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summary

A quasilinear perturbation analysis of the time
independent MHD equations has lead to the formulation of a
set of equations suitable for the study of saturated tearing
modes, The quasilinear analysis allows the effects of the
magnetic island on the background equilibrium to be modelled
in a self consistant way in a toroidal plasma of arbitrary
aspect ratio, beta, and cross section,

The most important finding of this study is the effect
of the current density profile within a magnetic island vs
the width of a magnetic island. "Peaking™ or "anti-peaking”
the current density profile within a magnetic island can
cause large differences in the saturated magnetic island
width; furthermore the width of the magnetic island is found
to be sensitive to this parameter.

Modification of the background current density profile
by thel presence of multiple islands c¢an and does cause
nonlinear destablization of magnetic islqnds; also
toroidicity and elongation are shown to have a linear
coupling effect that can alsc destabilize otherwise stable
magnetic islands. By themselves, torcidicity and elongation
are shown to modestly reduce the saturated magnetic island
width and a general trend of smaller magnetic island width

with the inward shift of the mode ratiocnal surface is noted.




CHAPTER 1

Introduction

Magnetic islands belong to a class of perturbations
known as internal modes which are believed to exist in
controlled fusion devices such as tokamaks and stellarators.
Internal modes differ from other types of perturbations in
that their major effects are in the internal rather than the
boundary or edge regions of the plasma, These effects may
manifest tﬁémselves as = topological changes to the plasma
proper and may radically alter the plasma confinement and its
global stability. The major impact of magnetic islands is to

alter the internal magnetic field configuration which:

1. causes enhanced transport of plasma particles and
energy due to the destruction of closed magnetic

surfaces;




2, produces Mirnov oscilations by the torodial rotation

of the saturated instability (Tearing mode);

3. causes, in the most pathological cases, the major
disruption when two tearing modes of different

helicity overlap.

Magnetic islands are resonance phenomena - that is, a
relatively small perturbation can have its effect enhanced by
resonating, or strongly interacting in vexry specific regions
of the plasma. Specifically, these regions are 1in the
neighborhood of closed magnetic field lines or rationél (A
closed magnetic field 1line is a magnetic field line that
closes on itself after traversing around the torus an integer
number of times,) [1-12]

Spontaneously dgrowing perturbations which cause
magnetic islands are known as tearing modes, since they cause
the magnetic field lines to "tear" or break and reconnect to
form a new and different magnetic configuration, This thesis
will be concerned with spontaneously growing magnetic
perturbations and will concentrate on the interaction between
the magnetic perturbations and the current density profile
responsible for the existence of these perturbations.
Magnetic islands can also be induced by externally applied
nonaxisymmetric magnetic perturbations and by cother related
instabilities, but these other mechanisms are beyond the

scope of this thesis.




Magnetic islands are major topological deviations from
the simple nested flux surface model for MHD equilibrium.
{1,2,4¢] Rather than the magnetic surfaces being composed of
concentric tori as shown in figure l-1, an equilibrium with
magnetic islands has helically distorted cylinders within the
simply nested tori as well. See figure 1-2. The nucleus of
each magnetic island is a closed magnetic field 1line which
supports a resonant perturbation, Unlike other types of
magnetic perturbations, the tearing mode is capable of large
scale effects on the plasma even though the amplitude of the
mode itself is many times smaller than the other egulibrium
quanities. It is tﬂé fact that the background equlibrium can
be and is effected by the tearing mode that generates the
difficulty and the interest in studying the phenomenon.
[1,12,13,14,15)

The two important parémeters that characterize an
island are its helicity number and its width, The helicity
numbers, which are the m and n numbers (i.e. 2/1,3/1,etc.)
» indicate the island location and with what magnetic surface
it interacts with. The relationship between the m and _n

numbers is

ng -m = @ (1-1)

where g is defined as the limit of the ratio of the number of




turns a magnetic field line makes as it travels the long way
around the toriod divided by the number of turns it makes as
it travels the short way around. The periodicity in the
polodial angle is m, while n 1is the periodicity in the
torodial angle.

The width of the island is defined as the maximum

radial width across the island region, It is approximately

sy % |
W v 5 (2-2)
n B° Z,gz

where all quanties are evaluated at the mode rational

surface. The perturbed radial field is 5::,/“ and Boa is
the poleoidial field. This formula has been tested in various
computer experiments with the perturbed amplitude being
several percent of the toroidal field and found to be in éood
agreement. ' [11,12]

Magnetic islands are observed to rotate in the
toroidal direction, in the direction of the electron drift
resulting from the plasma current, This thesis will not
address this rotation, but rather will assume its existence
as it does not enter into the MHD analysis. [(19)

The most serious problem speculated to be caused by,
magnetic islands is the major disruption.
[le,17,18,19,71,73] Major disruptions can be classified in

two ways: A hard disruption in which the entire plasma is




dumped out on a microsecond to hundreds of microseconds time
scale and a soft disruption in which the plasma confinement
decreases suddenly, but not to a point from which recovery is
impossible, [16,21,73] The mechanism for the hard disruption
is thought to be the overlap of two islands which generates a
large stochastic magnetic region within the plasma volume
destroying the plasma confinement. The soft disruption is a
more benign effect, in which an island may interact with the
plasma interior and the wall limiter providing a transport
short circuit, which may or may not be fatal to the
discharge, [(16,17,18-28,73]

Magnetic islands, when uncoupled or only loosely
coupled to each other, grow on a time scale of milliseconds.
This growth rate is too slow to explain the sudden nature of
the hard disruption which happens on a microsecond time
scale. If, however, two magnetic islands of different
helicity were to grow and overlap, the resulting region
engul fed b§ the islands may explosively grow into a
stochastic magnetic region of poor confinement, and if the
init{gl islands werexlarge enéugh, a large percentage of the
plasma confinement would be destroyed thus terminating the
discharge. The most probable causes for the major or “"hargd"
disruption are either the overlapping of the m=2, n=1 island
with the m=3, n=2 island and the lack of confinement due to
the large stochastic region thus generated, or a combination

effect in a high density plasma where the 2/1 island overlaps




both the 3/2 island and the limiter, This occurance destroys
the plasma confinement by introducing a large thermal loss
and an influx of impurities to the plasma interior. The soft
disruption may be the result of a single island connecting
the internal plasma volume with the limiter. This will
transfer large éuanties of plasma energy out of the main
plasma volume, but if the island diappears soon enough
recovery may be possible. The 2/1 island seems to be the
dominant island in this case. (16,73]

Unlike disruptions, Mirnov oscillations are a
relativity mild instability. [2,3,29,30,31] They manifest
themselves as small oscillating helicial perturbations in the
poleoidal magnetic field., These perturbations usually settle
down ¢to a saturated level as . the discharge  becomes
estabilished and have an oscillation freguency in the
neighborhood of 10kHz. This oscillation is believed to be
caused by the toroidal rotation of the tearing modes at the
electron diamagnetic drift velocity. As the Mirnov
oscillations increase in amplitude the eneréy confinement
time of the plasma drops and the sudden reduction in the
rotation ;ate of a tearing mode may be a precurser to a major
disruption.

The other major concern is the effect of magnetic
islands on transport. Since the islands have a width, they
provide a transport short circuit which may be responsible

for enhanced transport. (1,2,3) One example of this is the




flattening of the temperature and the density profiles in the
plasma interior caused by sawtooth oscillations, These
oscillations are caused by a low mode number magnetic island
(n=1,m=1) which periodicly dumps plasma particles out of the
center of the plasma and into neighboring regions. To
analyze this low mode number island requires the inclusion of
inertial terms which will not be addressed by this thesis,
{(3,29,3¢6,31,62] Another example 1is the above menticned
connection between the plasma interior and edge regions by a
2/1 magnetic island which can cause a large thermal loss
under some conditions, especially with contact with the
limiter. [16,73] The islands may also enhance particle loss
of fast and trapped particles, The situtation becomes even
more complex when islands of different helicity overlap and
produce a stochastic magnetic field region, This will
presumably result in a region with no confinement since the
particles will traverse this region on a time scale of the
thermal velocities, rather than the diffusion time scale.
[3,11,18] Electrons may be effected to a much greater degree
than ions, since they have a much smaller gyro radius which
allows them to respond to spatially finer scale
perturbations. {32]

The analytic study of tearing modes began with a plane
slab analysis of a plasma. [(11,39,40] The plane slab model
examined the singular natﬁre bf the problem near the mode

rational surface and the resulting boundary layer phenomena,




From this analysis growth rates were estimated by using only
the discontinuity of the global solution at the resonant
surface rather than by integrating the boundary layer
eguations, This form of analysis is Kknow as the [5

analysis and it provided a convenient way to examine an
equlibrium for stability to tearing modes and to estimate
their saturated widths; unfortunately the plane slab model
lacked the ability to model mode mixing and toroidal effécts.
In oxrder to expand the range of phenomena that c¢ould be
studied, the reduced MHD equations were developed.
(11,18,40,42,62) These equations are the large aspect ratio,
low beta 1limit of the ideal MHD equations with resistivity .
included, and these equations provided the model that hés
been of major interest in the study of tearing modes.
Several different approaches have been applied to the study

of tearing modes using the reduced MHD equations; they are:

1. a linearized model which contains a singularity at
/
the rational surface and relies on a /\ type of

matching;

2. a helical flux model which is limited to a two
dimensional formulation, but requires less

computational effort;




3. a nonlinear model in which the background is allowed
to change as the perturbation develops, thus
allowing the perturbation to effect the background;

and

4, a quasilinear model in which the bkackground is
modified to provide a solution to a linearized

tearing mode equation,

The helical £flux model is the simplest ¢f these models
and .has been extensively studied. (4,13,18,43,,53] A simple
analytic equlibrium with tearing modes has also  been found
for a helical flux function., {[45] The base model commonly
used in the literature for the study of the helical flux
function centers around a Z}: type of analysis as in the
slab; however saturation effects have been included by using
a quaslinear method in which the perturbation is allowed to
feedback and influence the functional form for the current;
that 1is, the current profile is modified by the presence of
an island. {13] These models have shown that certain current
profiles exhibit varying degrees of stability against the
formation of tearing modes. The saturation of the resulting
island is due to the island sampling different portions of
the backgroud equlibrium, The important point made by this
guaslinear analysis is that a guaslinear or fully nonlinear

model is very useful to compute the saturated island width
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since the island width is strongly effected by the current
functional form near the island.

