. The 
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cold plasma dispersion relations might fail when the wave frequency approaches 

the frequency of the local electron cyclotron resonance or its harmonics. In this 

region, strong absorption by the plasma electrons can prevent the launched wave 

from reaching a cutoff layer. 

The second assumption made in deriving the governing equations of re-

flectometry is in using the geometrical optics approximation to describe the wave 

propagation in the plasma. The approximation of geometrical optics [Eq. (2.10)] is 

valid only when the permittivity er varies slightly over the length of the electromag­

netic wave [Eq. (2.15)]. This condition may be violated when steep edge density 

gradients are present. These gradients may lead to partial reflection of the wave 

before the wave reaches the cutoff layer. The geometrical optics approximation also 

assumes that the magnetic field has only a radial dependence. In machines with 

significant magnetic shear, such as stellarators and reversed-field pinches (RFPs), 

the magnetic field has an additional dependence on the vertical (or poloidal) coor­

dinate. The changing direction of the magnetic field lines of force (the shear) causes 

the relationship between the wave polarization and the magnetic field to change 

continually. This causes part of the propagating wave mode to be converted to 

the other mode, i.e., there is coupling between the X- and O-modes. This mode 

coupling can change the measured phase of a wave after propagation through the 

plasma because the X- and O-modes have different phase velocities.15 

Finally, the last assumption made is in deriving the exact solution of the 

wave equation near the reflecting layer. In this derivation, it is assumed that ne(r) 

increases continuously and monotonically with decreasing minor radius and that 

ne(r) varies linearly in a small region including the reflecting layer. These two 

conditions are met over most of the plasma radius except at or near the plasma 

center where the density profile flattens out or peaks. If the reflecting surface occurs 

in this region, the wave may only be partially reflected as some of the wave power 
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may tunnel through the cutoff layer. Tunneling can occur near the peak in the 

density profile where the electron density gradient scale length Ln reverses sign if 

Ln > A. 

Each of the problems mentioned above is discussed in more detail in the 

following sections. The conditions for each problem are applied to reflectometry in 

ATF and the results discussed. 

Electron Cyclotron Resonance (ECR) Absorpt ion 

If the probing beam of the reflectometer encounters a location where the 

electrons are gyrating around the magnetic field lines at a frequency equal to the 

probing beam frequency [w — t^ce), the electrons and the electromagnetic waves 

interact and strong absorption of the wave power can occur. In general, reflectome-

ters launch from a low-field side into a plasma with increasing magnetic field and 

electron density. In this case, three possible resonances may be reached. First, the 

fundamental electron cyclotron resonance may be reached by an O-mode propagat­

ing wave. An X-mode propagating wave will not reach the fundamental resonance 

because it will be reflected at the right-hand cutoff, which, from Eq. (2.6), always 

occurs on the low-field side of the fundamental resonance. Next, the second har­

monic electron cyclotron resonance may be encountered by an X-mode propagating 

wave, and finally, an O-mode propagating wave may encounter the second harmonic 

resonance. Higher harmonic resonances may be reached; however, the absorption at 

these resonances is in general very weak. 

Bornatici et al.16 discuss in detail wave absorption at cyclotron resonances 

for the conditions encountered in reflectometry; that is, for wave propagation per­

pendicular (or nearly perpendicular) to the magnetic field in a finite-density plasma. 
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The condition for a finite-density plasma is 

'»(—Y (2.25) UpA ^ (VT 

wf 

where vxe is the electron thermal velocity. This condition is always met for the 

regimes of interest in ATF. To quantify the absorption of the wave power at the 

resonance layer, an energy balance equation for an inhomogeneous medium is derived 

using Maxwell's equations and the Vlasov equation17 

V - 5 = - a | 5 | (2.26) 

where S is the total power flux density and a is the absorption coefficient, which 

has units of inverse length. The absorption coefficient is defined as 

- S 
a = 2 Im fc • — (2.27) 

\S\ 

where Im k is the imaginary part of the wave vector. In this description, both S 

and a refer to a specific fundamental wave mode, corresponding to one solution of 

the dispersion relation. 

It is easier to get a feeling for the wave absorption if it is discussed in terms 

of the optical thickness of the plasma to a particular frequency wave. The optical 

thickness rop t is defined as16 

Topt = r ot{s)ds (2.28) 
J r? 

and is simply the integral of the absorption coefficient a defined in Eq. (2.27) for a 

particular wave along the path of propagation. If rop t ^> 1, the plasma is optically 

thick, and the wave power is strongly absorbed by the plasma. If ropt «C 1, the 

plasma is optically thin, and the wave power is only weakly or negligibly absorbed. 

The fundamental O-mode optical thickness r ° , the second harmonic X-mode 

optical thickness r^, and the second harmonic O-mode optical thickness r£ are given 
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Figure 2.3: The cutoff and resonance layers in ATF at 1.9 T for ne(r) = 2.3 x 
1013(1 — (r/a)2)2 c m - 3 . Note that an X-mode propagating wave cannot reach the 
fundamental resonance from the low-field side because the u;^ cutoff occurs between 
the resonance and the plasma edge. 
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(2.31) 

where A0 is the free-space wavelength of the reflectometer probing beam. 

For operation in ATF, absorption at all three of the above resonances can 

occur. Figure 2.1 shows the position of the O-mode cutoff wpe and the X-mode 

cutoffs U)R and U>L and the corresponding positions of the fundamental electron 

cyclotron resonance a>ce and its first harmonic 2u;ce for 0.95 T. Figure 2.3 shows the 

same information as Fig. 2.1 for 1.9 T operation. For a reflectometer using the 30 
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to 40 GHz band, the fundamental resonance is encountered outside the last closed 

flux surface by the O-mode in 1.9 T operation, and both the X-mode and the 0-

mode encounter the second harmonic resonance outside the last closed flux surface 

in 0.95 T operation. Since the resonances are encountered outside the last closed 

flux surface, absorption at the resonance will depend on the electron density present 

at the absorption layer. 

E C R Absorpt ion Es t imates in ATF In this section, the effects of elec­

tron cyclotron resonances on a 30 to 40 GHz reflectometer system are discussed, and 

estimates of the optical thickness are given. Note that these estimates assume that 

the reflectometer will be located on the horizontal midplane with the antenna aper­

tures at R = 270 cm. At 1.9 T operation, the fundamental resonance is located 

between R ~ 242 cm (40 GHz resonance) and R ~ 260 cm (30 GHz resonance) 

on a major axis on the horizontal midplane. The strongest absorption by this res­

onance will occur during high-density operation when the plasma densities outside 

the last closed flux surface are highest. On this axis, the last closed flux surface is 

at approximately R = 238 cm, and the edge density on this flux surface is about 

2 X 1013 c m - 3 with an e-folding length of approximately 2 cm as measured by the 

FRLP.1 8 The electron temperature at this position is typically 40 eV, also measured 

by the FRLP. If it is assumed that the electron temperature stays constant in the 

edge region to maximize the absorption calculations, at R = 242 cm, u;ce = 40 

GHz, and cope and vre will be their largest in the edge region under consideration. 

From Fig. 7.11, the magnetic field gradient length LB in this region (r ~ 30 cm) is 

\LB\ - 65 cm. From Eq. (2.29) the O-mode optical depth is found to be T° ~ 0.02. 

Since T° <C 1, the plasma is optically thin to a reflectometer probing beam at 40 

GHz. Probing beams at frequencies below 40 GHz will be absorbed even less since 

the edge density and temperature fall off more rapidly than the magnetic field. A 
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30 to 40 GHz X-mode probing beam will not reach the fundamental resonance at 

1.9 T because the upper hybrid resonance is always located between the resonant 

surface and the plasma edge. 

For the case of 0.95 T operation, a 30 to 40 GHz renectometer would use 

the X-mode during the low-density ECH discharges, but would use the O-mode 

during the higher density neutral-beam-heated discharges. For typical low-density 

ECH discharges [ne(r = 0) ~ 6 x 1012 c m - 3 ] , the density at the last closed flux 

surface has been measured by the FRLP 1 8 to be about 2.5 x 1012 c m - 3 . If all other 

conditions are similar to those in the 1.9 T calculation except that u>ce is now 20 

GHz at R = 242 cm, it is found that r* ~ 0.02. Here again, the plasma is found to 

be optically thin to an X-mode probing beam in the 30 to 40 GHz band. 

If the O-mode 1.9 T case above is repeated for 0.95 T neutral beam dis­

charges, the density and temperature parameters will be the same and only u>ce 

need be changed. As Bornatici notes, the second harmonic absorption of O-mode is 

much weaker than the fundamental absorption, and so in this case it is not impor­

tant since the fundamental absorption is very weak. These calculations show that 

a 30 to 40 GHz reflectometer can operate in the typical ATF plasma regimes with 

little or no absorption from the cyclotron resonances. 

Poss ible Reflect ion at Edge Gradients 

Earlier in this chapter, the geometrical optics approximation was discussed. 

The final condition for the validity of this approximation was that the local wave­

length of the electromagnetic wave being launched must be small compared to the 

scale length of the variations in the refractive index. This condition, given in Eq. 

(2.15), can be written as 
dN 

7S
_1 (2.32) 

c 
1 > 

dN_ 
dr 

w\N2 
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where all terms have been previously defined. Under most conditions encountered 

with microwave reflectometry this condition is easily met. However, if very low edge 

densities are to be probed using low frequencies, then this condition may eventually 

be violated. The edge gradient lengths measured by the FRLP 1 8 in ATF are longer 

than those attained with the assumed profile shape used in Fig. 2.2, so Eq. (2.32) 

is not violated. 

Effects of Magnet i c Shear 

In ATF, the components of the toroidal and poloidal (or vertical) fields 

are of comparable magnitude across most of the minor radius. Also, the magnetic 

shear (the rotation of the magnetic field as a function of radius) is large. In the 

geometrical optics approximation, it is assumed that the X- and O-modes propagate 

independently through the isotropic inhomogeneous plasma. The magnetic shear, 

however, causes the two modes to couple together; that is, if purely one mode is 

launched, the propagation through a region with shear will cause some of the wave 

power in the launched mode to couple over or convert to the other mode. Although 

mode mixing could, in principle, be used to measure the density and magnetic field 

profiles or fluctuations simultaneously, the resulting loss in control over the wave 

polarization would make the analysis of any reflected signal more difficult.15-19 

Brambilla and Moresco15-20 showed numerically that a nonnegligible mixing 

between the two plasma modes occurs when the shear length is short (high shear) 

compared to the wavelength of the plasma wave. Their conclusion was that mode 

conversion does not make reflectometry impossible in high-shear machines as long 

as the direction of the magnetic field at the plasma edge is known sufficiently ac­

curately, so that the unwanted component of the unwanted mode can be filtered 

out. Filtering out the unwanted mode allows only the desired mode to reach the 

microwave detectors so that the coupled mode has no effect on the probing beam 
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phase. The point of their argument was that if the electric field in the launching 

and receiving waveguide systems can be made to align with the desired plasma 

mode polarization, then the converted mode will be filtered out by the waveguide 

system since rectangular waveguide is an excellent polarization filter. Because the 

magnetic field is rotating and the plasma density does not go to zero rapidly, the 

location in the plasma edge where the plasma mode polarization is determined for 

a wave launched towards the plasma, i.e., where plasma propagation begins for the 

launched wave, is not simply defined. 

Fidone and Granata2 1 have described the propagation of radiation in a plane-

layered inhomogeneous plasma, treating the case where the wave vector is parallel 

to the density gradient and perpendicular to the plane in which the magnetic field is 

sheared. They give two limiting cases for the polarization rotation. The first is prop­

agation in high-density plasmas where the plasma modes are weakly coupled by the 

shear and so the wave polarization rotates with the shear; the second is propagation 

in low-density plasmas where the plasma modes are nearly undefined (degenerate) 

and easily coupled by the shear (free-space propagation). The boundary between 

free-space propagation of the X- and O-modes and polarization rotation (plasma 

propagation) can be shown to be given by22 

\N.-Nm\ = - ^ - (2.33) 
u> dr 

where N0 and Nx are the refractive indices for the 0 - and X-modes, respectively, u> 

is the wave frequency, and d^ /dr is the local shear where $ is the angle that the 

magnetic field makes with respect to the horizontal midplane and is a function of 

radius r. The term |7V0 — Nx\ is a measure of the anisotropy due to the electron 

density and the magnetic field, while the term (2c/uj)(d^ /dr) is a measure of the 

shear. If the anisotropy term dominates, then the wave polarization rotates with 

the applied magnetic field; if the shear term dominates, the wave propagates as if it 
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were in vacuum, and its polarization does not rotate with the magnetic field. Thus, 

a wave launched toward the plasma along a radius will propagate independently of 

the sheared magnetic field as long as the shear term dominates. Eventually, the 

wave reaches a region where the shear and anisotropy terms are of equal order. In 

this region, the wave polarization begins to rotate due to the magnetic shear but 

does not rotate as fast as the shear; that is, part of the wave is affected by the 

shear and part continues to propagate independent of the shear. In this region the 

plasma propagation begins and the plasma mode of the launched wave is determined. 

Eventually, the anisotropy term dominates and the entire wave rotates with the 

magnetic field. 

Shear Effects in ATF For a 30 to 40 GHz reflectometer in ATF, the 

effect of the shear is to prevent operation in purely one plasma mode. Bell23 has 

discussed the effects of the shear in ATF with regard to the ATF electron cyclotron 

emission (ECE) diagnostic. From his work, it can be shown that the anisotropy 

and shear terms in Eq. (2.33) are of equal order for a wave frequency between 30 

and 40 GHz over a significant region outside the plasma owing to the finite density 

in the ergodic divertor region through which a reflectometer would have to launch 

its probing beam. The selection of a plasma mode will thus require choosing some 

average polarization determined by the average angle of the magnetic field in some 

region between the plasma edge and the antenna apertures. Modeling of the mode 

selection problem resulting from the magnetic shear is given in Chap. VI 

Poss ible Wave Tunnel ing 

Earlier in this chapter the exact solution of the wave equation near a reflect­

ing layer was discussed. The assumption of near linearity of ne(r) in a very small 

region including the reflecting layer was said to be satisfied if - J ^ | r — re\ <C ^f. 
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This condition is easily met except when the density profile begins to peak or flatten 

out. In this region, the density gradient becomes very small, and the width of the 

reflecting layer becomes very large. Here, the curvature of the profile becomes large 

and the assumption of linear ne(r) is invalid. 

Normally, the reflectometer probing wave becomes evanescent in the cutoff 

layer and is completely reflected because it cannot propagate through an evanescent 

region. However, under the conditions discussed above, part of the evanescent wave 

may be able to propagate through the cutoff layer (before completely decaying) and 

come out the other side of the evanescent region. In this case, part of the probing 

wave is reflected and part is transmitted. Under these circumstances, interpreting 

the information contained in the reflected signal would be very difficult because of 

the large width of the reflecting layer (poor localization of the reflected signal) and 

the possible interference created if the transmitted wave is later reflected and then 

mixes with the reflected probing beam. This potential problem can be avoided by 

not operating under conditions that may permit wave tunneling to occur. 

Implications for Reflectometry on ATF 

This review of wave theory applied to reflectometry experiments is useful 

in understanding the limitations and complications of reflectometry. The X- and 

O-mode cutoff surfaces were obtained from the cold plasma dispersion relations, as 

were the cyclotron resonances. From calculations of the frequencies of the cutoff 

surfaces and resonances as a function of the density and magnetic field profiles in 

ATF (Figs. 2.1 and 2.3), the possible frequencies for reflectometry experiments are 

obtained. For ATF, the 30 to 40 GHz band is of primary interest because of its 

usefulness at lower densities and the availability of the hardware to build such a 
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reflectometer. The major complications of a system in this frequency band include 

absorption at the electron cyclotron resonance in the plasma edge region and the 

difficulty of wave plasma mode selection due to the magnetic shear. Other minor 

problems that might occur under special operating conditions include reflection at 

the edge density gradient and wave tunneling through the cutoff layer near the peak 

in the density profile. The absorption at cyclotron resonances should be small under 

most conditions. A possible exception would be O-mode operation in very high 

density 1.9 T discharges. In these discharges, the fundamental resonance is located 

outside the last closed flux surface in the ergodic divertor region. The density in 

the divertor might be sufficiently large that the absorption is nonnegligible. This 

would result in lost signal amplitude of the reflected signal; however, as long as some 

reflected signal is returned, the reflected signal can be detected. The problem of 

plasma mode selection of the launched microwave signal is far more difficult. Because 

of the magnetic shear and the finite density outside the plasma, the region where 

plasma propagation begins is approximately the entire path between the antenna 

and the plasma edge (last closed flux surface). This requires the Use of an average 

polarization determined from the average magnetic field orientation over this range. 
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CHAPTER III 

REFLECTOMETER DIAGNOSTICS 

Reflectometry Techniques and Data Interpretation 

Two techniques are available to obtain density information from the phase 

of a reflected wave.14'24 The simplest technique is to operate the reflectometer at 

a single frequency; the other is to modulate or sweep the reflectometer microwave 

frequency. Each of these techniques has advantages; which one to use will depend 

on the density information that is to be measured. 

Fixed Frequency 

Cutoff Layer P o s i t i o n / M o v e m e n t Measurements A fixed frequency 

reflectometer may be able to provide information on the inception of cutoff, i.e. cut­

off density achieved in the plasma, movement of the cutoff layer, and fluctuations 

of the cutoff layer. In principle, using a reflectometer to monitor the plasma for the 

inception of cutoff and movement of the cutoff layer is straight forward; however, 

strong refractive effects as the density approaches the cutoff density and poor re­

flection when the portion of the plasma above the cutoff density is small make it 

difficult to determine the exact time when the cutoff density is achieved. Then after 

cutoff is achieved, trying to count the fringes (2TT phase shifts) due to the movement 

of the cutoff layer is complicated by the very small signal level near the time of 

cutoff and by large density fluctuations which can obscure the fringe resets.25 
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Dens i ty F luctuat ion M e a s u r e m e n t s A more reliable measurement for 

fixed-frequency reflectometers is to measure fluctuations in the cutoff layer. This 

technique can provide measurements of local density fluctuation amplitudes at the 

cutoff layer. Other techniques for measuring localized density fluctuations exist, 

but they have limitations.26 Langmuir probes can measure the mean and fluctu­

ating parts (including the frequency, amplitude, average wave number, and cross-

coherence) of the density, temperature and potential.27 These measurements can 

suffer from the disturbance of the plasma due to the presence of the probe and the 

inability to survive, except in the edge, in plasmas of the densities and tempera­

tures obtained in the larger toroidal devices. Therefore, Langmuir probe fluctuation 

measurements are confined to the edge region of the plasma.26 Heavy ion beam 

probes (HIBPs) can measure density fluctuations throughout much of the plasma 

for moderate density and magnetic field values.28 HIBPs are often much more ex­

pensive than reflectometers, require significantly more access to the plasma, and 

are technically more complicated; however, they can simultaneously measure the 

density and potential fluctuations at the same location in the plasma. Far-infrared 

(FIR), C 0 2 and microwave scattering diagnostics are nonperturbative and can mea­

sure the frequencies, wave vectors, and amplitudes of the density fluctuations. The 

primary limitation of scattering diagnostics is the poor spatial resolution of the 

measurement due to the large scattering volumes.29 '30 A reflectometer density fluc­

tuation measurement can be made anywhere that a cutoff layer can be achieved, 

and the measurement can be radially localized to the cutoff layer. However, the 

major limitation of reflectometry is the difficulty in obtaining quantitative results. 

D a t a Interpretat ion Analysis of fluctuation data is performed in the 

frequency domain. Discrete Fourier transforms are performed to transform the 

data into the frequency domain for analysis. The section "Fourier Transform" in 
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Chap. V discusses the transformation of data signals to the frequency domain and 

their analysis in more detail. The two primary fixed-frequency measurements are the 

density fluctuation amplitude and the radial coherence of the density fluctuations. 

A lower limit estimate of the amplitude of the density fluctuations for O-mode 

operation is given by the expression6 

he £A0 
r^t (3.1) 

7ie 2Ln 

where £ is the phase fluctuations in the reflected microwave signal in fringe units, 

A0 is the vacuum wavelength of the probing beam, and Ln = ne(rfne/rfr)_1 is the 

density gradient scale length. The actual probing beam wavelength in the plasma 

is greater than A0, thus resulting in this estimate being a lower limit. This equation 

is obtained by performing a perturbation expansion on the equation for the 0-

mode cutoff density [Eq. (2.3)] and transforming the change in the location of the 

cutoff surface to an equivalent change in the probing frequency. The approximation 

^e/ne — £>rclLn is used to relate the movement of the cutoff layer 8rc ~ CA0/2 to 

the amplitude of the density perturbation. The estimation of he/ne from the phase 

fluctuations is discussed in detail in Chap. VII. 

If the frequency of the probing beam can be changed during or between 

discharges, a radial profile of the fluctuation amplitudes can be developed and used 

to understand the possible instabilities producing the fluctuations. A major limita­

tion of reflectometry fluctuation measurements is the need to have accurate density 

profiles to determine where in the plasma the measurement is being made and the 

density gradient scale length at that location. 

Radial Coherence Measurements If two probing beam frequencies are 

used simultaneously in the same antenna system, the fluctuations at two radially sep­

arated points can be measured simultaneously. The application of cross-correlation 
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techniques (see the section "Cross-Correlation Analysis" in Chap. V for an expla­

nation of cross-correlation analysis) can be applied to the data to determine the 

cross-power spectral density (CPSD), normalized coherence 7, and cross-phase of 

the fluctuations. This analysis can be used to determine the radial width of a co­

herent perturbation, and if several coherence measurements are made for several 

different radial separations, the radial correlation length of the fluctuations can be 

inferred. The radial correlation length Lc is obtained from 

7 = 7 o e - A r / L ' (3.2) 

where 70 is the coherence for zero radial separation and Ar is the radial separation 

between the cutoff layers for the two probing beams. This equation assumes that 

the phase fluctuations in the reflected microwave beam are being used in the cross-

correlation analysis. If the sine signals from the microwave detectors are being 

used in the cross-correlation analysis, Eq. 3.2 must be modified to allow for the 

phase difference between the two signals due to the path length differences.31 Radial 

coherence measurements are discussed in detail in Chap. VII. 

Swept Frequency 

Swept-frequency reflectometers can be of two types: modulated frequency 

and broadband swept frequency. Frequency-modulated (FM) or narrow-band swept-

frequency reflectometers can be used to measure the approximate position of the 

cutoff layer, movement of the cutoff layer, and density profiles if multiple frequen­

cies are used. A broadband swept-frequency reflectometer can provide a complete 

density profile for the density region corresponding to the swept frequency. 

The basis for the usefulness of a swept-frequency measurement is seen in 

Eq. (2.20). This equation for the phase change of the reflected wave shows that the 

phase change can result from three possible sources: 
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1. Movement of the cutoff layer rc, 

2. Changes in the refractive index N(r), 

3. Changes in the probing frequency w. 

Thus, if the probing frequency of the reflectometer is swept at a rate df/dt, where 

df/dt is much faster than the rate of change of the position of the density profile or 

of the refractive index, the resulting phase shift ((t) can be related to the rate of 

the frequency sweep to obtain d£/d/.14-32'33<34 

T h e M e a n i n g of d(/df As shown in Eq. (2.20), the phase change that a 

wave will undergo in propagating through a plasma to a cutoff layer, being reflected 

at the cutoff layer, and propagating back out of the plasma is given by 

2u 
C = — / N(r)dr--

C Jrr Z 
(3.3) 

As shown by Hubbard1 4 and others,35-36 '37 this equation can be Abel inverted to 

obtain an equation for the position of the cutoff layer in terms of d(/df. Equation 

(3.3) can be differentiated with respect to / at an input frequency f0 to obtain 

2 T T # 
/= / . 

-foN{rc,f.) 
drc 

(3.4) 
f = fc 

Since N(re, f0) is the refractive index at the f0 cutoff layer, it is identically zero, and 

the second term on the right vanishes as long as drc/df is bounded, i.e. the slope 

of the cutoff layer in the plasma must not go to zero. For the O-mode, this means 

that the density gradient must not be zero. 
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Equation (3.4) can then be written as 

2TT df 
f = fc 

(3.5) 

Budden12 shows that a packet of waves of frequency f0 travels with velocity Vz 

parallel to the density gradient, where Vz is given by 

k - !</*> (3.6) 
f = fc 

He then states that Vz is the component of the group velocity Vg parallel to the 

density gradient. By analogy to the wave refractive index N(r), d(fN(r))/df = 

N'(r) is known as the group refractive index. The round-trip delay time r is then 

given by11 

T = 
1 d((f) 

2TT df 

so that Eq. (3.5) can now be written as14 

2 

(3.7) 
/=/«, 

2 rTi 

= - / N'(rcJ0)di 
C Jrr(fn) 

(3.8) 

A b e l Inversion for the O-mode For the case of O-mode waves, the 

refractive index given in Eq. (2.1) can be rewritten using Eqs. (2.2) and (2.3) as 

, 1 1 / 2 

N(r) = 1 -
ne{r) 

nc 

(3.9) 

where ne(r) is the local electron density and nc is the cutoff density for the wave of 

frequency f0. For the O-mode, the group velocity Vg = dxv/dk is obtained from the 

dispersion relation 

2 i_2 u* = a£ + c*k (3.10) 

Differentiating this equation with respect to the wave number k and using the 

definition N(r) = kc/tu, the group velocity is found to be VJ, = cN(r). Then from 
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the previous definition of the group refractive index, the O-mode group refractive 

index can be written as 

N'(r) = ± = 
V9 

1 _ ne{r) 

n, 

• 1 / 2 

(3.H) 

Using Eq. (3.11) in Eq. (3.8), the group delay can now be written as 

r = ir (i-̂ r1"* 
c Jrc(fa) \ nc{f0)J 

= 2-r M / ° ) ] 1 / 2 , „ * (3.i2) 
c i ' . (WK(/„) -n t ( r ) ] 1 , ! 

This equation can be rewritten into the form of Abel's integral equation14 

fnc{fo) dr/dne 

Jo (nc(fo)-nJr)y/>dn< < 3 - 1 3 > KUo)]1'2 c Jo (nc(f0) - ne(r)y/< 

where the left-hand side can be determined experimentally, and dr/dne on the right-

hand side is the unknown function determining the density profde. The standard 

solution, given by Arfken,38 to this equation is 

drc c d [nc T , 
- ^ = - — - 7 - / -TT^ dne (3.14) 
dnc 2iTdncJo nV [nc-neyi2 

Integrating and applying the condition that rc = r^ when ne = 0 gives 

c fnc i~(ne) 
rc = r1-— w dne 3.15 

2TT JO n y 2 ( n c _ n c ) i /2 

Finally, using Eq. (3.7) for the definition of r(ne), Eq. (3.15) can be written 

in the more usual form14 

C ft. d(/df 
r, — 

Therefore, measurement of d(/df over the entire frequency range from 0 

to f0 will give sufficient information to obtain the density profile up to n c ( / 0 ) . 1 4 

This is the basis of density profile measurements using broadband swept-frequency 

43 



reflectometers. Note that this equation requires the frequency sweep to begin at 

0 GHz or that the density profile up to the cutoff density of the lowest probing 

frequency be known since the integration in Eq. (3.16) is over the phase delay up 

to the cutoff density n c ( / 0 ) . Since the frequency sweep cannot be started at 0 GHz, 

the usual approach is to assume an edge density profile up to the lowest frequency 

and calculate d(/df for this region. The experimental determination of d(/df is 

accomplished by measuring the phase shift as a function of the frequency change 

during the frequency sweep. This is often accomplished by measuring d(/dt and 

obtaining df /dt from a calibration measurement.34 

For X-mode propagation, the Abel inversion can not be performed analyti­

cally because of the dependence of the refractive index on the density and magnetic 

fields, and the density profile must be determined numerically from the data. Since 
—» —* 

the X-mode refractive index also depends on the local magnetic field | i?(r) | , | i?(r) | 

will have to be measured or calculated for the inversion.39<40'41 An advantage of 

the broadband swept frequency-reflectometer over a multichord interferometer in 

obtaining density profiles is that the Abel inversion is carried out along the prop­

agation path. Thus the density profile may be determined with only one viewing 

chord and no assumptions regarding the plasma symmetry need be made. 

In narrow-band swept reflectometers, d(/df is measured for a small mod­

ulated frequency sweep. From Eq. (3.7) it is seen that d(/df, through the group 

refractive index, depends on the whole density profile between rx outside the plasma 

and rc. The information derived on the position of rc is therefore limited in accuracy 

because of the unknown density profile. If multiple modulated frequency reflectome­

ters are used, d(/df can be obtained at multiple points along the profile, and by 

interpolating between the measured values of d(/df the density profile can be ob­

tained using a modified version of the broadband-swept frequency inversion equation 

[Eq. (3.16)]. 
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Figure 3.1: Basic fixed-frequency, single-antenna, homodyne reflectometer.6 (Note 
that the reference signal comes from reflection at the vacuum window.) 

Reflectometry Hardware Techniques 

In this section, the different experimental techniques used in most reflec­

tometer experiments are reviewed. The basic schemes or microwave system designs 

used for reflectometry are discussed along with the microwave hardware necessary 

to build the microwave system. 

Basic Exper imenta l Schemes 

In the previous section two different types of reflectometers were discussed: 

the fixed-frequency system used to measure the absolute movement or fluctuations 

of the cutoff layer and the swept-frequency system that measures the position of the 

cutoff layer as a function of frequency. Swept-frequency systems can be broken into 

two subtypes: broad-frequency sweep systems and narrow-frequency sweep systems. 

Fixed-Frequencv S y s t e m s Figure 3.1 shows the scheme or layout of 

the most basic type of fixed-frequency reflectometer.6,42,25,34 j n this scheme, the mi­

crowave signal is sent to the plasma via a waveguide run. A window is located at the 
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vacuum interface to allow the microwaves to pass into the vacuum chamber. This 

window may be located in the waveguide, so that the antenna can be located nearer 

to the plasma (inside the vacuum vessel), or mounted on the vacuum vessel inde­

pendent of the microwave system. In the latter case, the antenna will be mounted 

outside the vacuum vessel and will launch the microwave beam through the window. 

In either window configuration, a portion of the microwave beam incident on the 

window will be reflected (up to ~ 10%). This reflected signal is used as the reference 

signal. The portion of the signal not reflected by the window is launched into the 

plasma, where it propagates until it reaches a cutoff and is reflected. After reflec­

tion, this plasma signal propagates back out of the plasma and is partially collected 

by the antenna. The reference signal and the plasma signal propagate back down 

the waveguide and are directed into a microwave detector by a coupler or power 

divider. At the detector, the reference signal mixes with the plasma signal, and 

the resulting combination is converted into a voltage signal at the detector output. 

Fluctuations in the voltage are then a result of the phase and amplitude fluctuations 

in the plasma signal. Since the desired signal is the phase fluctuations, the effects 

of the the amplitude fluctuations are neglected because they cannot be separated 

from the phase fluctuations. 

This simplest type of reflectometer has several limitations. First, internal 

reflections in the microwave system mix with the reference reflections from the 

vacuum window to cause distortion of the microwave signal at the detector. An 

improvement to the system that eliminates this problem is to use two antennas.39-43 

In this case, one antenna is a launcher and the other is a receiver (Fig. 3.2). The 

reference signal is taken from the transmitting side of the microwave circuit by a 

coupler and mixed with the plasma signal at the detector by another coupler or 

single-ended mixer. Since the reference signal is taken directly from the microwave 

source by a coupler, internal reflections in the transmitting system can have little 
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Figure 3.2: Dual-antenna, fixed-frequency, homodyne reflectometer.39 The advan­
tage of dual antennas is the minimization of errors resulting from spurious reflections 
in the waveguide system because the reference signal is taken directly from the source 
by the 20 dB coupler in this figure. 

or no effect on the detected signal because the isolator prevents reflections in the 

launcher circuit from traveling back to the reference coupler, and reflections in the 

receiving circuit are at such a low power level, since the reference signal is normally 

at least 10 dB above the plasma signal, that they also have little effect. Using two 

antennas imposes the physical limitation of requiring two vacuum interfaces and 

mounting structures. 

Another problem with simple homodyne reflectometers is the effect of am­

plitude fluctuations in the plasma signal resulting from propagation and reflection 

in the plasma. The simple homodyne system does not allow for absolute phase 

detection, but rather only the sine of the phase fluctuations times the amplitude 

fluctuations. Two methods are available to measure the phase fluctuations or decou­

ple the phase fluctuations from the amplitude fluctuations. The simplest method is 

to use a sine-cosine detection scheme of either the dual homodyne4 4 4 5 or the quad­

rature phase detection31 type, both of which rely on two detectors arranged with 
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a 90° phase relation to allow the phase change to be tracked via fringe counting. 

Quadrature phase detection and dual-homodyne detection are discussed in more de­

tail later in this chapter. The second method of measuring the phase fluctuation is 

to use a heterodyne receiver.24 In a heterodyne system, a second microwave source, 

known as the local oscillator (LO), provides the reference signal. The second source 

is at a slightly different frequency, where the difference frequency is called the in­

termediate frequency or IF, so that the phase fluctuations in the plasma signal will 

be seen as phase fluctuations in the IF signal which is at a low enough frequency to 

be measured directly. Phase fluctuations show up as fluctuations in the amplitude 

of the IF signal. The heterodyne scheme suffers from the complexity and expense 

of using two separate microwave sources and an IF system. Heterodyne detection 

is discussed later in this chapter. 

