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Summary 

A quasilinear perturbation analysis of the time 

independent MHD equations has lead to the formulation of a 

set of equations suitable for the study of saturated tearing 

modes. The quasilinear analysis allows the effects of the 

magnetic island on the background equilibrium to be modelled 

in a self consistant way in a toroidal plasma of arbitrary 

aspect ratio, beta, and cross section. 

The most important finding of this study is the effect 

of the current density profile within a magnetic island vs 

the width of a magnetic island. "Peaking" or "anti-peaking" 

the current density profile within a magnetic island can 

cause large differences in the saturated magnetic island 

width; furthermore the width of the magnetic island is found 

to be sensitive to this parameter. 

Modification of the background current density profile 

by the presence of multiple islands can and does cause 

nonlinear destablization of magnetic islands; also 

toroidicity and elongation are shown to have a linear 

coupling effect that can also destabilize otherwise stable 

magnetic islands. By themselves, toroidicity and elongation 

are shown to modestly reduce the saturated magnetic island 

width and a general trend of smaller magnetic island width 

with the inward shift of the mode rational surface is noted. 
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CHAPTER I 

Introduction 

Magnetic islands belong to a class of perturbations 

known as internal modes which are believed to exist in 

controlled fusion devices such as tokamaks and stellarators. 

Internal modes differ from other types of perturbations in 

that their major effects are in the internal rather than the 

boundary or edge regions of the plasma. These effects may 

manifest themselves as topological changes to the plasma 

proper and may radically alter the plasma confinement and its 

global stability. The major impact of magnetic islands is to 

alter the internal magnetic field configuration which: 

1. causes enhanced transport of plasma particles and 

energy due to the destruction of closed magnetic 

surfaces; 
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2. produces Mirnov oscilations by the torodial rotation 

of the saturated instability (Tearing mode); 

3. causes, in the most pathological cases, the major 

disruption when two tearing modes of different 

helicity overlap. 

Magnetic islands are resonance phenomena - that is, a 

relatively small perturbation can have its effect enhanced by 

resonating, or strongly interacting in very specific regions 

of the plasma. Specifically, these regions are in the 

neighborhood of closed magnetic field lines or rational (A 

closed magnetic field line is a magnetic field line that 

closes on itself after traversing around the torus an integer 

number of times.) [1-12] 

Spontaneously growing perturbations which cause 

magnetic islands are known as tearing modes, since they cause 

the magnetic field lines to "tear"' or break and reconnect to 

form a new and different magnetic configuration. This thesis 

will be concerned with spontaneously growing magnetic 

perturbations and will concentrate on the interaction between 

the magnetic perturbations and the current density profile 

responsible for the existence of these perturbations. 

Magnetic islands can also be induced by externally applied 

nonaxisymmetric magnetic perturbations and by other related 

instabilities, but these other mechanisms are beyond the 

scope of this thesis. 
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Magnetic islands are major topological deviations from 

the simple nested flux surface model for MHD equilibrium. 

[1,2,40] Rather than the magnetic surfaces being composed of 

concentric tori as shown in figure 1-1, an equilibrium v/ith 

magnetic islands has helically distorted cylinders within the 

simply nested tori as well. See figure 1-2. The nucleus of 

each magnetic island is a closed magnetic field line which 

supports a resonant perturbation. Unlike other types of 

magnetic perturbations, the tearing mode is capable of large 

scale effects on the plasma even though the amplitude of the 

mode itself is many times smaller than the other equlibrium 

quanities. It is the fact that the background equlibrium can 

be and is effected by the tearing mode that generates the 

difficulty and the interest in studying the phenomenon. 

[1,12,13,14,15] 

The two important parameters that characterize an 

island are its helicity number and its width. The helicity 

numbers, which are the m and n numbers (i.e. 2/1,3/1,etc.) 

, indicate the island location and with what magnetic surface 

it interacts with. The relationship between the m and n 

numbers is 

nq - m = 0 (1-1) 

where q is defined as the limit of the ratio of the number of 
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turns a magnetic field line makes as it travels the long way 

around the toriod divided by the number of turns it makes as 

it travels the short way around. The periodicity in the 

polodial angle is m, while n is the periodicity in the 

torodial angle, 

The width of the island is defined as the maximum 

radial width across the island region. It is approximately 

^w= y FBXV 

n 6 ° ^ 

y £ 
(2-2) 

where all quanties are evaluated at the mode rational 

surface. The perturbed radial field is O m r [ and £5 is 

the poloidial field. This formula has been tested in various 

computer experiments with the perturbed amplitude being 

several percent of the toroidal field and found to be in good 

agreement, [11,12] 

Magnetic islands are observed to rotate in the 

toroidal direction, in the direction of the electron drift 

resulting from the plasma current. This thesis will not 

address this rotation, but rather will assume its existence 

as it does not enter into the MHD analysis. [19] 

The most serious problem speculated to be caused by 

magnetic islands is the major disruption. 