The helical flux model, while useful for the study of
one harmonic, c¢annot be used to examine the effects of
islands of different helicity on the plasma, It is therefore
necessary to use a less stringent form of the reduced MHD
equations to address this area. Of particular interest is
how the islands effect each other, both in terms of growth
rate and saturation width. The dynamics of two islands
overlapping and the resulting effect on the plasma is another
phenomenon which generates reseatrch interest as well,

Solving the reduced MHD equations in cylindfical
geometry, with a three dimensional equation set rather than a
two dimensional set, allows one to observe the «coupling
between islands and the resultant effect on the current
profile, 1t has been observed that the 2/1 tearing mode can
destablize the 3/2 mode resulting in large increases in the
growth rate of the 3/2 mode and the resutant increase in the
3/2 1island width, This destablizing effect also extends to
other islands as well; one effect of this destablization 1is
to increase the total plasma ﬁegion occupied by these
islands. 1In fact, if a suitably large number of islands is
included, the entire plasma region may be destroyed, from the

center to the limiter, [17,18,46,47)

It is generally found that the growth rate of the

islands transforms from an exponential growth rate te an
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algebraic growth rate as the islands grow in width. [50) The

nonlinear coupling may change this result in some cases,

resulting in the sudden growth of a favored mode at a much’

accelerated rate. This may explain the very sudden nature of
the major disruption, (17,18,46,76]

Magnetic islands c¢ause sharp deformations in the
toroidal current profile near the island x points and this
- deformation of current becomes even more severe as the number
of islands increase. This in fact may have a méjor coupling
effect between islands, since the saturated width of the
islands are sensitive to the current density gradient néar
the island edge, [13,46 ,48,76]) This severe current

deformation eventually 1limits the computer runs, as numeric

problems soon develop. [17,18,46) Again this points to the

need for a nonlinear or quasilinear approach to the solution.

Toroidal coupling has a érofound effect upon the
magnetic islands; it introduces a linear coupling effect
between neighboring islands. This coupling effect causes
normally stable islands to be destabilized by their unstable
neighbor. This may cause both islands' to grow and |is
responsible for the generation of satellite islands. Since
these satellite islands manifest themselves as an increase in
the stochastic magnetic field region, it is clear that this
effect 1is important even in the large aspect ratio
approximation, [17,46,47]) Mathematically this comes about

from the off diagonal terms of the metric tenscr relating the
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contravariant_ aﬁd covariant vector components of the
equilibrium magnetic field. Unfortunately this effect |is
very difficult to handle for small aspect ratios and has been
only formulated in the time independent case. [14]

It is clear that both the nonlinear mode coupling and
the geometric mode coupling (toroidal) greatly effect the
growth and saturation of magnetic islands. It is this nature
of tearing modes that puts the stringent conditions on the
equations used to study magnetic islands; apparently higher
order terms (toroidal geometry, current profile
modifications) must be included to form a reasonable
approximation to the physical case.

The set of equations this thesis will concentrate on
are the gquasilinear equations., 1In contrast to the reduced
MHD equations which generally follow the time evolution of
the fields, the quaslinear equations do not follow the time
evolution of the fields, but concentrate on the effect of the
magnetic 1island on the background equilibrium, They can,
however, handle more complex dgeometric situations and are
useful to find saturated tearing modes in these more physical
situations. (8,12,13,14,15,43,48]

' The object of this thesis is to apply the gquasilinear
analysis to cases involving toroidal geometry by using the
contravariant and covariant representation of the fields and
thus form a system of equations that can be solved without

resorting to an aspect ratio approximatiocon. (14} The effect
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of the current profile within a magnetic island will be
examined along with the effects of plasma elongation. It
will be shown that toroidicity causes a small reduction in
the width of the magneti§ islands and that coupling of
magnetic islands with the same n numbers occurs as predicted,
The major new finding, however, is that the current density
functional form within the magnetic island is one of the most
important factors in determiniﬁg the saturated width of a
magnetic island. Since the modelling of a specific current
density profile withiﬁ a magnetic island depends on the local
tranport properties of the plasma, which are beyond the scope
of this thesis, a parameter study was undertakened to study
the saturated magnetic island width that occurred with
different levels of current peaking within an island.

The major limit to the accuracy of this model is its
confinement to modes that saturate; thus it cannot examine
the effect of the m=1l, n=1 mode which, in general, does not
saturate, This limitation may be most severe when studying
toroidal coupling as the m=1, n=1 island may be the most
important driving term; it may also play a part in the soft
disruptions. {62,73) Other 1limits include the computer
resources available which, at the present time, limit this
author to the examination of only two simultanecus modes.
Convergence problems may require careful attention to the
initial guesses used in the iteration schemes, both in the

equilibrium subroutines and the tearing mode subroutines.
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Overall, however, the computer c¢ode has worked well,
effectively used available resources, and provided much

useful insight.
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CHAPTER II

The Quasilinear Equations

2.1 Derivation

To derive the set of ordinary differential equations
that form the basis of the quasilinear model one starts with
the static scalar pressure plasma equilibrium force balance

eguations:

T x B=vP (-1
—
/%j‘: Ux B (2-2)

\VA —E’?-.: @) (2-3)
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‘A J
where :i is the current density , EB is the magnetic

field, and P is the pressure, [12,14] Note that the velocity
terms have been omitted; they are not necessary for this
model since this model considers only the saturated magnetic
island case.

The derivation requires a particular form for the
Jacobian of the coordinate system for reasons to be described
later., Anticipating this, the form for the two dimensiocnal

background equilibrium is written as:
B=9@ B (v?xw) F QOB (rvxve) @0

T Q(V)U'(:,%(v%xv\/)-k 8(0‘3'0(3) (vv x ve) @3

(2-6)

S ) = vv- (vex V%)

where E}éJ) is the Jacobian of the coordinate system and
EBOG ' E}o%,, _Xﬁe ' Tro? are the contravariant components
of the vector field. See Chaptef III for details of the
coordinate system transformations.,

In this generalized system the force balance equation

reduces to:

(2=7)

0 R’ 0 08 O/P?V)
s [T B -Th 87w - 7
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The derivation of the quasilinear equations is a
perturbation analysis of (2-1), (2-2), and (2-3) using the
perturbed terms in both their contravariant and covariant

vector forms. [41] These forms are:
gi: 81:9 (V@ XV%) + Bleg (V?XVV) + B|%8 (VV)( VQ) {2-8)
B =B, vV + B,ve + B.US 2-9)

T T g roxvy) + TY(apxey) T (rvxve)i

Throughout this thesis a superscript "1l" will indicate a
perturbed term and a superscript "g" will indicate an
equilibrium term, All the perturbed variables are written as

a Fourier series in harmonics of &  and i;

™, N

XQ(V)Q)‘%> - > Xin (v),g//,P[l (rme -ﬂ%)] (2-11)

when using J= J + & and B= B+ B in 2-1) to (2-3)

one finds that the divergence equation is most easily written ”
' —_—

i . !
in terms of the contravariant components of EB :

jé— /—/8 Bg") = '“8 Blnin - 'W‘S Brj;i (2-12)
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However Ampere's law is most easily written in terms of the
-...\i
covariant components of fB

v . s 1
U 8Trmn = | (rm B'g“"‘“ + N Barmn) (2-13)

N * G/ . (2-14)

A T:ﬂ? = =/n Byan v B%nnn

% o o2 . £ (2-15)
My d Tk = =7 Bomn =17 By

The contravariant components of the current density
and magnetic field are used to write the perturbed force
balance equations which, when higher order terms are

discarded, are:
' o d% g . a
_j:—mn 8 B 4+ U_ 8 an = im Pmn (2=186)

U‘”:: 8 Boe_ 0'0(5 E;:m = - l‘ﬁ Prjr-hn (2-17)
72,687 - .56 T2
07 1 1
~Jdwn & Bm?n - ;/QF/' Fonn

Also from the above equations,

(2~18)
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o 00 Y ’
(0B B ) P, = 7 Ban 4L

Equation (2-12) is used in (2-15) to obtain

_ - mn N B | (2~20)
B?rmn m Bo? Bat( _—T'_;:—@

(2-20) is used with (2-18), (2-14), (2-1%) to derive the

tearing mode equation:'

(8L m 309)[5/? Bomn = im1 By

= iy (nchnnTw)& B;z ICQ Brmn Bo%a/ 43 (2-21)

av| g%
= My /D,f,,,, —Bl_“?j\é Bo?_

Equations (2-21) and (2-12) form a coupled pair of ordinary
differential equations which can be solved for "‘/.g ﬁm,; and
ﬁa:nnﬂ . ;%:,} can be eliminated by using (2-19) in (2-21).
Bymn. B s and B mn ¢an be written in terms of the other

known quantities by relating the contravariant and covariant

components in (2-8) and (2-9) as follows:.
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81\/: B*v _B:/V@-V‘}) _B; (V;V_b_ (2-22)
(vv-vv)  lyvepv) (vv-vv)

LAY 2
gte _ B (Ve -vVv) 4+ B SN R
(vv-vv) ( / (VV-9V) /(503)

183 (o) - (122200590

(vv-ov)

5 :L?: 'Bd—V(V?»VVD n B:KVQ'V@ _ (V@VV)(G%- VVD(Z-M)

(7v-oVv) (vv-vv)

+B ((7pv5) — (7270

(7v-vVv)

where (2~22), (2-23), and (2-24) follow from the appropiate
combinations of B-VV ' B-Vg , and B'V% .
Thus by using (2-19), (2-28), (2-22), (2-23), and

{2-24), (2-21) may be scolved. Note that if éa were not a
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function of v only, the equations would not seperate; this is
why a Hamada like coordinate system is required; also note
that equations (2-22)-(2-24) must be Fourier analysed to
1y 1 1%
determine the components of E&mn ’ E%wn , and E%nn .
. v
The method of solution is as follows: Given -ISB(mﬁ
~2l 2 1y

and Bemn find B%rmn using (2-20}. Next use 5,—mn ’
i .

i

5

B « and Bar':(n . Finally use these 3esu1ts in (2-21)
A .
and (2-~12) to find 3""; Bemn andj-/— (—jg 8;,1). Note that
v

in general Fourier analysis of (2-22)-(2-24) produces a large

mn » and Bemn in (2=22)=(2=24) to find Btmn ’

number of harmonics. Only the resonant harmonics are used as
the nonreéonant terms have negligible effect on the island
structure, |

At this point it must be stressed that the above
equations, having been derived in the time independance case,
apply only to saturated magnetic islands where the neglected
velocity components and time derivatives are unimportant,
This set of equations cannot be used to compute magnhetic
perturbations that oscillate in time such as the m=l, n=}
tearing mode. They are, nonetheless, useful since many modes
of interest saturate and these equations, unlike others, can
handle toroidal geometry and plasma shaping. In order to
include the modes that oscillate in time it is necessary to
consider the inertial terms of the MHD equations, such as the
mass density and velocity, with the consequence of greater

complexity. (17,18,65,66]
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If an abritary equlibrium is used in (2-21), (2-21)
will be singular at the mode rational surface where
(ngo?_ m609 :0; in fact this singularity does not exist
because the magnetic island modifies the equilibrium in the
vicinity of the mode rational surface to support a resonant

perturbation as will be demostrated in the following

sections.