Frequency M o d u l a t e d Sys tems A block diagram of the FM reflectome-

ter designed for DIII-D is shown in Fig. 3.3.32-46 Discussions on the Joint European 

Torus (JET) FM reflectometer are given by Hubbard14 and Hugenholtz.24 FM or 

narrow-band swept-frequency reflectometers are basically narrow-band FM radars47 

with one or more FM microwave sources. The frequency modulation is usually 

driven by a sawtooth waveform to obtain the small frequency sweep. The system 

in Fig. 3.3 uses simple homodyne detection with the reference signal coming from 

reflections at the vacuum window. The plasma signal is collected by the antenna 

and directed along with the reference signal to the balanced mixer by the directional 

coupler. The reference signal and the plasma signal combine in the mixer to give 

a voltage signal proportional to their phase difference. This voltage signal is then 

amplified and high-pass filtered. The high-pass filtering removes the phase fluc­

tuations resulting from the fluctuating plasma density while allowing the very fast 

phase changes due to the frequency modulation to be seen. A fringe counting circuit 
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Figure 3.3: Block diagram of the DIII-D FM reflectometer.32 



is then used to count the phase shift as a function of time. The frequency change 

as a function of time is either measured at the source or calibrated beforehand so 

that d(/df can be determined, i.e. dC,/df — (d(/dt)(dt/df). See the section "The 

Meaning of d(/df" earlier in this chapter for a discussion of the meaning of d(/df. 

Two components contribute to dC,/df\ the first is due to the change in the position 

of the cutoff layer as the probing frequency is changed, while the second is due to 

the unequal path lengths traveled by the reference and plasma signals before mixing 

at the detector. This unequal path length contribution is removed from d(/df by 

measuring the phase shift as a function of frequency with a fixed reflector in front 

of the antenna. This phase shift can then be subtracted from the total measured 

d(/df obtained with plasma. 

To go to multiple sources, the DIII-D system uses a special stripline fil­

ter circuit to multiplex the multiple frequencies into one system for launching and 

receiving.32 Since a single antenna is used, the same stripline filter circuit is used to 

separate the different frequencies for detection. Additional IF filters are required to 

ensure that the signal to be fringe counted consists only of the zero IF signal, i.e. 

to ensure that signals from two different sources do not mix together to form an IF 

signal. 

Broadband Swept-Frequencv S y s t e m s These systems have been used 

in many experiments for density profile measurements. 14,39,37,48,32,33,49,50 Figure 3.4 

shows a block diagram of the DIII-D broadband swept-frequency reflectometer. This 

system is basically the same as an FM system except that the source must be able 

to sweep over the entire frequency band at a very fast rate to minimize the phase 

distortion due to fluctuations of the cutoff layer. A two-antenna system is used, so 

the reference signal is taken from the source output by a coupler and mixed with the 

reflected signal in a microwave mixer/detector. Overmoded waveguide is used to 
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Figure 3.4: Block diagram of the DIII-D broadband swept-frequency reflectometer.32 

minimize the signal losses in the long waveguide run. The purpose of the delay line is 

to equalize the plasma and reference arm lengths. A flat mirror aims the launching 

and receiving antenna beams through the flat vacuum window. Simple homodyne 

detection is used at the mixer with a zero crossing detector to determine the amount 

of phase shift as a function of time. The frequency change with respect to time is 

then combined with the fringe count to determine the time resolved d(/df.41 

R e v i e w of the Microwave Hardware 

This section is a review of the basic microwave hardware used in reflectome-

try. In general, a simple description of the component and how it functions is given. 

Where a mathematical description of the operation of a component is beneficial to 

the understanding of how it functions in reflectometry, such a description is given. 
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Sources Several different types of microwave sources can be used for re-

flectometry; however, Gunn diode oscillators and backward-wave oscillators (BWOs) 

are the most common. 

Gunn D i o d e Oscillators Gunn oscillators are semiconductor devices 

with a limited power-bandwidth product.51 Because of this power-bandwidth prod­

uct, Gunn oscillators are normally tunable over less than 1% of their center frequency 

with power levels exceeding 30 mW; however, their frequency can be modulated or 

swept over this narrow band by changing the bias voltage to the semiconductor. 

The ability to electrically modulate the frequency of Gunn oscillators makes them 

an extremely useful source for FM systems. They are also used in fixed-frequency 

systems; however, the ability to tune a fixed-frequency source over a large frequency 

range between discharges is very useful to measure fluctuations at different radial 

positions in the plasma. Some Gunn oscillators are now being built with a band­

width approaching 10 GHz with a center frequency between 60 and 80 GHz and a 

minimum power level of 30 mW.5 2 These broadband sources are mechanically tuned, 

so they are not useful for swept-frequency systems, but their broadband operation is 

very useful for tunable fixed-frequency systems. Generally, the bandwidth and out­

put power decrease significantly in Gunn oscillators designed for electrical frequency 

control.52 

Backward-Wave Oscillators A BWO produces a microwave signal by 

injecting electrons along a slow wave structure, which reduces the rf phase velocity to 

the level of the electron velocity of a traveling-wave tube.5 1 The slow wave structure 

is generated by a helix, and the velocity of the electrons is determined by the 

potential between the helix and the electron source. As the electrons travel down 

the helix, they interact with electromagnetic waves having a phase velocity equal 
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to their kinetic velocity. In this interaction, the electrons are slowed down as their 

kinetic energy is coupled to the energy of the electromagnetic wave. The frequency 

of these electromagnetic waves is then proportional to the velocity of the electrons. 

Since the helix voltage controls the velocity of the electrons, the frequency of the 

electromagnetic waves can be changed by changing the voltage applied to the helix. 

A power supply can then be designed to sweep or modulate the helix voltage over 

the range necessary to produce the desired frequency sweep. BWOs are inherently 

broadband devices with the potential to do very fast full band sweeps. This makes 

them the primary source for broadband swept-frequency systems. They are also 

used in FM systems and tunable fixed-frequency systems. 

Microwave D e t e c t i o n A microwave detector is a semiconductor diode 

that is designed to convert the incident microwave power to a voltage output. These 

detectors are normally operated in the square law regime where, ideally, the voltage 

out varies as the square of the power of the input signal.53 For example, consider 

homodyne detection with Si being the reference signal power and 62 being the 

plasma signal. These two signals are mixed at the detector to obtain 

V = kd\S1 + S2\
3 (3.17) 

where V is the detector output voltage and kd is the detector response constant or 

sensitivity, S\ and 62 are both complex quantities consisting of an amplitude A and 

a phase if) so they can be written as 

S\ = A\ (cos^x — z'sin^i) (3.18) 

£2 = ^ 2 ( c o s ^2 — i sin ^2) (3.19) 

Here, the phase terms are defined to be 

tpi = ujt + <f>i (3.20) 

V>2 = ut + <f>2 (3.21) 
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where LO is the wave frequency and <f> is an arbitrary phase delay due to the path 

length difference. From Eq. (3.17), we then obtain, after the application of some 

basic trigonometric identities and noting that the detector only responds to the real 

part of the applied signal, 

— = A\ cos2(V>i) 4- A\ cos2(V>2) 4- AXA2 [cos(V>i - tp2) 4- cos(V>i 4- ^2)] (3.22) 
«d 

Using the above definitions for ipi and TJJ2, and noting that the detector time response 

is too slow to respond to signals at the microwave frequency LJ so that the signals 

are rectified and averaged, the final equation for the output voltage of a square law 

detector is 

V = ^ [A\ + A\ + 2 ^ 2 c o s ( ^ - <f>2)] (3.23) 

where <f>i — <f>2 is the phase difference between the reference signal and the plasma 

signal resulting from path length differences, i.e. changes in the position of the cutoff 

layer. The notation in this equation is often simplified by noting that A\ 4- A\ is the 

sum of the signal powers of S\ and 62 and so can be represented by a power term 

Po = Pi 4- p2. The 1A\A2 is the cross power, which can be written in terms of the 

input signal powers, 2y/pip2. Finally, the detector output voltage can be written 

as6 

V = j [Po 4- 2 v ^ c o s ( < / > 1 - <f>2)} (3.24) 

Balanced De tec tors A balanced detector is basically a combination of 

two single detectors with equal sensitivities kd, a differential output, and a 180° 

phase delay between them. Thus at the balanced detector we have the two voltage 

signals 

Vi = y b 0 4 - 2 v ^ c o s ( < £ 1 - < / > 2 ) ] (3.25) 

V2 = y b o + S v ^ c o s ^ - ^ - T r ) ] (3.26) 
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Figure 3.5: A basic quadrature phase detector using four square law detectors and 
four 3 dB hybrid couplers.31 

The detector differential output voltage VbBi can then be written as 

Vbei = Vi-V2 = 2kd^/plp2 cos(^i - <f)2) (3.27) 

The advantage of such a detector is the removal of the large offset voltage in the 

detector output resulting from p0. This allows amplification of voltage due to the 

phase term without obtaining large dc offset voltages or requiring ac coupling. 

A balanced detector can be made with a hybrid tee or with 3 dB couplers 

and two square law detectors. The outputs of the detectors are fed into a differential 

amplifier to obtain the balanced signal. Also, a balanced mixer can function as a 

balanced detector if the rf and LO signals are at the same frequency (homodyne), if 

the IF output can be dc coupled, and if the mixer diodes can operate in the square 

law regime. 

Quadrature Phase D e t e c t i o n Figure 3.5 shows a schematic of a quad­

rature phase detector consisting of four detectors and four 3 dB hybrid couplers.54,31 

This phase detector consists of two balanced detectors, produced by a 3 dB hybrid 
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coupler and two square law detectors, connected together by two additional 3 dB 

hybrid couplers. Each 3 dB hybrid coupler produces a 90° phase delay in the coupled 

signal, and 3 dB power division in the two output signals. Additionally, two 45° 

waveguide spacers are located between the two balanced detectors to produce a 90° 

phase relation between the two balanced signals. Consider the detector associated 

with voltage V\ in Fig. 3.5, and define the two input signals as 

Sp = Ap(t)e^'^ (3.28) 

Sr = j4 r(t)e* r ( < ) (3.29) 

where Sp is the plasma signal and Sr is the reference signal. Sp couples through 

couplers C\ and C2 to reach this detector. This produces a phase delay of 180° in Sp 

and a 6 dB drop in the signal power. Sr must go through couplers Cz and C3, but it 

does not experience any coupling phase delay. Sr is delayed by 45° in the waveguide 

spacer. Using the same technique used in deriving Eq. (3.24), the voltage Vi out of 

this detector can be written as 

Vi(0 = j + ^ P cos[(<fr(t) - 180°) - (*,(«) - 45°)] (3.30) 

where the constant k^/2 in front of the equation is implicit. Using the same tech­

nique to track the phase through the quadrature phase detector for the other three 

detectors gives the following voltages: 

V,(0 = ^ + ^ ^ c o s [ ( 4 P ( 0 - 9 0 ° ) - ( < M 0 - 1 3 5 ° ) ] (3.31) 

V*W = j + ^ ^ c o s [ ( 4 P ( 0 - 1 3 5 ° ) - ( < M 0 - 9 0 ° ) ] (3.32) 

V*(t) = j + ^ ™ < W ( 4 P ( 0 - 4 5 ° ) - ( < M O - 1 8 0 ° ) ] (3.33) 

where it is assumed that all four detectors are matched so that they have equal 

sensitivities k^. Since each set of detectors forms a balanced detector, the balanced 
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outputs can be written as 

Va{t) = V1{t)-V2{t) = y/^cos{<j>p-cf>r-1350) (3.34) 

14(0 = V>{t)-V4{t) = v ^ r f t c o s ( 0 p - ^ - 4 5 ° ) (3.35) 

and again the sensitivity term is neglected. Since Va and Vj, have a 90° phase 

relation, quadrature phase detection obtains the sine and cosine of the phase delay. 

With sine and cosine, the absolute phase delay can be determined by tracking the 

phase from the arc tangent of the two signals (fringe counting). Since the phase is 

the desired information, the detector sensitivity kd is not important as long as all 

detectors have equal sensitivities. 

Dual H o m o d y n e Detec t ion Dual homodyne detection is similar to 

quadrature phase detection in that it provides the sine and cosine of the phase; 

however, each signal also contains a large voltage offset.55 Dual homodyne detec­

tion is achieved in the same manner as quadrature phase detection, i.e. a 90° phase 

delay is inserted between the two detectors, except that unbalanced detection is 

used. The unbalanced detection is achieved by replacing the balanced detectors 

with single square law detectors. The voltage offset in the output signal is removed 

electronically (ac coupling) or digitally (in software). Since dual homodyne and 

quadrature phase detection function very similarly, quadrature phase detection is 

sometimes referred to as balanced dual homodyne detection. 

H e t e r o d y n e D e t e c t i o n Heterodyne detection mixes the rf signal to be 

detected with the signal from a local oscillator (LO) operating at a slightly different 

frequency.24 The mixer output is then proportional to the rf signal with an IF. The 

IF is the difference frequency of the rf signal and the LO. A mixer functions in a 

similar fashion to a detector, except that it is normally strongly biased so that it 
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operates with a linear response rather than a square law response, and the output 

signal can have frequencies up to the rf range. The mixer output voltage can be 

written as 

Knix = y/Vo + VPCOS (u>IFt + <j>rf - <j>LO) (3.36) 

where the power p is dependent on the response of the mixer diode and the power 

of the input signals. Mixers can be operated as balanced mixers or ac coupled to 

eliminate dc offsets. Additionally, high-pass filtering can be used to eliminate any 

undesired frequency harmonics below the IF, and low-pass filtering can be used to 

eliminate the undesired harmonics above the IF. 

The advantage of heterodyne detection is that the phase information can 

be obtained by direct phase tracking (fringe counting) of the IF signal because 

the phase information is now at a much lower frequency. The disadvantages of 

heterodyne detection are the requirement of the second microwave source and the 

need to phase lock the LO and the rf source so that the phase difference in the 

output mixer IF is proportional only to the phase of the rf signal.24 Phase detection 

is accomplished by taking the mixer output signal, splitting it into two parts, and 

delaying one part by 90°. This generates the sine and cosine of the phase information 

so that fringe counting techniques can be used to track the phase.24-26 

Antennas Antennas for reflectometer experiments should be of a high 

gain type that provides good directivity to the probing beam. The object of the 

antenna is to convert the electromagnetic radiation propagating in the waveguide to 

free-space propagation and to direct this radiation in a narrow beam to maximize the 

wave power that is reflected at the cutoff layer back into the antenna. Additionally, 

narrow beam antenna patterns have a small 3 dB spot size, which improves the 

poloidal and toroidal localization of the information contained in the reflected signal. 

Several types of antennas can provide this capability. The antennas most commonly 
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used in reflectometry are the pyramidal and conical horns. An improvement on the 

conical horn antenna is to put a dielectric lens at the horn aperture to collimate the 

diverging rays coming out of the horn. Finally, reflector-type antennas such as the 

Cassegrain and hoghorn parabolic reflector antennas provide a means of collimating 

the launched rays without the use of a dielectric lens. Heald and Wharton5 6 provide 

a good discussion on the application of these various antennas to plasma physics 

experiments, while an antenna engineering handbook (e.g., Johnson and Jasik57) 

provides a detailed discussion of the performance of these antennas and how to 

design one for a specific application. 

V a c u u m W i n d o w s The vacuum interface for the microwave system nor­

mally consists of a vacuum window. The vacuum window may be located in the 

waveguide so that the probing beam can be launched by an antenna mounted in­

side the vacuum vessel, or the window may be mounted on the vacuum vessel with 

the antenna mounted so that the probing beam is launched through the window.56 

Waveguide vacuum windows are usually very thin (~0.001-0.005 in.) disks of Teflon, 

Mylar, or mica. They are usually sealed with an O-ring or epoxy at the waveguide 

flange nearest to the vacuum waveguide feedthrough. For example, such a disk can 

be clamped against an O-ring between a choke-and-cover flange assembly to form a 

window adequate for fundamental waveguide systems for frequencies ranging from 

26.5 GHz to 140 GHz. The standing-wave ratio for a window of this design is nor­

mally smaller than 1.2, and the losses are about 0.5 dB.5 6 O-ring sealed windows 

as described above are easily made for both rectangular and circular waveguide by 

machining the O-ring groove into the vacuum-side flange. 

Windows mounted on the vacuum vessel are standard items obtainable from 

many vacuum component manufacturers, e.g. Varian, or they can be machined to a 

desired specification and sealed with an O-ring. Because of their large circumference, 
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Table 3.1. Rectangular waveguide parameters 

Band Frequency Inner Dimensions Losses Waveguide Flange 

(in GHz) (mm) (dB/m) Number Number 

X 8.2-12.5 22.860x10.160 0.11 WR-90 UG-39/U 

Ku 11.9-18.0 15.799x7.899 0.176 WR-62 UG-419/U 

K 18-26.5 10.668x4.318 0.37 WR-42 UG-595/U 

Ka(A) 26.5-40 7.112x3.556 0.58 WR-28 UG-599/U 

U 40-60 4.775x2.388 1.06 WR-19 UG-383/U 

V 50-75 3.759x1.880 1.52 WR-15 UG-385/U 

E 60-90 3.099x1.549 2.03 WR-12 UG-387/U 

W 75-110 2.540x1.270 2.74 WR-10 UG-387/U 

F 90-140 2.032x1.016 3.82 WR-8 UG-387/U 

D 110-170 1.651x0.826 5.21 WR-6 UG-387/U 

G 140-220 1.295x0.648 7.50 WR-5 UG-387/U 

R 220-330 0.864x0.432 13.76 WR-3 UG-357/U 

they are usually much thicker than a waveguide window. The presence of the window 

in the near field of the antenna may distort the radiation pattern, lead to frequency 

sensitivity due to multiple internal reflections, and cause severe propagation losses. 

This can be avoided by designing the window to be a multiple of a half-wavelength 

thick or to have a wedge-shaped cross section. Canting the antenna so that the 

antenna beam does not have normal incidence on the window can also avoid heavy 

losses due to Fabry-Perot reflection in the window and help minimize the amount 

of reflected energy from the window that is received by the antenna. 

Waveguide C o m p o n e n t s A wide assortment of waveguide components 

are needed to assemble a reflectometer. Table 3.1 lists the standard waveguide 

bands and gives their frequency range, theoretical propagation losses assuming the 

conductivity of copper, and flange designator.58 Such items as couplers or power 
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dividers, bends, twists, tapered transitions, mode transitions, variable attenuators, 

phase shifters, and matched terminations will generally be required in building a 

reflectometer. There are many sources of information on these waveguide compo­

nents such as textbooks, manufacturers' catalogs, and trade magazines. Gandhi51 

and Adam5 3 provide good descriptions of the function and theory of these basic 

waveguide components. 

Previous Reflectometry Experiments 

So far in this chapter, the basic theory and techniques of reflectometry 

have been reviewed, and the basic hardware used in reflectometry systems has been 

discussed. In this section, previous reflectometry experiments on laboratory plasmas 

are discussed. In designing a reflectometer, the desired information to be measured 

must be determined, i.e. absolute density information (profiles or monitoring of the 

cutoff density) or density fluctuations (inferred from the phase fluctuations in the 

reflected signal). Once the type of information desired is determined, the type of 

reflectometer best suited for this measurement can be determined with consideration 

of the plasma density and magnetic field. As previously discussed, the three basic 

types of reflectometers and their possible measurements are: 

1. Fixed-frequency 

- detect the presence of a cutoff density 

- track the movement of the cutoff layer 

- measure density fluctuations 

- measure radial coherence of density fluctuations if multiple sources are used 

2. FM 
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- measure position of the cutofF layer 

- measure movement (and direction) of cutofF layer 

- measure density profile if multiple sources are used 

3. Broadband swept-frequency 

- measure the density profile over the region covered by the frequency sweep 

The initial reflectometry experiments on laboratory plasmas involved fixed 

frequency measurements of the cutofF density and were basically an extension of 

interferometry. Heald and Wharton5 6 discuss an experiment in which both the 

transmitted and reflected signals were monitored. When the transmitted signal 

dropped drastically and the reflected signal increased, the maximum plasma den­

sity had reached the cutofF density of the microwave signal. Phase measurements of 

the reflected signal were not made. In 1960, Anisimov59 reported a more advanced 

reflectometer experiment in which three separate frequency signals were launched 

and received by three individual systems. The phase delay of each signal was mea­

sured, and the radial profile of the electron density was inferred by computing the 

predicted phase shift for each of these frequencies assuming a linear or trapezoidal 

density profile. A similar technique using two frequencies was conducted on the 

Alpha toroidal device the same year.60 

The first application of reflectometry to the larger magnetically confined 

plasma physics devices of the 1970's was the fixed-frequency system operated on 

the Oak Ridge Tokamak (ORMAK) by Colchin in 1973.42 This proof-of-principle 

experiment (the results of which are unpublished) showed that a wave could be 

launched into the plasma and the phase of the reflected signal measured. This 

system used a klystron at 34.9 GHz and a single antenna launching waves radially 

into the plasma in the O-mode. Homodyne detection was used with the reference 
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signal being taken from the source by a 20 dB coupler. The total number of fringes 

of phase shift before (for reflection off the vacuum vessel) and after cutoff was 

measured and compared to the predicted phase shift using a numerical model and 

the line-averaged density obtained from an interferometer. Good agreement between 

the predicted and measured phase shift was obtained. Fluctuations correlated to 

MHD instabilities were also observed.42 After this initial experiment, the klystron 

source was replaced with a 26.5 to 40 GHz BWO.6 1 Swept-frequency measurements 

were performed, but strong internal reflections in the waveguide system prevented 

profile measurements. ORMAK used a double vacuum system, i.e. an inner vacuum 

liner and an outer vacuum vessel enclosing the entire magnet system and inner liner. 

This required two vacuum windows, one at the liner and one at the outer vessel wall. 

The beating of the reflections from the two windows and between other reflections 

made it impossible to determine the phase shift due to the reflection off the plasma. 

This internal reflection problem led to the design and installation of a dual antenna 

system using IMPATT diode sources.61 Each source was sweepable over a 10 GHz 

range with center frequencies of 45 and 55 GHz, respectively. Unfortunately, the 

IMPATTs had a very nonlinear frequency sweep, and it was not possible to use 

them to perform profile measurements.42-61 The results of these experiments were 

not published. 

In Table 3.2, the previous and present reflectometry experiments on toroidal 

plasma confinement devices (tokamaks and stellarators) are summarized. In the 

following sections, most of these experiments are briefly discussed, but since many 

of the experiments are quite similar they are not all discussed. 

Fixed-Frequency Ref lectometers 

After Col chin's unpublished experiment, two years went by before any fur­

ther reflectometry experiments were performed. Then in 1975 on the Adiabatic 
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Table 3.2. Previous reflectometry experiments 

Technique Experiments Date1' Mode F(GHz)# y 
Measured 

1. Single Fixed ORMAK 1973 0 35, 26-40 nc , fi 

Frequency ATC 1975 0 27-38 fi 
TFR 1983 0 75-110 fi 
JET 1984-? X 29-38 nc , f i 

Petula 1985-86 X 60-110 n c 
T-10 1986 0 36 nc , f i 

TJ-1 1988-p o.x 33-50 fi 
Wendelstein VII-AS 1989-p X 47-80 fi 
Versator-ll 1989-p 0 20 fi 
ATF 1989 0 30-40 fi 

2. Mulitple Fixed TORSO 1976 0 10,27(2) fi 
Frequencies ASDEX 1987 o,x 18-60(3) f\ 

JET 1988-p 0 18-80(12) nc, fi 

Dlll-D 1988-p 0 15-75(7) nc , fi 

JET 1989-p X 49-57(2) n.Y,Lc* 

ATF 1990-p o,x 30-40(2) n.Y.I-c 

Dlll-D 1990-p X 50-75(2) fi.Y.Lc 

TJ-1 1990-p o,x 33-50(2) n.Y.I-c 
I hi H 1990-p X 110-170(4) n.Y.I-c 

3. Single Modu­ TFR 1978 0 36, 106 nc 
lated Frequency PLT 1980 0 34 nc 

Versator II 1990-p 0 20 n c 

4. Mulitple Modu­ JET 1988-p 0 18-80(12) nc,ne( r) 
lated Frequencies Dlll-D 1988-p 0 15-75(7) nc,ne( r) 

5. Broad-Band TFR 1983-85 0 75-110 ne(0 
Frequency Petula-B 1985-86 X 75-110 ne(r) 
Sweep TJ-1 1987-p o,x 33-40 ne(r) 

Dlll-D 1988-p X 50-110(2) ne(r) 

Tore Supra 1988-p o,x 25-110(5) ne(r) 

"("Experiments still operating in the summer of 1991 are indicated by a "p". 
*When more than one microwave source is used, the number of sources used at one time (but not 
necessarily in one waveguide system) is enclosed in parenthesis. 
*nc - measurement of the position and/or movement of the cutoff layer. The density profile may be 
deduced from this measurement if the total phase shift during the density rise can be followed. 
h - density fluctuation measurement. 
ne(r) - density profile measurement. 

*Y is the coherence from the cross-correlation of two reflectometer signals reflected from two positions 
radially separated by 5r, and Lc is the radial correlation length estimated from -y(5r). 
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Toroidal Compressor(ATC) tokamak and in 1976 on the TORSO stellarator, fixed-

frequency reflectometers were operated primarily as density fluctuation diagnostics. 

The ATC reflectometer operated at a single frequency, adjustable from 27 to 38 GHz, 

in the O-mode using homodyne detection.4 The magnitude of large-scale MHD os­

cillations was derived from the phase shift of the reflected signal, and the spectrum 

of the density fluctuations was measured up to 300 kHz. The TORSO reflectometer 

operated two fixed frequencies, 10 GHz and 27.3 GHz, in the O-mode with each 

frequency signal having its own waveguide system.62 Apparently, this reflectometer 

used individual antennas for each signal, rather than launching and receiving in the 

same antenna system. The fluctuations were observed and nominally identified as 

drift waves. The authors concluded that the amplitude and spectra of these drift 

waves could explain the observed anomalous particle loss. 

In 1983, a reflectometer operating in the 75 to 110 GHz frequency range was 

installed on the Tokamak Fontenay-aux-Roses (TFR) with two operational modes: 

fixed frequency or broadband sweep.63 (It is a common practice for FM and swept-

frequency systems to also operate at a fixed frequency to do density fluctuation 

measurements.) This system used the O-mode with two antennas and homodyne 

detection. The results of these fluctuation measurements were in agreement with 

drift wave theory in that the amplitude of the fluctuation spectrum decreased as 

the cutoff layer was scanned further into the plasma. Large MHD instabilities 

localized to resonant magnetic surfaces were observed only when the cutoff layer 

and the resonant magnetic surface overlapped.2 Similar fixed-frequency fluctuation 

measurements were made on Petula-B using the X-mode and a sine-cosine detection 

scheme to give the sign and magnitude of the phase fluctuations in the reflected 

signal.40 

In 1984, J E T started operating a single-frequency reflectometer, tunable 

between 29 and 38 GHz, using X-mode and homodyne detection.25 This system 
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had two unique features: the first use of a Gunn oscillator microwave source for 

magnetic fusion reflectometry experiments, and the reference signal for the homo-

dyne detection was not taken directly from the source signal but rather from the 

power reflected from the vacuum window and other waveguide components. This 

reflectometer utilized an existing ECE waveguide system rather than a separate 

system for reflectometry. The first J E T density profiles were obtained using this 

reflectometer.64 The total phase shift after cutoff of the reflectometer signal was 

measured for several different frequencies and then combined to deduce a profile. 

This experiment led to the J E T multichannel FM reflectometer (discussed later). 

The J E T team also developed a new measurement that relies on measuring the 

movement of the cutoff layer. By monitoring the collapse of the central density 

during sawtooth oscillations and comparing the data with computer models, the 

particle diffusion coefficient was estimated.65 J E T was also the first experiment to 

use reflectometry, in conjunction with other fluctuation diagnostics, to study fluctu­

ations during H-mode (an improved energy confinement regime) and the transition 

to H-mode.66 

Fluctuation measurements were performed on the T-10 tokamak at 36.6 GHz 

in the O-mode in 1986.43 This experiment appears to be the first use of heterodyne 

phase detection in reflectometry. The main thrust of this experiment was to test 

the possibility of using radio range finder techniques to measure the distance to the 

cutoff layer. In radio range finders, amplitude modulation of the microwave signal is 

used to measure the time of flight to the cutoff layer and back. The conclusions were 

that this technique was possible, and a proposal to use an array of radio range finders 

with two microwave interferometers to continuously monitor the development of the 

density profile was made. 

The Axially Symmetric Divertor Experiment (ASDEX) tokamak reflectome­

ter appears to be the first reflectometer to launch and receive multiple frequency 
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signals in the same antenna system, although it is not clear if the experimenters 

operated multiple frequencies simultaneously.67 This reflectometer system operated 

in the 18 to 60 GHz band using three BWOs (18-26.5 GHz, 26.5-40 GHz, and 

40-60 GHz) and homodyne detection with the reference taken directly from the 

source signal. The system consisted of two separate reflectometers mounted 180° 

poloidally apart, each using a single antenna designed to operate anywhere in the 18 

to 60 GHz range. Fixed- and swept-frequency operation was planned, but it is not 

clear whether the system was designed to allow simultaneous use of more than one 

frequency in each reflectometer. No other reports on this experiment were found. 

In 1988, both J E T and DIII-D operated with multiple FM systems in the 

fixed-frequency mode to monitor fluctuations.68-32-46-69 The JET system has 12 fre­

quencies between 18 and 80 GHz and uses heterodyne detection with an existing 

ECE waveguide system. The DIII-D system has seven frequencies between 15 and 

75 GHz using homodyne detection and a dual antenna arrangement with the an­

tenna mounted outside the vacuum vessel looking through a flat vacuum window. 

Both of these experiments monitored the fluctuations simultaneously at multiple ra­

dial positions. Special attention was paid to the changes in the fluctuation spectra 

observed during the transition to H-mode, during H-mode, and during ELMs.68-70-69 

The J E T team also refined their particle diffusion coefficient measurements with 

better radial resolution of the central density collapse and radial propagation of the 

resulting density pulse.71-72 

The Wendelstein VII-AS stellarator's reflectometer has provided good fluc­

tuation data. This system operates in the 47-80 GHz range at one frequency in the 

X-mode using homodyne detection and a single antenna.6-3 Enhanced fluctuations 

were observed in currentless neutral beam injection (NBI) plasmas with pellet in­

jection to peak the profile and an edge iota of 0.52. These enhanced fluctuations are 

thought to be associated with the rational q — 2 (-t = 0.5) surface. Analysis of the 
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broadband fluctuation spectra and comparison with a known 300 Hz modulation 

are used to analyze the evolution of the iota profile inside the plasma. 

Correlat ion Ref iec tometry In 1988, correlation refiectometry was first 

at tempted.7 3 This experiment was conducted on J E T and was first conceived by 

Costley during a questions session following an oral presentation on refiectometry 

in 1986.64 The basic technique is to launch two or more frequencies simultaneously 

from the same antenna system and detect each signal separately. If the cutoff 

layers for each frequency are close enough together, the coherence of the density 

fluctuations can be calculated using standard cross-correlation techniques.73 If the 

coherence is obtained for multiple radial separations, the radial correlation length 

can be estimated. The J E T experiment used a fixed frequency at 49 GHz and 

a second frequency stepped between 51.3 GHz and 53 Ghz. Homodyne detection 

was used with a diplexer to separate the two frequency signals to provide > 20 

dB isolation between the two detection systems. The results of the experiments 

were not conclusive. Although researchers did find coherence for their smaller A / 

pair, the larger A / pair showed no coherence. They thus concluded that the radial 

coherence measurements were possible and that the radial correlation lengths in 

J E T were less than the radial separation corresponding to the larger A / pair of 

signals. Correlation refiectometry has since been done on several other machines, 

including ATF, DIII-D, and TJ-I. 

F M Ref lectometers 

The development of FM refiectometry to determine the position and mo­

tion of the cutoff layer was an at tempt to overcome the two main limitations of 

fixed-frequency homodyne refiectometry for monitoring the cutoff layer motion: the 

inability to tell which direction the motion was in, and the effect of fluctuations 
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on the phase measurement. The technique involves sweeping or modulating the fre­

quency over a small A / and was first tried on TFR in 1978 to monitor changes in the 

plasma position for feedback control.74 The ability to modulate the frequency very 

fast, i.e. faster than the density fluctuations, greatly reduces the interference in the 

phase determination resulting from fluctuations. In 1980, Doane et al.47 operated a 

single-frequency FM system on PLT using a BWO with a 33.5 to 35.5 GHz sweep. 

A dual antenna arrangement with homodyne detection was used with the reference 

signal coming directly from the BWO output. The beat frequency, i.e. the frequency 

of the occurrence of fringe resets, is used to derive the round-trip delay time r [Eq. 

(3.7)]. Measurements of the position of the cutoff layer were in agreement with the 

expected position deduced from other diagnostics. 

In her thesis, Hubbard developed the analysis for and conceptual design of 

a multiple-frequency FM system.14 This advancement of FM reflectometry provided 

a means of obtaining the density profile by determining the round-trip delay time 

at several points in the plasma. Interpolating between each position at which r has 

been measured, the density profile can be obtained using an inversion equation for 

T similar to that used for broadband swept-frequency measurements [Eq. (3.15)]. 

In 1988 (one year later), the J E T multifrequency FM reflectometer sys­

tem was operated.68 This system had 12 frequencies between 18 and 80 GHz and 

operated in the O-mode with heterodyne detection. The same year, the DIII-D 

multifrequency FM system was operated.32-46 '69 This system had seven frequencies 

between 15 and 75 GHz and operated in the O-mode with homodyne detection. 

Both systems produced density profiles but apparently are now primarily operated 

as fluctuation diagnostics as discussed earlier. 
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Broadband Swept Frequency Ref lectometers 

In the 1973 experiment, Colchin et al. performed a proof of principle ex­

periment for a broadband swept-frequency reflectometer that had been proposed 

in an earlier unpublished memo.35-42-61 He derived the inversion equation for the 

swept-frequency data and performed a numerical simulation. Fixed- and swept-

frequency measurements were attempted, but problems with the microwave system 

and sources prevented actual profile measurements.42-61 In 1981, Doane et al.47 pro­

posed a broadband reflectometer for the Princeton Large Torus (PLT) based on the 

success of their FM system, and Cavallo and Cano36 proposed a system for JET in 

1982. Apparently, these two experiments also went undone, and so no other broad­

band swept-frequency reflectometers were built until 1983 when one was installed 

on TFR. 6 3 

The T F R broadband reflectometer63 had a swept frequency between 75 and 

110 GHz with a sweep time of 5 ms. A BWO was used as the microwave source. A 

dual antenna system launching the O-mode with homodyne detection and looking 

vertically down at the plasma was used. Simonet63 reported that the density profile 

was successfully measured, but that several limitations did exist. First, the 5 ms 

sweep time of the BWO may have led to spurious profile information since the 

density profile in T F R may change on time scales faster than that , and second, 

reflectometry cannot provide the profile information for hollow density regions in 

the plasma.39 

In 1985, an X-mode broadband reflectometer was operated on the Petula-B 

tokamak.48-40 Again, a BWO was swept from 75 to 110 GHz but in 200 /xs, and 

the plasma was viewed radially. The density profile was obtained by numerically 

inverting the measured phase change and using data on the magnetic field. The use 

of the X-mode and the upper cutoff layer [Eq. (2.6)] allowed probing of a wide range 

of densities and observation of the inner radius of the plasma since the magnetic 
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field in a tokamak increases monotonically as R decreases. A second BWO in the 

60 to 90 GHz range allowed the extension of the profile measurements to the edge 

of the plasma. 