[16,17,18 ,-19,71,73] Major disruptions can be classified in 

two ways: A hard disruption in which the entire plasma is 
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dumped out on a microsecond to hundreds of microseconds time 

scale and a soft disruption in which the plasma confinement 

decreases suddenly, but not to a point from which recovery is 

impossible. [16,21,73] The mechanism for the hard disruption 

is thought to be the overlap of two islands which generat€?s a 

large stochastic magnetic region within the plasma volume 

destroying the plasma confinement. The soft disruption is a 

more benign effect, in which an island may interact with the 

plasma interior and the wall limiter providing a transport 

short circuit, which may or may not be fatal to the 

discharge. [16,17,18-28,73] 

Magnetic islands, when uncoupled or only loosely 

coupled to each other, grow on a time scale of milliseconds. 

This growth rate is too slow to explain the sudden nature of 

the hard disruption which happens on a microsecond time 

scale. If, however, two magnetic islands of different 

helicity were to grow and overlap, the resulting region 

engulfed by the islands may explosively grow into a 

stochastic magnetic region of poor confinement, and if the 

initial islands were large enough, a large percentage of the 

plasma confinement would be destroyed thus terminating the 

discharge. The most probable causes for the major or "hard" 

disruption are either the overlapping of the m=2, n=l island 

with the m=3, n=2 island and the lack of confinement due to 

the large stochastic region thus generated, or a combination 

effect in a high density plasma where the 2/1 island overlaps 
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both the 3/2 island and the limiter. This occurance destroys 

the plasma confinement by introducing a large thermal loss 

and an influx of impurities to the plasma interior. The soft 

disruption may be the result of a single island connecting 

the internal plasma volume with the limiter. This will 

transfer large quanties of plasma energy out of the main 

plasma volume, but if the island diappears soon enough 

recovery may be possible. The 2/1 island seems to be the 

dominant island in this case. [16,73] 

Unlike disruptions, Mirnov oscillations are a 

relativity mild instability. [2,3,29,30,31] They manifest 

themselves as small oscillating helicial perturbations in the 

poloidal magnetic field. These perturbations usually settle 

down to a saturated level as the discharge becomes 

estabilished and have an oscillation frequency in the 

neighborhood of 10kHz. This oscillation is believed to be 

caused by the toroidal rotation of the tearing modes at the 

electron diamagnetic drift velocity. As the Mirnov 

oscillations increase in amplitude the energy confinement 

time of the plasma drops and the sudden reduction in the 

rotation rate of a tearing mode may be a precurser to a major 

disruption. 

The other major concern is the effect of magnetic 

islands on transport. Since the islands have a width, they 

provide a transport short circuit which may be responsible 

for enhanced transport. [1,2,3] One example of this is the 
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flattening of the temperature and the d€»nsity profiles in the 

plasma interior caused by sawtooth oscillations. These 

oscillations are caused by a low mode number magnetic island 

(n=l,m=l) which periodicly dumps plasma particles out of the 

center of the plasma and into neighboring regions. To 

analyze this low mode number island requires the inclusion of 

inertial terms which will not be addressed by this thesis. 

[3,29,30,31,62] Another example is the above mentioned 

connection between the plasma interior and edge regions by a 

2/1 magnetic island which can cause a large thermal loss 

under some conditions, especially with contact with the 

limiter. [16,73] The islands may also enhance particle loss 

of fast and trapped particles. The situtation becomes even 

more complex when islands of different helicity overlap and 

produce a stochastic magnetic field region. This will 

presumably result in a region with no confinement since the 

particles will traverse this region on a time scale of the 

thermal velocities, rather than the diffusion time scale. 

[3,11,18] Electrons may be effected to a much greater degree 

than ions, since they have a much smaller gyro radius which 

allows them to respond to spatially finer scale 

perturbations. [32] 

The analytic study of tearing mod€2S began with a plane 

slab analysis of a plasma. [11,39,40] The plane slab model 

examined the singular nature of the problem near the mode 

rational surface and the resulting boundary layer phenomena. 
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From this analysis growth rates were estimated by using only 

the discontinuity of the global solution at the resonant 

surface rather than by integrating the boundary layer 

equations. This form of analysis is know as the / \ 

analysis and it provided a convenient way to examine an 

equlibrium for stability to tearing modes and to estimate 

their saturated widths; unfortunately the plane slab model 

lacked the ability to model mode mixing and toroidal effects. 