2.2 ngputétional Form for the Tearing Mode Equation

In oxder to solve (2-21) it is necessary to use (2-19)
and the results of Chapter III to put (2-21) into a form that

uses variables computed by the -equilibrium subroutines,

Using

:{/"—"5 = f% % ‘P’ (2-25)

g = 078°9 | . (2-26)
a/F Y JF _ 7 /: (2-27)

— s T

A AV Y

{2=21) can be reformulated as

Jd »1

. 1v
LGy = imBiy + £} 8- 18OV

(ng-m)
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Boe(ngz_/m) ' | (2-28)

/ggmnj— ,m/%p 0/80%__2/_,%/0’
(ng—-m?) (n?—/m)g?zd\/ dv B

This form is wuseful because F'' is both a function to be
given to the equilibrium subroutines and a function, as
detailed below, to be modified by the presence of the

magnetic island.

2.3 The Magnetic Island Structure

To examine the effect of magnetic islands upon the
topology of the plasma confinement consider the equation for

magnetic surfaces

‘E:: V;p::o (2-29)

N
where EB is the magnetic field and f is the surface mapped

out by the magnetic field lines, While this equation, in
conjunction with the MHD equations, may have many solutions,
the ones of principle interest form a set of simply nested

flux surfaces. [1]
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If one departs from the simply nested flux surface
model £ may be forced to take on a very complicated form.
The problem at hand is: given a magnetic island, find the
simplest form that £ can take.on consistent with a physical
interpretation.

To address this problem let

B= § SOB(V?X VV> +§ B¢ ( VWVe> +J) Bw( Vexv%) (2-30)

where

is the poleodial angle,

is the toroidial angle,

is the radial coordinate, and

is the jacobian,

o? 1V
are the background egquilibrium and ZB is

oy @ <~ ®©

tgog
the perturbed radial field (first order «correction) of the

form

Z Bﬂnn W[‘ (er-— ﬂ%>]

The perturbations to the toroidal and poloidal field
components have been neglected {(and thus the divergence of B
is nonzeroc) since they make no contribution to the following

analysis.,
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Also let

fofirs ihopplifmo-ng)] e

where fmu1 is a perturbed term. Use (2-38) and (2-31) 1in

(2-29), linearize, and keep only the first order terms to

produce for a single harmonic (isolated island)

| A = e
(ﬂBo?—m’)BOGDa/V Ry

Since only the behavior of £°2 near Vs=vmn is of interest

(rational surface) replace V with VvVmn+x

where X=V-vVmn,
Introduce ﬁ-: Bo%/eoe and rewrite (2-32) as

o

! _(;(.{- - _-70’7’7” 809 (2-33)
(ng—m) oV -

v
Bonn

Now, taking the limit of the right hand side of eguation

(2-33) and assuming that the left hand side is approximately

constant across the island, the following second order

equation is preoduced:

6/2'/0 —nﬂ-/gw‘/mn

——
—

a/va 61\/

mn

(2-34)
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In this case o¢one gets for fo (with the condition that

£ '(9)=0)

o

s po8
/’:._ 7&_ /)Z BN ma X2 (2-35)

mn

Where f, is a constant. Thus near the island center f has a
parabolic profile, which was to be expected since the
magnetic island connects plasma on either side of the
rational surface, forming an even function across the
rational surface.

Using (2-35) in (2-31) and taking only‘the real parts

one gets for f:

| / nﬁ’-lﬁosﬁfﬂg 2 7/ .
F=f - SR X Tomn MP/ (2-38)
mr}

ahere ;{r. mé-ne,

To determine the halfwidth of the island set the value of £

at the seperatrix equal to that at the edge of the island:

Al x-0)= Ao, )




or using (2-36)

/- [/if::“" [(einsin 4,)] =

where

&5 is the value of f,’D/ at the seperatrix

ﬂ44 is the value of F( at the half width

The maximum excursion occurs when

b= e, F= 2T

giving for the half width,

LAY

- Bimn \/Z_
He=z|—2 ﬁ,]

with all quantities evaluted at V=vVmn,

27

(2-38)

(2-39)

PP S P ——e
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2.4 Magnetic Island Effects

Given the results of the previous section, it is now
possible to compute the structure of the pressure and current
functions within the magnetic island and determine the
axisymmetric coeficients to be wused in the differential
eguation.

Near the magnetic island the function

(8 )< (rgem) 80w

passes through 2zero and equation (2-28) has an apparent
singular point. This singularity is only apparent however,
since the radial magnetic field at the mode rational surface
modifies the background equilibrium in such a'way as to
eliminate the singularity. This nonlinear effect 1is a
charateristic of magnetic islands and its effect will be

examined in this section.
: .
From equation (2-36) a solution to EB- ?ﬁﬂ in the

vicinity of a magnetic island was shown to be of the form:

F= ffmm;o/ = ZdPp A+ am g (2-41)

where 0=(V-Vmn)/H, ﬁﬂ:nne-r7?», f., is a constant, and H is
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the half width. Since £ is a surface mapped out by the
magnetic field 1lines, to a first approximation the pressure
and current density are constant on a surface of f=constant.
In this case P would be a function o¢f f£; however, the
differential equations {to first order) require dﬁ?dv which
may be thought of as the first term in a Fourier expansion of
P(f). To obtain an expression for dsydv note that P(f} can

be expanded in a Taylor series around f as

P@) P@)-}- O/PA’ mm;)/-ﬁ—iﬁ#pf) p/.;.... (2-42)

Note that this is also a Fourier expansion in phi so that

Pl) = b P) ;—;‘-”‘;

The higher order terms in the Fourier expansion are involved
with the neglected terms in ??'1)( _égﬂ- and with ﬁhe
higher harmonics in phi. This thesis will approximate the
island structure by wusing only the first term in the
expansion; greater accurary in the island structure could be
obtained by considering the higher harxmonics and nonlinear
terms, but only at the expense ©of a much greater
computational effort,

Of special interest and the topic¢ of this thesis is
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—
the force free case where J X®=O ., 1In that case,

fl“}?-' K{H )hg (2-44)

4 )
“_é;?" = K(‘F) (2-45)

The above analysis applied to (2-45) leads to

T
_é.;é(- — K(_(:)_f/_é. {2-46)

d (T
Note that (1*—“' is required in the differential
Jv B"?)

equation also,
A pressure (or current) prefile in the neighborhood of
a magnetic island may be locally approximated at the widest

point of the island as:

P+ &'Hu-1) u> 1

P4 E!H (b("'ij w1 (2-47)
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where P=P (Vmn), P'=dpP(Vmn)/dv, and alpha is the "peaking"™ in

the island. In terms of £ (2-47) becomes:

: v/
f ﬂ’+1> _21 INN ER
z EDGE

P+ P'H (

P = PO-J—O(EH[:L“ > J INSIDE  (2-48)

TS LAND

z EDGE

P+ E’H[(Wc'ﬂ-l'lj/a_l] bUTER

See figure 2-1.
The interest is in the average of (2-48) since this
provides the coefficients to be used in the differential

equation, Using /d'-—" 2w +Tr/2_ the following form for

the average pressure can be obtained:




w=2 @Uﬂ l'(I—ch") ;--W/z> 32
o _ 2R H
P = /Tf [((/( +C<r<22w>/2‘ j__jo(w’ (2-49)
T,
+ —277—3(— (1~ (uFFcodw)] oluwr
b=\ (aim™ (1-22) =Tz )

See figure 2-2 for the path of integration,
The second integral can be computed and the first

approximated to give:
o ’ / 78
_Q{f: /0/6(2'4'2‘0( (3
%

4 Yo (pin? (I75)-u?)

1<
coQ(T—gD i<

(2-54)
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aAn examination of equation (2-28) will show that
unless the eguilibrium magnetic fields have a special form
the pressure cannot be peaked in a magnetic island or the
singularity will still be present; this condition does not
apply_to the force free current which can be peaked in the

magnetic 1island, Using (2-5@), very near the island center

{2~-28) becomes

B —imB £ - 2o Y 5

emn
n P4A#\ﬁ_a¢umce,

where F' has an expansion similar to P, but of the form:

F'= C,(¢+ 25X (3-

L 4 fain (372 - =
'7,7’?_'

IX1< 1
Cer (77’—3’) (2-52)

F’/: Co_. Ix|j= 1
X = (ﬂ'%mn) /H.ﬂ.'m 4 opese.

The transformation to g space is a practical matter brought

about because F'' is a function of g in the equilibrium

e T

T SR LI S S CE

P —— TR T T
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computations and the final algorithm for the computation of
the magnetic island widths iterates on the island width in g
space.