A broadband reflectometer sweeping between 33 and 50 GHz was installed 

on TJ-I in 1987. This reflectometer used either the X- or O-mode depending on 

the expected density to be achieved in the machine. A BWO with an 850 //.s sweep 

time was used with homodyne detection.33 Anabitarte gives an excellent discussion 

on the calibration of a swept-frequency reflectometer and on the interpretation and 

analysis of the raw data to obtain the beat frequency or group delay.34 Successful 

measurements of the density profile were obtained automatically via automated 

data analysis during plasma discharges in TJ-I. It was noted that faster sweep times 

(~ 10 fis) would allow for multiple sweeps during a shot and reduce the effect of 

fluctuations and density profile changes during the sweep. 

The most recent and most successful broadband reflectometer is the one on 

DIII-D. As reported by Doyle et al.,41 '75 this reflectometer uses a BWO in the fre­

quency band of 50 to 75 GHz. Homodyne detection is used with zero-crossing fringe 

counting electronics to automatically determine the phase shift during a sweep. The 

sweep rate is varied between 400 and 1000 fis, and allowing for the reset time of 

the BWO tube, a profile can be determined every 8 ms. This system operates in 

the X-mode with a dual antenna arrangement mounted outside the vacuum vessel 

looking radially into the plasma from the low-field side. The antennas are standard 

horns with polyethylene lenses for beam forming. A 45° flat mirror aims the an­

tenna beams through the flat fused-silica window and into the plasma. This system 

has been very successful at determining the density profile in DIII-D, but several 

limitations are noted. Density fluctuations do produce false fringes during the fre­

quency sweep, resulting in some error in the profile. With a minimum frequency 

of 50 GHz, the low-density part of the profile is never viewable, so a profile up to 
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the lowest cutoff density must be assumed for the inversion equation. Absorption 

at the cyclotron harmonic layers has resulted in very low received power levels at 

the detector during-low field operations. This decreases the signal-to-noise ratio, 

which can lead to false fringes due to noise in the system. Rapidly evolving profiles 

are observed in DIII-D during the transition from L-mode to H-mode and during 

edge-localized modes (ELMs). Since these profile evolutions happen on a time scale 

comparable to the BWO sweep time, the profile information obtained during the 

evolution is inaccurate. In spite of these limitations, the measured profiles agree 

well with profiles measured by Thomson scattering. 

Summary 

Reflectometry relies on the phase change in the reflected microwave beam 

resulting from the propagation path length to and from the reflecting layer to obtain 

information on the density at the reflecting layer. Two techniques are available to 

obtain this density information: (1) fixed probing beam frequency, and (2) swept 

probing beam frequency. Fixed-frequency operation can provide information on the 

inception of cutoff density in the plasma, movement of the cutoff layer, and fluctu­

ations in the density at the cutoff layer. The first measurement is difficult because 

of the strong refractive effects as cutoff density is approached and because the small 

size of the reflecting surface immediately after cutoff is achieved makes it difficult 

to determine the time at which cutoff occurs. Tracking the movement of the cutoff 

layer after the inception of cutoff is also difficult because the phase of the reflected 

signal must be tracked over many 2ir cycles as the cutoff layer moves. Tracking 

this phase is difficult because of the inability to tell exactly when cutoff occurred 

and the small signal level immediately after cutoff resulting from the physically 

small size of the cutoff layer. The most straightforward measurement for fixed fre-
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quency reflectometry is the measurement of density fluctuations at the cutoff layer. 

In this measurement, the phase does not need to be tracked over many 2ir cycles; 

rather, only the fluctuations in the phase need be measured. The phase fluctuations 

in the reflected signal are proportional to the magnitude of the density fluctuations 

localized to the cutoff layer. By using two microwave probing frequencies simultane­

ously, the cross-correlation between the fluctuations at two different locations in the 

plasma can be measured. If the frequencies are launched and received in the same 

waveguide system, the radial correlation length can be determined by performing 

coherence measurements at several different radial separations. 

Swept-frequency reflectometers can be divided into two types: (1) FM, and 

(2) broadband swept-frequency. FM systems modulate or sweep the frequency over 

a narrowband, while broadband systems sweep the frequency over one or more wave­

guide bands. Sweeping the frequency allows the differential phase information d£/df 

to be determined, where d( is the differential phase change resulting from the dif­

ferential frequency change df. This function is dependent on the density profile, 

and by Abel inversion, the density profile function dne/dr can be calculated. FM 

systems measure d£/df at multiple locations along the density gradient and inter­

polate between these points to obtain d(/dr for the entire profile, while broadband 

swept systems measure d(/dr in one complete sweep along most of the gradient. 

The major complication with swept-frequency measurements is the need to track 

the phase of the reflected signal over many 27T cycles or fringes. Fluctuations in the 

density at the cutoff layer or fast changes in the local density profile can cause the 

loss or gain of fringes during the phase tracking. 

In implementing either a fixed-frequency or a swept-frequency reflectometer, 

several major aspects of the hardware system are generic. A reflectometer will use 

one or two antennas to launch and receive the microwave signal. In the single-

antenna arrangement, simple homodyne detection is used to measure the amplitude 
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and phase of the reflected signal. In a two-antenna system, simple homodyne or 

more advanced sine-cosine homodyne detection can be used. If the signal level is 

very low, heterodyne detection can be used to obtain a better signal-to-noise ratio. 

For broad-band swept-frequency operation, the primary source in use is the BWO 

which can sweep the frequency over an entire waveguide band. For FM systems, 

voltage tunable Gunn oscillator sources are primarily used, although BWOs can 

also be used. For fixed-frequency experiments, both Gunn oscillators and BWOs 

are acceptable sources. 

The initial reflectometry experiment on a laboratory plasma reported by 

Heald and Wharton5 6 involved monitoring both the transmitted and reflected sig­

nals from a microwave interferometer. When the transmitted signal fell to zero 

and the reflected signal increased, they inferred that the cutoff density had been 

achieved in the plasma. More advanced reflectometry experiments were conducted 

in the Soviet Union in I960.59-60 These experiments involved using multiple fixed 

frequencies and determining the density profile from the phase delay of each signal. 

Colchin et al. first applied this technique to a tokamak in 1973 on ORMAK.4 2 6 1 

Since the ORMAK experiment, reflectometry experiments have been conducted on 

at least 15 different tokamaks and stellarators to measure both the density profile 

and the density fluctuation amplitudes. 
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CHAPTER IV 

FLUCTUATIONS AND INSTABILITIES 

Introduction 

The phase of a microwave signal reflected from a cutoff layer in the plasma 

will fluctuate proportionally to the density fluctuations at the cutoff layer. Since the 

effect of the density fluctuations on the phase of the probing beam will be greatest 

in a thin layer near the cutoff point in the plasma, the fluctuation information 

obtained by reflectometry is localized to the cutoff layer. Using the techniques 

discussed in Chap. I l l , estimates of the normalized fluctuation amplitudes can be 

made, as well as the radial width, radial wave number, and radial correlation lengths 

of the fluctuations. This information, in conjunction with information from other 

diagnostics, can be used to describe the fluctuations in the plasma and their behavior 

with various plasma conditions. This information may help in determining the 

sources of these fluctuations and ways to control them. 

It has long been known that the rate at which energy leaves a toroidally con­

fined plasma is much faster than that predicted by neoclassical theory.1-76 The losses 

that cannot be attributed to known classical processes are referred to as "anoma­

lous" losses. Generally, the dominant anomalous energy loss is through enhanced 

electron thermal conduction, but anomalous ion thermal conduction and particle 

transport may also be important. This anomalous transport has generally been at­

tributed to microscopic plasma turbulence, i.e. turbulence with radial wavelengths 

75 



much smaller than the plasma radius. 

Small fluctuations in the electric field and magnetic field lead to small fluc­

tuations in particle velocities and radial positions. This can lead to transport of 

both particles and energy across the confining magnetic field. For low-frequency 

fluctuations (e.g., LU «C U;^, where u)ci = qiB/rrii is the ion cyclotron frequency), a 

particle's radial velocity can be written as1 

, . f + "-# <«, 
where E$ is the poloidal component of the fluctuating electric field, BT is the radial 

component of the fluctuating magnetic field, and v\\ is the particle velocity along the 

unperturbed magnetic field B. The fluctuations in the particle's radial motion can 

lead to "anomalous" transport of both particles and heat; however, the net transport 

depends not just on the level of the fluctuations, but also on the correlation between 

the various fluctuating quantities. Consider the radial particle flux, T = neVr, where 

ne is the electron density and VT denotes the radial fluid velocity. For turbulent 

plasmas, each plasma quantity can be written with a time-averaged part and a 

fluctuating part, e.g., ne = (ne) -f ne, where the brackets ( ) indicate a time average 

over many fluctuation cycles so that (ne) = 0 and (ne) is the macroscopic density. 

The fluctuation terms have amplitude and phase, e.g., ne(uj, k, t) = ne(a;, k) exp[i(/z • 

r — wt)], where a; is the wave frequency and k • f is the relative phase. The net 

particle flux (as given by Liewer1) is then 

r = ( ( ( n . ) + n . ) ( ( V , ) + V,)) 

= (n.)(Vr) + (neVr) (4.2) 

where (neVr) denotes the radial particle flux due to turbulence and is defined as 

1 rT/2 r r°° - i 
I* = (neVr) £ - / / h:{u,,k,t)Vr{u>,k,t)du>\dt (4.3) 

1 J-T/2 U-oo J 
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and r* represents the turbulence-induced flux due to the correlation between ne and 

Vr. Thus, to determine the fluctuation-induced transport experimentally, correla­

tions of the fluctuations must be measured.1 

Instability Analysis 

The basic procedure to analyze instabilities in magnetically confined plasma 

is to expand about the equilibrium solution and assume that the perturbed quanti­

ties (density, temperature, magnetic field, etc.) can be represented in the form 

j/f\ei(fc-r--o,t) M H D instabilities77 

£(fc, a^e1**-'"-"*) drift wave instabilities78 

where r is the spatial variable and k and u; are the complex wave vector and fre­

quency, respectively. MHD and drift wave instabilities are discussed in more detail 

in the following sections. This representation makes the implicit assumption that 

the perturbations can be Fourier transformed in time and space. Using this form for 

a perturbation, the plasma equilibrium equations are linearized and an eigenvalue 

problem, in the form of the sum of a series of normal modes, is obtained. 

For MHD analysis, the initial MHD equations define a static equilibrium, so 

any perturbation can be expressed as the sum of unique eigenfunctions for a given 

set of equilibrium and boundary conditions. All the eigenfunctions or eigenmodes 

have a simple exponential time dependence, which will indicate growth (instability) 

or decay (stability) of that mode. If the linearized equations are used to define the 

potential energy of the equilibrium, the energy principle states that any perturbation 

that decreases the potential energy, i.e. a growing eigenfunction, is unstable because 

the potential energy is converted to kinetic energy, causing the perturbation to 

grow.7 
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For drift instability analysis, some form of the linearized kinetic equilibrium 

equations are written in the form of a dispersion relation 

D(w,k) = 0 (4.5) 

linking UJ and k from which the eigenfunctions can be determined. Stability is de­

termined by the complex eigenfunctions Im{uj)\ that is, positive imaginary solutions 

(7m(u;) > 0) have a growing amplitude and are unstable (instability), while neg­

ative solutions (Im(uj) < 0) are evanescent (stability). Solutions with /m(u;) = 0 

are not unstable, but since they do not grow or diminish in time, they can last 

indefinitely.77'5 

It should be noted that the linearized solutions are only valid for small per­

turbations. In real plasmas, unstable perturbations only briefly remain small enough 

to be approximated as linear and generally saturate rapidly. Numerical techniques 

are needed to follow the nonlinear development and multimode interaction of insta­

bilities. However, the linearized solution is still useful because it indicates which 

instabilities may be active and warrant further analysis.5-7 

Toroidal instabilities are usually treated as a series of normal modes having 

the generalized form 

£ ei[(m9-n4>)-ut] /^Q\ 

where m and n are the poloidal and toroidal mode numbers, respectively. It is 

possible to return to the wave vector model by defining 

* = ( - * - - * ) (4.7) 

where 6 and <j> are the poloidal and toroidal unit vectors, respectively. In this 

context, the safety factor q is defined as q = m/n, and the mode wavelengths are 

given by \9 = (27rr)/m and A^ = (2TrR)/n = (2TrqR)/m. 5-7-77 
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Instability Characterization 

If an instability produces a radial displacement 

6r ~ 6r0 eut (4.8) 

where 6r0 is the displacement at t = 0, it then has a radial velocity 

8v = —(8r) ~ w Sr0 eut (4.9) 
at 

and a kinetic energy 

SW ~ {p0Ar){8vf ~ p 0 u; 2 (Ar) 3 (4.10) 

where p0 is the mass density at r0 and the displacement scale length 8r is assumed 

to be comparable to the density gradient relaxation scale length Ar . 7 7 The free 

energy AE released by the displacement must provide at least the kinetic energy 

8W of the displacement for an instability to exist. This is the basic tenet of the 

energy principle which holds that the potential energy that would be released by 

a perturbation must exceed the kinetic energy necessary to drive the perturbation 

for an instability to exist. The characteristic frequency range of such instabilities is 

then determined from the condition that AE > 8W and is77 

w<U^Jvp/^U^J^=i; = ^r (411) 

where pi = VTil^d is the ion gyroradius, Ln = ne(dne/dr)_1 is the electron density 

gradient scale length, VTi is the ion thermal velocity, p is the plasma pressure, p 

is the mass density, wc{ is the ion cyclotron frequency, and the plasma is treated 

as an ideal gas undergoing an adiabatic expansion. Note that pijLn <C 1, so Eq. 

4.11 implies that the frequencies of such instabilities are much less than the ion 

cyclotron frequency (a; <C wci)-
7'77 This characterization of the fluctuations is valid 

for those fluctuations driven by relaxation of spatial nonuniformities (gradients). 

79 



Fluctuations driven by relaxation of the velocity-space distribution primarily occur 

at frequencies near ujci and have wavelengths of the order of the ion gyroradius.8 

The spatial resolution of present reflectometry density fluctuation measurements 

(frequencies < 100 GHz) is greater than the wavelength of the probing microwave 

beam, and so the small wavelength fluctuations discussed above will average out 

over the spatial volume of the probing beam. 

The most important low-frequency (a; <C <*>Ci) instabilities are believed to be 

MHD instabilities and drift wave instabilities. MHD instabilities are the dominant 

form of the large-scale, low-n perturbations of the plasma, while drift waves are the 

dominant form of the small-scale (or micro-) instabilities. Higher order n-number 

instabilities can also contribute to this turbulence. Both kinds of instabilities can 

be pressure-gradient-driven in stellarators.1 '5-7 '77 The MHD instabilities are obtained 

from a fluid treatment of the plasma, while the drift wave instabilities most often 

come from a particle (kinetic theory) treatment of the plasma. 

Once a perturbation initiates an instability, the growth of the instability 

has two distinct phases: the linear phase and the nonlinear phase. In the linear 

phase, the dominant mode, which is the most linearly unstable m,ra-mode, grows at 

an approximately linear rate. As this mode grows, higher order modes also begin to 

grow at the expense of the dominant mode by taking energy from it. The loss of this 

energy eventually causes the dominant mode to stop growing or "saturate." The 

saturation level is the peak energy level of the dominant mode, while the growth 

rate is the rate of increase of the mode in the linear regime. When the mode has 

saturated, it is in the nonlinear regime. 

The growth rate is often the primary parameter calculated in the theoretical 

development of most instabilities. Generally, the local instability with the fastest 

growth rate will dominate the turbulence in that region of the plasma by using up 

the available free energy before other instabilities driven by the same free energy 
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source can grow. The frequency of most instabilities is to first order the diamagnetic 

frequency, given in Eq. (4.17) and defined in the section "Drift Wave Instabilities," 

while the wavelengths are estimated from Eq. (4.7) and q = m/n. The saturation 

level of the dominant mode is generally estimated by assuming that transport occurs 

due to convection resulting from the fluctuation over the spatial width or amplitude 

of the fluctuation. This is the principle behind mixing length arguments.79 From a 

mixing length argument, the saturation level is then estimated as 

T*T (412) 

where A is the radial width of the eigenmode. The radial correlation length can be 

taken to first order to be the radial width A. The kinetic treatment used for the 

drift wave analysis generally assumes a slab model and then may apply a ballooning 

transformation to include toroidal effects.79 In the case of stellarators, the parallel 

wave number fc|| ~ kj, is not simply defined. It can range from a wavelength of 

approximately one field period to a wavelength of approximately the torus circum­

ference; that is, 2irM/qR < fc|| < 2ir/qR, where M is the number of field periods.80-81 

The perpendicular wave number is more easily approximated by k± ~ ke = m/r for 

those instabilities that do not require the toroidal bad curvature to exist, such as the 

MHD interchange mode, and kg = nq/r for those instabilities that do require the 

toroidal bad curvature to exist, such as the MHD ballooning mode.81-82 The MHD 

modes and the bad magnetic curvature are discussed in the following sections. 

Table 4.1 at the end of this chapter lists the major instability modes, the 

required theoretical treatment to obtain the mode, and the free energy source. From 

the equations given in the following sections, the growth rate, frequency, poloidal 

mode number and ne/ne are estimated for each instability mode for the q = 3/2 

rational surface in ATF. The parameters used in making these calculations are listed 

in Table 4.2. The q = 3/2 rational surface has been chosen for these calculations 
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because it is the dominant rational surface occurring in the density gradient region 

viewable by microwave reflectometry. Table 4.3 contains a summary of the symbols 

used in this chapter. 

Ideal and Res i s t ive M H D Instabil i t ies 

Ideal MHD instabilities are not considered sources of micro-turbulence be­

cause if they exist, the plasma is rapidly lost, i.e. the time scale for ideal MHD 

modes is r ~ a/i>ri — 1 /^s.82 Thus, a viable plasma confinement device must be 

ideal MHD stable. Here a is the minor radius and VTi = j2kTi/m,i is the ion 

thermal velocity. Resistive MHD instabilities are derived from the one-fluid MHD 

equations in which the plasma resistivity is included in Ohm's law.1'7'77 The ideal 

MHD instability modes have resistive analogues, so this discussion will deal with 

the more applicable case of resistive MHD. Pressure-gradient-driven resistive MHD 

turbulence is often suggested as an important component in confinement in toroidal 

devices.83'84-85 The addition of resistivity to the ideal equations would, at first glance, 

reduce the growth rate of the ideal instabilities because the resistivity dissipates elec­

trical currents. However, the addition of resistivity can produce new instabilities by 

removing constraints from the ideal equations and, thereby, making states of lower 

potential energy accessible to the plasma. An MHD treatment of the plasma as­

sumes a fluid model, which requires that the circulating particles be collisional. See 

the section "Electron Drift Wave Instabilities" in this chapter for an explanation of 

circulating particles and collisionality. 

In the ideal MHD case the magnetic field lines are tied to the plasma, and so 

the plasma and field lines must move together. The addition of resistivity allows the 

magnetic field lines to move independently of the plasma or to break and reconnect 

so that they are no longer frozen into the fluid. This allows the magnetic surfaces to 

break up into a number of thin filaments called magnetic islands, which thread their 
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way through the plasma. A magnetic island is a filament of plasma with its own set of 

nested flux surfaces surrounding its own local magnetic axis.7-77 MHD instabilities 

are driven by plasma currents or a combination of a pressure gradient and bad 

magnetic curvature. Bad magnetic curvature occurs in regions where the magnetic 

field lines are convex so that the magnetic pressure decreases with increasing minor 

radius. A pressure-gradient-driven instability can occur when a pressure gradient 

has a component in the direction of the radius of curvature of a field line.82 

The resistive analogue of the ideal kink mode is the tearing mode for which 

resistivity allows the magnetic field lines to reconnect to achieve a lower energy 

state.1 Since the kink mode is associated with axial plasma currents or plasmas 

confined by only a poloidal magnetic field (i.e., q < l ) , 1 0 stellarators are, in general, 

stable to this class of instabilities. The resistive analogue of the ideal pressure-

driven interchange (or flute) mode is the resistive interchange mode.1 The resistive 

interchange mode is sometimes referred to as the resistive-<7 mode because a gravity­

like force can be used in the MHD equations to model complicated geometric aspects 

of the magnetic field. The resistive ballooning mode is obtained from the same 

resistive MHD development as the interchange mode but is associated with the 

bad field line curvature region of the toroidal field.86 In toroidal plasmas, there are 

two components of the field line curvature. The first is in the poloidal field and is 

associated with the interchange mode, while the second is in the toroidal field and 

is associated with the ballooning mode.87 These modes have been proposed as a 

possible cause of anomalous thermal transport in stellarators.84-88 

Interchange and ballooning instabilities are driven by the relaxation of a 

pressure gradient in an area with bad magnetic curvature.77 The growth of these 

modes is tied to the rational surfaces because the field lines close upon themselves 

(enhancing the instability) and do not map out a flux surface when followed many 

times around the torus. Since charged particles are tied to the field lines, an inter-
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change perturbation occurring on a rational surface will allow charge separation due 

to particle drifts. The resulting electric field produces an outward E x B force re­

sulting in an outward particle drift that increases the perturbation. Field lines that 

don't close upon themselves, i.e. those that map out a flux surface when followed 

many times around the torus, do not allow charge separation to occur because of the 

rapid particle transport along the field lines. Plasma perturbations that conform 

to the field line pitch of a rational surface and cause two adjacent field lines to in­

terchange their positions result in charge separation and growth of the interchange 

instability. The growth of the ideal interchange mode is inhibited by neighboring 

flux surfaces that have a different field line pitch, i.e. magnetic shear. This is known 

as 'shear stabilization.'88 However, the resistive interchange mode is not stabilized 

by the shear because a small amount of resistivity allows a significant decoupling 

of the field line and plasma motion and because the growth of this mode goes as 

the resistivity to the one-third power. Thus, shear does not stabilize the resistive 

interchange mode, but the growth rate does decrease with increasing shear.87 

A magnetic well, i.e., a region with an outwardly increasing magnetic field 

(as discussed in Chap. I in the section "The Advanced Toroidal Facility"), is stabi­

lizing to the pressure-gradient-driven instabilities because the radius of curvature of 

the field lines is reversed with respect to the pressure gradient. The driving term in 

the MHD equations for the interchange mode is only unstable, i.e. positive, when no 

magnetic well is present. As soon as any amount of well is introduced, the driving 

term goes negative, and the mode becomes stable. The resistive ballooning mode is 

driven by a second term in the same MHD equation that involves the pressure gra­

dient and the toroidal field curvature. In general, the ballooning mode is expected 

to be absent or much smaller than the interchange mode in stellarators.88*89 This 

is primarily due to the stabilizing effect of the magnetic shear. However, where a 

magnetic well will stabilize the interchange mode, it can only reduce the growth 
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rate and saturation level of the ballooning mode.86 

The growth rates of ideal and resistive MHD instabilities are very fast, and so 

they saturate on a time scale much shorter than the length of the plasma discharge.82 

Thus, measurements of the resistive MHD instabilities are made in the nonlinear 

regime, and the important characteristics to be measured include the fluctuation 

saturation level, the wavelength, the frequency, and the location in the plasma. 

Coherence between fluctuating parameters is also very important in determining the 

transport induced by the instability.1 The exact saturation levels and frequencies 

are difficult to predict; however, the spatial locations of the instabilities are easier 

to predict. The interchange mode is tied to a resonant flux surface but will extend 

poloidally and toroidally on that flux surface throughout the plasma; however, it is 

localized in radius to rational flux surfaces in regions with a strong pressure gradient. 

The ballooning mode is localized to the middle of a field period along a major radius 

where the toroidal field curvature is worst in the outer half of the plasma and will 

not extend poloidally or toroidally around the torus. 

Resistive MHD instabilities of the interchange type have been observed in 

several stellarator devices. During the initial operating period of the ATF torsatron, 

magnetic island formation resulting from magnetic iield errors produced very peaked 

pressure profiles and a smaller plasma, allowing access to the second stability regime. 

Second stability is discussed in more detail in the following section. The observed 

fluctuation behavior was consistent with the theoretical predictions for the resistive 

interchange mode in the second stability regime.90-91 In Heliotron-E, an m = 1 

mode was observed and found to be consistent with pressure-gradient-driven MHD 

instabilities (interchange mode).92 In the Proto-Cleo torsatron, the observed low-

frequency turbulence was attributed to the rippling mode, which is driven by the 

unstable convection of current in a resistivity gradient.5-93 This mode is usually 

localized to the plasma edge and is driven by a plasma current in a region with a 
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resistivity gradient. 

M H D in A T F and Second Stabi l i ty The stability of the ATF plasma 

to ideal MHD instabilities was an important consideration in the device design.9 

ATF was designed with an ideal and resistive interchange mode stabilizing magnetic 

well at the plasma center and ideal interchange mode stabilizing shear in the plasma 

edge region. The MHD stability is determined by the pressure gradient, which is the 

main source of free energy, and the magnetic field line curvature (shear, magnetic 

well/hill). 

The ATF plasma size is characterized by the average radius a of the last 

closed flux surface, beyond which the magnetic field is ergodic (magnetic limiter) 

or displays a separatrix (magnetic divertor). The plasma edge is defined by the 

-t = 1.0 surface. The rotational transform profile for a standard configuration, 

shown in Fig. 1.2, is the result of MHD optimization studies. The q = 1 and q = 3 

surfaces are excluded from the plasma, which minimizes the number of high-order 

rational surfaces in the plasma, since -t(r) varies from 0.35 at the center to 1.0 at the 

edge. The * — 0.5 surface falls within a magnetic well, as shown in Fig. 1.2, which 

is stabilizing to the interchange modes. The low-order resonances, 0.5 < * < 1.0, 

fall in a region of high shear that is stabilizing to the ideal interchange and ideal 

ballooning modes but only slightly reduces the growth rates and saturation levels 

of the resistive interchange and resistive ballooning modes.9 

The free energy available to drive the MHD instabilities increases as beta 

increases, but the accompanying outward magnetic axis (Shafranov) shift increases 

the magnetic well depth and changes the magnetic field line curvature. If the well 

depth increases fast enough with beta, there is a beta self-stabilization effect, and 

the MHD stability improves with beta. This results in stable access to the second 

stability regime, which is relevant only to the pressure-gradient-driven instabilities. 
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Self-stabilization with beta and second stability are discussed further by Shafranov,88 

Carreras et al.,95-96 Hender et al.,97 and Harris et al.90 

In the second stability regime, resistive MHD instabilities can be, and usu­

ally are, unstable. In ATF, the shear in the plasma edge stabilizes the ideal inter­

change modes, but it only slightly reduces the linear growth rate of the resistive 

interchange modes. However, second stability does have an effect on the resistive 

interchange modes. As beta increases, the magnetic well broadens because of the 

magnetic axis shift, reducing the radial range of the resistive interchange instability. 

The saturation level of the resistive interchange is therefore reduced with increasing 

beta in the second stability regime. Thus, measurements of the rms fluctuation 

levels associated with this instability can give an indication of if and when second 

stability is achieved.91 

Resis t ive Interchange M o d e The theoretical work on resistive MHD 

instabilities is extensive; for example, see the papers by Carreras et al.,84-91 Charl­

ton et al.,89-98 Lee and Carreras,99 and Shaing et al.100 Additionally, the MHD 

equations have been extended to include such effects as compressibility,86 to ex­

tend the equations to the low-temperature coUisionality regime,85 and to include 

electron temperature gradient effects.101 The most likely resistive MHD instability 

mode in a stellarator is the pressure-gradient-driven interchange instability. Car­

reras et al.83-84-91 give equations for the linear growth rate and radial width and for 

the nonlinear correction factor for the saturation density, potential, and magnetic 

field fluctuation levels in ATF for the resistive interchange mode. The linear growth 

rate in terms of local parameters is 

T» = 5175 ( f i r p
R ° K " k 4) T^ (413) 
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and the linear radial width is 

.2 \ 1/3 fa n2,. \ I / 6 

- - yy (f * ; -
where m = (TO) is the rms value of the poloidal mode number, S = Tji(r) / Thp(r) 

is the local Lundquist number, r/?(r) = r2fio/7j(r) is the local resistive skin time, 

ThP{r) = RoJpopm{r)lBo is the poloidal Alfven time, rj{r) is the resistivity, pm(r) 

is the mass density, S = (r/q)(dq/dr) is the shear parameter, fi(r) = p(r)/(B0
l/2iL0) 

is the local beta, p(r) is the equilibrium plasma pressure, Lp = p(r)/(dp/dr) is the 

pressure gradient scale length, nn = 1/Rc — (1/B)(dB/dr) is the local value of the 

averaged normal curvature, Rc is the radius of curvature, and r is the plasma radius. 

For a stellarator, Rc for the interchange mode is determined from the helical curva­

ture, while for the ballooning mode Rc is determined by the toroidal curvature. In 

Fig. 4.1 the helical curvature nn and the toroidal curvature are shown. Note that the 

helical curvature dominates the toroidal curvature for r/a > 0.5. The implication 

of this is that the resistive interchange mode will dominate the ballooning mode in 

this region of the plasma. 

The nonlinear radial width of the pressure (and so density) fluctuations is 

given as 

A £ ~ A m A 7 ' 6 (4.15) 

where A is the nonlinear enhancement factor, which depends weakly on the physics 

parameters and is the solution to the equation 

3TT 

25652LP ( S V 2 
- - I n A (4.16) 

7T (3R2
0Kn \rk0q) 

The frequency of the instability mode is approximately the local electron diamag-

netic frequency 

o;*c = kevD (4-17) 

where VD is the electron drift velocity and is defined in Eq. (4.20). 



CO 

Figure 4.1: The helical and toroidal curvatures vs the minor radius. This plot 
demonstrates the dominance of the resistive interchange mode driving helical cur­
vature over the resistive ballooning mode driving toroidal curvature. 

Resis t ive Bal looning M o d e The ballooning mode is only obtained if 

the MHD equations are developed for a full toroidal model, as opposed to a simple 

cylindrical model, and depends on the toroidal bad curvature. Since the ballooning 

mode is a toroidal mode, i.e., it requires toroidal geometry to exist, the poloidal 

wave number is defined in terms of the toroidal mode number n, kg — nq(r)/r, and 

the modes are centered on the outside of the torus. The linear growth rate of the 

resistive ballooning mode in a stellarator is given by Carreras and Diamond83 as 

2/3 
1 

7n== 5^3 \yfi L 

and the linear radial width is given as 

P rRoL 
-j—Keq %l (4.18) 

A w = 
2 \ 1/4 

InW 2 \ 
•TL MS2 no 

(4.19) 
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where n = (n) is the rms value of the toroidal mode number, and all the parame­

ters are again local and have been defined in the previous section. The nonlinear 

theory for the resistive ballooning modes is not given, but to first order, the same 

enhancement factor can be applied to obtain a nonlinear estimate.102 

In the outer half of the ATF plasma, the resistive ballooning mode does not 

play a significant role in driving fluctuations because of the dominance of the helical 

curvature (which drives the resistive interchange mode) over the toroidal curvature 

(which drives the resistive ballooning mode), see Fig. 4.1. Charlton et al.86-89-98 have 

shown that when compressibility is kept in the resistive MHD equations, the growth 

rate and thus the saturation level of all the resistive MHD modes (interchange 

and ballooning) in ATF are reduced to those of the resistive interchange mode 

outside of the magnetic well, and are small but finite inside the magnetic well, 

where the interchange mode is stabilized, if a strong pressure gradient exists in 

the well. The ballooning mode is not expected to be important in the standard 

ATF configurations.102 Further discussions of the resistive ballooning mode and 

its theoretical development are given by Diamond et al.,103 Hender et al.,104 and 

Carreras et al.105 

Other Res is t ive M H D M o d e s Although the tearing mode should not 

be important in stellarators, conditions may be encountered in which these modes 

can become unstable. ATF normally operates in a currentless configuration; how­

ever, during magnetic configuration scans, bootstrap currents are produced. These 

currents are small compared to the currents in tokamaks, but they are large enough 

to modify the -c profile and so possibly change the stability.106 Diamond et al.107 

and Bateman7 discuss tearing modes for tokamaks. Garcia94 discusses resistivity-

gradient-driven interchange-like turbulence, which evolves from rippling instabilities 

in tokamaks. He states that the saturation level of the resulting temperature, po-
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tential, and density fluctuations and their related correlation lengths and predicted 

anomalous diffusion coefficients are sufficiently consistent with experiments to pro­

vide a plausible explanation for edge turbulence. 

Drift Wave Instabi l i t ies 

The one-fluid MHD stability model does not include all the sources of free 

energy or inhomogeneities in the plasma. If a two-fluid or kinetic model is used, new 

effects, such as two species, finite ion gyroradius, resonant and trapped particles, 

electron motion along the magnetic field lines, and separate temperature and density 

gradients, are included. These new effects can alter the existing stability of MHD 

modes and give rise to new instabilities associated with the new sources of free 

energy.1-108 These new instabilities are grouped together under the heading of drift 

waves because they are associated with particle drifts in the plasma. 