In order to expand the range of phenomena that could be 

studied, the reduced MHD equations were developed. 

[11,18,40,42,62] These equations are the large aspect ratio, 

low beta limit of the ideal MHD equations with resistivity 

included, and these equations provided the model that has 

been of major interest in the study of tearing modes. 

Several different approaches have been applied to the study 

of tearing modes using the reduced MHD equations; they are: 

1. a linearized model which contains a singularity at 

A / 
the rational surface and relies on a £\> t v P e °f 

matching; 

2. a helical flux model which is limited to a two 

dimensional formulation, but requires less 

computational effort; 
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3. a nonlinear model in which the background is allowed 

to change as the perturbation develops, thus 

allowing the perturbation to effect the background; 

and 

4. a quasilinear model in which the background is 

modified to provide a solution to a linearized 

tearing mode equation. 

The helical flux model is the simplest of these models 

and has been extensively studied. [4 ,13 ,18 ,43 ,, 53] A simple 

analytic equlibrium with tearing modes has also been found 

for a helical flux function. [45] The base model commonly 

used in the literature for the study of the helical flux 

function centers around a /\* type of analysis as in the 

slab; however saturation effects have been included by using 

a quaslinear method in which the perturbation is allowed to 

feedback and influence the functional form for the current; 

that is, the current profile is modified by the presence of 

an island. [13] These models have shown that certain current 

profiles exhibit varying degrees of stability against the 

formation of tearing modes. The saturation of the resulting 

island is due to the island sampling different portions of 

the backgroud equlibrium. The important point made by this 

quaslinear analysis is that a quaslinear or fully nonlinear 

model is very useful to compute the saturated island width 
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since the island width is strongly effected by the current 

functional form near the island. 

The helical flux model, while useful for the study of 

one harmonic, cannot be used to examine the effects of 

islands of different helicity on the plasma. It is therefore 

necessary to use a less stringent form of the reduced MHD 

equations to address this area. Of particular interest is 

how the islands effect each other, both in terms of growth 

rate and saturation width* The dynamics of two islands 

overlapping and the resulting effect on the plasma is another 

phenomenon which generates research interest as well. 

Solving the reduced MHD equations in cylindrical 

geometry, with a three dimensional equation set rather than a 

two dimensional set, allows one to observe the coupling 

between islands and the resultant effect on the current 

profile. It has been observed that the 2/1 tearing mode can 

destablize the 3/2 mode resulting in large increases in the 

growth rate of the 3/2 mode and the resutant increase in the 

3/2 island width. This destablizing effect also extends to 

other islands as well; one effect of this destablization is 

to increase the total plasma region occupied by these 

islands. In fact, if a suitably large number of islands is 

included, the entire plasma region may be destroyed, from the 

center to the limiter. [17,18,46,47] 

It is generally found that the growth rate of the 

islands transforms from an exponential growth rate to an 
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algebraic growth rate as the islands grow in width. [50] The 

nonlinear coupling may change this result in some cases, 

resulting in the sudden growth of a favored mode at a much* 

accelerated rate. This may explain the very sudden nature of 

the major disruption. [17,18,46,76] 

Magnetic islands cause sharp deformations in the 

toroidal current profile near the island x points and this 

deformation of current becomes even more severe as the number 

of islands increase. This in fact may have a major coupling 

effect between islands, since the saturated width of the 

islands are sensitive to the current density gradient near 

the island edge, [13,46,48,76] This severe current 

deformation eventually limits the computer runs, as numeric 

problems soon develop. [17,18,46] Again this points to the 

need for a nonlinear or quasilinear approach to the solution. 

Toroidal coupling has a profound effect upon the 

magnetic islands; it introduces a linear coupling effect 

between neighboring islands. This coupling effect causes 

normally stable islands to be destabilized by their unstable 

neighbor. This may cause both islands to grow and is 

responsible for the generation of satellite islands. Since 

these satellite islands manifest themselves as an increase in 

the stochastic magnetic field region, it is clear that this 

effect is important even in the large aspect ratio 

approximation. [17,46,47] Mathematically this comes about 

from the off diagonal terms of the metric tensor relating the 
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contravariant and covariant vector components of the 

equilibrium magnetic field. Unfortunately this effect is 

very difficult to handle for small aspect ratios and has been 

only formulated in the time independent case. [14] 

It is clear that both the nonlinear mode coupling and 

the geometric mode coupling (toroidal) greatly effect the 

growth and saturation of magnetic islands. It is this nature 

of tearing modes that puts the stringent conditions on the 

equations used to study magnetic islands; apparently higher 

order terms (toroidal geometry, current profile 

modifications) must be included to form a reasonable 

approximation to the physical case. 