The method of solution of the tearing mode equation is

to vary the widths of the islands until the boundary
v /

mn
case of spontaneously growing tearing modes, which are the

conditions on each of the f3 Scan be satisfied. In the

subject of this effort, the boundary conditions are:
v
82 (0) =0 '

qu;nvn (ﬂj%bvz 0 | | (2-54)

where it is assumed that there is a conducting wall at the
edge of the plasma. In general it is possible for a nonzero
magnetic perturbation to exist at the plasma edge because of
magnetic field efrors in the applied magnetic field and these
nonzero boundary conditions may effect the stability of
otherwise stable modes. ({68] This thesis will consider only
the conducling wall case since a reasonably high speed
totation of a tearing mode will limit the magnetic
penetration of the tearing mode in the wall to a very thin

region. [77]
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2.5 Asymptotic Approximation

To determine the limit of (2-12) and (2-21) near the
orgin, the following low beta, large aspect ratio limit is

taken:

/
/o ~0 8 "'Z 8 \/E ,é‘-'Mﬁa‘oa RADIYS

This produces from (2-12)

o (_' .1.\/) - _ ie (2-55)
and from (2-21)

(” BO'? m 606)[0/ Be?mn" /1 B:Hnn

= i) B B"?o////oo&()

Near v=0 (2-22) and (2~-23) can be approximated as

{2-56)

z 2E2RY

_ mi - (2-57)

Bumn = (F%+ 1)
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L
16 (E%+1)Bomn
Brmn = > (2-58)

2E2V

where E is the plasma elongation; see Chaptexr III for the

details of the equilibrium.,

To find the limiting tearing mode egquation use {2-55),

» N
(2-57), and (2-58) in (2-56) along with Zmn—;ﬂggf"‘
to get

0 oé 0/ 0/ /77)2
(n B ?-—.rmB [#J_V pry: an"’"‘\;‘ an

- (EZ+ i) o% 5/ ; (2-59)
R Ay
2 AE? Ko Av (78%

Near V=@ the Right hand side of (2-59) vanishes since

the current density gradient near the orgin is small for the

cases of interest and (2-59) takes on the final form

O/ C/ 2 — (2-60)
;?37— ‘7ﬂ/ :Ezjnnr\ ., :Eirhnn =0

\4

W
The solution for ﬁzmn is thus

m-1 ,
Bon ™~V (2-61)

ST


file:///rC/T

37

near the magnetic axis. [12,14]

Using (2-55) and (2-61) it can be shown that

—ian = Bgnnn | (2-62)

Equations (2-61) and (2-62) are used as starting values near
the magnetic axis in the computational form of the tearing

mode equations to avoid the regular singuiarity at the

magnetic axis,

2.6 Functional Behavior

The large aspect ratio limit suitable for the circular
cylinder approximation is obtained by setting E=1 in equation

(2=59) giving

potmEN G E HE X
2 X 6% (4T

where the subscripts have been dropped. [12] By letting,

(2-63)

\ -
X: UU\/_'/& - (2-64)

(2-63) may be written in standard 2nd order form [6€3]:

oy vy TS S —



38

W}/ T g(v> ) “—';O (2-65)

with ) J -—J-of
q()= O/ | Lt

VA (06~ mB”) 7ve

i« 9
One can assume with no loss of generality that 6 P B ’

m, v, k are all greater than or equal t¢ zero and that for

the center peaked current profiles of interest a%/ %%ﬂ—o%>
is less than or egual to zero. Thus for g greater than the q
at the rational surface, g(v) will always be negative; for g
less than g at the rational surface and v small, g(v) will
again be negative unless d ("J Toﬁ) is large near the
magnetic axis (which is unlikely) since the second term in
g{v) 1is large and negative. The only region in which g(v)
may be positive is on the inner edge of the island where the
first term in g(v) 1is positive and only if this term can
overcome the second negative term, A crude gqualitative
solution to (2-63) may be formed by approxiﬁating g(v) as a
constant in the three regions; negative from the magnetic
axis to a region near the inner edge of the island, positive
from the region near the inner edge of the 1island to the A
center of the island, and finally negative from the center of

the island to the plasma edge. This crude method of analysis

leads to a qualitative sclution of (2-63); when g(v) is
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negative w will be locally exponentalf when positive w will
be locally oscillatory. I1f g(v) is always negative, which
may be the case for large m numbers, the solution to (2-63)
will have (roughly) an exponentally growihg like solution
which caonot be matched to the desired boundary conditions.
If g(v) is sufficiently positive somewhere, the locally
oscillatory solution will be strong enough to “turn" the
soluﬁion around Iso that the boundary conditions can be
matched. Note that the only region where this is possible is
in the region just before the inner edge of the island; in
other words the slope of the current profile on the inner
edge of the island is a major factor in determining the

solution to (2-63). [13,46,48)

2.7 Summary

The quasilinéar equations are derived as a
perturbation analysis of the ideél MHD equations and these
equations contain an apparent singularity at the mode
rational surface, This singularity is shown not to exist
because o©of the effect the magnetic island has on the
background equilibrium at the mode rational surface;
furthermore a specific form fﬁr the current and pressure is
shown to apply in the magnetic island region, The methed of

solution of the tearing mode equation is to vary the widths
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of the magnetic islands until the boundary conditions on each
radial perturbation term can be satisfied. Finally a
gualitative analysis of the tearing mode equation reveals
that the current density gradient on the inner edge of the
island 1is of importance since it is in this region that the

selution is “bent" to accomodate the boundary conditions,

Y E TR LT S
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CHAPTER III

Computational Eguilibria

3.1 Introduction

Up to this point it has been assumed that the

background eguilibrium existed in a form suitable for use in
the tearing mode equations. This section will outline the
developement of two new numerical subroutines for the
computation of a two dimensional MHD equilibrium. These
subroutines were developed by the author because the
currently available routines did not use the functions F and
F' in forms that could be utilized in the tearing mode
calculations., These new subroutines are completely general
and may be wused outside the c¢ontext of the tearing mode

problem, The eguilibrium for the tearing mode calculation is

— T
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obtained in a two step process; first, the equilibrium is
obtained by taking moments of the Grad~Shafranov eguation;
then this equilibrium is converted to a Hamada coordinate

system,

3.2 Moment Egquations

Two FORTRAN compufer programs were developed to
compute a background MHD equilibrium for the tearing'mode
calculations. These two programs, subroutine MHD and 1its
companion subroutine, HAMEQ, are numerical algorithms for
computing a two dimensional MHD equilibrium. MHD solves the
inverse Grad-Shafranov equation by a variational moments
method and HAMEQ converts this equilibrium to a Hamada
coordinate system. MHD is unusual in that it requires the
user to specify F'' rather that the more usual FF'.
Furthermore F'' may be a function 6f V9 « 9, or both. This
provides a large degree of flexibility and is useful for the
solgtion of problems that require functions that depend on
the q of the flux su;face rather the the flux function.

MHD solves the inverse Grad-Shafranov equation:

é\=0 S(;V ﬁee(j/(a ‘/’6/)99 3) MP;% (3-1)

along with




and

. ;F((V)) (Zng sz9>

where:

wP'= FF )
399 = /(92'/' Z:
Jve = /Qv /ee + sze

3\/2 =R(RZ,- R, Zo)

43

(3-2)

(3-3)

(3-4)

(3-5)

(3~-6)
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' means differentiation by the appropiate variable in the
case of single variable functions and >< means'gig
except for the metric elements ‘ﬂee,ﬂvg)%\/z ). C((/(ﬁ)) and
'1"éh%))are user specified functions and ©( is a parameter
to be determined.

Equation (3-1) is known as the inverse Grad-Shafranov
equation since one solves for R and Z as functions of V and
& rather then the other (more common) form of %%kyz) . See
figure 3-1 for the coordinate system. Note also that 69 is

not the geometric angle, but rather an angle that satisfies

the variational properties oulined below.

R and Z are expanded in terms of V and © as follows:

N
/Q"'/Q.(O-/Q(@waQ 4—%&(@ Lo NG (3-8)

N
Z= E(@%%(\/)Mh@ | o)

These expressions are used in developing a variational form
which involves equation (3-1) and a set of weighing functions
to determine an optimal set of expansion functions for E and
the R's. The reader is assumed to be familiar with this
proceedure and is referred tc the references. [54,55]

The result of this wvariaticnal proceedure 1is the
following  set of integrals involving the inverse

Grad-Shafranov equation and a set of weighting functions:




b > -0

21
where

z2m-
0

<A>= L [ade

and the weighting functions for Ro,

respectively:
;"‘a: MRO _
W = (EMzn" MRn)
N
WH':“Z:l Rn Mzn
MQ = V9
where
rvqién - Fz FiQ CJ/V\IW €9

Mg, = RZ, caan ®

Rn,

E, and

45

(3-18@)

are

{3-11)

(3-12)

{3-13)

(3-14)

(3-15)

(3-16)
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In the case of MHD the amplitude of the first harmonic
has been chosen to be the coordinate V. This determines the
remainder of the system and eguations (3-1) to (3-14) produce
the following matrix equation for the second derivatives of

the expansion functions:

I7x

d.” ) le ¢ # - LI(N'F‘Z) H‘

i

(3-17)

-oacm%zo
™
e

] ;/ .

with:

_ _ . Whdes RZ .
==




- Wh RR
dn(N-H) = 8_:;: e (ZﬂRKMKe>> (3-19)

Dafva2) = - " %,99 > (3-26)
3 ¥

AW R
a =< ngee , (3-21)
i %@/2_ (ERQQUY\M\Q ‘Zeca@rm9>>

: Co < (av Goo 5 Gvo + ?;e 55 %va)

+-———— ,0+ FF
“ ) ")/2 (R (r\)g (3-22)

“RZ,)+R(Revz, =Ry 2,

+RR, (%;ZE ® @ /<935>
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The averaging over theta is done by a 10 point Gauss
guadature routine and the integration is done using an Adams
ODE method. More Gauss points do not appear to be useful in
terms of accuracy with 4 or less harmonics. The Adams method
appears to be the best choice for this problem since the
matrix in equation (3-17) 1is time consuming to evaluate.
{56,58] The only difficulty with (3-17) 1is that certain
combinations of initial conditions can cause the determinate
of the matrix to become singular within the region of
integration. This may be the result of a separatrix creeping
into the plasma region., The only practical way to deal with
this situation is to select a different starting point for
the nonlinear equation solver (detailed below) should
problems arise.

The boundary conditons are :

Near V=0
’Qo = /?nna_"" Koz VZ (3-23)
E = Ema+ E;:,‘.,_\/Z (3-24)

/?n = /QmmgL\/n (3-25)

FF ,:: Cfmau | | (3-26)

el e e T e S
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F = 2% % ma (3-27)

= (/2 v & | (3~28)

where

“E C

(’é | EZ +1) (RE-MTKOJ f““) +]> (3-29)

and E,, and R,, are 2nd order expansion terms.

In actual practice setting R, and Eoz_equal. to zero
makes little, if any difference in the solution; the code is
not sensitive to their values, In MHD E,; is set equal to
zero and R,y is determined by solving (3-17) with the Rn's
set equal to zero, Ro set equal to (3-23), VD set equal to

N\{3-28), F set equal to (3-27), and V equal to 1.#4 percent of

a, where a is the upper 1limit of the variable V. The

approximate minor kadius of the plasma is a if the higher

harmonics are small.