Drift waves involve ion motion perpendicular to the magnetic field. The ion 

charge density set up by this perpendicular motion is then neutralized by electron 

motion along the field lines. In order for the electrons to be able to neutralize the 

ion density fluctuations, the electrons must travel many wavelengths along the field 

in one wave period.77-87 This condition can be used with the electron momentum 

equation and the ion continuity equation to obtain an adiabatic equation for the 

plasma potential. From this equation, the electron drift speed can be inferred as77-87 

"> = ih (420) 

where Te is the electron temperature and Lp = p(dp/dr)~1 is the pressure gradient 

scale length. Note that this equation neglects other contributions to the drift veloc­

ity, such as the E x B, VB, curvature, and polarization drifts. The corresponding 

diamagnetic drift frequency is 

w*e = kgvD (4.21) 
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where kg is the perpendicular component of the wave vector. In obtaining this 

solution, quasi-neutrality (ne ~ n t) is assumed, and for simplicity it is assumed 

that there is no temperature gradient. The important point of this derivation is 

that the drift wave propagates in the poloidal direction with velocity vp and that 

perturbations at one radial position (on one flux surface) do not affect perturbations 

at another radial position (on another flux surface). This analysis is valid only if the 

drift waves do not couple to the ion acoustic modes propagating along the field; i.e., 

the ion cross-field motion must dominate the ion parallel motion. This requirement 

can be written as |a;„,e| >» |«||V,|, where u)+e is the electron drift frequency, v8 is the 

ion acoustic velocity, and «|| is the ion acoustic wave vector component along the 

field.87 

The requirement for a drift wave to become unstable is that there be a phase 

shift between the density and potential fluctuations. Dissipation — for instance, dif­

fusion, thermal conduction, or resonant particles — can cause a phase shift between 

the density and potential fluctuations for either the electrons or the ions. This phase 

shift induces a net particle flux that causes growth or damping of the wave. Any 

imbalance between the ion and electron fluxes caused by the dissipation must be 

compensated for by the growth or damping of the drift waves in order to maintain 

quasi-neutrality. Note that a dissipation mechanism that gives rise to equal ion 

and electron fluxes causes no wave damping or growth.77-87 If the adiabatic plasma 

potential equation is modified to include a nonadiabatic term involving collisional 

effects on the trapped particle population, it is found that the untrapping of parti­

cles by collisions provides the necessary phase shift, i.e., dissipative effect, for a net 

particle flux. The net particle flux then causes the wave to grow.77 

Electron Drift Wave Instabi l i t ies Drift waves are the most frequently 

invoked cause of turbulence and anomalous transport.109-110 These microscopic in-
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stabilities are driven by the free energy in the density and temperature gradients 

individually or together. These are electrostatic modes because they exist when the 

perturbation in the magnetic field is removed. They do create a small magnetic 

component, which increases with plasma beta and may become important at high 

beta. The electron drift instabilities can be grouped by their scaling with the elec­

tron collisionality, which is included in the wave dispersion relation obtained by a 

two-fluid or kinetic treatment. The collisionality determines whether a particle can 

complete one or more trapped orbits before being untrapped by a collision. The 

electron collisionality operator v+e can be defined as the ratio of the frequency of 

untrapping collisions v& and the electron trapped particle bounce frequency UJ^-

This ratio is 

*.. = — (4.22) 
Wbe 

where v^ = vei/e, wbls is the electron bounce frequency, vei is the electron collision 

frequency for electrons with ions, and e is the inverse aspect ratio applicable to the 

type of trapped particles. Stellarators have two classes of particles: those that are 

toroidally trapped and those that are helically trapped. Each of these classes of 

particles has its own bounce frequency, which depends on the scale length of the 

trapping magnetic well. For toroidally trapped particles, the bounce frequency is 

given by111 

and the inverse aspect ratio is simply e = r/R0. For the helically trapped particles, 

the bounce frequency is80 

h VTeM 

<-u - - T J - < 4 - 2 4 ) 
/to 

and the helical configuration inverse aspect ratio for stellarators is given by eh = 
6(r/a)2, where 6 is the ratio of the helical magnetic field to the toroidal field. In 
Eqs. (4.23) and (4.24), vTe — J2kTe/me is the electron thermal velocity and M is 

the number of field periods in the stellarator.80 Using u;Je and w£e in Eq. (4.22), the 
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toroidal i/Je and helical i/Je collision frequencies can be calculated. When i/'e > e - 3 /2 , 

the circulating electrons are in a collisional regime, and the time between collisions 

is less than the time for an electron to complete an untrapped orbit. In this regime, 

the collisions provide a drag-like dissipation that causes a drift wave to grow. For 

1 < uie < e - 3 / 2 , the circulating electrons are in a low-collisionality regime, and the 

particles are marginally trapped. In this regime, a Landau (wave-particle) resonance 

between the electrons and the drift waves provides the destabilizing dissipation. For 

i/Je < 1, the helically trapped electrons can complete at least one orbit before being 

untrapped by a collision. The untrapping of the electrons by collisions then provides 

the destabilizing dissipative mechanism.77-79 

Collisional or Diss ipat ive Drift Instabi l i ty This instability mode is 

driven by collisions of the circulating electrons in a collisional plasma and is obtained 

by including electron heat flow along the magnetic field (finite xy), electron-ion 

collisional friction (resistivity), and a finite ion Larmor radius pi in the Braginskii 

two-fluid equations. The results below were obtained by using a shearless slab 

geometry approximation for a tokamak with k\\ — k • B/B. From this approach, the 

frequency of this instability is found to be79-111 

w = u>*e [l - klp](l + r)] (4.25) 

where u>*e is the diamagnetic frequency, pi is the ion Larmor radius, k± ~ kg = ra/r, 

and r = Te/T{. The growth rate 7 for this mode is given by 

7 = ^ " i f c W U + r) (4.26) 

where vei is the electron collision frequency and k\\ ~ k^ = m/qR0. The radial width 

of this instability is obtained from the exponentially decaying eigenfunction in the 

eigenmode equation. The width, for a slab limit, can be approximated as111 

A ^ ( 2 ^ ) 1 / 2 (4.27) 
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where LB = [Roq2 / r){dq / dr)~x is the shear length and in terms of the shear param­

eter S is given by La = Roq/S. For low-m values, this mode is the macroscopic 

drift-dissipative instability. The inclusion of electron temperature gradients in the 

wave dispersion relation shows that these collisional drift waves smoothly transition 

to the resistive MHD rippling mode at low m and high collisionality. 

Universal Drift Instabi l i ty This instability is associated with circulat­

ing electrons in the low-collisionality regime. In this regime, the drift waves and 

the electrons have a Landau resonance (Landau dissipation), and so a kinetic de­

scription of the plasma is necessary.1 The frequency of this mode for a shearless slab 

approximation in a tokamak is given by79 

u, = ^ ' r ° ( t ) (4.28) 
l + r ( l - r „ ( 6 ) ) l ' 

where r 0 (6) = I0(b)e~b
y b = k2

Lp2, and r = Tc/Tj. I0 is the zeroth-order modified 

Bessel function.38 The growth rate of this mode is given by 

^r{r - 1)^(1 - r„(6)) 
7 fe||«rer0(6)[i + r(i - r„(6))] *• ' ' 

where the drift wave scaling, vre ^> w/k\\ ^> vji, has been used. The approximate 

radial width of this mode can be approximated by the equation for the dissipative 

drift instability, Eq. (4.27). The effect of an electron temperature gradient in the 

direction of the density gradient is to stabilize these modes.1 

Trapped Electron M o d e s Electrons trapped in magnetic wells are more 

susceptible to destabilizing collisional effects than untrapped electrons. The dissi­

pative contribution from the trapped electrons is obtained from a kinetic treatment 

of the plasma. Trapped electron modes (TEMs) are generally driven by temper­

ature gradients with collisional dissipation and have a characteristic frequency of 

LUbi < <*>TEM < ^be, where uJbe and ujbi are the electron and ion bounce frequencies, 
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respectively.77 For a stellarator, the helically trapped particle bounce frequency is 

given by LU£ — VTM/R0, where v? is the particle thermal velocity and M is the 

number of field periods.80 The following discussion of the TEMs in stellarators is 

obtained from work in progress by Dominguez et al. for the ATF stellarator.80 

In stellarators, the dissipative TEM (DTEM) can occur in the low electron 

collisionality regime where i/Je < 1, while the collisionless TEM (CTEM) can occur 

in the i/£e <C 1 collisionless regime. The division of the two modes with respect to the 

collisionality is a result of the frequency scaling used in solving the dispersion relation 

for each mode. In stellarators, the helically trapped electrons become collisionless 

much sooner than the toroidally trapped electrons, and so TEMs in stellarators 

are associated with the helically trapped particles. For the DTEM in a stellarator 

satisfying the condition MAj, <C 1, where A^ is the width of the mode in ballooning 

space, 

*• = £/§& (if (4'30) 

MLn /J , 6M2pLn 

the mode frequency is given by 

w = um0 £o__YJ ^o— (4 31) 

where Ln is the electron density gradient length, 8 is the ratio of the helical magnetic 

field to the toroidal field, p is the normalized radius, and pB = Pi\fr. The rms density 

fluctuation level can then be approximated by ne/ne ~ A / L n , where A is the radial 

width of the mode and is given by 

A = 
M(8\112 L 2 

U> 
1/2 

P. (4.32) 
q2 \2) LnR0u>*e 

In their present work, Dominguez et al. do not give an expression for the growth 

rate of the DTEM, but Diamond112 gives a general expression (not solved for the 

specific conditions assumed by Dominguez et al.) for the DTEM growth rate, 

7 = ! ( l + «7,e - ^ ) u>L (4.33) 
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where i/eff = vei/e
h, 7}e = (d \nTe)/(d l nn e ) = L n / L r , and a = 1.71 is the thermal 

force factor. The equations for the CTEM in a stellarator have not been published 

and so are not given in this review; however, for a tokamak approximation, the 

papers by Adam et al.,113 Kadomtsev and Pogutse,114 and Liu et al.111 can provide 

the desired equations for both the DTEM and CTEM. 

S u m m a r y of Electron Drift Waves All of the above-mentioned electron 

drift wave instabilities are more unstable when the effects of bad magnetic curvature 

are included, that is, when the modes are allowed to have a ballooning structure. 

The theoretical development of electron drift waves or trapped electron instabili­

ties is extensive. For a review of these instabilities, see Tang115 and Kadomtsev 

and Pogutse.114 Additional references on the DTEM include Chen et al.,116 Tsang 

et al.,117-108 and Chu and Manheimer.118 In recent drift wave studies on the helical-

axis stellarator SHEILA, it was found that the experimentally observed fluctuation 

behavior was best explained by a collisional drift wave model.119 Density fluctuation 

measurements on the L-2 stellarator have recently been reported, and the apparent 

source of these fluctuations is a collisional drift wave instability.120 

Ion Drift Wave Instabil i t ies Ion drift waves have been invoked as the 

cause of ion anomalous thermal conduction and could be relevant in discharges with 

large ion temperature gradients. They propagate in the ion diamagnetic direction, 

which is opposite the MHD and electron drift waves, and have a characteristic 

frequency ~ LU^, where 

is the ion diamagnetic frequency, Lpi is the ion pressure gradient length, and T{ is 

the ion thermal temperature.1 2 1 
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Ion T e m p e r a t u r e - G r a d i e n t - D r i v e n M o d e This mode, known as the 

rji mode, is an electrostatic sound wave driven unstable by an ion pressure gradient 

and has a ballooning structure driven by the bad toroidal curvature. Its existence 

depends on satisfying some threshold condition in 77,- = (d lnT,) / (d l n n t ) = Lni/Lxi, 

where Lni and Lji are the ion density and temperature gradient lengths, respectively. 

For instance, one threshold condition is rji > 2/3. 1 2 2 Ion temperature-gradient-driven 

turbulence has received much attention over the last couple of years as a possible 

explanation for the anomalous transport in tokamaks.115-123 '124 The theoretical work 

on the rji mode is extensive; for example see Mattor and Diamond,126-126 Dominguez 

and Waltz,127 Biglari et al.,121 Romanelli,128 Hahm and Tang,129-130 Rewoldt and 

Tang,131 Hassam et al.,122 and Hamaguchi and Horton.132 

Biglari et al.121 have summarized the theoretically predicted physical quan­

tities for the rji mode and the trapped ion mode, which is discussed in the following 

section, in full toroidal geometry for a tokamak. Note that the expressions that they 

give are well behaved in the flat density gradient profile limit. These results can 

be used to compare experiment with theory in assessing the importance of the rji 

mode. 

The predicted poloidal wave number range for the 77; mode is (1 4- rji)'1^2 > 

kg pi > e1/2 /q. For this range of kg, the growth rate is given by121 

Vu;*. r / 

and the radial width is given by 

/ CI \ 2 LD J 1 -4- T7-- 1 

P. (4.36) 
SJ w*e r 

where u>d = Lnw*e/Ro- An estimate for the rms density fluctuation level is 

n* „ (q\1/2 ( i^V / 4 (I±^A3/4 EL 
ne " \$) W * e / V r ) Ln 

where all the parameters have been previously defined. 
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Trapped-Ion M o d e s If both trapped electrons and ions are present in 

the plasma, a new class of electrostatic instabilities, generally referred to as the 

trapped-ion modes (TIMs), can be found. There are many regimes of these modes, 

and they can be associated with either the electron or ion drift waves. TIMs become 

important in the low ion collisionality regime given by121 

v.i = ̂  < 1 (4.38) 
Vbi 

where vcft,i = ^i/e is the effective ion collision frequency with V{ the ion collision 

frequency and eh the helically trapped particle inverse aspect ratio for a stellarator, 

as discussed in the section "Electron Drift Wave Instabilities." The ion bounce 

frequency for a stellarator is given by u;^ = vjiM/ RQ. Note that the TIM theory has 

been developed for the toroidally trapped particles in tokamaks; however, stellarator 

estimates are made here by using the parameters denning helically trapped particles. 

For TIMs, the expected poloidal wave number range is given by Biglari 

et al.121 as kgpi < eh /q. The growth rate is given by 

7 l I M . ( v ^ i ± ^ ) 1 / 2 u , . t (4.39) 

and the radial width is given by 

- l 
A ~ (keS) (4.40) 

where u^ = §dlCo^ is bounce averaged and u;d = (Ln/R0)uj*e. The predicted rms 

density fluctuation level is 

i^(^(^i±*y/2
 (4.41) 

TIMs are driven by density gradients with collisional dissipation and are 

further destabilized by temperature gradients. The characteristic frequency of TIMs 

is v*i/eh < u;TIM < u;^. Additional information on these instabilities is given by 

Tang115 and by Kadomtsev and Pogutse.114 
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Electromagnet ic Drift Waves The drift wave modes discussed above 

have characteristic wavelengths of ~ pi. There is a short-wavelength analogue of the 

rji mode with k&pe < 1 in which the ions and the electrons interchange their roles. 

Here, pc ~ vre/^ce is the electron Larmor radius. This mode becomes unstable 

when 7]e = Ln/LT ~ 1 and contains a magnetic component when (3 > me/mi. The 

poloidal wavelength range is approximately 2irpe < Xg < 2irc/ujpe.
79 Wavelengths in 

this range will be much less than the resolution of present reflectometer diagnostics. 

Summary of Fluctuation Modes in ATF 

Table 4.1 lists the major instability modes and their important characteris­

tics for ATF at the q = 3/2 rational surface. This table is limited to modes with 

wavelengths large enough to be resolved by reflectometry, i.e., poloidal wavelengths 

of order the probing beam diameter at the cutoff layer, ~ 10 cm. The electromag­

netic and the velocity space modes are, in general, high-frequency short-wavelength 

modes that cannot be resolved by reflectometry. The parameters used in making 

these calculations are listed in Table 4.2. Table 4.3 defines the symbols used in 

the equations given in this chapter. From Table 4.1 it appears that the resistive 

interchange and DTE modes will dominate the ne/ne spectrum in the edge region 

of ATF for plasmas with conditions similar to those assumed here. This agrees 

with the results obtained by numerical studies of the expected turbulence modes 

on ATF.80-91-98 Although the numbers listed for the resistive ballooning mode in 

Table 4.1 would imply that this mode could also be important, it was shown in Fig. 

4.1 that the helical curvature, which drives the interchange mode, dominates the 

toroidal curvature, which drives the ballooning mode. The dissipative drift mode 

is shown to have a high saturation level for he/ne, but its growth rate is so slow 

that other instabilities will use up the available free energy before this mode can 
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grow and saturate. For this reason, the dissipative drift mode is also not important. 

Finally, one difference between the resistive interchange and the DTE modes can 

be used experimentally to distinguish which of these two modes is being observed 

in the plasma. The resistive interchange mode will be a global mode extending 

toroidally and poloidally around the torus on a flux surface, while the DTEM will 

be localized to the outer half of the plasma in one field period. Thus, if coherence 

is found between fluctuation diagnostics separated toroidally and/or poloidally by 

one or more field periods, the resistive interchange mode is the likely source of the 

turbulence. 
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Table 4.1. Instability table for the edge region (q = 3/2) of ATF 
(Parameters used in calculations are given in Table 4.2) 

Instability 
Mode 

Treatment Free Energy 
Source 

Growth 
Rate 

Frequency** <m> n/na 

interchange resistive-MHD Vp 1.3x104s"1 3.8 kHz 6 2%<n|) 

ballooning resistive-MHD Vp 7.7x103s"1 2.9 kHz 4.5 2.6%<n|) 

dissipative drift two-fluid Vne,VTe,Vpe 8 s"1 25 kHz 45T 6% 

universal drift kinetic Vne,VTe,Vpe (low collisionality regime only) 

DTEM kinetic Vne,VTe,Vpe 1.6x104s_1 40 kHz 45T 4.5% 

CTEM kinetic Vne,VTe,Vpe (collisionless regime only) 

r|j modes kinetic Vnj.VTj.Vpi 4.5x104s"1 -9.5 kHz# 45T 0.4% 

TIM kinetic VnifVTilVpi 2.8x104s"1 -8.3 kHz# 37¥ 0.5% 

aSpectrum integrated (rms) value 

^''Nonlinear estimate. 
§The frequency listed for each instability simply gives the estimated frequency for the assumed set of plasma conditions. The actual 
instability frequencies will be spread out (and possibly shifted) around this frequency. 
* 
For the assumed plasma conditions in these calculations, the electrons are collisional. 

# 
A negative mode frequency indicates propagation in the ion diamagnetic direction. 

'The value of <m> for these modes assumes kj_ps = 0.3. 

^The value of <m> for this mode is estimated assuming k. ps = 0.25. 



Table 4.2. Physical parameters used in estimating the 
density fluctuation level at the q = 3/2 surface in ATF 

Plasma Assumed 
parameters value 

q " 3/2 
r 0.23 m 
a 0.30 m 

n e = nj* 4 x 1 0 1 8 r r f 3 

Te 75 eV 

Tj* 25 eV 

Ln e = Lni* -0.2 m 

LT e = LTi* -0.2 m 

B0 0.95 T 

B(r) 0.75 T 

Kn = 1/Rc -1.4 m"1 

S -1.1 
r[ 10"5Q-m 

S 1.1 x10 5 

p0 0.25 % 

ve j 4 x 1 0 5 s " 1 

vD 1 x 103 m/s 

5 0.2 
M 12 

*lon density and temperature profiles are not known, 
so these values are only estimates. 
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Table 4.3. Definitions of symbols used in Chap. IV 

symbol description 

B 
e 
k,|, k± 

k e , k<t> 
L n , LT, Lp 
Lni, LTi 

Ls 

m 
M 
me ,mi 

n 
n e , n i 
q 
Re 

s 
s 
Te-Tj 
VD 
vTe- vTi 

a 

P 
Y 
8 

A 

E 

Eh 

Tl 

ne.^li 
Kn 
v e i 
veff- veff,i 

v * e ' v * i 

Pe> Pi 

Ps 
T 

XR 

%p 

CO 

CO , CO 
be bi 

CO 
d 

^ExB 
co*e 

magnetic field 
electron charge 
parallel and perpendicular wave vectors in slab geometry 
poloidal and toroidal wave vectors in toroidal geometry 
electron density, temperature and pressure gradient lengths 
ion density and temperature gradient lengths 
shear length 
poloidal mode number 
number of field periods in stellarator 
electron and ion mass 
toroidal mode number 
electron and ion density 
safety factor 
radius of curvature of the magnetic field 
Lundquist number 

shear parameter 
electron and ion temperature 
electron drift velocity 
electron and ion thermal velocities 

thermal force factor 
plasma beta 
instability mode growth rate 
ratio of helical to toroidal magnetic field 

radial width of instability eigen mode 
inverse aspect ratio 
helical configuration inverse aspect ratio for stellarators 

resistivity 
ratio of the density to temperature gradient lengths for electrons and ions 

averaged normal curvature of the magnetic field 

electron-ion collision frequency 

frequency of untrapping collisions for electrons and ions 

electron and ion collisionality operators 

electron and ion Larmor radii 

modified ion Larmor radius 

ratio of electron to ion temperature 
resistive skin time 
poloidal Alfven time 
instability mode frequency 
electron and ion bounce frequencies 

electron drift frequency 

ExB drift velocity 

diamagnetic frequency 
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CHAPTER V 

SPECTRAL ANALYSIS OF FLUCTUATION 

DATA 

Introduction 

The analysis of fluctuation data, known as signal or spectral analysis, is 

primarily carried out in the frequency domain, that is, the array of phase fluctuation 

data vs time is transformed into the frequency domain to obtain the fluctuation 

frequency spectra. In this way, the amplitude of each frequency component in the 

spectrum can be observed, which allows the signal analysis to concentrate on the 

dominant fluctuations. In general, fluctuation data digitized by transient recorders 

with a sampling frequency f8 (typical frequencies are 256, 512, or 1000 kHz) and 

a specific amount of memory per signal nT (typically 8192, 16,384, or 24,576 data 

points).133 The sampling interval is then At = l / / « , and the time length of the 

digitized signal is T = nTAt. Low-pass filtering is performed at a frequency of 

approximately 80% of the Nyquist frequency (/«/2) to eliminate aliasing of the 

data. Aliasing of the data occurs when fluctuations with frequencies greater than 

the Nyquist frequency are present in the data. Because these fluctuations have 

a period shorter than the sampling interval, they are folded so as to appear as 

fluctuations below the Nyquist frequency. Since no low-pass filter has an infinitely 

sharp rolloff, the anti-aliasing filter cutoff frequency is normally set at approximately 

80% of the Nyquist frequency.134 
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Transformation to the frequency domain for signal analysis is performed on a 

portion of the signal (called one realization or temporal window) of N records. Thus, 

the transformation results in a time averaging over AT = NAt. The frequency 

resolution of the transformed signal is determined by the number of intervals N 

over which the Fourier transform is calculated and the leakage effect associated 

with windowing the data. Leakage and data windowing are discussed in the next 

section. The minimum frequency resolution A / is then given by the ratio of the 

spectrum width or sampling frequency fB to the number of intervals used in the 

transform, A / = fs/N, and so to obtain better frequency resolution, a longer signal 

and so more time averaging must be used. The transformed signal can be used one 

temporal window at a time or nw = UT/N windows can be averaged to obtain the 

average spectra, where nw < nj/N and is a whole number. Overlapping windows 

with nw — 2TIT/N — 1 (obtained by stepping N/2 records for each realization) can 

be used to increase the number of windows being averaged over to improve the 

statistical accuracy of the spectra.135 

Fourier Transform 

Cont inuous Fourier Transform 

The continuous Fourier transform (CFT) can be used for characterizing 

linear systems and for identifying the frequency components making up a continuous 

waveform. The Fourier transform pair for continuous signals is136 

S{f) = f°° s(t)e-i2"ftdt (5.1) 
J — OO 

s(t) = f" S(f)e^Uf (5.2) 
J — OO 

where s(t) is the continuous time domain signal, S(f) is the continuous frequency 

domain signal, and / and t have the limits — oo < / < oo and — oo < t < oo. 
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However, in experimental applications a continuous waveform is not obtained. The 

sampling of the signal results in a finite, discrete version of the Fourier transform.136 

Discrete Fourier Transform 

The discrete Fourier transform (DFT) pair that applies to sampled versions 

of the continuous signals s(t) and S(f) is136 

*(/0 = 4 5 > ( f c ) « p = ^ (5-3) 
^V tk=o JV 

x(tk) = ^ ( / ^ e x p ^ ^ (5.4) 
/;=o 

for fj = 0, 1, . . . , N — 1 and tk = 0, 1, . . . , N — 1. X(fj) and x(tk) simply represent 

discrete samples of the continuous waveforms S(f) and s(t). Note that X(fj) and 

x(tk) are, in general, complex series. Although most of the properties of the CFT are 

retained, some differences do result from the constraint that the DFT must operate 

on sampled waveforms defined over finite intervals. 

When x(tk) is real, the real part of X(fj) is symmetric about the folding 

frequency / / where / / = / , / 2 , and the imaginary part is antisymmetric. This means 

that the Fourier coefficients between 0 and N/2 — 1 can be viewed as the positive 

frequency (real) components of the signal, while the coefficients between N/2 and 

N — 1 can be viewed as the negative frequency harmonics between —N/2 and 0. 

When x(tk) is real, the negative frequency harmonics are simply a mirror image of 

the real components; however, if x{tk) is complex, the Fourier components between 

N/2 and N — 1 represent the true negative frequencies in the signal.136 Negative 

frequencies represent the frequency of waves traveling in the reverse direction.44-45 

In the application of discrete Fourier analysis, two problems are often en­

countered: aliasing and leakage. Another more difficult problem, which is generally 

ignored, is finding the statistical reliability of an individual power spectral estimate 
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when the signal being analyzed is noise-like. This problem is generally overcome in 

fluctuation analysis by averaging many individual spectra together.135-136 

Aliasing Aliasing occurs when high-frequency components in the time 

domain signal impersonate low frequencies because the sampling rate is too slow. 

The discrete sampling of a continuous waveform with a frequency / above the folding 

frequency / / (Nyquist frequency) results in a discrete waveform with an apparent 

frequency /« = / / — ( / — / / ) below the folding frequency. This problem is easily 

avoided by requiring the sampling rate to be at least twice the frequency of the 

highest frequency present. In practice, this requires that low-pass filters be used to 

attenuate frequencies above the folding frequency.136 

Leakage The problem of leakage is inherent in the Fourier analysis of 

any finite record. The record has been formed by looking at the actual signal for 

a period of T seconds and by neglecting everything that happened before or after 

this period. This is equivalent to multiplying the continuous signal by a rectangular 

data window. When the transformation to the frequency domain is made, the 

effect of the rectangular data window is a function with an amplitude of the form 

{s\nx)lx centered at the frequency of each waveform in the signal. This amplitude 

function has a series of sidelobes (spurious peaks), which give false contributions to 

the amplitude of the waveforms at other frequencies. This sidelobe contribution is 

the leakage effect.138 

The leakage problem is minimized by applying a data window, other than 

a rectangular window, to the time series signal, which has lower sidelobes when 

transformed to the frequency domain. This windowing function simply provides a 

smoother beginning and ending to the record to minimize the sidelobe production. 

A common windowing function is the Hanning window, which consists of a cosine 
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bell on a pedestal. The Hanning window in the time domain is denned as135 

«*(0 = cos2 ( | L ) (5.5) 

where A T = NAt was defined earlier and t is the data time array and is N records 

(data points) long. By expanding the cosine-squared term in this equation, a form 

suitable to numerical implementation is obtained, 

™m w*¥ (,6) 
1*1 > ¥ 

Note that the Hanning window is denned in both the time and frequency domains 

and can be applied to the data window in either domain, i.e., before or after the 

application of the fast Fourier transform (FFT) . The tapering of the data by the 

Hanning window causes a loss of amplitude in the resulting signal, which is adjusted 

for by multiplying by v/o/3. Many windowing functions exist, each with their own 

pros and cons.134 '135 

Fast Fourier Transform 

The FFT is the primary digital method of transforming signals from the time 

domain to the frequency domain.136 The FFT rapidly computes a good approxima­

tion of the DFT for a finite-duration sampled signal. The efficient application of the 

F F T requires that the window length contain N — 2P records, where p is a rational 

number. The data signal is then divided up into nw realizations. Each realization 

is multiplied by a Hanning window of length N and processed through the FFT 

procedure to obtain the DFT of the record. The output record is complex, having 

an amplitude and phase. The auto-power spectral density (APSD) or power spec­

trum of the original function is obtained by squaring the complex output record, 

APSD = Xifj)2 = X(fj) • X{fj)* where X ( / , ) * is the complex conjugate. 
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Cross-Correlation Analysis 

Cross-Correlat ion Function 

The correlation of two signals provides the similar component present in 

both signals as the output. The correlation integral for two signals x(t) and y(t) is 

defined as134 

<^y(0= r x{T)y(t + r)dT (5.7) 
J -oo 

where cxy is precisely the cross-correlation function representing the total correlation 

between x(t) and y(t), and t in y(t + r ) represents a time delay between the two 

signals. For t — 0, the equal-time cross-correlation function is obtained. The auto­

correlation function is the special case of x = y. For discrete sampled signals, the 

cross-correlation function of x(tk) and y(tk) is defined as134 

<*.('*)=-jj; E^O-M** + r) (5.8) 
J V T = 0 

The easiest way to obtain the cross-correlation function is via the frequency domain 

and the FFT. UX(fj) and Y(fj) represent the DFTs oix{tk) and y(tk), respectively, 

then the frequency domain cross-correlation function can be obtained from134-136 

CIy(fi) = X(fj)-Y'(fj) (5.9) 

where Cxy(fj) is the DFT of cxy(tk) and is called the cross-power spectral density 

(CPSD). If x(tk) = y(tk), the APSD will be obtained. Since the cross-correlation 

function is complex, it contains the amplitude and phase of the coherent parts of 

the two initial signals. The amplitude is known as the cross-spectral amplitude, 

while the phase is known as the cross-spectral phase and represents the phase delay 

between the two signals for each fj component. The phase has a range of — n —> 7r.135 
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Cross-Correlat ion Coefficient Function 

The cross-correlation coefficient function pxy{tk) represents the normalized 

total correlation between two time domain signals for a time lag of tk and is estimated 

byl34 

Pxy(tk) = Cxy{tk) (5.10) 
^ . . ( 0 ) ^ ( 0 ) 

where cxy(tk) is denned by Eq. (5.8) and cxx(0) and cyy(0) are simply the cross corre­

lation functions for zero time lag, which are estimated by J2j Cxx(fj) and £ • Cyy(fj)) 

respectively. Theoretically, Eq. (5.10) should satisfy — 1 < pxy(tk) < 1-

Coherence Function 

The coherence function 7 x y( / j ) between the two records x(tk) and y(tk) is 

estimated by134 

%y(/j) ~ cxx(fj)cyy(fj)
 (511) 

where Cxy(fj) is the CPSD; Cxx(fj) is the APSD of a;(*fc) and Cyy(fj) is the APSD 

of y{tk). The coherence function is the normalized cross-correlation between the two 

signals and has the limits of 0 < 7™(/j) < 1. 

Fluctuation Data Analysis 

Fluctuation diagnostics measure a fluctuating plasma parameter and con­

vert this measurement into a voltage. An analog-to-digital convertor (digitizer) is 

used to sample this voltage at precise intervals of time. This results in a discrete 

time series signal containing a discrete sample of the true fluctuations. By appli­

cation of the DFT to the time series data, an estimate of the power spectrum of 

the fluctuating plasma parameter can be obtained. Additionally, if two or more 
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fluctuation measurements are made simultaneously by observing different plasma 

parameters and/or by making the measurements in two spatially separate locations, 

cross-correlation analysis can be used to estimate the power level of the coherent 

fluctuations, i.e., those fluctuations present in both signals. The application of dis­

crete Fourier analysis and cross-correlation analysis of the fluctuation data is used 

to extract meaningful information from the time series data. In Chap. VII, the ap­

plication of discrete Fourier analysis and cross-correlation analysis to reflectometer 

fluctuation data are discussed in detail. It is shown in this discussion that these two 

forms of spectral analysis are critical in obtaining quantifiable results from reflec­

tometer fluctuation data. 
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CHAPTER VI 

T H E ATF R E F L E C T O M E T E R 

Introduction 

The original goals for reflectometry on ATF called for internal probing of 

the plasma for density fluctuation measurements in ECH and NBI-heated plasmas. 

During the conceptual design phase, it was quickly shown that this would not be 

possible with a single reflectometer but rather would require two systems. One 

system would need to operate below the 53 GHz ECH frequency to probe the low-

J density plasmas obtained with ECH only, while the second system would operate 

above the ECH frequency to probe the high-density plasmas obtained with NBI 

heating. Since this project had a limited budget, an additional restriction was to 

use as much existing hardware as possible. From past microwave experiments, a 

significant quantity of waveguide components, detectors, and sources existed for the 

26.5-40 GHz band (A-band), while some waveguide components were available in 

the 50-75 GHz and 60-90 GHz bands (V- and E-bands, respectively). 

After the conceptual design work, two reflectometers were proposed: an A-

band system and a V-band system. The exact frequency ranges of the two systems 

were to be determined by the actual sources and hardware used. The first step 

in the construction of the reflectometer was to design and build the in-vacuum 

components and their vacuum interface. At that time, the plans called for the A-

and V-band systems to be located side by side on a large external port, and so 
113 



the vacuum components for both systems were designed and built simultaneously. 

These components included the conical antennas, antenna support structure, and 

waveguide vacuum windows. This hardware was installed in late summer of 1989. 

The budget for the following year for the ATF experiment received significant cuts, 

and a decision was made to proceed with only the A-band system. This decision 

was based primarily on the fact that a complete A-band system could be built 

with no initial hardware acquisition, while the V-band system required a significant 

acquisition of hardware. Since the V-band system has not been built or operated, 

its initial design work and components are not discussed any further, except where 

they affected the design of the A-band reflectometer. 