The set of equations this thesis will concentrate on 

are the quasilinear equations. In contrast to the reduced 

MHD equations which generally follow the time evolution of 

the fields, the quaslinear equations do not follow the time 

evolution of the fields, but concentrate on the effect of the 

magnetic island on the background equilibrium. They can, 

however, handle more complex geometric situations and are 

useful to find saturated tearing modes in these more physical 

situations. [8,12,13,14,15,43,48] 

The object of this thesis is to apply the quasilinear 

analysis to cases involving toroidal geometry by using the 

contravariant and covariant representation of the fields and 

thus form a system of equations that can be solved without 

resorting to an aspect ratio approximation. [14] The effect 
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of the current profile within a magnetic island will be 

examined along with the effects of plasma elongation. It 

will be shown that toroidicity causes a small reduction in 

the width of the magnetic islands and that coupling of 

magnetic islands with the same n numbers occurs as predicted. 

The major new finding, however, is that the current density 

functional form within the magnetic island is one of the most 

important factors in determining the saturated width of a 

magnetic island. Since the modelling of a specific current 

density profile within a magnetic island depends on the local 

tranport properties of the plasma, which are beyond the scope 

of this thesis, a parameter study was undertakened to study 

the saturated magnetic island width that occurred with 

different levels of current peaking within an island. 

The major limit to the accuracy of this model is its 

confinement to modes that saturate; thus it cannot examine 

the effect of the m=l, n=l mode which, in general, does not 

saturate. This limitation may be most severe when studying 

toroidal coupling as the m=l, n=l island may be the most 

important driving term; it may also play a part in the soft 

disruptions. [62,73] Other limits include the computer 

resources available which, at the present time, limit this 

author to the examination of only two simultaneous modes. 

Convergence problems may require careful attention to the 

initial guesses used in the iteration schemes, both in the 

equilibrium subroutines and the tearing mode subroutines. 



14 

Overall, however, the computer code has worked well, 

effectively used available resources, and provided much 

useful insight. 
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CHAPTER II 

The Quasilinear Equations 

2,1 Derivation 

To derive the set of ordinary differential equations 

that form the basis of the quasilinear model one starts with 

the static scalar pressure plasma equilibrium force balance 

equations: 

T x B = VP (2-1) 

x/,y= V * B (2-2) 

v- d- o (2-3) 
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where J is the current density , \D is the magnetic 

field, and P is the pressure. [12,14] Note that the velocity 

terms have been omitted; they are not necessary for this 

model since this model considers only the saturated magnetic 

island case. 

The derivation requires a particular form for the 

Jacobian of the coordinate system for reasons to be described 

later. Anticipating this, the form for the two dimensional 

background equilibrium is written as: 

"§=§60&Tv) (v^xvv) + § (v) B°*(y) ( w x v©) (2-4) 

f T= < 9 ( V > T M ( ^ X W ) + $(v)T(h (vv x ve) 

£ryO = w- (vex 7^) 

(2-5) 

(2-6) 

where ft(V/ is the Jacobian of the coordinate system and 

Ooe r^of -ro© -r-ot, 

\j t O ' " ' 0 a r e the contravariant components 

of the vector field. See Chapter III for details of the 

coordinate system transformations. 

In this generalized system the force balance equation 

reduces to: 

3^)[T(v)B (v)-T(v)B ( W - y ^ (2"7) 
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The derivation of the quasilinear equations is a 

perturbation analysis of (2-1) , (2-2) , and (2-3) usiiig the 

perturbed terms in both their contravariant and covariant 

vector forms. [41] These forms are: 

B^ B1^ (vexvf) + B^fafxvv) ± B'^fw*ve) <2-8> 

# - S^W + BeV© + &? Vf 

T ^ = T ^ ^ e x 7 f ) + T^(7^>cw)^T (Wxve 

( 2 - 9 ) 

( 2 - 1 0 ) 

Throughout this thesis a superscript "1" will indicate a 

perturbed term and a superscript "0" will indicate an 

equilibrium term. All the perturbed variables are written as 

a Fourier series in harmonics of Q and 

When using "J"- "J" +* ~T and B - B + 13 in (2-1) to (2-3) 

one finds that the divergence equation is most easily written 

in terms of the contravariant components of o : 

&h'8$Z) = ^t-^^ Jv 
X.B 

w.n 
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However Ampere's law is most easily written in terms of the 

"£* covariant components of Q 

Uo^w\c\ ~ ' ( i ™ B^wnn ^ n B>e rm n) 

/*/•$) Jpftn - ^ D / n n n 7 / ^ r w n 

( 2 - 1 3 ) 

( 2 - 1 4 ) 

( 2 - 1 5 ) 

The contravariant components of the current density 

and magnetic field are used to write the perturbed force 

balance equations which, when higher order terms are 

discarded, are: 

-T—4-V O o ^ o^ iV . s. 