At V=a

/Q,': IQa_ (3-30)

E =Ea_.- (3-31)
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/?n — Rf}&_ (3~32)

= ,____' O (3-33)

Ra, Ea, Rna, Cﬁa, gma, and a are given boundary
conditions aqd Rma, Ema, Rnma, and alpha are to be
determined, Ra is the major radius, Ea is the elongation at
the plasma boundary, Rna's are the amplitudes of the
harmonics at the plasma boundary, Cma is a measure of the
toroidal current at the magnetic  axis ( ﬁfﬂ;(ﬁ) =

Rf‘uﬂP’(@ +Cma, }, gma is the q value at the magnetic ‘axis,
and a is the upper limit of Vv,

This set of equations is solved by wusing a shooting
and matching technique. [56] The equations are first
integrated from V=8 to V=a using an initial guess for Rma,

Ema, Rnma, and alpha. The following residual vector is then

generated:

-

(R@-R) /¢ @)
(R,@)-Rz0) /¥ (a)

Z= |
(Ra(e)=Ras) /¥ () 50

(E@) - E2) /¥ ()
F ,(a> 1
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/
The division by ¢(&) is to factor out the %EO solution
- a source of trouble._:f hybrid nonlinear equation solver

then attempts to reduce fz? to the zero vector by varying

Rma, Ema, Rnma's, and alpha until
}ﬁ€4+’ iELl/// '4F34+,' is less than some specified
tolerance, coresponds to the iteration number) It does

this by choosing a step length and step direction that is a
combination of a newton step and a gradient step. The
particular algorithm used 1is that contained in the NAG
library routine  COSNBF. [57] The process is wusually
successful, but many times care must be taken in selecting

the initial guess.

3.3 Hamada like coordinates

Given an arbitrary two dimensional magnetic field this
section will detail its tranformaticon into a cocrdinate

system such that:

(VV-X VQQ *Von= g: (V) (3-35)

Since é9 is only a function of V this system is known as a

Hamada coordinate system. [49] To perform this
—
transformation first write B in action angle form




_é:(g—g V%)(VVXVG) 4.(8*6‘ VQ)(V%XVVD (3-36)

where é; ~and €7 are angle like coordinates. The goal of

this section is to write the magnetic field in the form:

—_—

-_-.SHBQ((VVXVQQ% Sh R® (V?hXV\/> (3-37)

where B? and 8 are only functions of v. ([2,49,59,68]
Let é;h be a function of v and & . Aalso let g;h
be a function of v, &, and df « Use Qh and ?h in (3-37)

to produce

(3-38)

From {(3-36) and (3-38) the following two equations can

be produced:

SB \7% Sh (B%______ — B 9h> (3-39)
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R

Expanding {3-35) gives:

_Q_Eb-'__._. > géh (3-41)
06 | E)y1 Ead%

Use (3-46} in (3-41) to get an expression involving 69 and

9/7=

8
afo_h — _‘5 (3-42)
o B- VO

Next integrate (3-42)} from Q'-" O to @ and set any constant
terms egqual to zero since the reference angle 1is arbitrary.

This gives:

8
o[22
,J (B-79)

In 'genera} ‘769h will be multivalued in & . To avoid this

e _
problem note that 5 has yet to be determined. If one sets

P

89= __ (3-44)

__2/9
(8- Vo)




54

where P is the period, the multivalued problem is avoided and
the equation for 6[,) becomes:

©

(B-v0)
O .

Loy 98
(B -ve)

To find the remaining angle ?h Juse (3-41) in (3-39)

9},’:

(3--45)

to produce the fellowing equation for ‘%h .

_9_?_}, = BiQ Sty - 8 (EV%) (3-46)
Choosing %h"\-’% + G (9;V> as a form for ‘?h and

using this relation in (3-46) gives

Q?B — _@:? 9 _ 8(§V%> (3-47)

A—r—
A p—

e B°y, Sy B°

Integrating as before gives the equation for %h .

Tn= w(eﬁ-(@v%)) _;_% (3-48)




5%

Again the multivalued problem is apparent and it can be

avoided by choosing:

§o(et-(ermy)do=c

Finally, using (3-49), B? is determined.

53E 7L

8?: % &0/9 (3-58)

From (3-48) Sh is produced.

8 — 8(§V9> (3-51)
h T

The fact that we can not independently select 8h
arises from the fact that Ve[n and V%h are both required
to be single valued in 9 . If Sh is not a function
of Vv, the forms for eh and '%h may not be general enough
and different forms for Eah and %’h may be inferred. Also
note that the transformation from Vv to a V' and thus 8(\/‘)
to g/(\/') will allow one to choose any SI(VO desired.
However, the former forms are general enough for the purposes

of this work,
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Finally, using (3-4¢) in (3-48) the final form for %h

is:

8
o d8 [ (BveYdO
= ?’ -_—
%‘ %og(g'Ve) (B-vo) N ?

(352}

3.4 Transformation from moment eguilibrium to Hamada

equilibrium

The Grad-sShafranov representation of the magnetic

field is (1,7]

B= % (VvxVE) + Flw) VP/ - (3-53)
which when dotted into Ve and V% g-ives

B-vo= - //& | ' (3-54)

Bof = /¢ e

where




G- REA-RE)

Using ' _ equations
(3=-44),(3-45),(3-56}),(3-51},(3-52},(3-54),(3-55) the

following eguations can be derived for the Hamada quantities:

i

] _
0 = 5 |30

)
@
Rt

_Qp’/gh (3-58)

F -;8—.—- : 3-59
23? ::.2;;;351; :§,/<2.6749 ( )

2T .
_ I G/Q (3-69)
In= 297 J
I 5
= 'Léz A9 + i 9 -+ (3-61)
0y J‘? sﬂ’f? S
0 0

The representation of the current density in the
Hamada form is also determined by HAMEQ. To derive it start

with

f:ghTe(V‘%th@ +9hT$(VVXVéh> (3-62)
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u .
where l and -er% are to be determined, TI— may be

determined by taking the curl of equation (3-53) and dotting

poA V€ into the result thus producing

/C/o?‘VQ:—',(/OTQ: w’F'/(VV)( VQS).V@ ' (3-63) |

which becomes

TP )
& h

J ?7 can be determined from the force balance

equation in Hamada coordinates:

&h(n—gg‘%_"\r?%@): <,b /P/(gb) B (3-65)

giving:

j‘% _/E/J_ig—%__ Lo 9//;0/ (3-66)
AQ{ = 539 é%-h ES@ ;)

Near the magnetic axis (3-57) to (3-61), (3-64), and

(3-66) may be approximated as




4T 2% F (120) /R E s

T & F 0 Fo=0) /R =4ty P =0)
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(3-67)

(3-68)

(3-69)

(3-78)

(3=-71}

{3=-72)

(3-73)

HAMEQ accomplishes the conversion from moment to

Hamada equilibrium by first Fourier expanding éa
a/Rz (by means of fast Fourier transforms)

following way:

o y
9= 9.0+ %lgn(v>c,cso.r\@

and

in the

{3-74)




N .
&gz = Jeolv) +% Sen (V) coan B

Using (3-74) and (3-75) in (3-57)-(3-61), (3-64) and

the following expansions in theta are obtained:

Sn= o

%::Z:lw(gm._&nnén) Qe 1y 9 + o
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(3-75)

(3-66)

(3-76)

{(3-77)

(3-78)

(3=-79)

(3-80)
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JB° | sy 9lv
A
8?"-—3 ngo/ 5 (3-85)
0/8’? r g F / | o 0/
7 F ¥ 9¢0 994-5':(3&0“ %:8“) eohe
T = Vs,

By .,
'L/O_J—p? - '%TGB — ﬁc’_}iﬁ (3-68)
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The above form the gomplete set of equations wused in
HAMEQ. 8, and (8/&2) are determined by using (3-17); no
finite differencing is used so that the accuracy of the
Hamada quanities is determined by the accuracy of the fast
Fourier decomposition and the accuracy of the terms delivered

3.5 Hamada Metric Elements

The above details the transformation from the moment
coordinate system to the Hamada coordinate system; however,
the Hamada metric elements are in terms of the moment
coordinate system rather than the Hamada system, 1In order to
do the contravarient/covariant conversions the metric
elements must be functions of the Hamada variables; in
particular it may be wuseful to have them expanded in a

Fourier series. This may be accomplished as follows: With:

3(V19h>: % ﬁmfﬁé[ﬂ(l'm\gyo (3-89)

the expansion functions are determined by:

241

Srm = E'li: 36/) 9)%%(/9%({m Q},(Q>> (3-90)

0
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keeping 'V constant., é)h is the Hamada angle, 69 is the

moment angle, and g(v) Q) is the metric element in the moment

system,

3.6 Asymptotic Metric Element Approximations

In order to find the asymptotic limit of the tearing
mode equation in section 2.5, it is necessary to determine
the asymptotic limit of equations (2-22) and (2-23). Note
that one is interested in VV-YV , V©-V9 , and JQ-VV ,
since the other terms have been discarded in the 1limit,
\ATAAVAR VE-V8 , and VB8V V can be obtained by inverting

and taking the appropiate dot products' of the following

expressions:
VR = %\%—V\/—F %%VQ (3-91)
DZ By -
= 4+ T g6 (3-92)
V£ Sv VA% o %
giving:

VYTV = RZ(ZS_/_R:)/SZ (3-93)
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7e.Ve = R;(Z\,Z+ RVZ )/92' (3-94)

Ve -7y = “R?' (Z-V%e-ﬂ- Rv Re>/82- (3-95)

Using equations (3-8), (3-9), and (3-69}) in (3-93) through
{3-95), discarding terms of order V and smaller, and finally

Fourier analyzing gives the fellowing approximations near the

magnetic axis:

— E*+] (3-96)
VV 7V =5 ZE;
Farl | (3;97)
Ve-veo ~ —3
2VEE

Ve-vW A 0 o
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CHAPTER 1V

Solution of the Tearing Mode Equations

4.1 General

The method of solution of the tearing mode equations

is to treat them as eigenfunctions and the island widths as

nonlinear eigenvalues. A shooting technigue is used as the
numerical method; the tearing mode eéuations are integrated
from the magnetic axis to the edée of the plasma and the
deviation from the desired boundary conditions computed., The
magnitude ¢of this deviation or residual is to determine the

island width for the next iteration by a quasi-newton method,
{56,57) Bach iteration involves recomputing the equilibrium
using the new island widths, determining the amplitudes of

v s
the E%mn-s that coorespond to the island widths, and finally

ey ey ——— gt~ S S L e
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integrating the tearing mode equations to determine the new
residual at the plasma edge, This proceedure is repeated
until convergence is obtained by the perturbation field
components appﬁoaching zero at  the plasma edge,
Determination of the amplitudes of the B;:n15 expansions near
the magnetic axis (See section 2.5) is alsc done using an
iterative quasi-newton method. The amplitudes of the Bé;n?5
expansions are varied until they coorespond to the appropiate
magnetic island widths and, since all modes are done
simultaneously, the mode mixing and nonlinear interactions
due to the current density profile modifications are
included. 1t should be noted that the iterations on the
magnetic island halfwidth are done in g space rather than V
space because the eéuilibrium subroutines require F'’'{qg).
All numerical integrations are done using an Adams ODE method
and all integrations to determine the Fourier decompositions
of equations (2-22), (2-23), and {(2-24) are done by using 