Operational Regime 

The plasma regimes that can be studied are limited because of the small rf 

band of the reflectometer. The density range that can be studied in ATF with a 30 

to 40 GHz reflectometer is limited to (1.1-2.0) x 1013 c m - 3 for O-mode operation and 

to approximately (1.5-8.5) x 1012 c m - 3 for X-mode operation at 0.95 T. Operation 

with the X-mode at 1.9 T is not useful because the cutoff occurs on the low-field side 

of the fundamental cyclotron resonance, which is located well outside the last closed 

flux surface. For X-mode operation, low-density ECH discharges can be studied over 

most of the minor radius for near-parabolic density profiles; however, since ATF 

often has nearly flat density profiles, the reflecting layer is often restricted to the 

outer third of the plasma radius. For O-mode operation, NBI plasmas are studied; 

however, the much higher density of these discharges limits the measurement to the 

edge of the plasma, i.e., outside the last closed flux surface. 
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R(cm) 

Figure 6.1: Diagram of the ATF reflectometer antennas, showing their locations in 
the vacuum vessel and the location where their sightlines cross in relation to the 
vacuum magnetic flux surfaces. 

System Description 

The ATF reflectometer operates two frequencies simultaneously in the same 

antenna system. Two tunable microwave sources allow continuous operation be­

tween 30 and 40 GHz with separation frequencies from 10 MHz to 10 GHz. The 

antenna system consists of two high-gain (27 dB average) conical horns with a cal­

culated spot size at the mean reflecting layer of 6 cm at 35 GHz. The horns are 

located on the horizontal midplane with an angle of 12° relative to one another with 

their apertures located at R — 2.70 m (#0 = 2.10 m, a — 0.28 m) so that their 

sightlines cross at r/a ~ 0.75 (see Fig. 6.1). This position is defined as the mean 

reflecting layer. 

Figure 6.2 shows the basic components and their position in the reflectometer 

system. The antennas are located inside the vacuum vessel with waveguide windows 
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Figure 6.2: Diagram of the ATF two-frequency correlation reflectometer, showing 
the major microwave components. 



at the vacuum interface. The dual antenna arrangement greatly reduces the effects of 

internal reflections in the waveguide system as compared to a single antenna system. 

The waveguide vacuum windows are 0.0035-in.-thick mica disks sealed with O-rings 

at the vacuum interface waveguide joint. Transition to circular waveguide is made 

outside the vacuum windows to allow launching of any arbitrary orientation of wave 

electric field. Rectangular waveguide twists connected to the circular transitions 

are used to match the waveguide polarization to the desired antenna polarization 

for launching either the O-mode or the X-mode. Low-pass filters with >35 dB 

rejection above 47 GHz are used to eliminate interference from the 53 GHz ECH 

frequency. Two A-band BWOs are used for the microwave sources. BWOs offer 

the advantage of being frequency tunable over the entire waveguide band and can 

provide moderate power levels (~ 30 mW). The BWOs are located on the midplane 

8 m from the center of the machine inside a large magnetic shielding box. 

Phase detection of the reflected signal is achieved using quadrature phase 

detection, as discussed in Chap. III. Quadrature phase detection is obtained using 

two balanced detectors with a 90° phase relation as shown in Fig. 3.5. Each bal­

anced detector is formed from two matched detectors fed into a differential amplifier. 

Isolators in the signal input arm (the plasma side) ensure that any reference signal 

which escapes from one quadrature phase detector is not reflected in the waveguide 

system and allowed to propagate back into the other phase detector. Table 6.1 lists 

the waveguide components, their relevant specifications, and their manufacturers. 

The ATF reflectometer is limited to a 30-40 GHz band because of the low out­

put power of the BWOs below 30 GHz and the narrow-band characteristics of the 

quadrature phase detectors. 
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Table 6.1. ATF reflectometer microwave components 

Component Manufacturer and Model # Comments 

Backward-Wave Oscillators 

Microwave Detectors 

Alfred Electronics 
- Model 650 Sweep Oscillator power supply 
- Model 659 Plug-in Unit BWO (Varian and 

Watkins & Johnson) 

Hewlett Packard R422C 

Waveguide Low-Pass Filters Hewlett Packard R362A 

Waveguide Isolators 

Continuously Adjustable Direct 
Reading Phase Shifter 

Direct Reading Precision 
Attenuators 

Direct Reading Frequency Meter 

Tapered Mode Transitions 

Terminations 

3-dB Bidirectional Couplers 

Hewlett Packard R365A 

Alpha 528A 

Alpha 510A 

Alpha 51OA 

Alpha 884A 

Alpha 580A 

Alpha 555A 

10-dB Bidirectional Couplers Alpha 559A 

3-dB Short Slot Hybrid Couplers MDL 28HS32 
(Microwave Development 
Laboratory) 

Planar-Doped Barrier Diodes, 
±0.6 dB freq. response, 
~7.5mv7n.W sensitivity 

47-120 Ghzstopband, 
>35 dB min. rejection 

25 dB min. isolation 

accuracy - 3° 

0 to 50 dB attenuation 

absolute accuracy - 0.12% 

converts TE10 to TE11 
(WR-28 to WC-28) 

low-loss, max. VSWR -1.05 

directivity ~ 30 dB, 
coupling accuracy - ±1 dB 

directivity - 40 dB, 
coupling accuracy ~ ±1 dB 

design freq. - 33.5-37 GHz, 
directivity ~ 30 dB, 
coupling accuracy - ±0.125 dB 
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A n t e n n a Des ign 

The conical antennas used in this reflectometer were originally used for 

microwave transmission experiments on the ELMO Bumpy Torus (EBT). After 

slight modifications to meet the requirements of the ATF reflectometer design, the 

length of these antenna is 17.6 in., the aperture diameter is 2.75 in., and the conical 

waveguide feed diameter is 0.281 in. Using the technique discussed in Chap. I l l , the 

calculated gains for these antennas range from 26 to 28 dB over the range of 30 to 

40 GHz. Using this information, the 3 dB beam width for a conical horn in vacuum 

can be estimated using the equation56 

\(aA\2 (b\R\2'* 

where A is the antenna aperture diameter, R is the antenna range, and a and b 

are correction factors that are generally very close to one. Using this equation, the 

predicted beam width for the above antenna parameters varies between W3 — 5 cm 

for 40 GHz and R = 30 cm and W3 = 7 cm for 30 GHz and R = 40 cm. 

A n t e n n a M o u n t i n g S truc ture /Shrouding 

The purpose of the antenna mounting structure and shrouding is to sup­

port, aim, and protect the antenna and waveguide in the vacuum vessel. The port 

location for the reflectometer is centered on a major radius on the outside hori­

zontal midplane. The criteria used in designing the antenna arrangement included 

the required location of the apertures to minimize plasma thermal loading on the 

antenna (R = 270 cm), the distance to the last closed flux surface (30 cm), and the 

expected location of the mean reflecting layer (r/a = 0.75). The mean reflecting 

layer is simply the average radial location of the cutoff layer predicted from the ex­

pected plasma conditions and the reflectometer frequency band. This information 

was used to calculate the required orientation of the antenna axes relative to one 
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Figure 6.3: A three dimensional plot of the flux surface geometry in ATF.1 3 7 Note 
that the helical field coils lead to helically convoluted flux surfaces which have a 
leading edge that spirals around the torus. 

another so that their sightlines intersect at the mean reflecting layer. This results 

in specular reflection, which is reflection with the angle of incidence equal to the 

angle of reflection. Figure 6.1 shows the resulting antenna layout in the vacuum 

vessel. The antennas were mounted with an angle of 12° relative to one another. 

An additional constraint on the antenna layout resulted from the original plans to 

locate the A-band antenna and the V-band antenna side by side on the same flange. 

Each antenna pair was to be offset to opposite sides from the center of the flange. 

The A-band antenna pair is offset by 4.75 cm. 

In a stellarator, the flux surfaces have an oblong shape and rotate around 

the vessel following the magnetic configuration of each field period, as shown in Fig. 

6.3. This rotation of the flux surfaces causes the leading edge of the flux surfaces 

to be oriented at an angle to the horizontal midplane. To maximize the reflected 
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antenna 
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Figure 6.4: Maximizing the reflected signal. If the leading edge of a flux surface is 
treated as a cylinder, then the reflected microwave beam will result in a fan beam 
in the plane normal to the cylinder axis. 

signal returning in the plane of the antennas, the sightlines of the transmitting and 

receiving antennas should be perpendicular to the axis of a cylinder formed from 

the leading edge of the flux surface located at the reflecting layer. This analogy is 

obtained by thinking of the plasma column as a cylinder with radius greater than 

the antenna beam width. For perpendicular orientation of the antennas and the 

cylinder, as shown in Fig. 6.4, the beam is reflected directly backward in the plane 

of the antennas, thus maximizing the reflected signal at the receiving antenna. For 

nonperpendicular orientation, the plane of the beams (antennas) is not normal to 

the cylinder axis. The probing beam is reflected backward normal to the cylinder 

axis, and so if the antenna's orientation is sufficiently off perpendicular, no signal 

will be reflected into the receiving antenna. 

At the mean reflecting layer, the orientation of a cylinder formed by the 

leading edge of the flux surface viewed by the reflectometer is rotated approximately 

15° from the horizontal axis. This meant that the flange containing the antennas had 
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Detectors Preamps 

Figure 6.5: A block diagram of the detection, amplifier, and data acquisition systems 
used on the ATF reflectometer. 

to be rotated 15° to match the flux surface orientation so that the plane containing 

the antenna sightlines would be perpendicular to the flux surface. 

A m p l i f i e r / D A Q S y s t e m 

Figure 6.5 shows the basic layout of the amplifier and data acquisition 

(DAQ) system for the ATF reflectometer. The Hewlett Packard R422C microwave 

detectors have a very low capacitance in their output circuit, allowing for a large 

bandwidth when connected to a low impedance circuit. Since the detector signals 

must be carried 4 m to the differential amplifiers, each detector was connected to 

a preamplifier/line driver using a OP64 Op-Amp and a 3.0 kfi input impedance.138 

The detectors are connected to the preamplifiers by 10 cm of coaxial cable. The 

preamplifiers have a 50 0 output impedance with 10 x gain and a 4 MHz 3 dB 

bandwidth and drive 4 m of a shielded twisted pair cable. The detector-preamplifier 

circuit 3 dB bandwidth is ~ 2 MHz. From the preamplifiers, the signals are fed in 
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Figure 6.Q: Schematic of an ATF reflectometer differential amplifier used for obtain­
ing balanced signals. 

pairs into differential amplifiers to produce balanced (dc removed) signals. Chap­

ter III provides more discussion on how balanced detection is achieved with two 

microwave detectors. The differential amplifiers are a three-stage, low-noise design 

with a variable gain factor up to 300 and a total (detector-preamp-amplifier) 3 dB 

bandwidth of 1 MHz. The maximum sampling frequency of the digitizers is 1 MHz 

so the anti-aliasing low-pass filter cutoff frequency is never greater than half the 

system bandwidth. This reduces the effects of the slight differences in the frequency 

response of each detector-preamp-amplifier circuit. These differences include slightly 

different gains and phase delays for the higher frequency components. Figure 6.6 

shows the schematic for one differential amplifier.138 A resistive divider circuit at 

each differential amplifier input allows equalizing or balancing of the amplitudes of 

the two input signals to remove any dc offset remaining after differential amplifica­

tion. These resistive divider circuits also provide response matching of each detector 
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pair, which results in continued balanced detection with changes in the input power 

to the detectors. Each quadrature phase detector uses two differential amplifiers to 

obtain the two balanced output signals: ylsin£ and Acos(. 

The data acquisition system consists of anti-aliasing filters and LeCroy 8210 

digitizers. The anti-aliasing filters are Ithaco 4302 Dual 24 dB/octave multipole 

filters. The filter cutoff frequency is set to 60-80% of the digitizer Nyquist frequency. 

After the anti-aliasing filtering, the signals are digitized in the transient recorders 

with 16 kbytes/channel of memory. The ATF data system139-140 writes and stores 

the data on magnetic or optical disk connected to the Fusion Energy Division (FED) 

computer system. 

System Operation 

To obtain the quadrature phase data, the two signals containing the sine 

and cosine signals had to be carefully balanced so that they had equal amplitudes 

that would cancel out during the fringe counting procedure; see the section "Fringe 

Counting" in Chap. VII for more details on fringe counting. Since the output power 

of the microwave sources and the response of the microwave system varied consider­

ably over only a few tens of megahertz, a method for easily balancing the signals each 

time the probing frequency was changed had to be developed. However, once good 

quadrature signals were obtained, there were still several key issues in the operation 

of the ATF reflectometer that were relevant to the reliability and interpretation of 

the data taken. The first issue was how the launched wave polarization coupled 

to the desired plasma mode. Next, the spatial resolution (radially, poloidally, and 

toroidally) of the probing beam determined the sampling volume. The system noise 

generated by the microwave sources and the detection system set a lower limit on 
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the detectable signal level. Finally, the ability to operate two frequencies simul­

taneously in the same waveguide system required special considerations to ensure 

negligible cross talk. 

Obtain ing Quadrature Signals 

The technique used to set up the ATF reflectometer to obtain the quadrature 

phase detection was to induce a repeating 2n phase shift at the detectors and to 

connect the output of the two differential amplifiers from one quadrature detector 

circuit to an oscilloscope operating in an x-y plot mode to obtain a polar plot. By 

adjusting the resistance of each resistive divider circuit at the differential amplifier 

inputs, the amplitudes of the two input signals could be made equal so that the 

resulting output signal was centered about 0 V. Next, the peak-to-peak voltage of 

the balanced output signal was set to the desired level by adjusting the variable gain 

on the third stage of the differential amplifier. By doing this to both channels of the 

quadrature detector, i.e., to the four inputs of the two differential amplifiers forming 

one quadrature detector, a circle with constant radius centered exactly about the 

origin of the oscilloscope screen was obtained. Since the quadrature phase detectors 

only provide an exact 90° phase relation between the two output signals at one 

frequency, at other frequencies the polar plot of the quadrature signals produces an 

ellipse; however, by balancing and centering the ellipse on the oscilloscope, balanced 

detection was still achieved. In the section "Raw Signal Analysis" in Chap. VII, 

the technique used to adjust the balanced signals to have a 90° phase relation is 

discussed. 

At first, the repeating 2rc phase shift was created by sweeping the BWO 

frequency over a narrow frequency band (~ 40 MHz). This narrow sweep resulted 

in a phase delay between the reference signal and the signal sent to the vacuum 

vessel, which was reflected off the opposite wall in the vessel. This produced a 
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phase shift A£ because the two signals traveled very different distances to reach the 

detectors; A£ = A^AA/(AiA2), where At is the path length difference between the 

reference arm and the plasma arm of the reflectometer, Ax is the guide wavelength 

of the starting frequency of the sweep, A2 is the guide wavelength of the ending 

frequency of the sweep, and AA is the change in the guide wavelength resulting 

from the frequency sweep. The problem with this technique is that the BWO 

power and the waveguide system response are not constant over this small frequency 

sweep, resulting in inaccuracies in balancing the signal. After the first year of 

operations, a motor-driven rotary phase shifter was added into the launching arm of 

the waveguide system. By spinning this phase shifter, a continuous phase shift was 

obtained without the changes in the signal amplitude obtained with the frequency 

sweeping technique. This technique proved to be the most accurate and versatile 

method for obtaining the balanced quadrature signals. 

Polarizat ion 

As discussed in Chap. II, the magnetic shear in ATF can lead to strong mode 

coupling in regions where plasma propagation is not guaranteed because of the low 

plasma density. In this case, it is difficult to determine the correct polarization 

to launch to obtain the desired plasma mode near the cutoff layer. In fact, mode 

coupling will cause any launched polarization to result in both 0 - and X-modes in 

the plasma. The goal in determining the launched polarization is to minimize the 

power of the undesired mode coupled into the plasma. 

The ATF reflectometer views the plasma through the ergodic region of the 

plasma formed by the natural magnetic divertor.9141 In the initial design of the 

reflectometer, it was assumed that the plasma density was finite (~ 1 x 1011 c m - 3 ) 

all the way out to the antennas. Since the last closed flux surface is located at R = 

238 cm, this left a region of ~ 40 cm in width in which the wave mode could be 
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Figure 6.7: The magnetic field \B\ profile and its rotation with respect to the hori­
zontal midplane moving inward along a major radius. 

determined. Figure 6.7 shows the magnetic field \B\ and its rotation with respect 

to the horizontal midplane from the center of the plasma to the antenna aperture. 

Note that Br ~ 0 T, so that the wave propagation is perpendicular to the plane of 

the shear. In Fig. 6.8, the magnetic shear corresponding to this field polarization 

rotation is shown. Note that in the region of interest (R — 240 to 270 cm) the field 

polarization rotates from 30° to 65°, and the local shear achieves a maximum. In 

choosing the polarization of the wave to be launched, an average field polarization of 

~ 45° was chosen. Thus, the waveguide mode was rotated 45° before transitioning 

to circular waveguide, and the resulting polarization launched from the antenna was 

rotated 45° with respect to the horizontal midplane. For the waveguide configuration 

of the ATF reflectometer, i.e., the wave electric field is horizontal, 45° polarization 

was used initially for launching the O-mode, but because of the high central and 

edge densities, this was changed to 60°. For the X-mode, —45° was used. 
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Figure 6.8: The magnetic shear in ATF resulting from the rotation of the magnetic 
field polarization. 

It is clear that with the high shear in ATF, a pure single mode could not 

be coupled into the plasma. For the low-density, ECH-only plasmas studied with a 

probing frequency between 30 and 40 GHz only the X-mode is cut off. Thus, any 0-

mode that couples into the plasma will propagate through the plasma without being 

cut off. This transmitted O-mode wave reflects off the inner wall, propagates back 

through the plasma, and finally mixes with the reflected X-mode in the receiving 

antenna, resulting in some error in the measured signal. Figure 6.9 shows a 45° 

polarization (O-mode) 35 GHz raw data signal and its spectrum-integrated power 

plotted vs time, taken during a density ramp-up. Note that the integrated power of 

the fluctuations jumps by more than an order of magnitude in a very short period 

of time. This indicates the inception of cutoff because the phase of the reflected 

signal is far more sensitive to density fluctuations at the cutoff layer than to density 

fluctuations along its propagation path. Before cutoff, a clear 27r phase modulation 
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Figure 6.9: Top: an O-mode reflectometer raw data signal taken during a density 
ramp with cutoff density being achieved in the middle of the data window. Bot­
tom: the spectrum-integrated power for this signal. Note that the integrated power 
increases by ~100 when cutoff is achieved. 
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due to the increasing density (two-pass interferometry) is seen, while well after cutoff 

the reflecting layer is large enough to provide a large reflected signal. In the time 

from just before to just after the inception of the O-mode cutoff, the diffraction 

effects on the O-mode wave are very strong. This results in little O-mode signal 

being reflected back into the receiving antenna. Since the X-mode cutoff is well 

developed, any X-mode signal is reflected back into the receiving antenna. This 

signal level can then be used as an upper limit on the amount of X-mode power 

being reflected back into the antenna. This reflected X-mode amplitude is ~ 1.5 V, 

while the reflected O-mode amplitude is ~ 4 V. The percentage of power in the 0 -

and X-modes can be estimated from the equation 7/n = A„/(Al + A7
X), where 7]n is 

the percent power in the n mode, An is the amplitude of the n mode, and A0 and Ax 

are the 0 - and X-mode amplitudes, respectively. It is estimated that the reflected 

signal consists of ~ 88% O-mode and ~ 12% X-mode. 

Reversing this argument for the low-density case of X-mode operation, if it 

is assumed that the amount of O-mode launched is roughly the same as the amount 

of X-mode launched in the case above, the maximum unwanted O-mode power can 

be estimated to be 10-15%. However, as shown in Fig. 6.9, the contribution to 

the fluctuation spectrum from the transmitted signal as measured by the integrated 

power before cutoff is approximately two orders of magnitude less than the contri­

bution from the reflected signal as measured by the integrated power after cutoff. 

This is a significant result in justifying the validity of the X-mode data, since a con­

siderable amount of the launched wave could couple to the O-mode. However, this 

argument works against the validity of the O-mode data taken during high-density 

discharges, in that the X-mode cutoff will occur before the O-mode cutoff and so 

both the O- and X-modes will be reflected back into the antenna. In this case, the 

integrated power of the received signal could be distorted by the undesired X-mode. 
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M o d e l i n g of the M o d e Select ion Prob lem Due to the time schedule 

for the ATF reflectometer experiment, no numerical modeling of the mode problem 

was performed until after the completion of the experiment. As will be shown, 

this modeling indicates that —45° is not the optimum angle for launching the X-

mode in low-density plasmas. For launching the O-mode in high-density plasmas, 

45° polarization results in ~ 85-90% of the power coupled to the plasma being 0-

mode. This agrees well with the estimated 88% for the data in Fig. 6.9. For 60° 

polarization, the modeling predicts that ~ 75% of the power coupled to the plasma 

is O-mode. The major complication in performing this modeling is that the density 

profile from the plasma edge to the antennas is not known, but it is expected to 

be nonnegligible because of the ergodic divertor region.141-142-143 The edge density is 

also expected to rise significantly during the high-density NBI discharges. 

Fidone and Granata2 1 present a full wave model for describing wave prop­

agation in a sheared magnetic field. Bigelow144 has used this model to optimize 

the launched polarization for the 53 GHz ECH to obtain the maximum first-pass 

absorption in ATF, and Bell23 has used it to model microwave transmission exper­

iments and ECE emission on ATF. The program PTWIST, written by Bigelow,144 

has been modified for the geometry of the ATF reflectometer and used to propagate 

the wave up to the X-mode cutoff. At this point, the X-mode is reflected, and the 

O-mode continues to propagate. 

The first case to study is the 45° polarization (O-mode) 35 GHz case dis­

cussed previously. Figure 6.10 shows the amplitudes of the O- and X-modes as the 

launched wave propagates from the antenna aperture located at R = 270 cm to the 

X-mode cutoff at R ~ 241 cm. Note that the amplitudes plotted here are normalized 

by the total power, p = p0 + px, where p0 = A2
0, px = Ax, Ax is the amplitude of the 

O-mode signal, and Ax is the amplitude of the X-mode signal. Thus, the plotted 

signals represent the amplitude of the fraction of power in each mode normalized to 
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Figure 6.10: The predicted 0 - and X-mode amplitudes for a 35 GHz wave launched 
with 45° polarization. See Fig. 6.11 for the assumed density profile, and note that 
the antenna aperture is located at R = 270 cm and the last closed flux surface is 
located at a = 30 cm, with R0 = 210 cm. 

the total power. Figure 6.10 shows that the predicted O-mode content (p0 = A2
0) 

is ~ 90% at the plasma edge for the assumed density profile shown in Fig. 6.11. 

The density at the antenna aperture is assumed to be 4 x 1011 c m - 3 , i.e., 1/100 of 

the peak density. This finite density between the last closed flux surface and the 

antenna aperture results in a nonnegligible polarization rotation of the launched 

wave. This predicted O-mode power shows good agreement with that predicted 

from the data taken during a density ramp showing the signal amplitude before, 

at, and after cutoff (Fig. 6.9). Note that near R = 253 cm, the O-mode amplitude 

appears to go to 1.0 while the X-mode amplitude decreases to only ~ 0.05. This 

apparent incongruity is a result of the resolution of the plot, and the condition that 

A2
0 -f A\ = 1 is valid in this figure. A scan of the edge density between 0.1 and 

0.001 of the peak density, as shown in Fig. 6.12, indicates no significant change in 

132 



5 

4 

3 

1013 c "3 

m 2 

1 

0 
0 10 20 30 40 50 60 

r (cm) 

Figure 6.11: The assumed density profile for the 0-mode polarization modeling. 
The central density is 4 x 1013 c m - 3 and the density at r = 60 cm is 4 x 1011 cm 
The steep gradient is created using a hyperbolic tangent function and provides a 
fair representation of the typical edge gradients observed in ATF (see Chap. VIII). 

the amount of power in the O-mode at the last closed flux surface, except at very 

high edge densities. 

Using the same density profile, the launching of a 60° polarized wave results 

in ~ 75% O-mode power at the X-mode cutoff. In Fig. 6.12, the percentage of 

O-mode power in the launched 35 GHz wave at the X-mode cutoff is plotted vs 

the density at the antenna aperture for the 45° and 60° polarizations. For the 60° 

polarization case, this density scan shows that ~ 96% of the power at the X-mode 

cutoff has O-mode polarization for the highest density case, but the O-mode content 

is ~ 75% for the lower densities; however, the high-density case of 4 x 1012 c m - 3 

at the antenna aperture is much too high to be realistic.143-145 Thus, a launching 

polarization of 45° results in a higher O-mode content than a polarization of 60°. 

Figure 6.13 shows the results of a scan of the launching polarization for the density 
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Figure 6.12: The O-mode power at the X-mode cutoff (~ plasma edge) for a 35 
GHz wave vs the density at the antenna for the 45° and 60° launch polarizations. 

profile in Fig. 6.11. These results predict that the optimum launching polarization 

for the O-mode at 35 GHz is 30°, resulting in ~ 95% O-mode power at the X-mode 

cutoff. Note the small change in the O-mode power content for large changes in the 

polarization (~ ±10°). This weak dependence on the launch polarization results 

in a weak dependence on the assumed density profile, since most probable profile 

changes will result in a maximum of a ±10° change in the polarization at the plasma 

edge. The deviation of these results for frequencies in the range of 30 to 40 GHz 

will not be significant. 

For the case of the low-density ECH plasmas, Fig. 6.14 shows that for the 

—45° polarization used in this experiment, the undesired O-mode content (p0 = A2
0) 

is ~ 20-25%. Note that the plotted signals represent the amplitudes of each mode 

normalized in terms of the total power, as discussed previously for Fig. 6.10. Here 

again, the apparent incongruity near R = 252 cm, where Ax appears to go to 1.0 
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Figure 6.13: The O-mode power in a 35 GHz wave at the X-mode cutoff versus the 
launch polarization of the antenna. 
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Figure 6.14: The predicted mode amplitude for a 30 GHz wave launched with —45° 
polarization. Note: the antenna aperture is located at R = 270 cm and the last 
closed flux surface is located at R = 240 cm. 
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Figure 6.15: The assumed density profile for the X-mode polarization modeling. The 
central density is 5 x 1012 c m - 3 , and the edge density at r = 60 cm is 5 x 1010 cm - 3 . 
The edge gradient obtained with this profile is typical for ATF (see Chap. VIII). 

while A0 < 0, is due to the resolution of the plot. This example uses a 30 GHz wave 

to maximize the affects of the edge densities. Higher frequencies will be less effected 

by the edge density. The density profile for this case is shown in Fig. 6.15 and has 

a peak density of 5 x 1012 c m - 3 and a density of 0.01 of the peak density at 60 cm. 

A scan of the edge density between 0.1 and 0.001 of the peak density shows only a 

small change in the mode content at the reflecting layer. This weak dependence on 

the edge density is a result of the very low densities possible in the edge due to the 

low peak density. 

As can be seen in Fig. 6.16, the optimum polarization to launch to maximize 

the X-mode content at the reflecting layer for the density profile given in Fig. 6.15 

is —70°. This polarization results in a predicted X-mode content of ~ 99% at the 

X-mode cutoff. The magnetic field \B\ polarization at this location is 20°, perpen-
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Figure 6.16: Plot of the X-mode power at the X-mode cutoff for a 30 GHz wave vs 
the launching polarization of the antenna. 

dicular to the launching polarization. Thus, the modeling predicts no polarization 

rotation in the edge region outside the plasma, and so the launched wave polar­

ization should be chosen to match the \B\ field polarization at the reflecting layer. 

Note that the small change in the X-mode power content at the cutoff layer deviates 

only slightly from its maximum value for up to a ±10° deviation from the optimal 

launching polarization. This indicates that these results are not sensitive to the edge 

density. The polarization to launch to maximize the X-mode content is sensitive 

to the location of the density gradient with respect to the magnetic field. Figure 

8.1 in Chap. VIII shows two typical density profiles in ATF. The edge gradients in 

these profiles are similar to the edge gradient in the assumed profile used in these 

calculations; however, the location of the gradients may differ by a few centimeters. 

This could change the optimum polarization for maximum X-mode content by as 

much as ±10°, refer to Fig. 6.7; however, this would decrease the X-mode power 
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content by less than 5%. 

Spatial Reso lut ion 

The spatial resolution of a reflectometer probing beam determines the spatial 

localization of the measurement and, to some degree, the sensitivity of the diagnostic 

to short-scale-length fluctuations. The poloidal and toroidal resolution is primarily 

determined by the probing beam width at the reflecting layer. As discussed earlier 

in this chapter, the beam width for the ATF reflectometer at the mean reflecting 

layer has a maximum value in vacuum of 7 cm. The presence of plasma will cause 

faster divergence of the beam, so its width at the reflecting layer may be still larger. 

The convex shape of the reflecting layer due to the convex flux surfaces may result 

in some improvement in the poloidal dimension, but this is not likely. In the case of 

a smooth convex reflecting surface with a radius of curvature greater than the beam 

width, the reflected beam fans out, and only the reflected signal from a small area 

is reflected back into the receiving antenna. However, in a plasma with turbulence, 

the reflecting layer will be like a nonuniform diffraction grating. The reflection from 

such a surface will be diffuse, resulting in contributions to the received signal from 

all parts of the incident beam. 

Some researchers estimate the radial resolution of a reflectometer measure­

ment as the depth of the reflecting layer.69-146 As discussed in Chap. II, the radial 

depth of the reflecting layer is the distance the evanescent wave penetrates beyond 

the point where it is cut off. However, Mazzucato and Nazikian147148 have shown 

that the phase information in the reflected signal comes from a location that is 

localized to a region in front of the cutoff and is strongly dependent on the radial 

wavelength of the density fluctuations. For A;r <C fc0, the fluctuation wavelength is 

much greater than the probing beam wavelength, and so the phase information in the 

reflected signal is strongly localized to the cutoff. Here, kr is the radial wave number 
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of the fluctuation and k0 is the vacuum wave number of the probing beam. Also, if 

K <C fco, the localization is strong and the magnitude of the phase fluctuations in 

the reflected signal should be directly proportional to the radial displacement of the 

cutoff layer. This conclusion comes from the observation that if kr > ko, averaging 

over several fluctuation wavelengths in one probing beam wavelength would cause 

cancellation in the phase fluctuations; however, for kr <C k0, less than one cycle 

of the density fluctuation will be observed, and so no cancellation in the reflected 

phase is expected. Note that the conclusion by Mazzucato and Nazikian that the 

phase information in the reflected signal is strongest for a fluctuation located a short 

distance in front of the cutoff layer indicates that the use of the cutoff position as 

the location of the measured fluctuations will result in a systematic error in the 

quoted location, since the actual location of the measured fluctuations is in front of 

the cutoff. 

For the purposes of a simple estimate of the radial resolution, the formula 

given by Ginzburg11 for the radial depth of the cutoff layer is used here. Although 

Mazzucato and Nazikian148 do not directly address the estimation of the radial 

resolution, their conclusions would imply that a simple estimate based on k0j like 

the Ginzburg equation, would only be valid for kr <C k0. So the assumption is made 

here that the condition kr <C k0 is satisfied for the fluctuations observed by the 

reflectometer in ATF. It is shown in Chap. IX that the mean kr of the observed 

density fluctuations is 0 < kr < 1 c m - 1 , while the probing beam wave number is 

k0 > 6.3 c m - 1 . This indicates that the assumption of kr <C k0 is valid. 

The ATF plasmas generally have density profiles with very steep edge gra­

dients in the outer third of the plasma radius with little (flat profile) or inverted 

(hollow profile) density gradient in the plasma core. This restricts reflectometry 

measurements to the edge density gradient region. For typical density profiles, such 

as those shown in Chap. VIII, the density scale length in this edge gradient region 
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Figure 6.17: The critical layer depth for a 30 GHz wave in ATF vs the density 
gradient scale length. For the X-mode estimate, the magnetic field scale length |Lj9| 
is 64 cm, and the electron cyclotron and plasma frequencies are 19.7 GHz and 17.5 
GHz, respectively. 

is in the range 5-50 cm. The magnetic field gradient length for the magnetic field 

profile in Fig. 6.7 is shown in Fig. 7.11 to be in the range of 65-70 cm in the edge 

gradient region. Using Eq. (2.21) for the critical layer depth, Fig. 6.17 shows the 

predicted depth as a function of the density gradient scale length \Ln\ for a 30 GHz 

probing beam reflected at r = 26 cm. The X-mode estimate uses the value of the 

magnetic field and its scale length at r = 26 cm. The value of u)pe is determined 

from Eq. (2.6) since a;ce is known and UJR is the probing beam frequency. The values 

assumed in producing Fig. 6.17 as given in the figure caption are typical for ATF; 

therefore, the typical radial resolution for the ATF renectometer is ~ 0.4-0.6 cm 

for the X-mode and ~ 0.4-1.1 cm for the O-mode. As the probing frequency is 

increased over the 30 to 40 GHz band of the ATF renectometer, the cutoff layer 

depth will decrease, and so those values shown in Fig. 6.17 are for the worst case of 

140 



30 GHz. In the section on radial coherence measurements in Chap. IX, it is shown 

that the measured radial correlation lengths are 2 to 4 times greater than the critical 

layer depth. 

Two-Frequencv Operat ion 

Two-frequency operation is achieved by combining and dividing the trans­

mitted and reflected signals in two 3 dB couplers, as shown in Fig. 6.2. Independent 

detection of the two signals with a frequency separation as low as 10 MHz is possible 

because of the homodyne detection. If two reflected signals with frequencies f\ and 

fi are mixed with the f\ reference signal at a square law detector (purity of the 

reference signal is critically important) , two IF signals are possible. The first will 

have a zero IF, while the second will have a frequency of | / i — / 2 | . Following the 

derivation in the section "Microwave Detectors" in Chap. I l l , the output voltage for 

this case is 

V = * * | £ ( / i ) + £ i ( / i ) + & ( / , ) | > (6.2) 

where Sr is the f\ reference signal, S\ is the / i reflected signal, and 5 2 is the / 2 

reflected signal. These signals have the form 

ST = AT (cos ipr — i sin ipr) 

51 = Ai (cos V'I — i s i n ^ j ) 

52 = A2 (cosip2 - i sin ^2) (6.3) 

where the phase terms are defined as 

Vv = w x t + <f>T 

ip1 = w-it + <j>i 

Tp2 = U2t -f <j>2 (6.4) 
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and wi and w2 are the two frequencies. Solving Eq. (6.2) and noting that the 

detectors rectify and average signals at the microwave frequencies, the detector 

voltage can be written as 

kd 

V - y {Pr + Pi + Vi + 2v
/p rpi cos(^ r - fa) 

+ ly/PrPi cos [Aw £ + (<f)r - <£2)] + 2\/PiP2 cos [Aw ^ + (0i - ^2)]} (6-5) 

where p r = Aj , etc., and Aw = u)x — w2. Note that Aw > 10 MHz is always main­

tained for two-frequency operation of the ATF reflectometer. Since the detectors 

have a bandwidth of < 1 MHz, only the zero IF signal, which contains the phase 

and amplitude fluctuations from the /x reflected signal, can be detected. The terms 

containing Acut are rectified and averaged by the detector diodes. The detector 

voltage can now be written as 

kd 
v = y [Po + P2 + 2^/prPx cos(fa - fa)] (6.6) 

where the definition p0 = pr -\- pi has been used. Since the reference signal power 

level is at least 20 dB above the reflected signal power (pr ~ p0 ^$> p2), the fx 

detector's response to the power fluctuations of the f2 reflected signal (the p2 term) is 

negligible compared to the detector's response to the fx signal's phase and amplitude 

fluctuations; thus, the fluctuations in the f2 signal are invisible to the f\ detection 

system. This lack of sensitivity to the amplitude and frequency fluctuations in the 

reflected signal at other than the reference signal frequency is a direct result of the 

vector addition, as shown in Fig. 6.18, of the signal amplitudes. This is a result 

of operation in the square law regime. For example, consider two signals at the 

same frequency so that if pT = 100 (any units), then px < 1 since prjp\ > 20 dB 

is required. By vector addition of the amplitudes, S — Sr + 5X where Sr and 5j 

are the amplitude vectors defined in Eq. (6.3), S will have a maximum range of 9 

to 11. Since the power is defined as p = 5 2 , the maximum range of the resulting 

signal power is 81 to 121. However, if pr and pi add by addition of the signal powers 
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Figure 6.18: Two signals in a square law detector combine by vector addition. 

only — for example, if Si is at a different frequency — then the maximum range 

of p = pr -f pi is 100 to 101. Thus, the vector addition signal has a maximum of 

40 times more variation in the power than the simple power addition signal. The 

vector addition of the reference and reflected signals also certainly increases the 

system sensitivity to very small phase fluctuations. 

Noise Es t imate s 

The vector addition of the amplitudes rather than the simple power addition 

also greatly improves the signal-to-noise ratio. The two largest noise sources are 

the amplifier system and the microwave sources. Since phase detection is used, 

the amplitude fluctuations in the microwave sources will contribute negligibly to 

the total noise level; however, the frequency fluctuations in the sources will result 

in phase fluctuations in the analyzed data. For fluctuation analysis, the noise is 

investigated in the frequency domain to determine its contribution to the fluctuation 
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Figure 6.19: The signal amplitude levels obtained by Fourier analysis with (upper) 
and without (lower) plasma show the relative signal-to-noise ratio for a normal 
plasma signal. Note: the two spectra have units of fringes squared. 

spectrum. In Fig. 6.19, typical noise and plasma spectrums are shown for fringe-

counted signals. Fringe counting is discussed in detail in the following section on 

page 149. The use of fringe-counted signals removes any contribution from the 

unwanted amplitude variations and gives the true phase fluctuations in the reflected 

signal normalized to 2rr so that they are directly comparable. The signal-to-noise 

ratio in this typical case is 40 dB for frequencies above 5 kHz. The noise signal 

is obtained by digitizing a no-plasma shot with magnetic fields where the probing 

beam is reflected off the far wall of the vacuum vessel. On occasion, one or both of 

the BWOs pickup 360 Hz bursts of 55 kHz noise from the ATF helical field power 

supplies. This pickup produces coherent oscillations in the BWO's output frequency, 

which can become large. Figure 6.20 shows a typical case where this 55 kHz noise 

is pronounced in the noise signal; however, note that the signal-to-noise ratio is 

P 1 1 1 I I I I | 1 1 1 1 I M M 1 1 1 1 I 1 1 I 
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Figure 6.20: Power spectra for two signals with and without plasma, showing a 
strong 55 kHz fluctuation in the microwave source frequency. 

still ~ 25 dB. This peak has no detectable contribution to the power spectrum for 

the plasma signal; thus, fluctuation analysis relying on the power spectrum and its 

integrated power is not typically affected by such a noise source. 

System Summary 

The ATF refiectometer is a tunable two-frequency refiectometer operating in 

the 30 to 40 GHz band using a dual antenna arrangement and quadrature phase de­

tection. The refiectometer system is designed to allow the use of either the O-mode 

or the X-mode, selectable by the change of two waveguide twists. For O-mode opera­

tion, the density range that can be studied is limited to (1.1-2.0) x 1013 c m - 3 . For X-

mode operation at 0.95 T, the density range is approximately (1.5-8.5) x 1012 cm - 3 . 
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X-mode operation at 1.9 T is not useful because the cutoff occurs on the low-field 

side of the fundamental cyclotron resonance, which is located well outside the last 

closed flux surface. Because of the magnetic shear in ATF, the launching of purely 

one mode is not possible. Modeling has shown that, under most circumstances, the 

proper polarization to launch should be oriented to the magnetic field polarization 

at the plasma edge. The spatial resolution of this reflectometer is estimated to be 

~ 7 cm (the antenna beam width) in the poloidal and toroidal directions and ~ 0.5 

to 1.1 cm in the radial direction. The ATF reflectometer simultaneously probes the 

plasma with two different microwave frequencies. Two frequencies can be indepen­

dently detected in the same waveguide system by obtaining pure reference signals 

and using square law detectors. 

An important issue for any fluctuation diagnostic is the system noise level. If 

the noise level is too high, the fluctuation measurements are highly suspect at best. 

For the ATF reflectometer, the noise level is down by at least 25 dB and often down 

by much more. In Chap. VII, the methods used in analyzing the data from this 

reflectometer are discussed. The improved techniques of quadrature phase detection 

and two-frequency operation play a significant role in allowing quantitative results 

to be obtained with this reflectometer. 
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CHAPTER VII 

ATF REFLECTOMETER SIGNAL/DATA 

ANALYSIS 

Introduction 

The ATF reflectometer has incorporated phase detection, via the quadra­

ture phase detectors, which has allowed quantitative measurements of the density 

fluctuations to be obtained by reflectometry. To obtain the phase delay due to the 

fluctuations in the cutoff layer, the raw data signals must be fringe counted, as 

discussed in the section "Raw Signal Analysis" below. Once the phase fluctuation 

signal is obtained, new quantitative results are possible. The density fluctuation 

amplitude iic/ne can be calculated using the equations given in the section "Esti­

mating ne/ne From the Measured Phase Fluctuations" starting on page 158. The 

uncertainty in these calculations is also derived and discussed in the same section. 

A second quantitative result that is easier to obtain with phase detection is the 

measurement of the radial coherence of the density fluctuations and their radial 

correlation length. These measurements and their uncertainty are discussed in the 

section "Radial Coherence/Correlation Length Measurements" starting on page 170. 
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Figure 7.1: A raw data signal and the calculated amplitude fluctuations in the raw 
data signal. Note: the amplitude fluctuations are of the order of the peak-to-peak 
raw signal voltage. 

Raw Signal Analysis 

Quadrature phase detection, described in detail in Chap. I l l , is a type of 

homodyne detection that is superior to simple homodyne detection because it pro­

vides the two output signals Va = As'm( and Vb = Acos(, where ( is the phase 

fluctuation in the reflected signal, primarily resulting from fluctuations in the criti­

cal layer, and A is the fluctuating amplitude of the reflected signal. The fluctuating 

amplitude can be calculated from A = (V2 -f Vb
2)1/2 and removed from Va and Vb to 

obtain sin ( and cos £. The removal of A is important in analyzing the data because 

the amplitude modulation is of the order of the raw signal amplitude, as shown 

in Fig. 7.1. Amplitude fluctuations of this magnitude make analysis of the data 

difficult. Coherence measurements between the calculated amplitude fluctuations A 
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and the phase fluctuations £ or the sine and cosine signals are inconclusive on the 

relationship between the phase and amplitude fluctuations. Va and V\, can also be 

used in a fringe-counting program to calculate the actual phase fluctuations. The 

use of fringe counting is a relatively new analysis technique for these data. 

A difficulty that arises when analyzing the raw data is that each quadrature 

phase detector is designed for a specific center frequency, and at other frequencies 

Va and Vf, do not have a 90° phase relation. However, the amount of phase deviation 

Aift can be estimated or measured, and Vb can be advanced or delayed using the 

relationship 

_ H - V . r i n ( A ^ ) 
Vt - cosAV ( } 

to obtain a 90° phase relation between Va and V^. 

Fr inge C o u n t i n g 

The sine-cosine detection obtained with quadrature phase detection allows 

the determination of the actual phase fluctuation. Taking the inverse tangent of 

the ratio of the two signals gives the phase signal with limits of ±7r. Unfortunately, 

when the phase advances beyond IT, the phase is reset to —7r, resulting in a large 

discontinuity in the phase. This phase reset results in distortion to the signals' 

frequency spectrum. However, these phase resets can be removed numerically so 

that the phase can be tracked over many 2TT (fringe) movements. Fringe counting 

also permits determination of the direction of the phase shift, which indicates the 

direction of motion of the cutoff layer. In fringe counting the ATF reflectometer data, 

an unexplained phase jump problem has been encountered. Data taking during 

steady-state plasmas, in which the line-averaged density is constant and so the 

position of the cutoff layer is expected to be constant, show many fringes of phase 

change during the data window (see Fig. 7.2). Closer inspection of the data shows 

that most of the phase shift is due to phase jumps greater than ir occurring over 
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Figure 7.2: The raw and improved fringe-counted signals. Note that most of the 
large phase jumps in the raw signal have been removed to obtain the improved 
signal. 

several consecutive data points. The cause of these phase jumps has not been 

determined, but it can clearly be assumed that they are not due to a real movement 

of the cutoff layer because the total phase change represents a distance greater than 

the plasma radius. Possible sources of these phase jumps are interference effects in 

the amplitude and phase of the quadrature signals due to reflection off a turbulent 

surface (comparable to a diffraction grating), deviations from true quadrature signals 

due to unbalanced amplitudes, or a non-90° phase relation between the two channels. 

Additionally, the phase jumps may be a result of asymmetric phase spectra resulting 

from Bragg scattering. If a significant portion of the received signal is Doppler 

shifted due to Bragg scattering, a significant asymmetry will occur between the 

positive and negative sides of the frequency spectrum. Refer to Chap. V for an 

explanation of negative frequencies. 
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A strong argument for the phase jump problem being caused by a strong 

scattered component in the received signal is the systematic trend in the fringe data. 

As shown in Fig. 7.2, the phase is advancing in one direction for the entire data 

window. Random phase scrambling and deviations from true quadrature detection 

would be expected to produce random phase jumps, while a significant contribution 

from scattering would produce a continuous phase advance superimposed upon the 

phase fluctuations. This is quite similar to the observed phase data. Quadrature 

phase detection provides the necessary information to look for Doppler shifting in 

the raw data. By writing the raw data in the form of a complex signal, 

V = cosC + isinC (7.2) 

where the amplitude fluctuations A have been calculated and removed, the positive 

and negative frequencies of the fluctuation spectra can be resolved. In Fig. 7.3, the 

complete spectra for the signal defined in Eq. (7.2) are shown. Small differences can 

be seen in the amplitudes on each side of 0 kHz. Computing the percent difference 

between the positive and negative sides with the equation 

w = ?iW^*100 (7-3) 
where 8 is simply the percent difference, A(fi) represents the amplitude of the ith 

positive frequency term and A( — /„•) represents the amplitude of the ith negative 

frequency term. A difference of up to ~ 35% is indicated by Fig. 7.4. The fringe-

counted data for this signal had many phase jumps, similar to the uncorrected fringe 

data in Fig. 7.2. Unfortunately, no data with zero phase jumps have been obtained 

to determine if the Doppler shift goes away; however, it does appear that the total 

phase shift due to the phase jumps does increase with increasing amounts of Doppler 

shift. 

The phase jumps represent a significant problem in performing fluctuation 

analysis on the data because they cause a significant increase in the power spec-
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Figure 7.3: Fourier analysis of the complex signal from the reflectometer quadrature 
phase detector, showing the positive and negative sides of the spectrum. Note, this 
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Figure 7.5: The power spectra for the raw and improved fringe-counted signals. 

t rum when the data are Fourier analyzed, as shown in Fig. 7.5. These phase jumps 

make quantifiable forms of data analysis on the signal difficult because they pro­

duce a significant noise source across the entire frequency spectrum due to their 

step-function-like shape. Since the phase jumps are not believed to represent a real 

movement of the cutoff layer, the raw fringe signals are processed through an algo­

rithm that removes a significant number of the phase jumps. This can considerably 

reduce the contribution of the phase jumps to the power spectrum. The algorithm 

removes most phase jumps by looking at the difference between every two and three 

consecutive data points. If the difference between any two adjacent data points 

is > 0.57T, the difference is treated as an offset and removed from that data point 

and all the following data points in the data array. Next, if the difference between 

every other data point is > 0.87T, the difference is subtracted from the affected data. 

Generally, fewer than 5% of the data points produce these undesired phase jumps. 
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The improved fringe signal resulting from this phase jump removal is shown 

in Fig. 7.2, and the improvement in the power spectra is shown in Fig. 7.5. Note 

the significant decrease in the power spectrum for the improved fringe signal over 

most of the spectrum. No conclusive evidence exists to support this form of data 

manipulation, but the removal of the phase jumps must be done to obtain reasonable 

power spectra. The following observations support this manipulation: the rapid 

increase in the power spectra of the raw fringe signals below 30 kHz is not observed 

in the sine or cosine signals' spectra; the coherence between the raw data signals and 

any one of the sine, cosine, or improved fringe signals is good for the entire spectrum, 

except for the improved fringe signals where the coherence falls off sharply around 

10-20 kHz; the coherence between the raw data and the raw fringe signal is not 

as high and falls off sharply for frequencies less than 30-40 kHz. Radial coherence 

measurements (see page 170) provide similar observations; primarily, the coherence 

between two signals obtained from two closely spaced cutoff layers is approximately 

the same for the sine/cosine signals and the improved fringe signals for frequencies 

above ~ 10-20 kHz, but the coherence between two raw fringe signals or between 

a raw fringe signal and a sine or cosine signal falls off rapidly for frequencies below 

30-40 kHz. These observations provide some support for the validity of removing 

the phase jumps, as well as providing an indication that the low-frequency resolution 

of the improved fringe data is > 10 kHz. 

Uncerta in ty in the Measured Phase 

Later in this chapter the rms phase fluctuation amplitude £, which is the rms 

amplitude of the fringe signal, is used to calculate the density fluctuation amplitude 

n e / n e . Additionally, the uncertainty in ne/ne is estimated based on the uncertainties 

in the parameters used in calculating iie/ne. One of the uncertainties that is needed 

is due to the error in ( calculated from the spectral amplitude of the fringe signals. 
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The dominant error in £ is believed to result from the phase jumps in the fringe 

signals. The phase jumps lead to a systematic overestimation of (. Since the 

severity of the phase jumps varies from one signal to the next, the correction for 

the overestimation is believed to be 20% ± 20%; that is, the best case is no phase 

jumps with no biasing of £ and the worst case is a 40% biasing of ( due to the 

phase jumps. The 20% offset is removed from ( when £ is used in Eq. (7.11) to 

calculate the radial width 8rc of the fluctuations. Additionally, the uncertainty in ( 

is estimated to be <TZ/( ~ 20%. Note that the rms phase is calculated as the square 

root of the sum of the APSD of each fringe signal for 10 kHz < fi < /« /2 , where fi 

is the ith frequency component of the APSD and / , is the digitizing frequency. 

There are other possible sources of error in the measured phase, but these 

are expected to be small or unquantifiable at this time. These sources include noise 

in the detected signals due to frequency modulation of the BWOs, pickup in the 

detectors and amplifiers, and averaging of the reflected phase due to the presence 

of more than one wave cycle in the sampling volume for kr <C k0. See the section 

"Spatial Resolution" in Chap. VI for a discussion on the size of the sampling volume. 

The total system noise is discussed in the section "Noise Estimates" in Chap. VI 

where it is concluded that the total system noise is not significant. The possible 

averaging of the reflected signal over several spatial cycles of a fluctuation due to 

the finite measurement volume would lead to scrambling of the sum phase at the 

detectors. This could lead to a reduction in the measured phase. This possible error 

is neglected here. 
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Calculating the Cutoff Location rc and Its Uncertainty 

The position of the cutoff layer is easily calculated from the 0 - or X-mode 

cutoff conditions, u; = u;pe or a; = U?R, respectively, where u)pe and UJR were previ­

ously denned in Chap. II. Simply, the density profile and magnetic field profile for 

the X-mode are used to calculate the cutoff frequency profile. Then a numerical 

interpolation is done to obtain the radius at which UJ — ujpe or u> = U)R, where u; is 

the probing beam frequency. To estimate the random uncertainty in the calculated 

cutoff position, propagation of errors is used in the equation for the cutoff frequency 

to calculate the standard deviation of the cutoff frequency profile. The cutoff loca­

tion is then calculated for the original profile plus one standard deviation and again 

for the original profile minus one standard deviation. For the 0-mode, the standard 

deviation of the cutoff frequency is simply given by the uncertainty in the plasma 

frequency, 

Z^IL - I^2i (74) 
upe 2ne

 v ' ; 

where <TnJne is the uncertainty in the electron density. For the X-mode, the stan­

dard deviation of u;R (or variance, here) is obtained from Eq. (2.6) as 

^-r^J\\^l-A^\ (7.5) 
s/"l + 4o>UJ n< \v / u ' «+ 4 a &/ 

where 0"u,ce/u/ce simply translates to the uncertainty in the magnetic field <TB/\B\. 

The ATF magnetic field is determined completely by the currents applied to 

the helical and vertical field coils and is calculated to a high degree of accuracy using 

the Biot-Savart law solution.149-150 For the typical ECH discharges studied with the 

ATF reflectometer, the density profiles are characterized by a steep edge gradient 

occurring over the outer one-third of the minor radius, see Fig. 8.1 in Chap. VIII. 

The uncertainty in \B\ at any known position may be very small, but because of the 
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Figure 7.6: Thomson scattering density data points from 16 shots and 8 laser 
positions152 with error bars. The best fit density profile is also shown. 

uncertainty in the location of the cutoff" layer some uncertainty in determining \B\ is 

introduced. This uncertainty is estimated here as the average change in \B\ over the 

density gradient region, i.e., from p — 0.75 to 1.0 or r = 22 cm to 30 cm. As can be 

seen in Fig. 6.7, the magnetic field in this region is ~ 0.72 T ± 7%; therefore, for the 

purposes of estimating the uncertainties in the reflectometer data, <rWce/ujce = 7% 

will be assumed. 

The density profiles (e.g. see Fig. 8.1) used in analyzing the ATF reflec­

tometer data are obtained from Thomson scattering measurements.151 '152 Figure 7.6 

shows a typical set of Thomson scattering data with the fitted profile.152 The data 

points shown were obtained by averaging the data from 16 shots during which the 

laser was scanned over 8 different radial positions.153 The error bars represent the 

experimental standard deviation in the raw data. From Fig. 7.6, the uncertainty 
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in the density in the edge gradient region is typically 25%. For the purposes of 

estimating the uncertainty in the reflectometer data, <rne/ne = 25% is assumed from 

here on. 

For typical low-density ECH discharges, <TWR/WR ~ 5% to 10%, which corre­

sponds to an uncertainty in the location of the cutoff position of <rTc/rc ~ 5% to 10% 

in the edge gradient region of the plasma. As discussed in the section "Spatial Res­

olution" in Chap. VI, the phase information in the reflected signal is most sensitive 

to fluctuations occurring a short distance in front of the cutoff layer; therefore, quot­

ing the location of the cutoff layer as the location of the fluctuation measurement 

introduces a systematic error in the quoted location of the measured fluctuations. 

This systematic error is neglected here; the cutoff position is used as the location of 

the measured fluctuation information. The systematic error is probably of order 1 

to 3 times A0 of the probing beam; thus, the position of the measured fluctuations 

is moved outward ~ 1-3 cm from the cutoff position. 

Estimating h9jn„ From the Measured Phase Fluctuations 

Most fluctuation reflectometers have not been used to quantify the density 

fluctuation level ne/ne because the signal they measure is Acos£. With quadrature 

phase detection, the ATF reflectometer can measure £, which is necessary for fluc­

tuation amplitude estimates. In the following section, the equations for estimating 

n e / n e is developed, and an equation for the uncertainty in this Uel^e estimate is 

derived. 
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Figure 7.7: The initial cutoff condition ne(rc) becomes ne(r'c) -f 6ne when the initial 
density is perturbed by 6ne and the cutoff position rc becomes r'c. 

D e n s i t y Perturbat ion Expansion 

For a fixed probing beam frequency u/, the cutoff is located at a position rc, 

and the density at this location is ne(rc). Now, a perturbation 6ne moves the cutoff 

location to r'c and the density at rc is now given by ne(rc) —> ne(r'c) -f 6n€, as shown 

in Fig. 7.7. The new cutoff density ne(r'c) is now rewritten using the standard Taylor 

series expansion as 

ne(rc) = ne(rc) + — (7.6) 

where the derivative dne/dr is evaluated at the initial cutoff location rc and 8rc = 

r' — rc. Now noting that the derivative of the density at rc can be written as 

ne(rc)/Ln, where Ln = ne(dne/dr)~1 is the density gradient scale length and will be 

negative under most conditions, Eq. (7.6) becomes 

8r, 
ne{r'c) = n e ( r c ) 

159 

1 + (7.7) 



O-mode Solut ion The initial equation for the O-mode cutoff is given by 

.2 2 ( \ e ne(rc) (r- cv 

= ^pArc) = (7.8) 
e0me 

Applying the density perturbation shown in Fig. 7.7, the equation for the cutoff 

becomes 

u>2 = — [ne{r'c) + 8ne] (7.9) 
e0me 

Substituting in Eq. (7.7) for nc(r^), applying the initial condition LU2 = u>pC(rc), and 

solving, an equation for the density fluctuation amplitude is obtained, 
8n. 8rc 

—- = —- (7.10) 
ne Ln 

Here, 8rc is the radial width or amplitude of the density fluctuations and can be 

inferred from the reflectometer phase as 

6rc = f (7.11) 

where £ is the phase fluctuation amplitude in fringes corrected for the bias resulting 

from the phase jumps, as discussed in the section "Uncertainty in the Measured 

Phase" on page 154, normalized to 2TT radians (fringes), and A is the probing beam 

wavelength. The factor of 1/2 results from the wave traversing 8rc on arrival and 

after reflection. 

Finally, the density fluctuation amplitude is 

nc (A 
(7.12) 

nc 2Ln 

where 8ne has been replaced with the more standard n c . If £ is the amplitude of one 

frequency component from the amplitude spectrum obtained by Fourier analysis 

of a fringe signal, then he/ne is the fluctuation amplitude for the ith. frequency 

component, but if ( is the rms phase amplitude obtained by taking the square root 

of the sum over frequency of the APSD, the density fluctuation level or rms density 

fluctuation amplitude is obtained. For more details on the Fourier analysis and the 

definition of the APSD, see Chap. V. 
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Figure 7.8: The probing beam wavelength, normalized to the vacuum wavelength, 
as a function of the distance in front of the cutoff layer. 

Discuss ion on Choos ing A The appropriate value of A to use in Eq. 

(7.11) for calculating 8rc is not well defined. The wavelength in the plasma is greater 

than the vacuum wavelength and sweeps to infinity as cutoff is approached, as shown 

in Fig. 7.8; however, the appropriate value of the wavelength is certainly not infinity 

because the density fluctuations would then produce no phase shift in the reflected 

signal. The vacuum wavelength A0 could be used, but this would clearly lead to 

an underestimate since A > A0 in the plasma and since the density fluctuations at 

the cutoff layer do not cause the entire plasma to move in unison. Now consider 

the case where the vacuum wavelength of the probing beam is less than the radial 

correlation length of the fluctuations A0 < Lc. The density fluctuations at the cutoff 

layer are coherent over some radial width, causing the electrons to move in unison 

within the distance Lc of the cutoff layer. Thus, even though the cutoff layer is 

moving, the probing beam sees the same density profile within the coherent region. 

161 



Outside the coherent region, the density fluctuations at the cutoiT layer do not affect 

the electrons, and so the probing beam sees a changing density or path length as 

the cutoff layer moves. Thus, the phase information in the reflected probing beam 

will be determined by the radial displacement of the cutoff layer and the probing 

beam wavelength just outside the region of the coherent density fluctuations. 

It is shown in Chap. IX that the radial correlation lengths of the density 

fluctuations in the edge density region of ATF are of order 1-3 cm. From the 

argument above, this would imply that the wavelength to use in determining 6rc 

from ( is the wavelength 1-3 cm in front of the cutoff layer. From Fig. 7.8, A is seen to 

vary roughly between 1.5 and 3.5 times A0 in this region. For the purposes of the data 

discussed in this dissertation, the average value of A = 2.5A0 is used. This simple 

approximation assumes that the phase information in the reflected signal is localized 

to a small region just in front of the cutoff layer. As discussed in the section "Spatial 

Resolution" in Chap. VI, Mazzucato and Nazikian147-148 have shown that this is true 

only for kr <C k0, where kr is the radial wave number of the fluctuations and k0 is 

the probing beam wave number. For the case of kr > k0, the phase information in 

the reflected signal will be reduced by averaging of the reflected signal over multiple 

spatial cycles of the fluctuation. In this case, the systematic underestimation of 8rc 

will be much larger, requiring a larger correction factor. It is shown in Chap. IX that 

the mean kr observed by reflectometry in ATF, as determined by radial coherence 

measurements, is kr < 1 c m - 1 , while for the 30-40 GHz probing beam, the minimum 

k0 is 6.1 c m - 1 . Thus, the ATF reflectometer operates in a regime where kr <£. 

k0y and so the simple approximation A ~ 2.5A0 is sufficiently valid for the results 

shown in this dissertation. Radial coherence measurements and radial wave number 

estimations are discussed later in this chapter. 

The choice of A = 2.5A0, as discussed above, is an attempt to estimate 

and correct for the systematic uncertainty represented by the unknown value of 
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the wavelength producing the largest contribution to the phase of the reflected 

signal. This estimated value of A can lead to systematic errors in 8rc and ne/ne 

since it does not address the possible change in sensitivity due to changes in the 

radial wavelength or correlation length of the fluctuations between measurements. 

Additionally, the appropriate value of A is probably dependent on the ratio of the 

radial wave number of the density fluctuations to the vacuum wave number of the 

probing beam. This ratio may vary between measurements, leading to an error in 

A. For purposes of estimating the uncertainty in ne/ne, the random error in A is 

estimated to be o\\/A ~ 20%, based on the assumption that it is half of the range 

(1.5A0 and 3.5A0) used to estimate A. 

X - m o d e Solut ion The unperturbed condition for the right-hand (upper) 

X-mode cutoff can be written as u>2 — u>u;ce(rc) — Wpe{rc) = 0. Applying the density 

perturbation shown in Fig. 7.7, the equation for the cutoff becomes 

w — UJ 
:B(r'c) 

m, e0me 

[ne(rc) + 8n€] = 0 (7.13) 

where B(r'c) can be written in the form of Eq. (7.7), e.g., 

B(r'c) = B(rc) 1 + ^ 
LIB 

(7.14) 

where LB is the magnetic field gradient length at rc. Substituting in these expansions 

for ne{r'c) and B{r'c), the equation for the cutoff becomes 

u / 2 - u / — B(rc) 
m, 

1 + 
8r, 

e0me 

ne(rc) 
8rc 8n. 

1 + —̂  + —-
L„ n„ 

0 (7.15) 

Applying the unperturbed equation for the cutoff and solving, the density fluctuation 

amplitude can be written as 

671^ Wee Src 8r\ 

<«& LB Ln 

(7.16) 
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Substituting in Eq. (7.11) for 8rc, the density fluctuation amplitude in terms of the 

measured phase fluctuation is obtained: 

n, u,L ~ ) LB
 + Ln 

f (7-17) 
pe 

Note that the X-mode equation for he/ne contains the equation for the O-mode 

estimate plus a correction for the effect of the magnetic field in the cutoff equation. 

Uncerta in ty in w. /n . Es t imates 

The random uncertainty in calculating ne/ne from Eq. (7.12) or Eq. (7.17) 

is obtained by applying the technique of propagation of errors.154 The uncertainty 

estimates derived here neglect systematic uncertainties that lead to biasing of the 

final results. These systematic uncertainties are discussed in the previous sections. 

The biasing resulting from these systematic uncertainties was estimated and cor­

rected for in the data. The two biases considered in this experiment are the ~ 

20% overestimation of f due to the phase jumps, as discussed in the section "Un­

certainty in the Measured Phase" on page 154, and the underestimation of 6rc due 

to the probing beam wavelength being greater than the vacuum wavelength in the 

plasma, as discussed in the section "Discussion on Choosing A" on page 161. 

For the O-mode case [Eq. (7.12)], the equation for the uncertainty c^ e /n e is 

immediately found to be 

( 2 2 \ l /^ 

% + t) (7'18) 
where a is the standard deviation and the covariance between 6rc and Ln is assumed 

to be zero. The uncertainty in Ln is estimated in the section "Estimate of <TnJne 

for the X-mode" on page 166, where it is shown that a reasonable estimate for this 

uncertainty is <j^n/Ln % 0.5. The uncertainty in 8rc is given by the application 

of propagation of errors in Eq. (7.11) and the estimated uncertainties in £ and A. 

The uncertainties in £ and A were estimated previously to be 07/( ~ 20% and 
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&\/\ ~ 20%, leading to an estimated uncertainty in 8rc of crsrc/8rc « 0.28. For 

these values, the uncertainty in the density fluctuation amplitude is 57%. Clearly, 

if better density profile measurements were available on ATF, the uncertainty in 

ne/ne could be significantly reduced. 

X - m o d e Uncerta inty For the X-mode, <TnJne is not as straightforward 

as that for the O-mode and is written in terms of the partial derivatives of Eq. 

(7.17).154 First, the variance is given by 

- (d^\2 ( < 9 ^ \ 2 / d^\2 

n/n — <T 

+ 

du; 

(d* 
Ln dLn 

+ < 

+ <r, 

dv 
+ <T LB 

Sre 88rt 

dL B 

+ <Tt 
d* 0 ! 

duj pe dL, 
(7.19) 

where <r\nW e is the covariance between the density gradient and the plasma fre­

quency and all other covariances are assumed to be zero. The covariance between 

any two terms is zero if the two terms are independent of one another, and here 

' r 
is approximated as (T^cr^ Evaluating the partial derivatives in Eq. 7.19 

and substituting back in, the variance can be written as 

rr2 — rr2 I 
2u; 6r. 

"l*LB 
+ < 

2u>2 8r, 

+ '6rt 

U) 

U) 
pe 

I — — 
/ LB Ln 

LI,! 
2 

+ <r 
^pe ^B 

LB 

+ <TLn<7u,pe 

^ A8^ 
.< J Ll 

(2u2 8r, 

+ *L 
8rc 

T2 
^pe LB 

(7.20) 

On the ATF reflectometer, the probing beam frequency ui can be measured to an 

accuracy of at least 0.1%, and so its uncertainty is neglected from here on. The 

uncertainty in he/ne is now estimated by 

(^)2 = 3 
\ 71- / Wi 

El 
2 
pe 

2u2 8rc 

,^pe LB 
+ 

°LB 

T2 
LB 

w 
U) 

pe -)£ LI 

8rr 

z 
+ 

'6r, 

8r2 -'4-1 tt>. 
pe 

8rc 

LB 

8rc 

L„ + 
aLn <?Wpe 

Ln vpe m®™ 
where n e has dropped out. 
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Figure 7.9: Two extreme density profile fits to the Thomson scattering data and the 
best fit. Note: these are extreme variations in the fitted profile under the restriction 
that the same fitting function is used. 

Est imate of a* jh. for the X - m o d e The uncertainty in 

2 \ 1/2 

e0me 

(7.22) 

is dependent on the uncertainty in the electron density crne/ne and by propagation 

of errors is given by (rUpe/cupe = |o"n e /n e where <rnJne ^ 0 . 2 5 for the Thomson scat­

tering measurements on ATF, as discussed previously in this chapter in the section 

"Calculating the Cutoff Location and Its Uncertainty." By changing the profile fit 

to the Thomson scattering data points shown in Fig. 7.6, two realistic extremes 

on the density profile can be obtained, as shown in Fig. 7.9. A limitation in mak­

ing these extreme fits is that the same fitting function, defined in Eq. (8.1), was 

used for all three fits. Note that the profiles shown have not been scaled using the 

line-integrated density measured by the 2 mm interferometer. Before any Thomson 

scattering density profile is used for further calculations, the line-integrated density 
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Figure 7.10: The difference between the calculated values of Ln for the best fit 
density profile in Fig. 7.9 and the two extreme fits. Since the reflectometer data 
come from the edge gradient region, only this region is shown here. 

for the fitted profile is calculated and compared with that measured by the 2 mm 

interferometer. In this case, the ratio of the sequence-averaged line-integrated den­

sity from the 2 mm interferometer and the calculated line-integrated density for 

the fitted profile would be used to scale the fitted density profile. In Fig. 7.10, the 

normalized differences, e.g., for the steep profile (L^cst — L^ t eep)/L^cs t and similarly 

for the shallow profile, between the calculated values of Ln for the best fit density 

profile and the two extreme profile fits are shown. Note that , for these three fitted 

profiles, the radial location of the maximum density was fixed, and the profiles were 

scaled to match the measured line integrated density measured. If this location 

of the maximum density was allowed to change, very large differences between the 

best fit profiles' gradient length and the two extreme fit profile's gradient lengths 

occur as the peaks are approached. This is due to the rollover in the density pro-

1 — • — ' — ! — ' — ' — f 

-•—steep profile 

-•—shallow profile 

J i i I i i. 
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file. Since the uncertainty in Ln at the location of the X-mode cutoff is desired, 

the comparison of the calculated values of Ln for the three fitted density profiles 

would have to be adjusted in radius so that the values were aligned so that they 

correspond to the same cutoff frequency. To simply estimate typical uncertainties in 

L n , the location of the maximum density was held fixed and the comparison of the 

gradient lengths was made with respect to the radial location. Using Fig. 7.10, an 

average uncertainty in Ln can be estimated as the average of the differences in the 

calculated density gradient lengths. Thus, the uncertainty in Ln can be estimated 

to be <TLnlLn ~ 0.5. 