Gauss guadature. [56]

4,2 Limitations

One of the major difficultes experienced in the use of
this method is numerical accurary. Magnetic island widths
can be determined to a maximum accurary of about 1 part in

10608; since the island widths are products of mulitiple
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integrations and iterations on nonlinear functions, both in

the equilibrium routines as well as in the tearing
computations, it is necessary that all routines be run at
limiting or near limiting accurary to achieve useful results.
This accurary limit is also manifest in a lower limit on the
smallest island <that can be computéd. Experience indicates
that the minimum island width that can be consistantly
handled is approximately @.92 times the q at the edge of the
plasma; if an island is smaller than this, or if no island
appeats to exist, the amplitude of the appropiate
perturbation is set equal to zero. The program is
constructed in such a way that zero island width can be
easily handled and that the island width <can return to a
finite value during the course of the iteration if necessary.
The smallest island that can be determined is related to the
npumber of radial grid points, The equilibrium subroutines
return the functions as a sequence of values on a radial grid
and since an adaptive integration routine is used in the
integration of the tearing mode equation, functional values
between the grid points must be determined by interpolation.
In this program linear interpolation is used and experience
indicates that at least 25 points across the magnetic island
region are necessary for decent resolution and stability of
the shooting method, Unequal grid point spacing has been
tried, but the most practical solution is ¢to use a large

number of grid points - in the neighborhood of 581 to 20801
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points.

Another more general problem is' the ability of the
equilibrium subroutine to compute an equilibripm given an
arbitrary set of magnetic island widths and the ability of
the tearing mode shooting meéthod to converge to the correct
magnetic island width given an arbitrary starting value for
the width. Occasionally a magnetic island width will be
generated for which no.équilibrium can found (note that this
does not mean that the equilibrium does not exist); in this
case the program stops and gives an error message, IE a
starting guess for a magnetic island is too small the program
may incorrectly indicate that no magnetic island exists; this
problem may be overcome by trying a new, larger set of
initial guesses for the island widths. If the starting guess
is far toc large, the program may find itself trapped in a
local minimum and falsely indicate convergence; this can be

noted by examining the residuals which are printed out for

each iteration. Both of these problems seem to be more

severe as the number of islands increase and as the saturated
magnetic island width becomes smaller. Other than the above
concerns, which can be easily identified, the numercial
method works well in a reasonable amount of time,

Figure 4-1 illustfates the preoegram flow and control.
The actual computer program makes use of several external
libraries as well as being constructed in a modular fashion

to aid in trouble shooting and modification. All input is in
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the form of namelists and an extensive graphics capability is

provided as will be shown in the next chapter. The ouput

includes all the equilibrium function values as well as the

magnetic island information.
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CHAPTER V

Results

5.1 1Interpretation of Model

This chapter will detail the effects of plasma global
current density profile, current density peaking within a
magnetic 1island, plasma toroidicity, plasma elongation,
nonlinear magnetic island coupling, and linear magnetic
island coupling on the saturated width of the resulting
magnetic islands. The most important new finding is that the
saturated width of a magnetic island is sensitive to the
amount of current density peaking within the magnetic island
and this new finding may make prediction of magnetic island
widths more difficult because of the great accurary reguired

in modelling the current density profile,
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The results presented in this section are obtained by
starting with a consistant background axisymmetric
egquilibrium, modifing a parameter such as island current
profile, and letting the computer algerithm £find a
neighboring three dimensional equilibrium from this two
dimensional starting equilibrium. Note that this deces not
coo;respond to a time evolving process, but rather a search to
determine what equilibrium near the starting equilibrium can
satisfy the mathematical model.

In the cases studied the form for F'' was chosen to

be:
7 > 5 S
F =D((CO+C;X -l"C:?.X +C5X> (5-1)

where C@ through C3 are coeficients chosen by the user and
they are usually in the range 2.9 to 5.8; S 1is a user
selected exponent, and X = (g-gaxis). In all the cases
- presented in this chapter S was set equal to -8.5, gaxis was
1.9, and the C's are shown on each seperate run. (alpha is
selected by the equilibrium subroutines - see chapter 1III)
This form for F'' allowed a wide range of current profiles to
be represented as well as being fast and convénient to
compute, Also note that because of the boundary conditions
on F' (see chapter III)} the current profile is always zero at

the wall; this corresponds to the physical situation.
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The examples presented in this chapter are the results
of a parameter study to determine the effects of various
plasma attributes upon saturated magnetic island widths.
This approach was chosen rather than detailed studies of

particular equilibria because:

1. It was found that the magnetic island width is very
sensitive to the current density profile near and
within the magnetic island. To simulate this
situation with the computer model would require very
accurate data in a very narrow region of the plasma;
this requirement is probably beyond what could be
actually measured because current density profiles
are indirectly inferred from the observation of
other parameters such as the electron temperature.
This proceedure is subject to the limitations of the
electron scattering data and to the specific
relationship between the current density profile and
the electron temperature. [78,79] With this type of
situation a parameter study is useful because

generic behavior may be deduced.

2, 1t was the most efficient way to use the computer
resources available. Since a single computer run

could take as long as 15 minutes, which was the
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weekly allocation of this author, it was not fesible
to do several runs in an attempt to match a
particular current density profile. Again, useful
qualitative and generic information may be obtained

with the parameter search approach,

Before proceeding with a discussion of the results, it
is necessary to explain some nomenclature., In figures 5-1 to
5-24, vmn refers to khe position of the mode rational
surface, in V space, under discussion; Qe is the g value at
the edge of the plasma; E is the elongation of the plasma;
the width of the island is in V space; and all results are
for a low beta plasma. Since it was not possible to do a
parametric study encompassing all possible plasma
configurations, a subset was selected that enabled the
desired characteristics to be examined consistant with the
numerical stability of the method and reasonable computing
time.

Figures 5-la through 5-2d and figures 5-24a-e are the
graphical output of the computer program., R¢, Rl, R2, and E
coorrespdfid to the moment expansion (see equations 3-8 and
3-9); a limited number of expansion harmonics were used and
in all cases one moment expansion harmonic and two hamada
expansion harmonics were found to be adeguate., Psi is \)b R
bzeta is 50?, btheta is 809' ujzeta is HDTO?, ujtheta is

o & . Ay . 1V
AJO:T- , bvmn is mp ¢ wIven is Aézl;n , and F*'' is shown in




74

the region of the magnetic island, All variables are plotted

in V space, Finally, dgq/(dg/dv) is the width of the magnetic
island in V space, the halfwidth in g space being just above
it; "amp of this harmonic" refers to the coeficient of the
asymtotic expansion o¢f the radial perturbation near the
magnetic axis;  note that the parameters for a given island

are confined to the page that contains its graph,

5.2 Global Current Profile

One important parameter to be examined in the context
of magnetic island widths is the effect of the shape of the
background current density profile; in particular one is
interested in the influence of “rounded", low g edge value
current density profiles vs the influence of "peaked", high g
edge value current density profiles, This study was
accomplished by varying the parameter €3 in equation (5-1) to
produce a set of profiles that had the current increasingly
"peaked" or concentrated near the magnetic axis, The trend
produced was a reduction in the width of the magnetic island
as the profile became more highly peaked in a way qualitively
similar to reference [l3]. Two widely different cases are
illustrated in figures 5-la-d and S5-2a-d., This reduction in
magnetic island width is not, in general, monotonic however,
and should be viewed in the light of the next séction which

will examine local effects.
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Comparison of the two profiles is somewhat complicated
because it is desirable to keep the q on the magnetic axis
the same for each run both for physical reasons as well as
minimizing the number of variables to be modified for each
run, Since the q on the magnetic axis was kept the same, the
mode rational surface was closer to the magnetic axis for the
peaked current density case than for the rounded case and the
effect of the inward shift of the magnetic axis could not be
eliminated; it was desired to keep:the q on axis near 1.0
since much lower values may be unphysical due to the sawtocth
oscillation and much larger values are not representative qf
most tokamak discharges. Nonetheless it is possible to
outline the trend and make some comparisons.

In the cases presented in this section, <the 2/1
magnetic island was selected since it was found to be the
most unstable which 1is consistant with the experimental
observations. (16,71,75] The plasma parameters were: aspect
ratio=4.0, plasma elongation=1.0, flat island current density
profile, CO+=1.06, Cl=0.3, C2=0.08, and C3 was varied to produce
various degrees of current density localization near the
magnetic axis. C3 was selected to be varied because a smooth
series of profiles could be generated; the cubic term has its
greatest effect in the outer regions of the plasma and these
resulting profiles covered a wide range o¢f current density
localization. A plot of q at the plasma edge vs C3 is shown

in figure 5-3; an increase in C3 resulted in greater
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"peaking” and less total current, thus the higher g edge
values., Figure 5-4 shows that outside of a small maximum
near c3i=l.d, the 2/1 magnetic island width generally
decreased with increasing current density localization at the
magnetic axis and the resultant q edge increase. Note that
as C3 is increased the mode rational surface shifts inward
because of the reduction in total current - see figure 5-5,.
Finally, observe that outside of a small peak in the curve,
figure 5-6 demonstrates that the width of the 2/1 magnetic
island shrinks as the mode rational surface shifts inward and
q edge increases. The peak in figure 5-6 may be due to the
effects discussed in the next section. Note that in the
peaked case (see figure 5-2a-d) the perturbed magnetic field
has a long decaying tail and a sharper slope near the
rational surface than does the rounded case (see figure
5-la=d); these two effects combine to produce a smaller value
for the perturbed magnetic field at the mode rational surface
and thus a smaller island. This seems to indicate that the
plasma current makes its largest contribution to the
perturbation on the inside of the mode rational surface since
the 1long tail is characteristic of a vacuum like solution,
In general, it appears_that the more "rounded", 1low g edge
value current density profiles are the most unstable to
tearing modes. ' This 1is consistant with the observed

experimental results from a number of tokamaks:
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1. The TOSCA Tokamak group indicated that special
helical coils were necessary to suppress the 2/1
mode so that a plasma with a low g value at the edge

could be obtained. [67]