Also discussed in the section "Calculating the Cutoff Location and Its Un­

certainty" of this chapter is the estimation of the uncertainty in the magnetic field. 

The magnetic field is calculated to a high degree of accuracy using the Biot-Savart 

law149-150 since the magnetic field in ATF is determined completely by the currents 

applied to the field coils. Therefore, the uncertainty in the magnetic field and in 

its gradient length at any known location is negligible, but the uncertainty of these 

values at the cutoff layer has some uncertainty because of the imprecise knowledge 

of the location of the cutoff layer. As shown in Fig. 7.11, the magnetic field gradient 

length changes slowly over the outer one-third of the minor radius (20 < r < 30 cm), 

where most reflectometer data are obtained. The magnetic field gradient length in 

this region is ~ 65 cm ± 7%, and so the uncertainty in the gradient length is esti­

mated to be <TLBILB ~ 0.07. 

Finally, the uncertainty in the measured signal Src = CV2 ^s estimated 

to be 0.28, as discussed on page 164. Typical X-mode reflectometer data in low-

density ATF plasmas are obtained from a region of the plasma with the following 

typical parameter values: u;pe = 17.5 GHz, u;ce = 19.7 GHz, to — 30 GHz, LB — 

—64 cm, and Ln ~ —25 cm. A typical measured value for Src is 0.2 cm, and the 

resulting fluctuation amplitude [calculated from Eq. (7.17)] is ne/ne = 0.014 with 
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Figure 7.11: The magnetic field gradient length \L&\ for the geometry of the ATF 
reflectometer. 

an uncertainty of ~ 48%. 

Using the values of the plasma parameters and uncertainties defined above, 

the sensitivity of cr^e/ne was tested by varying each of the individual uncertainties, 

^wpe/^po ^LB/LB, <7Ln/Ln, and osTc/SrC) from 0 to 1.0 while holding all other param­

eters constant. The results of this scan are shown in Fig. 7.12. Note in Fig. 7.12 that 

the uncertainty in the density profile via the uncertainty in u;pe can quickly dominate 

Vnjiie- Unfortunately, the 25% uncertainty estimated for ne(r) can lead to rela­

tively large uncertainties in Ln, especially with the steep edge gradients present in 

the flat or hollow density profiles obtained in ATF. Figure 7.12 shows that increasing 

0"Ln/Ln to 100% increases 0fte/ne to ~ 70%, while decreasing aLn/Ln to 0 decreases 

cr^e/nc to ~ 30% for the assumed parameters. The uncertainty in the magnetic field 

gradient length is sufficiently small that it contributes negligibly to cme/rie. Finally, 

the uncertainty in the measured radial displacement of the fluctuation <JsTc/Src is 
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Figure 7.12: Individual scans of the uncertainties in u;pe, LB, Ln and 6rc and the 
resulting values of <rae/ne. 

the most likely parameter to increase ^ e / n e significantly. As can be seen in Fig. 

7.12 if <rsrJ6rc is increased by a factor of two to 56%, o-ae/he increases by almost a 

factor of two to ~ 70%. 

Radial Coherence/Correlation Length Measurements 

The capability of the ATF reflectometer to operate two frequencies simulta­

neously along the same radial chord with a frequency separation as low as 10 MHz 

with quadrature phase detection provides a simple means of making radial coher­

ence measurements of the density fluctuations. The frequency-resolved coherence 

7 ( / ) between the phase of the signals reflected at the two critical layers is calcu­

lated using standard cross-correlation analysis techniques, as discussed in Chap. V, 
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and is determined as a function of the frequency separation between the two sig­

nals. Conversion of the frequency separation to a radial distance is dependent upon 

knowing the density gradient at the critical layers. The ability to obtain the phase 

fluctuation £ from the quadrature phase detectors greatly improves the ability to 

perform radial coherence measurements. 

Correlat ion Length Determinat ion 

The normalized coherence, defined in Eq. (5.11), between two signals is 

modeled as 

7 = 7 o e - A r / L c (7.23) 

where 70 is the coherence for zero radial separation and may be less than one due 

to uncorrelated noise in the two signals, Ar is the radial separation between the 

critical layers associated with the two signals (probing beams), and Lc is the radial 

correlation length of the density fluctuations. If multiple radial separations are 

obtained by scanning the probing beam frequency, then the radial correlation length 

can be determined. Take the natural logarithm of 7 to obtain 

In 7 =11170- -=- (7.24) 
he 

where this equation is now in the form of an equation for a line, y = sx -f b, 

where y = In 7, x = Ar . Since x and y can be obtained from the coherence 

analysis, the slope (s = —1/Le) and y-intercept (6 = In 70) can be calculated by 

performing a least-squares fit to Ar vs In 7. Since 7 ( / ) is determined as a function of 

each frequency component, the calculated correlation length will also be a function 

of frequency and indicates the wavelength spread at that fluctuation frequency, 

assuming the relation Lc w A2/£A, where A is the fluctuation wavelength. 
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Uncerta inty in the Measured Correlation Length 

A simple approach to estimating the uncertainty in the measured radial 

correlation length, i.e., the fitted slope, is to assume that the only uncertainties in 

the data are due to statistical fluctuations in 7 ( / ) . In this case, the uncertainty in the 

fitted slope is easily derivable, as shown by Bevington.154 However, the uncertainties 

in the data are not only statistical, but rather a combination of statistical and 

random uncertainties. Following the technique outlined by Bevington154 for the 

calculation of the uncertainties in a least-squares fit, the first step is to identify the 

uncertainties contributing to the total uncertainty. The independent variable for the 

least-squares fit is Ar and the dependent variable is In 7. Bendat and Piersol134 show 

that the variance resulting from statistical uncertainties in 7 2 estimated by DFT 

analysis, described in Chap. V, for two white noise signals (a good representation 

of fluctuation data) is given by 

•» * 1M 
where nw is the number of realizations or windows averaged over in calculating the 

average spectra and coherence, the subscript i indicates the tth frequency compo­

nent, and cryi is given by 

^t_I^L = _i LuL ,72fl) 
a 2 7? v^vST^T (*> 

When 50% overlapping windows are used, as is the case for the ATF signal 

analysis code, the number of windows averaged over is nw = 2nr/N — 1, where n? 

is the total number of data points and TV is the number of data points in a single 

window. The overlapping of the windows decreases the variance in the estimated 

coherence or spectra because information that is lost at the ends of the window 

because of the windowing function (e.g., a Hanning window) is now included in 

an overlapping window; however, since some information is used in both windows, 
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the effective decrease in the variance is not simply that from the apparent increase 

in the number of windows. Welch1 BB derives an estimate of the effective decrease 

in the uncertainty due to the use of overlapping windows vs no overlap. For the 

analysis of the reflectometer signals, for which TIT = 16384 and N = 512 for 512 

kHz and 1 MHz sampling rates, or nT = 8192 and N = 256 for a 256 kHz sampling 

rate, the standard deviation calculated for nw = 2UT/N — 1 windows is expected 

to underestimate the real standard deviation by a small amount, estimated from 

Welch's equations155 to be ~ 5%. The underestimation of <r7. is neglected from 

here on. The variance in the dependent variable ln7t- is, by applying propagation of 

errors to Eq. (7.26), found to be 

<Afi~-^h 
Note that , this calculation is repeated for the £ independent pairs of signals, each 

pair having an independent value of the radial separation Ar^. Thus, the subscript 

£ is implicit in the above equations indicating the £th radial separation. 

Next, the uncertainty in the independent variable A 77 must be transformed 

into an effective uncertainty in the dependent variable. This effective uncertainty is 

estimated as 

<-Ks)2 (728) 

where (T&ri/Ari is the uncertainty in A 77 due to the uncertainty in the measured 

density profile obtained from Thomson scattering on ATF. Note that for large values 

of <rAr//Ar^, this method of accounting for the uncertainty in A77 will underestimate 

the uncertainty. The total uncertainty in the ^th value of the dependent variable 

ln7i is the root sum square of the contributing uncertainties, 

-a - * „ + « L U . Jfc^-+(ln7if (^)2
 {7M) 

where the subscript £ is implicit in 0"in7j and 7,-. 
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As given by Bevington,154 the uncertainty in the fitted slope si for a least-

squares fit is given in terms of its variance as 

^ • - ^ T E - T (7-3°) 
'• A i Y ^ M 

where A,- is given by 

A< = £ ^ E ^ - ( E ^ V (T.8D 
t ffu i au \ i *it / 

and the uncertainty in LCi = — l/$i is simply cr\j'L\. = cr\Js\. In estimating 

a\ ., the uncertainty in the radial separation <r&rt/Art is approximated as the un­

certainty in the density gradient scale length. Note that for the case of simple 

homodyne detection, the problem of coherence between two nonlinear signals, sin£i 

and sin (£2 + V5) where y? is the phase between the two signals, produces an addi­

tional uncertainty in 7,- that must be included in the definition of <r7.. This is not the 

case when the true phase fluctuations in the reflected microwave beam are obtained 

via fringe counting of quadrature phase data. 

Total Correlat ion Length 

Another parameter that can be calculated from the radial coherence data is 

the cross-correlation coefficient function defined by Eq. (5.10) and repeated here,134 

P"M = 1 c*tk)
 ln, <7-32) 

\A-*(0)cm(0) 
where cxy is the cross-correlation function defined in Eq. (5.8), and cxx(0) and cyy(0) 

are the auto-correlation functions for zero time lag. This function, pxy(tk), is basi­

cally a time domain normalized coherence similar to the frequency domain coherence 

function 7. For zero time delay (tk — 0), the cross-correlation function represents the 

total correlation for all frequency components between the two signals x{t) and y(t) 

and can be used like 7 in the previous section "Correlation Length Determination" 
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starting with Eq. (7.23), to estimate the total correlation length for all frequen­

cies between the two signals. Since the cross-correlation provides only one value 

of pxy(tk), as opposed to the i frequency components of 7,-, the subscript i can be 

neglected for this case. Note that , for this zero time delay case, the cross-correlation 

function is simply given by cxy(0) — Yf Cxy{fj), a n d the auto-correlation functions 

are given by cM(0) = £ / Cxx(fj) and cyy(0) = £ / Cyy{fj). 

The uncertainty in the total correlation length is estimated using the same 

procedure given in the previous section for the uncertainty in the frequency domain 

correlation length calculated from 7^ but the uncertainty in pxy(Q) is used in place 

of 0^1/7; in Eq. (7.26). By propagation of errors, the uncertainty in pxy{tk) is found 

<J^^<M + <M + <M ,7™ 
P2Jh) - cly{tk)

 + 4cL(0) + 4c^(0) I • > 

where the statistical uncertainty in cxy(tk) for two white noise-like signals is given 

by Bendat and Piersol as134 

-=y [l + ^ » ] (7.34) 
cly(tk) 2BTn 

where B is the bandwidth of the signals, T is time length of each data window, 

and nw is the total number of windows averaged over, as discussed in the previous 

section. Bendat and Piersol give the statistical uncertainties in cxx(0) and cyy(0) as 

<M = <M ~ _J^_ ,7 «, 
clM 4 , ( 0 ) ~ 2BTnm ^i0> 

Now using Eq. (7.34) with tk = 0 and Eq. (7.35) in Eq. (7.33), the uncertainty in 

pxy(tk) can be obtained and used in Eq. (7.27) in place of 0^ /7? to calculate the 

uncertainty in the total correlation length. Note that , In 7; in Eqs. (7.28) and (7.29) 

must be replaced by \npxy(0). 
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Radial Wave Number Estimation 

The radial wave number kr of the coherent fluctuations can be estimated 

from the phase between the coherent parts of the two reflected signals. This tech­

nique, often used to determine kg from two-tip Langmuir probes and HIBP,28 simply 

takes the measured phase delay of the propagating wave between the two measure­

ment points and divides it by the distance between the two points. For the radial 

coherence data obtained with the ATF reflectometer, kr is obtained from 

K = A. (7.36) 

where kr has units of radians per cm, <f>r is the cross-spectral phase and is obtained 

from the imaginary part of the CPSD, and Ar is the radial separation between the 

two critical layers. See Chap. V for the definition of the CPSD. The cross-spectral 

phase <f>r is obtained as a function of frequency from the cross-correlation analysis. 

In practice, the mean radial wave number kr is calculated for the ATF reflectometer 

data. The quantity kr is obtained by replacing <f)r with the weighted mean phase <$>r 

in Eq. (7.36), where <$>r is given by 

&. = ^ ~ for 7 , > 0.4 (7.37) 

The subscript i indicates the tth frequency component, A{ is the magnitude of the 

CPSD, and 7; is the normalized coherence function. This technique for determining 

kr only works for fluctuations that are coherent, so the condition that the normalized 

coherence be at least 0.4 is used. The minimum value of 7̂  was set at 0.4 to 

ensure that the phase information being summed over represented the true coherent 

fluctuations. As the coherence decreases below this value (for example, see Fig. 9.6 

in Chap. IX), the cross-spectral phase shows significant scatter resulting from the 

dominance of the noncoherent fluctuations in the two signals. It should be noted, 

therefore, that the measured kr is thus the wave number of the coherent spectrum. 
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Another parameter often used to describe the wave number spectrum is 

the turbulent broadening factor a^, which is basically the width of the measured k 

spectrum. Here, cr^ is obtained from 

Cfcr = 
Ar 

(7.38) 

where a^. is the width (standard deviation) of the measured phase and is given by 

'EM-^'^V" 
0 > = 

EiAi 
for 7 > 0.4 (7.39) 

where a^r has the same units as kr. Again, 07^ approximates the width of the 

coherent spectrum at the specified Ar. 

Uncer ta in ty in the Measured Radial Wave N u m b e r 

The uncertainty in kr is easily shown to be given by 

= m+©) ; (7.40) 
kr J \<j)r 

where a^./4>r is the uncertainty in the measured mean phase and a^r/Ar is the un­

certainty in the radial separation, as discussed in the radial correlation length section 

above. The variance in the weighted mean phase is, as obtained by application of 

propagation of errors164 to Eq. (7.37), 

1 
erL = 

- \ 2 
£ ( i W + «i (* - &) (7.41) 

''"(Ei^t 
where cr^ is the variance in each <f>(fi) and for statistical errors only is given by 

Bendat and Piersol134 for white noise-like signals as 

1 - 7 ? <rl.= (7.42) 
*' ~ 2 7?(n„ - 1) 

where 7,- is the normalized coherence for each f(i) and nw is the number of data 

windows averaged over in the Fourier analysis. The variance in the magnitude of 
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the CPSD, (JAii for each frequency component fi is estimated as the sum of the 

statistical variance given by Bendat and Piersol134 and the estimated uncertainty 

due to the variation in the fringe counting, as discussed in the section "Uncertainty 

in the Measured Phase" on page 154. Thus, the variance in Ai is estimated as 

< = 4 
(<TA\2] 

V —r nw \AJ _ 
(7.43) 

where the second term in the brackets represents the estimated uncertainty due to 

the phase jumps in the fringe data and, for the calculations in this dissertation, 

(rA/A - 20% is used. 

The uncertainty in the width of the kT spectrum, <7fcr, is given by 

+ -ft (7-44) 
Vkr J \ <r<t* ) V A r 

where s^ is the variance in a^ and is obtained by the application of propagation 

of errors to Eq. (7.39). This variance is then estimated to be 

'̂  =
 03r(^)»?{^-^)'^(^ + ^ ) + [^(^-^'-^)]'} 

(7.45) 

where all the parameters have been previously defined. Results of kT calculations 

with the uncertainties are shown in Chap. IX. 

Poloidal Wave Number Estimation 

In Chap. IV, the diamagnetic drift frequency was defined as wme = k9V£>) 

where ke — m/r is the poloidal wave number and VJJ is the local electron drift 

velocity. If it is assumed that the poloidal group velocity of the fluctuations can be 

approximated by the electron drift velocity and that u;*e can be approximated by the 

mean frequency u> of the measured fluctuation spectra, then the mean poloidal wave 
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number can be estimated by kg = w/vjr,. Here, u> is the weighted mean frequency of 

the measured spectra and is obtained from 

u, = - ^ - (7.46) 

where u;,- is the zth frequency component obtained from the Fourier analysis of the 

time data and .A; is the magnitude of the APSD. The definition for the APSD 

is given in Chap. V. As with the kr calculations above, the width or turbulent 

broadening of the kg spectrum is estimated by the width or standard deviation in 

the measured spectrum, i.e., a^e = <ru/vDt where <TU is given by 

Of course, these estimates are based on knowing v&, which is not measured directly 

but rather inferred from other data. The diamagnetic drift velocity is given by 

-=iS+f ^ 
where the first term is the gradient drift velocity vv, with Lp being the pressure 

gradient length, and the second term is the E x B drift velocity (vExB). Here, 

ET is the radial electric field, and it is estimated from the radial potential profiles 

obtained with the HIBP.156 

Uncerta inty in the Es t imated Poloidal Wave N u m b e r 

The techniques used in the previous section for estimating the uncertainty 

in the measured radial wave number are used to provide the necessary equations for 

estimating the uncertainty in the poloidal wave number due to random errors. These 

estimates neglect all systematic uncertainties, such as contributions to the spectra 

from Doppler shifting, the functional dependence of the amplitude of the reflected 

signal on the radial wavelength of the fluctuations, and the assumptions that UJ^ ~ u> 
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and that the fluctuation group velocity equals vp. First, the uncertainty in kg is 

given by 

< % \ 2 _ (<ro\* , / ^ D
N 

= ^ + ^ (7.49) 
Kg J \ UJ J \ VD / 

where crl is the variance in the measured mean frequency and a\ is the variance in 

the calculated drift velocity. The uncertainty in the mean frequency UJ is obtained 

by propagation of errors and is given by 

al = 7^T?E[(A^f+ <("<-*f] (7-50) 

where crUi is estimated for statistical uncertainties as f8/N with fe being the digiti­

zation frequency and N being the number of data points in each data window, as 

defined in Chap. V.134 All other parameters in this equation have been previously 

defined. 

The variance in the calculated drift velocity is estimated by 

2 2 / ^ r _ \ 2 / ~ _ \ 2 2 ^ 2 , faTe\ 2 , f<TB\ 2 , (aE\ 

- \LP,*+Wvl+\-i)v°+v-i)v^ (751) 

where the potential covariance between the pressure gradient length and the electron 

temperature has been neglected, a^ /Lp is estimated as the rms value of o\cn/Ln 

and <TLT/LT where Ln and L?, the density and temperature gradient lengths, re­

spectively, are calculated from the profiles fitted to the Thomson scattering data, 

as discussed previously in this chapter, and have been estimated to have a typical 

uncertainty of 50% each. Thus, <TL /LP is estimated as 71%. Te is also determined 

from the profiles fitted to the Thomson scattering data and has an estimated typical 

uncertainty of 25%. The uncertainty in the magnetic field value B has been previ­

ously estimated in this chapter to be 7%. Finally, the electric field is obtained from 

the derivative of the potential measured by the HIBP and is given an estimated 

typical uncertainty of 100% due to the preliminary nature of the measurements and 

the assumption that the profile measured in one shot in the sequence will be the 

same for all shots in the sequence.157 
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The uncertainty in the width of the ke spectrum sak0 is estimated similarly 

to akg above. First, sake is given by 

2 = (£-y+(^y (7.52) 

where aVD has been previously defined and s\ is the variance in the width of the 

frequency spectra and is estimated as 

^ = ^^^{{wi-Q)2A^< + ̂  + [^L({u'i-Q)2~^)2} (7 .53) 

Again, all parameters have been previously defined, and results of these error esti­

mates are shown with measured data in Chap. IX. 

Summary 

The use of quadrature phase detection has allowed the measurement of 

the actual phase delay of the reflected probing beam via fringe counting of the 

sine/cosine signals obtained from the quadrature detector. This phase detection 

method suffers from rapid phase jumps, which are too large to be caused by a real 

movement of the cutoff layer and which artificially increase the spectral amplitude 

when Fourier transformed into the frequency domain. Since these phase jumps 

are not believed to represent real fluctuations in the plasma at the cutoff layer, a 

significant number of the phase jumps are removed numerically. This results in a 

significant reduction in the noise contribution to the spectral amplitude resulting 

from the phase jumps; however, the first 10 kHz of data are still strongly biased 

by the phase jumps and so are neglected in all data analysis techniques. Once the 

phase fluctuations in the probing beam have been obtained, the density fluctuation 

amplitude can be determined from the phase fluctuation amplitude and the wave­

length of the probing beam. To determine both the location of the probing beam's 
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cutoff and the density fluctuation amplitude, a density profile is required. In ATF, 

these profiles are obtained from the Thomson scattering system. The equations for 

estimating the density fluctuation amplitude for both the O-mode and the X-mode 

are derived in this chapter, as is the uncertainty associated with their estimated 

values. 

The tunable two-frequency operation of the ATF renectometer allows radial 

coherence measurements of the density fluctuations to be made, and by tuning the 

frequencies to different values, the coherence measurements can be made for sev­

eral different radial separations. This allows the radial correlation lengths of the 

density fluctuations to be estimated from the change in the normalized coherence 

between the two cutoff layers as their separation is increased. Radial coherence 

measurements can also be used to infer the radial wave number kT of the coherent 

part of the fluctuation spectrum using the two-point coherence technique often used 

by Langmuir probes. Finally, the mean poloidal wave number kg can be estimated 

from the mean frequency of the density fluctuations and the diamagnetic drift veloc­

ity calculated from the Thomson scattering pressure profiles and the HIBP electric 

field profiles. The determination of the poloidal wave number allows the measured 

density fluctuation amplitudes to be compared with theoretical models for the fluc­

tuations, since the models require kg in their estimates. In Chap. VIII, renectometer 

data from two sequences in ATF are presented and discussed. Then in Chap. IX, the 

analysis techniques developed in this chapter are applied to the renectometer data 

to quantify and describe the observed density fluctuations as completely as possible. 

Finally, at the end of Chap. IX, the measured fluctuation amplitudes are compared 

with the values predicted by theory to identify the source of the fluctuations. 
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CHAPTER VIII 

EXPERIMENTAL RESULTS 

Introduction 

Although the ATF reflectometer has operated in a variety of plasma regimes, 

including 0.95 T ECH, and 0.63, 0.95, and 1.9 T NBI, the 0.95 T ECH discharges 

have been found to be the most interesting because with X-mode operation internal 

probing of the plasma is possible and because reproducible steady-state conditions 

can be obtained. With NBI discharges, the typical densities obtained are suffi­

ciently high to prevent internal probing of the plasma with either the X-mode or 

the O-mode; that is, cutoff is generally achieved outside the last closed flux surface. 

Reviews of the results obtained in ATF are given by Murakami et al.,158-159 Colchin 

et al.,160 and Harris et al.161 Some reflectometer results are also presented in these 

papers. In this chapter, two ECH sequences with similar magnetic and plasma 

conditions are described. Additionally, reflectometer time and frequency (Fourier-

transformed time series) data are presented and discussed. Then in Chap. IX, the 

detailed analysis of the reflectometer data and its interpretation are given for the 

two sequences discussed in this chapter. 
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Magnetic Configuration and Plasma Conditions 

Since ATF is a torsatron, its magnetic configuration and operation are much 

different from those of a tokamak. The unique features of the ATF magnetic con­

figuration are discussed in Chap. I. The two sequences of discharges in ATF to 

be discussed here are 90030801 and 90092804 occurring on 8 March 1990 and 28 

September 1990, respectively. The shot numbers included in sequence 90030801 are 

11265-11289 (excluding 11273 and 11286), while for sequence 90092804, the shots 

included are 16872-16897 (excluding 16882-16889). These sequences are for the 

standard magnetic configuration, i.e., B0 = 0.94 T, major radius of 2.05 m, and 

vacuum magnetic axis at 2.08 m. The magnetic configuration is generally described 

in terms of the ratio of the trim coils' current-turns to the helical coil's current-

turns. ATF has three vertical field VF trim coils, the inner, outer and mid. For 

these two sequences, the ratio of the inner to the helical was ~ 0.15, the ratio of 

the outer to the helical was ~ 0.075, and the ratio of the mid to the helical was 0. 

The ATF Thomson scattering system was used to obtain the average density, tem­

perature, and pressure profiles for each sequence.151-152 Figure 8.1 shows the fitted 

density profiles for both sequences. These hollow density profiles are obtained from 

the fitting function 

nc{p) = (n„ - n . ) l [(1 - p") - (1 - 7) (1 - p"f] + n . (8.1) 

where nf, is the central density, n0 is the edge density, 7 is given by 

7 = l - l / [ / 3 ( l - ^ ) " - 1 ] (8.2) 

and pm is the radial location of the maximum density. The profile is then specified 

by the parameter set (n&, n0 , a, /3, pm) where the limits a < 1.0 and j3 > 1.1 are 

used. Figures 8.2 and 8.3 show the temperature and pressure profiles for the same 

sequences. Note that the errors bar shown here for the density and temperature 
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Figure 8.1: The density profiles for sequences 90030801 and 90092804. The profile 
for sequence 90030801 is specified by nh = 3.9 x 1012 c m - 3 , ne = 0.325 x 1012 cm - 3 , 
a = 2, (3 — 1.1 and pm — 0.72, while that for sequence 90092804 is specified by 
nb = 4.52 x 1012 c m 4 , ne = 1.56 x 1012 cm"3 , a = 2.274, /3 = 1.1 and pm = 0.701. 

represent an estimate of the typical uncertainty for Thomson scattering measure­

ments in the low-density ECH plasmas in ATF.1 5 3 The error bars on the pressure 

profile are obtained by a simple propagation of errors. 

In Fig. 8.4, the time history of the line integrated density (NEL), the saddle 

loop stored energy (SL.ENRGY),1 6 2 diamagnetic stored energy (ST.ENRGY),1 6 2 

and the ECH power (ECHPOWER) 1 4 4 for these discharges are shown. These plots 

were obtained by averaging over the shots in each sequence. The Thomson scattering 

profiles for sequence 90030801 were obtained at 500 ms, and the reflectometer data 

window started at this time. In sequence 90092804, the Thomson scattering profiles 

were obtained at 300 ms, and again, the reflectometer data window started at this 

time. Note, in sequence 90030801 the reflectometer digitization frequency was 512 

kHz so that a 32 ms data window was obtained, while for sequence 90092804 the 
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Figure 8.3: The pressure profiles for sequences 90030801 and 90092804. The pressure 
profiles are obtained from the product of the density and temperature profiles. 
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digitization frequency was 1 MHz with a 16 ms data window. 

In Table 8.1, the parameters describing both the refiectometer operating 

conditions and the plasma conditions for each shot in sequence 90030801 are listed. 

RF1 and RF2 are the two probing frequencies of the refiectometer, and Ri, R2 

and /?i, pi are the major radii and the flux-surface-normalized radii of the cutoff 

positions, respectively. Also shown are the average (over the refiectometer data 

window) NEL, SL_ENRGY, ST.ENRGY, and ECHPOWER. The cutoff locations 

are obtained from the upper X-mode cutoff frequency profile calculated from the 

sequence average density profile scaled by the line-averaged density ne for each shot; 

that is, he for each shot is multiplied by the central peaking factor calculated from 

the fitted profile to obtain a new central density for each shot. This scales the profile 

for each shot to account for small shot to shot variations in the density. The central 

peaking factor for the Thomson scattering density profile is obtained from the ratio 

of the central density to the calculated ne for the profile. Table 8.2 presents this 

information for sequence 90092804. Note the much larger spread in NEL in this 

sequence. 

Refiectometer Data 

For these two sequences, the refiectometer was operated with one probing 

beam frequency fixed near the top of the edge density gradient, while the other 

probing beam was scanned down the gradient by changing the frequency between 

discharges. This method of operation allows radial coherence measurements to be 

made for several different radial separations with one end of the measurement range 

approximately fixed in location. This method also provides a radial profile of the 

density fluctuations since one probing beam is scanned across the density gradient. 
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Unfortunately, the reflectometer cannot make measurements inside or over the top 

of these hollow-density profile plasmas. Tables 8.1 and 8.2 show that the cutoff 

locations pc for these two sequences are limited to the edge gradient region of the 

density profile, 0.75 < pc < 1.0. This exemplifies the primary limitation of the re­

flectometer for density fluctuation measurements in these hollow-density discharges. 

The reflectometer can only obtain information in regions where a sufficient density 

gradient exists to provide a radially localized cutoff position. 

The reflectometer time series data provide little or no useful information 

until they are processed. Figure 7.1 shows an example of a short section of time series 

data. The raw data are processed through a fringe-counting code, as discussed in 

Chap. VII, to obtain the actual phase shift in the reflected signal resulting from the 

movement of the cutoff layer. These time series phase data still provide little or no 

insight into the density fluctuations in the plasma until they are Fourier transformed 

to the frequency domain. In Fig. 8.5 and 8.6, the amplitude spectra from three 

radially separated positions in the plasma are shown for sequences 90030801 and 

90092804, respectively. In both sequences, a fairly large amplitude peak is observed 

around 50 kHz with a width of ~ 20 kHz. It is shown in Chap. IX that this bump 

or feature has a long radial correlation length and is globally coherent across this 

edge gradient region. Note that in both figures the spectra broaden as the cutoff 

position is moved outward in the plasma. The spatial separations between the 

spectra shown in Fig. 8.5 and in Fig. 8.6 are probably larger than that suggested by 

the cutoff positions indicated on the figures. The typical uncertainties in the cutoff 

locations can be estimated from the error bars shown in Fig. 9.2. From Fig. 9.2, 

the uncertainty in the location of the inner cutoff positions (those near the peak 

in the edge gradient) is large, while the uncertainty in the outer cutoff positions is 

small. For sequence 90030801, the radial error bars on the inner data points extend 

to p = 0. This is an artifact of the technique used to estimate these uncertainties, 
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Figure 8.5: Three density fluctuation spectra from three radially separated cutoff 
layers for sequence 90030801. Note the large peak in the center spectrum and 
the lack of such a peak in the other spectra. This is an indication of a localized 
measurement. 
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Figure 8.6: Three density fluctuation spectra from three radially separated cutoff 
layers for sequence 90092804. Note the similarities with Fig. 8.5; i.e., the large peak 
in the center spectrum and the broadening of the spectra with increasing p. 

193 



Microwave Rellectometer 

Mirnov Monitor 
(Lower) 

Fast 
Reciprocating 

Langmuir 
Probe 

Heavy Ion 
Beam Probe 

Sort X-ray Array 

Mirnov Monitors 
(Side) 

ECE correl. (f) 

Mirnov Monitor 
(Lower) 

2 mm n-wave 
scattering 

Mirnov Monitor 
(Lower) Mirnov Monitors 

(Upper & Lower) 

Figure 8.7: Locations of the ATF fluctuation diagnostics. The 2 mm microwave 
scattering diagnostic is planned for installation in the summer of 1991.170 

as discussed in Chap. IX. Since cutoff was obtained and the density profiles were 

hollow, the cutoff had to occur somewhere near the peak in the edge density gradient. 

Therefore, the uncertainty in the given cutoff positions is estimated to be ~ 25%. 

Thus the very small spatial separation suggested by the cutoff positions indicated 

on the figures is most likely much larger. 

Comparison With Other Fluctuation Data 

In sequence 90092804, the reflectometer was operated simultaneously with 

the FRLP145-163 '164 '165 and the HIBP1 6 6 1 6 7-1 6 8 in an at tempt to verify of the the reflec­

tometer measurements. In Fig. 8.7, a schematic of the ATF vacuum vessel showing 

the location of the fluctuation diagnostics is shown.169 The Mirnov monitors are used 
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Figure 8.8: These spectra (oc n e / n e ) were measured by the reflectometer, FRLP, 
and HIBP during sequence 90092804. Note the similar peaks in these spectra at 
30-50 kHz. 

to measure magnetic fluctuations in the plasma, which are generally produced by 

MHD modes.133-171 Unfortunately, these monitors obtain no signal above their noise 

level in the low-density ECH plasmas being studied here. Their primary use is in 

the high-density NBI-heated plasmas and some higher density ECH plasmas when 

pellet injection is used. For more information on FRLP measurements in ATF, see 

the work by Hidalgo et al.,164 Uckan et al.,145-163-165 and Harris et al.98 This sequence 

was the initial operational run of the HIBP, and so the accuracy of the measure­

ments, in both their radial position and amplitude, is not quantified. Information 

on the ATF HIBP may be obtained from Aceto et al.156-166-168 and Zielinski et al.167 

Figure 8.8 shows the amplitude spectra for the density fluctuations measured 

by the FRLP and HIBP at p ~ 1.0 and the reflectometer at p ~ 0.9 during sequence 

90092804. The spectra shown here are proportional to the density fluctuations but 
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have arbitrary units so the relative amplitude differences are not meaningful. The 

spectra obtained by all three diagnostics clearly show a similar peak between 30 and 

50 kHz. The HIBP measurement is near its minimum signal level, as indicated by 

the bottoming out of the spectra for frequencies above ~ 150 kHz. Two differences 

between the reflectometer measurements and the HIBP and FRLP measurements 

can be seen. First, the ~ 10 kHz offset between the renectometer-measured peak 

and the peak measured by the HIBP and the FRLP may be an indication of Doppler 

shifting between the spectra observed by all three diagnostics. Doppler shifting of 

the reflectometer probing beam was discussed in the section "Fringe Counting" in 

Chap. VII. 

The second difference between the reflectometer spectra and the spectra 

from the HIBP and the FRLP is the difference in the measured radial location of 

the peak. The reflectometer measurements show the peak to be at p ~ 0.9, while 

the HIBP and FRLP observe a peak in their spectra at p ~ 1.0. This contradiction 

may be due to the fact that the phase fluctuations in the reflectometer signal are 

primarily caused by fluctuations in front of the cutoff layer. As stated in the section 

"Discussion on Choosing A" in Chap. VII, the phase information is estimated to 

be coming from 1 to 3 vacuum wavelengths in front of the cutoff layer. This corre­

sponds to a difference of Ap ~ 0.04-0.1 between the location of the cutoff layer and 

the location of the fluctuations. If this offset is corrected for in the quoted location 

of the measured reflectometer spectra, then the spectra from the three diagnos­

tics show better agreement. This potential systematic offset in the location of the 

measured fluctuations is neglected when quoting the location of the reflectometer 

measurements, which are simply quoted to be the cutoff location. Other possible 

sources of this contradiction are the variation in the plasma conditions from shot 

to shot since the spectra shown are not all from the same shot, very large errors in 

the Thomson scattering profiles used to calculate the cutoff location, or variations 
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in the spectra due to the different toroidal and poloidal locations of each diagnostic. 

A comparison of the reflectometer-measured rms fluctuation amplitude ne/ne with 

the FRLP and HIBP measurements is shown in Fig. 9.5 in Chap. IX. 

Since the reflectometer and the FRLP operate with the same DAQ system,133 

cross-correlation analysis between the two signals is possible and in fact easy to 

perform, while the HIBP uses a different DAQ system with a separate clock and 

star t /s top (trigger) signal, making cross-correlation analysis difficult. The purpose 

of looking for coherence via the cross-correlation of the signals from these different 

diagnostics is to further verify the measurements being made and to look at the 

localization or globality of the instability. Figure 8.9 shows the cross-correlation of 

the reflectometer phase signal reflected at p ~ 0.92 and the FRLP current signal 

obtained at p = 1.0. There is clearly a strong coherence between 40 and 70 kHz, 

corresponding to the peak seen in the previously shown spectra. It is not clear 

at this time whether the cross-phase between these two signals has a meaning or is 

simply a result of systematic effects in the diagnostics. The FRLP floating potential 

signals, which are a measurement of the potential fluctuations in the plasma, show a 

similar peak in their spectra at 50 kHz, and similar cross-correlation analysis shows 

coherency at a lower level between the reflectometer-measured density fluctuations 

and these potential fluctuations. Clearly, any coherence between the reflectometer 

signals and the FRLP signals indicate a globally coherent instability, since the two 

diagnostics are located 90° poloidally and 75° toroidally apart. This corresponds to 

2.5 field periods in ATF. Relative to the field lines, the two measurements are from 

radially separated flux surfaces, and for the last closed flux surface (^ = 1.0), the 

two measurements are for field lines with a ~ 30° poloidal separation. In Chap. IX, 

it is shown that this feature has strong radial coherence and a long radial correlation 

length. The significance of these measurements and observations is discussed further 

in Chap. IX. 
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Figure 8.9: Cross-correlation of the reflectometer phase signal and the FRLP current 
signal to obtain the coherence between the two signals. Note the strong coherence 
for the ~ 50 kHz peak. The two dashed lines in the upper graph are the APSDs for 
the two signals. 



The HIBP measurement is obtained in a region between the beam entrance 

position at the upper port shown in Fig. 8.7 and the exit position in the large outer 

port.156-166 This position is approximately 105° toroidally and 60° poloidally away 

from the reflectometer, and approximately 45° toroidally and 30° poloidally away 

from the FRLP. Coherence measurements between the HIBP and the reflectometer 

and FRLP were possible with careful alignment in time of the signals to account 

for the slightly different triggering times. These measurements (not shown here) 

found coherence with both the reflectometer signals and the FRLP signals.157172 

This observation provides additional support to the global nature of the instability. 

Discussion 

The two 0.94 T ECH sequences, 90030801 and 90092804, provide similar 

operating conditions for the analysis and comparison of reflectometer data. In se­

quence 90030801, a reflectometer radial coherence scan was performed by fixing one 

frequency so that its cutoff position was near the top of the edge density gradi­

ent and varying the second frequency so that its cutoff layer was scanned radially 

outward down the density gradient. The reproducible plasma conditions in this se­

quence provide an excellent set of data for radial coherence and correlation length 

analysis, as well as density fluctuation amplitude calculations. Sequence 90092804 

was performed in conjunction with the FRLP and the initial operation of the HIBP. 

In this sequence, the plasma conditions were not as reproducible or constant. This 

resulted in poor radial coherence measurements for the correlation length calcula­

tions. However, this sequence is important because the FRLP and HIBP obtained 

density fluctuation amplitude measurements in the same discharges. This allowed 

the comparison of the fluctuation spectra observed by all three diagnostics. 
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CHAPTER IX 

ANALYSIS OF EXPERIMENTAL RESULTS 

Introduction 

In Chap. VIII, the experimental and plasma conditions for two sequences of 

discharges in the ATF torsatron were presented and discussed. The reflectometer 

data for these two sequences were discussed, and some frequency spectra were shown. 

In this chapter, a detailed analysis of the reflectometer data is performed using the 

analysis techniques described in Chap. VII. First, the density fluctuation amplitudes 

are calculated from the reflectometer data and compared with similar data obtained 

from the FRLP and the HIBP. Next, coherence analysis techniques are used to 

calculate the radial correlation lengths and the mean radial wave numbers kT of the 

density fluctuations. Finally, estimates of the mean poloidal wave number kg are 

made on the basis of the mean frequency of the spectra. With kg, the measured 

density fluctuation amplitudes can be compared with theoretical models for the 

turbulence in the edge gradient region of the plasma. 

Density Fluctuation Amplitude 

Using the analysis technique discussed in the section "Estimating he/ne 

From the Measured Phase Fluctuations" in Chap. VII, the rms density fluctuation 
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Figure 9.1: The density fluctuation amplitude ne/ne as a function of radius for 
sequences 90030801 and 90092804. Refer to Fig. 9.2 for the uncertainties in this 
data. Error bars are left out for clarity. 

amplitudes for sequences 90030801 and 90092804 are calculated and plotted as a 

function of radius in Fig. 9.1. Note that for both sequences, the data points are 

between p ~ 0.8 and 0.95, which is the region of the edge electron density gradient, 

and the value of ne/ne varies by approximately one order of magnitude in this region. 

Using Eqs. (7.21) and (7.5), the uncertainty in the amplitude and radial location of 

each data point shown in Fig. 9.1 is calculated and plotted in Fig. 9.2. The values of 

the individual uncertainties used in calculating the overall uncertainties are discussed 

in Chap. VII. As discussed in Chap. VII, the uncertainty in the radial cutoff location 

is estimated from the uncertainty in the cutoff frequency profile. Two perturbed 

cutoff frequency profiles are calculated by adding and subtracting one standard 

deviation of the cutoff frequency profile to the original cutoff frequency profile. The 

uncertainty in the radial position of the probing beam cutoff is then assumed to be 
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gradient in the edge region. 
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the change in the cutoff location calculated for these two perturbed profiles. When 

calculating the cutoff position for the case of the original cutoff frequency profile 

minus one standard deviation, it is often found that the probing beam is no longer 

cut off; however, the raw data show clearly that cutoff was obtained. The horizontal 

error bars going to p = 0 in Fig. 9.2 represent such a case. Since the probing beam 

was cut off, these large error bars are not accurate. For the hollow density profiles 

shown in Fig. 8.1, the probing beam can only be cut off in the edge gradient, and 

so these large radial uncertainties, indicated by the large horizontal error bars going 

to p = 0, are an artifact of the calculation technique and are ignored from here on. 

In determining he/ne, the rms phase delay of the renectometer probing beam 

is converted to a radial width and then divided by Ln to obtain the fluctuation 

amplitude. In Fig. 9.3, the radial width 8rc and rae/ne of the fluctuations is plotted 

vs the radius, while in Fig. 9.4 6rc and ne/ne are plotted vs the density gradient 

length. Note how ne/ne is very dependent on Ln for its radial trend, while 8rc does 

not clearly show this same dependence. From Fig. 8.1, it is apparent that the density 

gradient lengths for both sequences vary considerably over the edge gradient region, 

and so on first glance the validity of the measured values of ne/ne and its radial 

trend was highly suspect. However, simultaneous operation of the renectometer with 

the FRLP and the HIBP was performed during sequence 90092804 in an attempt 

to obtain verification of the measured fluctuation amplitudes. The results of these 

measurements are shown in Fig. 9.5. The reflectometer and FRLP measurements 

do not overlap, but they do show good agreement. The HIBP measurements are 

the first obtained by the ATF beam probe and so are considered preliminary. Fair 

agreement is obtained in the region where the measurements overlap. Note that 

the HIBP measurements for values near ne/ne ~ 1% are an upper-bound estimate 

(limited by noise). 

Thus, the evidence for the validity of the reflectometer-measured values of 
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Figure 9.3: The rms radial width 8rc of the density fluctuations and their correspond­
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Figure 9.5: Comparison of he/ne from the reflectometer, the FRLP, and the HIBP, 
operated simultaneously. 

he/ne is strong, but it is not conclusive. The strong dependence of he/ne on Ln 

is still disconcerting; however, the theoretical predictions for he/ne discussed in 

Chap. IV were based on the calculation of a radial width or mixing length divided 

by the density gradient length. This will cause the theoretical predictions to show 

a similar strong dependence on Ln. Later in this chapter, it will be shown that 

there is good agreement between the measured values of ne/n€ and the theoretically 

estimated values of ne/ne for the MHD resistive interchange instability. 

Radial Coherence Measurements 

The ATF reflectometer simultaneously probes the plasma with two beams at 

different frequencies launched and received in the same antenna/microwave system. 
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This two-frequency technique allows the radial coherence and correlation length of 

the density fluctuations to be measured. Refer to Chap. V and VII for a discussion 

of cross-correlation or coherence analysis of fluctuation signals and its application 

to two-frequency reflectometry. For example, in Fig. 9.6 the cross-correlation be­

tween two fringe-counted reflectometer signals is shown. Note the large peak in the 

spectrum at ~ 50 kHz. This peak is radially coherent over most of the edge density 

gradient and has a nearly constant phase of 0°. The correlation length and the 

interpretation of the phase are discussed in more detail in the following sections. 

A similar peak is observed in the spectra from sequence 90092804. The density 

fluctuation spectra are often dominated by a peak near 50 kHz, but analysis of the 

rms iie/ne for the whole spectrum or just for the frequencies encompassing the peak 

shows a similar trend in radius. 

Radial Correlat ion Length 

Using the analysis techniques discussed in the section titled "Radial Coher­

ence/Correlation Length Measurements" in Chap. VII, the radial correlation lengths 

and their uncertainties for sequences 90030801 and 90092804 are calculated and plot­

ted in Fig. 9.7. The error bars represent one standard deviation and are calculated 

using the equations derived in Chap. VII. Note the extremely long (~ 4-5 cm) 

correlation length for the peak near 50 kHz for sequence 90030801. The estimated 

width of the reflecting layer in this region of the plasma is between 0.5 and 1.5 cm. 

The background correlation length for the remainder of the spectrum is ~ 2 cm, 

and the apparent increase above 100 kHz cannot be taken with confidence because 

of the corresponding increase in the uncertainty. In the plot for sequence 90092804, 

the apparent basic coherence is again ~ 2 cm, but the long correlation peak is not 

as clear. The peak near 60 kHz is not as pronounced or as wide as the peak in the 

upper plot, but a large peak is present in many of the individual spectra from many 
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correlation of the two reflectometer probing beams from shot 11281 in sequence 
90030801 for Ar c ~ 4 cm. Note the coherence peak at ~ 50 kHz and its nearly 
zero phase value. The two upper lines in the top graph are the APSDs for the two 
signals. 
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Figure 9.7: The radial correlation lengths and their uncertainties for sequences 
90030801 (top) and 90092804 (bottom), calculated from the coherence between the 
two radially separated probing beams for many radial separations. 
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shots. The reproducibility of the plasmas was poor during this sequence and caused 

the coherence to vary significantly between shots even though the calculated radial 

separations were similar. 

As discussed in section "Total Correlation Length" in Chap. VII, the time 

domain cross-correlation coefficient function can be used to calculate the total cor­

relation length for all frequency components. Here, the cross-correlation coefficient 

function for zero time lag is calculated and used to estimate the total radial correla­

tion length of the density fluctuations at all frequencies below the Nyquist frequency. 

In Fig. 9.8, the cross-correlation coefficient function estimates for zero time lag for 

sequences 90030801 and 90092804 are shown as a function of the radial separation 

between the two reflectometer probing beams. 

The total correlation length is then calculated similarly to the frequency 
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domain correlation length, i.e., the slope of the line fitted to the natural logarithm 

of the cross-correlation coefficient function. Note, typical error bars for the cross-

correlation coefficient function and the radial separation are shown for one data 

point from each sequence. This time domain total correlation length may represent 

an estimate of the radial mixing length of the density fluctuations. For sequence 

90030801, this total radial correlation length is ~ 3.2 cm ±20%, while for sequence 

90092804 it is - 2 cm ±28%. 

Radial Wave N u m b e r fe, M e a s u r e m e n t s 

The mean radial wave number kr can be determined from the radial coher­

ence measurements, as discussed in Chap. VII. The radial coherence measurements 

can provide the relative phase or cross-phase between the coherent parts of the 

two input signals, as discussed in Chap. V. Basically, the cross-phase is the phase 

change due to the fluctuation's radial propagation from one measurement point 

(cutoff layer) to the next measurement point (second cutoff layer). Dividing this 

phase by the radial separation Ar c between the two measurement points gives an 

estimate of kr. In Fig. 9.9, the mean radial wave number kr is plotted as a func­

tion of the radial separation between the reflectometer cutoff layers. Error bars are 

included with the plotted kr data and were calculated using the equations given 

in Chap. VII. The error bars are ~ 50% of the data value and are primarily de­

termined by the uncertainty in the radial separation of the two cutoff layers. The 

mean wave number kr is plotted vs Ar c because the measurement technique used 

was to fix the frequency of one probing beam and step the other frequency between 

discharges. Thus, one measurement point was approximately fixed on the density 

gradient and the other point was scanned down the gradient. The mean wave num­

ber kr is then determined over a portion of the gradient and not at one location on 

the gradient. These measured values of kT are very close to zero regardless of the 
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Figure 9.9: The measured values of kr determined from the reflectometer radial 
coherence data. kr is basically ~ 0 except near zero radial separation, where the 
cutoff layers are overlapping. 

radial separation, except for very small separations where kT can approach 1 cm - 1 . 

The fact that kT ~ 0 c m - 1 indicates that the fluctuations being observed have a 

very long radial wavelength. The increase in kT for very small Ar c is due to the 

small values of Arc and not to an increase in the phase. Since kr is calculated from 

the CPSD weighted phase (mean phase), the values shown here will be dominated 

by the radially coherent peak at ~ 50 kHz, especially for larger values of Ar c where 

the only coherent signal is this peak. 

The width of the kr spectrum, crfcr (as defined in Chap. VII), is very similar 

to that shown here for kT, that is, akr/\kr\ ~ 1 as shown in Fig. 9.10. There is 

considerable variation in the ratio akT/\kr\, but in general, the ratio is of order 1. 

This ratio is actually determined by the values of the mean phase <j>r and its width 

or standard deviation a^ obtained from the cross-correlation of the two radially 
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Figure 9.10: The measured values of akr/\kT\ vs the radial separation of the cutoff 
layers. Note that there is considerable spread in the values of akT/\kT |, but the mean 
value is ~ 1. 

separated signals. In Fig. 9.11, the mean phase </>r used in calculating kr is shown 

along with the width a^. of the phase spectrum. The error bars are calculated using 

the equations given in Chap. VII. The phase values shown here are ~ 10° for all 

separations, but they do show up to a factor of two variation. For these small phase 

angles, this factor of two variation has only a minor impact on kT. To illustrate the 

effect of the peak in the spectrum, Figs. 9.12 and 9.6 show the radial coherence for 

Ar c ~ 0.5 cm and 4 cm, respectively. Figure 9.12 shows that the entire spectrum, 

at least for 7 > 0.4, has an approximately constant radial phase that is very near 

zero (~ 10°). Figure 9.6 shows that for a much greater radial separation, the only 

coherent signal (7 > 0.4) remaining is the peak at ~ 50 kHz and that this peak still 

has a roughly constant phase near zero. 
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Figure 9.11: The measured values of <f)r and a^ used in calculating kr 

Poloidal Wave Number kg Estimates 

As shown in Chap. IV, the various instability models used to predict the 

density fluctuation levels require the poloidal wave number kg to be known. The 

technique applied here to estimate kg from the reflectometer data is discussed in 

Chap. VII. This technique is based on the relation w+e = kgvp, where u)*e is the 

diamagnetic drift frequency and vp is the electron drift velocity [Eq. (7.48)]. As­

suming that the poloidal group velocity of the fluctuations is to first order VD and 

that w+e can be approximated by the mean frequency u; of the measured spectra, 

the mean poloidal wave number kg is simply obtained from kg = U)/I>L>. In Fig. 9.13, 

the reflectometer-estimated values of kg with the estimated error bars are plotted 

vs the drift velocity. Also shown are a large number of kg values measured by the 

FRLP for a wide range of ECH plasma conditions.164 The error bars are determined 
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Figure 9.13: The values of kg estimated from the reflectometer fluctuation spectra 
and measured by the FRLP.1 6 4 

by the uncertainty in the mean frequency cu of the spectra and the uncertainty in 

the diamagnetic drift velocity i>£>. The uncertainty in kg is about a factor of 2 and is 

dominated by the uncertainty in vp. The outermost reflectometer data points and 

the innermost FRLP data points come from roughly the same region in the plasma, 

i.e., p ~ 0.95, and so agreement between the two diagnostics is expected. For se­

quence 90030801, good agreement between the reflectometer and the FRLP is seen 

within the range of the error bars on the reflectometer data. Sequence 90092804 

does not show as good agreement because of the much higher calculated diamag­

netic drift velocity and its large uncertainty. The velocity shear layer, i.e., where 

the velocity changes direction, shown in this figure is located outside the last closed 

flux surface and is discussed in more detail by Hidalgo et al.164 

The turbulent broadening ak0 of the kg spectra is often of as much interest 
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Figure 9.14: The values of a^e estimated from the reflectometer fluctuation spectra 
and measured by the FRLP.1 6 4 

as kg itself, cr^g is estimated here by calculating the width or standard deviation aw 

of the measured spectra and dividing by vr>- Figure 9.14 shows the reflectometer-

estimated values of a^g plotted as a function of the drift velocity, as well as the 

FRLP-measured values of o-fce.
164 Here again, error bars have been estimated and 

plotted for the reflectometer data. For both the reflectometer and FRLP measure­

ments, the ratio of the turbulent broadening of the kg spectra to kg is found to be 

~ 1. 

In calculating kg and <J^ , Eq. (7.48) must be used to estimate the fluctuation 

drift velocity. The first part of Eq. (7.48) is the gradient drift term and is calculated 

from the electron density and temperature profiles, while the second term is the 

E x B drift term. The radial component of the electric field is required to calculate 

E x B drift velocity and is obtained from the plasma potential measurements made 

by the HIBP.1 5 6 The radial electric field is then estimated from this potential profile 
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as ET = —defy/dr. In the region of interest (0.8 < p < 0.95), the typical values of the 

electric field measured by the HIBP for this type of low density ECH discharge with 

this magnetic configuration have been estimated as ET = — 7 V/cm ± 7 V/cm.1 5 7 

Comparison Wi th Theory 

In Chap. IV, the primary instabilities potentially present in ATF were re­

viewed. From this review, it was concluded that in the edge gradient region of 

the plasma (0.8 < p < 1.0), the most likely sources of density fluctuations are the 

resistive interchange instability and the DTEM. The resistive ballooning instabil­

ity is not expected to be important in this region because the toroidal curvature 

term driving the ballooning instability is much smaller than the helical curvature 

term that drives the interchange instability, as shown in Fig. 4.1. Although the 

DTEM could drive the turbulence at the levels observed in these experiments, as 

discussed in Chap. IV, it is expected to be localized to a single field period, or at 

most, have coupling between 2 or 3 adjacent field periods. The observed turbulence 

has a strong globally coherent feature. This global feature suggests that the DTEM 

is not the source of the observed turbulence. Additionally, Harris et al.161 have 

shown a connection (coherence) between the density fluctuations and the magnetic 

fluctuations in the edge region of some high-stored energy NBI-heated plasmas in 

ATF. The presence of the globally coherent feature and a magnetic component in 

the turbulence strongly suggests an MHD-driven instability. 

Using Eq. (4.14), the theoretically predicted rms density fluctuation ampli­

tudes for the resistive interchange instability are estimated using the data for the 

two ATF sequences discussed in this chapter. Additionally, Eq. (4.16) is used with 

Eq. (4.15) to estimate the nonlinear enhancement factor to obtain an estimate for 
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the nonlinear resistive interchange instability. The results of these calculations are 

shown in Fig. 9.15 for both sequences. The density and temperature profiles were 

continued out to p = 1.2 using FRLP profiles in the region of 1.0 < p < 1.2.164 

The HIBP values were obtained in sequence 90092804 but are assumed to be simi­

lar for both sequences because of the similarities in the profiles. The FRLP values 

shown in both plots are typical values obtained from measurements in many ECH 

plasmas.98 '164 The agreement between the measured values of ne/ne and the the­

oretically predicted values for the resistive interchange instability is quite good in 

the region of p ~ 0.8 to 1.05. Outside p ~ 1.05, the fluctuation amplitude continues 

to rise, while the amplitude of the resistive interchange fluctuations falls. In this 

region, it is believed that ionization- or radiation-driven thermal drift instabilities 

are driving the fluctuations, causing the continued rise in n e /n e . 1 7 3 

The amplitude and trend of ne/ne measured by the reflectometer are quite 

similar to the amplitudes predicted for the linear resistive interchange instability; 

however, the possibility of systematic uncertainties in the reflectometer data is sub­

stantial and not included in the error bars. These systematic errors could substan­

tially increase (or decrease) the values of ne/ne shown here, so that the measured 

values could agree with either the linear or nonlinear theories. 

Discussion 

In this chapter, the results of density fluctuation measurements in two ATF 

sequences of ECH plasmas were presented. Using the advanced features of the 

ATF reflectometer, i.e., quadrature phase detection and two-frequency operation, 

the measured fluctuations were quantified as completely as possible. First, the den­

sity fluctuation amplitudes iie/ne were calculated for the measured probing beam 
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phase fluctuations, and the uncertainties in these values of he/ne were calculated. 

Next, the radial coherence measurements made between two radially separated cut­

off layers were used to estimate the radial correlation lengths. These measurements 

showed that a large peak around 50 kHz dominated the fluctuation spectrum in 

these plasmas and that this peak had a correlation length up to ~ 4 cm, while the 

correlation length for the rest of the spectrum was ~ 2 cm. Using the phase from the 

cross-correlation of the two radially separated signals, the mean radial wave number 

kr was estimated and found to be <C 1 c m - 1 and crkrlkr was found to be ~ 1. This 

is a significant finding as it implies that the fluctuations have a very large radial 

wavelength. Using the relationship u)^ = kev£>, the mean poloidal wave number kg 

was estimated from the mean frequency of the reflectometer-measured fluctuation 

spectra and the calculated drift velocity. These calculations found kg ~ 1 cm - 1 , 

in fair agreement with the FRLP measurements. It was also found that the tur­

bulent broadening cr^ divided by the mean wave number ke was of order 1 cm - 1 , 

Cko/ke ~ 1. An important observation here is that kr is apparently much less 

than he (kr <C ke), although this statement cannot be conclusively made with the 

uncertainties in the measured values of kr and kg. 

The theoretical model for the resistive interchange instability was applied 

to the data for sequences 90030801 and 90092804, and good agreement between the 

predicted values of he/ne and the measured values was found in the edge density 

gradient region of the plasma, i.e., 0.8 < p < 1.0; however, they diverge for p > 1.0, 

where an ionization- or radiation-driven thermal instability is believed to be driving 

the turbulence. Although the renectometer cannot measure the E x B particle 

transport because of the fluctuations that it observes, the Langmuir probe can. In 

Fig. 9.16, the particle flux measured by the FRLP at p ~ 1 in an ECH plasma is 

shown. Note that the peak in the power spectrum occurs near ~ 40 kHz, similar 

to the reflectometer observations, but that the peak in the particle flux occurs 
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Figure 9.16: The FRLP-measured density fluctuation spectrum and its associated 
E x B particle transport are shown. Note that the dominant fluctuations in the 
power spectrum cause little of the E x B transport. 

between 100 and 150 kHz. In fact, the flux due to fluctuations below 100 kHz 

is down by a factor of two or more from the peak flux. This means that the large 

fluctuations below 100 kHz produce no significant Ex B particle transport, but they 

still could drive other forms of transport. Since the resistive interchange instability 

forms small magnetic islands by the interchanging of magnetic field lines, energy 

and particle transport occurs nearly instantaneously since particles traveling along 

one of these field lines will be rapidly carried to a cooler region of the plasma. The 

physical picture generated for the observed turbulence is a series of m = kgr ~ 25 

magnetic islands rotating around the plasma poloidally with a radial wave number 

of ~ 0. The measured value of kT could imply either solid rotating islands or radial 

wavelengths of the order of the minor radius. These islands apparently extend 

globally around the machine on a flux surface since coherence was observed between 
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the reflectometer, HIBP, and FRLP measured signals at toroidally and poloidally 

separated locations. The presence of these magnetic islands (the strong coherent 

feature in the fluctuation spectra) could be defining the location of the edge density 

gradient in ATF. 
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CONCLUSION 

Summary 

The goal of measuring density fluctuations with reflectometry is to better 

describe the physical characteristics of the fluctuations in the plasma so that the 

!

source of the fluctuations may be determined and ways to control them found. Var­

ious theoretical models have been developed to predict the instabilities in plasmas. 

The information from a reflectometer diagnostic in conjunction with other diag­

nostics can be compared with these various theoretical models in the attempt to 

identify the source of the instability. In Chap. IV, various instabilities are discussed 

in terms of their existence in the ATF torsatron and the ability of a reflectometer 

diagnostic to measure them. It is found that in the steep edge gradient region of the 

ECH discharges in ATF, the most likely sources of turbulence that a microwave re­

flectometer can measure are the MHD pressure-gradient-driven resistive interchange 

instability91 and the DTEM.8 0 

The ATF reflectometer used a dual-horn antenna design to minimize the 

effects of internal reflections in the waveguide system (the bane of single-antenna 

systems) and allow the use of quadrature phase detection. Fringe counting of the 

sine and cosine information obtained from the quadrature phase detector provides 

the phase fluctuations in the reflected signal resulting from the density fluctuations 

in the plasma. Using the rms amplitude of the phase fluctuations, the density fluc-
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tuation level can be estimated based on the conversion of the phase fluctuations to 

a radial displacement of the cutoff layer. As discussed in Chap. VII, the technique 

used for the ATF reflectometer data requires kT <C k0. To allow for better quantifica­

tion of the density fluctuations, two microwave signals are launched simultaneously 

from the same antenna system. This allows fluctuation measurements to be made 

simultaneously at two radially separate positions. By performing cross-correlations 

between these two radially separated measurements, the radial coherence of the 

fluctuations can be determined. 

In Chap. VIII, the results from two ECH-only sequences in ATF are pre­

sented. The reflectometer spectra from these sequences show a large peak near 50 

kHz, which is observed to be localized in radius. The FRLP and the HIBP also see 

a similar peak in their spectra obtained during one of these two sequences. Cross-

correlation analysis of the signals from all three diagnostics showed this peak to 

be globally coherent. In Chap. IX, the density fluctuation amplitudes and their 

uncertainties are estimated. These values of ne/ne are then compared to the values 

measured by the FRLP and the HIBP. Good agreement between all three diagnos­

tics is seen. Next, the radial correlation lengths are calculated and found to be on 

average ~ 2 cm with a much longer (~ 5 cm) feature around 50 kHz. It is also 

shown in Chap. IX that the mean radial wave number is ~ 0 c m - 1 . This implies 

that the fluctuations have the physical characteristics of a solid rotating body. 

The mean poloidal wave number kg of the fluctuations was estimated from 

the reflectometer data using the technique discussed in Chap. VII and found to be 

~ 1 cm" 1 . This is in fair agreement with the FRLP measurements of kg, kg ~ 2 

c m - 1 just inside the last closed flux surface for similar ECH discharges. Using this 

value of k§} the measured values of ne/ne are compared to the calculated theoretical 

values for the MHD resistive interchange instability. Good agreement between the 

measured values and the predicted values is found inside the last closed flux surface 

226 



in the edge density gradient, but outside, the measured data continue to rise while 

the theoretical values fall off. It is believed that thermal instabilities are driving the 

fluctuations outside the last closed flux surface, while the interchange instability is 

the most likely single instability driving the fluctuations in the edge density gradient. 

Other possible sources of the fluctuations are the DTEM and the resistive ballooning 

instability; however, the resistive ballooning instability is driven by the toroidal bad 

curvature, which is much less than the interchange-driving helical bad curvature 

in this region of the plasma. The DTEM is not believed to be the source either, 

because the observed turbulence is seen to have a globally coherent feature. The 

DTEM would be localized to the magnetic well in each field period with possibly 

weak coupling between adjacent field periods and so is not likely to produce the 

observed globally coherent fluctuations. 

Review of the Key Points of Reflectometry on ATF 

In the design and operation of the ATF reflectometer, several improvements 

over previous reflectometers have been made which has allowed new measurements 

to be made and new analysis techniques to be applied to the data. Below is a 

summary of these improvements, new measurements, and new analysis techniques. 

• The use of quadrature phase detection allowed easy determination of the 

phase fluctuations in the reflected signal, permitting estimation of the 

density fluctuation amplitudes. 

• Two-frequency operation using two tunable microwave sources that use 

the same antenna system, but with separate quadrature phase detectors, 

allowed detailed studies of the radial coherence of the fluctuations. 
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• The phase detection and two-frequency operation allowed localized mea­

surements of the density fluctuations and cross-correlation analysis of 

these fluctuations at two radially separated cutoff layers. These new 

measurements required the development of new data analysis techniques, 

described in Chap. VII, to extract the desired information and estimate 

the uncertainty in this information. 

• With the improved measurement techniques and the new data analysis 

techniques developed for the ATF reflectometer data, the density fluc­

tuation amplitudes, radial correlation lengths, and radial wave numbers 

were all measured simultaneously. 

The ATF reflectometer was used to study the density fluctuations in the edge elec­

tron density gradient region of the low-density ECH plasmas in ATF. Substantial 

new information was provided by this study on the characteristics of the fluctua­

tions in this region of the plasma. Below is a summary of the observed fluctuation 

characteristics and conclusions drawn from these characteristics. 

• The observed characteristics of the density fluctuations are: 

- a radial correlation length of 2-5 cm, 

- a radial wave number kr ~ 0 c m - 1 , 

- ne/ne ranging from ~ 5% at the plasma edge and decreasing 

to < 1% as the cutoff layer is scanned radially inward up the 

edge density gradient, 

- global coherence as indicated by coherence measurements be­

tween the reflectometer, the FRLP, and the HIBP in the vicin­

ity of 30-50 kHz. 
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• Comparison of the measured values of ne/ne with theoretical estimates 

for the MHD resistive interchange instability has shown good agreement 

in the edge gradient region in both the amplitude and radial trend. 

• The MHD resistive ballooning instability is not expected to be important 

in this region of the plasma because of the small value of the balloon­

ing instability driving toroidal curvature as opposed to the interchange 

instability driving helical curvature. 

• The DTEM could drive fluctuations in this region of the plasma, but 

the DTEM is a localized mode. The observed fluctuations have a glob­

ally coherent feature, indicating that the DTEM is probably not the 

dominate source of the turbulence. 

If one insists on ascribing the observed fluctuations to a single instability, 

the characteristics of the observed fluctuations are most like those expected for 

the MHD resistive interchange instability. However, the E x B particle transport 

measured by the FRLP at the plasma edge indicates that these fluctuations are not 

the dominant source of particle transport at the plasma edge (p ~ 1.0). 

Future Experiments on ATF 

The results shown in Chap. IX were obtained by the ATF reflectometer in 

ECH-only plasmas in the standard magnetic configuration. Magnetic configuration 

scans are planned in order to study the relationship between the observed fluctua­

tions and the magnetic configuration. By varying the magnetic configuration, the 

shear, the magnetic well size and depth, and the elongation of the plasma can be 

changed. These parameters affect the growth of the instabilities significantly. The 
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reflectometer will be used in conjunction with the HIBP, FRLP, and the new 2 mm 

microwave scattering diagnostic to study the fluctuations in the plasma during mag­

netic configuration scans. One goal of these experiments is to assess the role of the 

DTEM in ATF. By varying the magnetic configuration, the population of helically 

trapped particles can be varied by almost an order of magnitude. If the DTEM is 

present, a trapped particle scan should provide a means of observing its existence. 

Proposed Improvements and Experiments 

Several improvements have been proposed for the ATF reflectometer. First, 

the antenna mounting structure for the present 30 to 40 GHz system could be 

modified to allow alignment of the antenna with the reflecting surface. This should 

minimize or prevent the asymmetric spectra resulting from significant Doppler shift­

ing of the reflected probing beam by minimizing the asymmetric scattering back into 

the receiving antenna. This has been done on the T F T R reflectometer.147 The next 

step for reflectometry on ATF would be to build a high-frequency system to study 

internal fluctuations in NBI-heated plasmas. This system would also be designed 

to use either the X- or O-modes with a dual antenna arrangement and quadrature 

phase detection. Finally, by using the present reflectometer system but moving one 

set of microwave source and quadrature phase detector to a different poloidal or 

toroidal location, the ability of the system to measure the m o r n numbers of the 

fluctuations could be tested. In this technique, two separate reflectometers would 

be used with either a poloidal (for m) or toroidal (for n) separation between them. 

With the reflectometers operating at or near the same frequency, the phase of the 

coherent signals could be used to determine the mode numbers of the fluctuations. 
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