2. The DIVA Tokamak could sustain low g discharges only
if the impurity concentration of the plasma could be
kept low - a disruption could be initiated by the
injection of neon gas which caused the plasma
radiation loss to jump from 15 percent of the Ohmic
input power to about 1060 percent of the Chmic input
power, The 2/1 mode is observed to rapidly grow
just before the disruption indicating a connection
between the current density profile, suddenly
modified by the neon impurity, and the 2/1 magnetic

island. (71]

3. In the DITE Tokamkak soft disruptions are suspected
to be caused by impurities cooling the plasma edge
and forcing the current channel to contract which
raises the effective q of the discharge, This
combination generates an unfavorable current density
profile and the resulting growth of the 2/1 magnetic
island., (73]

All these observations should also be reviewed in

the context of the next_section which will examine the local
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current density gradient in the neighborhocod of a mode

rational surface,

5.3 Island Current Profile

The preceeding section concerned itself with the
effects of modification of the global current density
profile. This section, in contrast, will consider the
effects of local current density modifications within the
magnetic island itself and to the equilibrium current density
prefile at the mode rational surface. Both cases will be
examined while holding the equilibrium global current density
profile constant,

The current density profile effects within a magnetic
island may be studied in a parametric manner by varying gamma
in equation (2-52), Figure 5-7 is a plot of the 2/1 magnetic
island width vs gamma; note that as gamma increases , the
mganetic island width increases. The plasma parameters for
this series of runs were: aspect ratio=4.,8, élongation=l.ﬂ,
Co=1.0, Cl=06.5, C2=0.0, and C3=1.25, Figure 5~8 1illustrates
the trend of g at the plasma edge vs gamma; figure 5-9 shows
how the mode raticonal surface shifted with gamma; note that
figures 5-8 and 5-9 depict changes in the range of 12
percent, while figure 5-7 shows a change in the magnetic

island width of about 60 percent.
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In order to understand the influence of different
current density profiles within a magnetic island, keeping
the global .current density profile constant, it is useful to
compare the difference in the derivatives of f3nn,) across
the island for different local current density forms. With
the assumption that the local magnetic island current profile
will only locally modify the form of f5ﬁ;n . One would expect
‘that the form of B;Vn will remain independent of the
magnetic island current profilé outside the magnetic island.
Since the equation for the magnetic perturbation is linear, a
difference in the derivative of f3;fh would imply a scaling
of tsnnn if it were of the proper sign. 4 larger
difference in the derivative, if of the proper sign, would
imply a larger EBmu] and consegquensely a larger islamnd. If
the difference were large but of the wrong sign, it would
indicate the possible elimination of the island,

To estimate this difference for a given magnetic
island current density prolee, start with the large aspect
ratio limit and assume all terms except 7r¢ﬁ//8'? to be

constant along an island so¢o that

”_ ano Mo oj /UOT) _
X o= Voo \/mm nﬁcrxaw e G2

where X=V-vmn, (ng-m}~ng'X, vmn is the location of the mecde

rational surface, q, Q. Egdmnbare the terms evaluated 'at

e S
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vmn. Define the normalized difference 1in the derivative

across the magnetic island as:

A= (X 8= Ko (o ]/ ()

. .
—_— _\___ _"L“.E — ‘mﬂo _ _0(__ MOT 5-3
[an n k?a’x d | B ]# o

where H the halfwidth. with a flat island

——i(ﬂ"f /6°‘l) A )(Z/H so that (see section

2,4}

/ < H

where the f signifies the "flat" island profile. with a

peaked island d—i—(ﬂoTo/Bﬁ) ~ —-\d Ko,x‘/H so tha.t

A;—_.— A!-F + ng\é K (5-5)
nnﬁ?
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where the p signifies the "peaked" island profile, Note that
this definition of Zﬁ: is somewhat different than the
Z}: used in the literature since (5-3) uses the modified,
rather than the orginal current density density profile,
Asymptotically in the island halfwidth H, the order of ZBF
is smaller than that of ZE;Q in fact the island peaking can
completely dominate the A_F term. By making gamma larger
in magnitude and ¢of the correct sign the edges of the island

are forced farther apart. The computation model supports

this result and the numerical results for a typical profile

with a 2/1 magnetic island are shown in figure 5-7, [Hote

that since Ko' 1is negative in the center peaked current
profiles of interest, a positive gamma corresponds to a local

current dip within a magnetic 1island; a negative gamma i
corresponds to a local current profile peak within a magnetic
igsland, For the purposes of this thesis, any nonzero gamma
will be refered to as "peaking". Also of interest is the

observation that the island peaking can destabilize otherwise

stable 1islands; figure 5-1¢ illustrates this behavior with a
3/2 island. Note that with gamma equal to zero no magnetic
island was found; the plasma parameters for this series of
runs were: aspect ratio=4.¢, elongation=1.6¢, Cg¢=1.0, Cl=0.0,
c2=¢.9, and C3=8,5, Figure 5-11 shows that the g at the
plasma edge varied little with gamma and figure 5-12 plots
'~ the mode rational surface vs gamma. Note that by changing

the sign of gamma (figure 5-7) the island can be reduced in
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width which leads to speculation of a possible means of

magnetic island control. In the large aspect ratio

approximation suppression of magnetic islands is shown to
occur by the unique current distribution caused by RF driven

currents, [61,72,74]) If specific regions could be

selectively heated (by perhaps RF} or cooled (impurities?)

it may be possible to éontrol the width of a magnetic island.

This remains to be seen, since controlling the proper

position of this heating or cooling may be very difficult.

It is useful to estimate the magnitude of the possible
current peaking within an island. The gradient of the
current density profile at the rational surface is HJ_D% :
within the island it is approximately \rjd%‘i Assuming that
the current gradient within the island has the same magnitude
as that within the plasma proper, one cén equate the two
terms and estimate that gamma is of order one. Thus while
the current peaking is moderate, the fact that F''/(ng-m} is
no longer zero at the mode rational surface is of great
consequence., This implies that the second derivative of the
current density is important near the mode rational surface,

Another related phenomena of interest is the effect of
local _peaking of the background equilibrium current density
profile. 1In these cases the current density profile in the
magnetic island is flat and only the equilibrium current
density profile 1is peaked in the vicinity of the mode

rational surface by means of a step function placed on F''.
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The step function is of amplitude Si across the 1island,
decaying exponentially to zero on either side of the island,
See figqure 5-«13. This function produces a large local change
in —3_0%'/ on the scale lehgth of a magnetic island width.
Such great 1local current gradients may not be entirely
physical, but this study is useful because it allows one to
examine the sensitivity of island widths to the local current
gradient. Figure 5«14 shows this relationship. The current
density dgradient effect 1is not unigue; different local
profiles can give somewhat different results, but figure 5-14
illustrates the trend that larger local current density
gradients give larger island widths. The other plasma
parameters were: aspect ratio=4.4, elongation=l.,d, <C@=1.0,
Cl=¢.9, C2=0.@, and C3=8.5. This result and the previous one
sﬁow that the current density profile within and around the
magnetic island is of the same importance, or perhaps more
important, than the gobal profile and should be seriously
considered.

Comparing the above conditions with experiment is
spectulative because both conditions demand highly detailed
information about a discharge, but some parallels may be

drawn:

1. The impurity neon injections in DIVA noted in the

previous section may alsc modify the g:adiedt of the
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current density profile near the g=2 surface and
cause a vadiation 1loss within the island itself,
Note that both a current density dip within an
island and an increased cqrrent density gardient at
the mode rational surface cause larger islands; thus
a very complicated series of current density
modifications involving both global and local
effects may be taking place in this set of

experiments. ({71]

The JIPP T~II1 Tokamak group has achieved low q edge
operation by a combination of gas puffing and a
second transformer current rise. By controlling the
rise time of the second plasma current pulse, its
penetration into the plasma can be limited to the
plasma edge regions; this provides a means of
controlling the current density profile. The rise
time of the pulse controls where the current is
induced and the gas puffing adds an electron power
loss term; thus by appropiate controls on both the
current pulse rise time and gas puffing the current
density gradient in the neighborhood of the mode
rational surface as well as the global current
density profile may be controlled, By careful
control, low g edge discharges have been obtained,

(7¢]
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5.4 Nonlinear Coupling of Magnetic Islands

The effect of two magnetic islands of different
helicity n numbers coupling through the background current
density profile is of great importance. When a magnetic
island exists, it modifies the background current profile and
in some cases may radically steepen the current density
gradients on either side of it and nonlinearly couple to and
destablize nearby islands. This type of behavior can be
illustrated by examining the interaction of the 3/2 and 2/1
magnetic islands. When the 3/2 island is present, the 2/1
island is found to be larger than it was without the 3/2
~ island; figures 5-~15a~e show the effect of both islands on
the background current profile, The width of the 3/2 island
is approximately the same as bgfore the existence of the 2/1
island, but its presence modifies the current density
gradient between the two 1islands and this effect further
destablizes the 2/1 island. As the current density peaking
within the 2/1 1island is increased, the combination of
current density gradient destablization and current density
peaking cause a large increase in the width of the 2/1 island
and a small reduction in the width of the 3/2 island. The
total region occupied by magnetic islands increases however.
The net result is that the two islands begin to c¢oalesce as
the coupling increases and the background equilibrium current

density profile shows a high degree of modification by the
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islands - a "ledge" begins to appear in the plasma middle
region. The location of the mode rational surfaces seem to
be important - the closer they are the greater the coupling
effect - however, because of the limited number of runs done
it was difficult to evaluate this topic. The plasma
parameters were: aspect ratio=4,0, elongation=1.d, C¢=l.0d,
Cl=0.9, C2=0.0, and C3=0.54. Unfortunately, the nonlinear
coupling can make convergence of the computer program
difficult and time consuming, so only a 1limited number of
runs could be done, The major problem is that the time spent

on a computer run grows rapidly as the number of islands

increase, Nonetheless the'noniinear coupling demonstrated by
this series of runs shows the importance of the phenomehon
and it is inte:eéting to note that one scenario for the major
disruption is the interaction of the 3/2 and 2/1 islands
which may overlap and destroy a major portion of the plasma
confinement volume., (16,67) Another importance effect is the
interaction of the 1/1 and 2/1 islands, but since the
simulation of the 1/1 island requires inertial terms, the
interaction could not be modelled, 1In general it is very
difficult to model the time dependent behavior of two islands
overlapping and the resulting plasma disruption; however, the
quasilinear model can demonstrate the nature of this
instability. One interesting topic that <c¢ould not be
adressed was the combination of the following three islands:

3/2, 5/3, and 2/1, S8ince the 5/31 island is in between the
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/2 and 2/1 islands the possiblity exists that it may be
destablized by the presence of the 3/2 and 2/1 islands and
make a further contribution to the chaos of island overlaping
and destablization,

Even though the actual time dependence of the current
density c¢oupling of magnetic islands can not be represented
with this model, useful gualitative explanations of

experiments can be shown:

1. Observed disruptions in the PDX  Tokamak are
preceeded by the growth of a 2/1 island which is
often preceeded by an internal disruption; this may
be as a result of both linear and nonlinear coupling
of the 2/1 island to the 1/1 island which is beyond

the scope of this thesis. [69]

2, In the J1PP T-II1 Tokamak disruptions of a low q edge
value plasma are observed to be preceeded by an

abrupt growth of the 3/2 and 2/1 modes, [70]

3. The low gq edge discharges in DIVA disrupt with the
sudden growth of a 2/1 mode; other modes exist, but
disruption only occurs with the presence of a 2/1

mode, [71]

o . —
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4. When a low g edge discharge with g edge less than 2
and when impurity control to stablize the 2/1 kink
mode is obtained, no major disruptions are observed

in the DIVA Tokamak, [71]

5. Soft disruptions in the DITE Tokamak are caused by
the interaction and overlap of the 1/1 and 2/1

island, [73]

5.5 Metric Element Mixing

Since eguation {2-21) is a relationship involving both
the contravarient and covariant vector components one would
expect harmonic mixing when converting from one form to
another, Equations (2-22)-(2-24) detail this conversion.

The analysis of these equations proceeds along the following

line: Starting with:

B}\ = ﬂ(e>§_m‘5:nn MLF«D(JW\Q—nEsz | (5-6)

where 8(9> represents a metric element term. Rewritting

using the decomposed form of ‘E5>( gives

%mem vk [i(nngmc’a] = 3(9>EMB;“%E _(rm@-n@] (5-7)
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Since 23 is not a function of i; one may write for each

n :

%&mn%[mﬂ@]: %(9)% Bimﬂ/[fzﬁmgj (5-8)

or

27 |
E&mn:é;l-,? 3(9>%,Bhn'n%f”ﬁ(m:m>@‘ﬁcjg (5-9)

The metric elements provide c¢ross harmonic driving
terms and modes with the same n number may influence each
other through this coupling., The principle coupling elements
are toroidicity and plasma elongation both of which are
expected to be present in future Tokamaks., Figure 5~17 shows
the 2/1 magnetic island width vs inverse aspect ratio and
figure 5-21 shows the 2/1 magnetic island width vs
elongation. In both of these graphs the g on axis remained
constant, C¢=1.4, Cl=0,5, C2=¢.0, C3=1,25, gamma=9.8, and
both consider the 2/1 mode., With the method of equilibrium
computation used (see chapter 1Il) it is not possible to keep
q edge constant; it increases both with a decrease in aspect
ratio and an increase in elongation, and thus the family of

equilibria generated in the aspect ratio study differs
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somewhat in the magnetic field configuration as well as the
aspect ratio. See figures 5-16, 5-18, 5-206, and 5-~22. The
effects of toroidicity and elongation on the magnetic island
width depend on the position of the magnetic island to some
degree, being somewhat greater for islands nearer the edgé of
the plasma where the metric elements have the strongest
dependance on theta; however, again this is profile
dependent. The effect of toroidicity is to reduce the
saturated magnetic island width as the aspect ratio
decreases; this is qualitatively consistant with reference
(64]. As the aspect ratio was decreased, the mode rational
surface shifﬁed {see figure 5-18) into the plasma and the 2/1
perturbation developed a decaying tail similar to the center
peaked current case. Since the form of the current density
profile changed as the aspect ratio changed, it being
dependent upon the specific equilibrium solution, there may
be some question as to whether the toroidicity causes the
current density profile to <c¢hange which then causes the
reduciion in magnetic island width, rather than a direct
connection between the island width and toroidicity. Plasma
elongation also appears to reduce the saturated magnetic
island width, but care should be taken when interpretating
these results since the equilibrium current density profile
changes radically with large changés in plasma elongation.
As the elongation increases the mode rational surface also

shifts inward as in the toroidal case (see figure 5-22), but
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to a lesser extent. With either current peaking,
toroidicity, or elongation, a reduction in the magnetic
island width has generally been associated with the inward
shift of the mode rational surface, See figure 5=-19 for the
aspect ratio case and figure 5-23 for the «¢longation case.
Since this inward shift of the mode rational surface cannot
be separated from the equilibrium computations used in this
model, a further examination of elongation and toreoidicity
with a global plasma transport model would be a useful

extension of this work.

5.6 Mode Mixing

Mode mixing occurs when perturbations ¢f the same n
number interact through metric element coupling to enhance or
suppress each other and thus modify the magnétic island
width., In the cases studied the effect of the 2/1 island on
the 3/1 island was examined and it was found that the 2/1
island could drive a 3/1 island in equilibria that could not
otherwise support a 3/1 island provided that there was a
large amount of plasma elongation present. With only small
amounts of elongation no effects could be detected; even with
large amounts of elongation the 3/1 island width was only
about one percent of the minor radius; the 2/1 magnetic

island remained essentially the same. See figqures 5-24a-e.
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In this case the plasma parameters were: aspect ratio=4.0,
elongation=2.06, <C@=1.8, Cl=0.0, <C2=0.8, and C3=98.0. The
aspect ratio had only a minor effect on the mode mixing.

‘ Unlike some work done using the reduced MHD equations,
the 1/1 mode could not be generated (because in general it
oscillates in time and does not saturate) and thus what may
be the major harmonic driving term could not be modelled,
[62,73] Another difference is that the magnetic 1island is
allowed to modify the background current density profile in
the model of this thesis, while the background resistively
remained only a function of the radial coordinate'rather than
a function of the magnetic surfaces in the work of many of

"the references; this may result in differences in the
functional form of the pefturbed radial magnetic field
components., [65,66] The 3/l island has been observed to play
a roll in a limited number of disruptions in the PDX Tokamak;
however, the 2/l island is considered to be the most active
mode in disruptions., [69]) Other tokamak groups have observed

a large number of MHD modes; however, these higher m number

modes do not appear to cause any major problems,

(16,70,71,73,75]

5.7 Summary.

The major parameter effecting the magnetic island
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width is the local current density gradient and the current
profile within the magnetic island, Modification of the
background cu:rent profile by the presence of multiple
islands can and does destablize otherwise stable islands; it
may be the major coupling effect. Toroidicity and elongation
are shown to modestly reduce the saturated magnetic island
width and a general trend of smaller magnetic island width
with the inward shift of the mode rational surface is noted.
Mode mixing coupling has been shown to exist, but its effect

has been very modest. Possibily the inclusion of the 1/1

mode, which this work cannot address, would show a greater

influence. Qverall, good gualitative  agreement with

experiment has been shown,

e T TR TR
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CHAPTER VI

Conclusions

The gquasilnear model has proven to be wuseful in the
computation of saturated magnetic island widths. Unlike the
reduced MHD equations, the gquaslinear equations consider only
the asymtotic time limit and thus deo not follow the evolution
of the equilibrium as a function of time. They can, however,
handle cases of .greater geometric complexity within a
reasonable computing time limit and.this factor along with a
somewhat simplier equation set is their source of attraction.
One major limitation is the inability of the equations to
model tearing modes that oscillate in time such as the
m=1l,n=]1 mode. 1In order to include the modes that oscillate
in time it is necessary to consider the inertial terms of the
MHD equations, such as the mass density and velocity, with
the consequence of greater complexity. [17,18,65,66]

In the course of the derivation o¢f the quasilinear
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equations it has been shown that the magnetic 1island
influences the background current density profile and, using
a simple approximation for the pressure and current density
within a magnetic island, the effect of the magnetic 1island
on the background equilibrium has been quantified and a self
consistant set of equations formed., This set of equations
has been solved for a varity of parameters, ‘including
torodicity, plasma elongation, equilibrium current density
profile, and current density profile within a magnetic
island., The new results of greatest interest are the effects
of the current density gradient local to the magnetic island
and the current density profile within a magnetic 1island
itself,

The large aspect ratio limit has been used to provide
a qualitative analysis of the structure of the radial
magnetic field perturbation and this analysis points to the
region on the inner side of the magnetic island as important
to the existence of the radial perturbation, It is 1in ihis
region that the solution is forced to "bend" or turn to meet
the boundary conditions at the edge of the plasma and this
effect is found to depend on the local gradient of the
cufrent density. It has been demonstrated that the magnetic
jsland width incréases as the local current gradient at the
mode rational surfaces increases,

The most unexpected effect is the fact that peaking

the current density profile within a magnetic island can
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cause a large increase in the width of a magnetic island and
can also destablize otherwise stable magnetic islands. This
result enables speculation on a possible means of magnetic
island contrel - devise some means to locally heat or cool
the plasma so that the local current density profiles can be
modified to suppress the existence of the magnetic islands,
Local heating by RF, or perhaps, beams could be used, but
control may be difficult - this is an open issue.

The nonlinear coupling of magnetic islands through the
background curﬁent density profile has been found to increase
the saturated width of magnetic islands when the current
density gradient at the inner edge of the island is increased
by the presence of another magnetic island. This effect is
independent of the mode numbers of the islands involved and
thus all the islands within a plasma will be coupled to a
degree which depends on the relative spacing between the
islands and the width of the islands themselves, Linear
coupling of magnetic islands with the same n number occures
when toreoidicity and/or elongation is present. This linear
coupling can cause normally stable islands to be driven
unstable by their unstable neighbors and tkﬁs increase the
amount of the plasma that is occupied by magnetic islands.
In the work done, however, this was found to be a relatively
minor effect possibly because the 1/1 magnetic island could
not be included, When toroidicity and/or elongation 1is

increased in a plasma with only a single mode present, the
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saturated magnetic island width showed a small dectease. in
all the cases studied it was noted that, in general, the
magnetic island width decreased as the mode rational surface
drifted inward pointing to low q edqe plasma as being the
most unstable to tearing modes,

Since the saturated magnetic island width and even its
existence depends to a large extent on the local current
density profile, knowledge of the global current density

profile may not be sufficient to predict magnetic island

behavior. 1In cases such as these the predicition of the

saturated magnetic island width may, by necessity, take on a

probabalistic nature unless the appropiate current profiles

can be externally contrclled, perhaps by operation in-

restructed regions of Tokamak discharge phase space.
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Figure 2-1. Magnetic Island Pressure Profile
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