-Jaonfyo'+O § D ^ o = mm p w n 

4V oe _-c?© i v • 1 

J ^ n g D - J $ D^n = -mpn*n 

ir.aB^^gr.nB^ 
-T°? OR" = i p 1 

^rmn O °nt\r\ ^^/ IftrsY) 

(2-16) 

(2-17) 

(2-18) 

Also from the above equations, 
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Equation (2-12) is used in (2-15) to obtain 

£Y -yOf 

g -JW^ .^i.n0l 
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(2-19) 

(2-20) 

(2-20) is used with (2-18), (2-14), (2-15) to derive the 

tearing mode equation: 

n 6°-m 8oe)bj7 $»/wi - irrr\ &ymr) 

=A (nj°?mr«)s e t - ,3 e;v„ B^/g (2-21) 

i I </ a'f + rm/j>pm-grfj~8 

Equations (2-21) and (2-12) form a coupled pair of ordinary 

differential equations which can be solved for """/ Jy Ofjf)f) and 
4 1 

^£m>tf • Mvn 0 c a n b e eliminated by using (2-19) in (2-21). 

Ovj^^t Omn , and i-Sfmr) c a n D e written in terms of the other 

known quantities by relating the contravariant and covariant 

components in (2-8) and (2-9) as follows: 
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B«__e?_ _ej(ve-vi) _B\(vyv\ 
(vv-vv) (vv-vv) (w-vv) 

n (y (vv- w) 

(2-23) 

5if= 5 > ^ , R^/( yfa™)^)^ 
(W"7V) I (VV-VV) 

+B?h^~^ 
2. 

7 

Where (2-22), (2-23), and (2-24) follow from the appropiate 

combinations of 3'W f 5*7© f and 3'7^ . 
Thus by using (2-19), (2-20), (2-22), (2-23), and 

(2-24), (2-21) may be solved. Note that if >j were not a 
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function of v only, the equations would not seperate; this is 

why a Hamada like coordinate system is required; also note 

that equations (2-22)-(2-24) must be Fourier analysed to 

a^ R 1 6 > p*r 
determine the components of /-̂ ^̂  , tDfmn t and £̂ 07in . 

The method of solution is as follows: Given ""I >)D yrnO 

o * O0- a l v 

and &ennfl find De,trr\r) using (2-20). Next use D r m O ' 

eLmr\ , and 6&/7n^ in (2-22) - (2-24) to find 3vmf) > 

Ortrsf) ' a n d 6> hn 0 • Finally use these results in (2-21) 

and (2-12) to find ^- &*mh a n d 4~ ('^ #w/))- *ote that 

in general Fourier analysis of (2-22)- (2-24) produces a large 

number of harmonics. Only the resonant harmonics are used as 

the nonresonant terms have negligible effect on the island 

structure. 

At this point it must be stressed that the above 

equations, having been derived in the time independance case, 

apply only to saturated magnetic islands where the neglected 

velocity components and time derivatives are unimportant. 

This set of equations cannot be used to compute magnetic 

perturbations that oscillate in time such as the m=l, n=l 

tearing mode. They are, nonetheless, useful since many modes 

of interest saturate and these equations, unlike others, can 

handle toroidal geometry and plasma shaping. In order to 

include the modes that oscillate in time it is necessary to 

consider the inertial terms of the MHD equations, such as the 

mass density and velocity, with the consequence of greater 

complexity. [17,18,65,66] 
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If an abritary equlibrium is used in (2-21), (2-21) 

will be singular at the mode rational surface where 

lr\ )j3 --{Jfi$ )=0r i° fact this singularity does not exist 

because the magnetic island modifies the equilibrium in the 

vicinity of the mode rational surface to support a resonant 

perturbation as will be demostrated in the following 

sections. 

2.2 Computational Form for the Tearing Mode Equation 

In order to solve (2-21) it is necessary to use (2-19) 

and the results of Chapter III to put (2-21) into a form that 

uses variables computed by the equilibrium subroutines. 

Using 

(2 -25) dR-didf.- 0,'P' 
dv ~ civ JV " r r 

<f = B ° y & " (2-26) 

dL- HIL^IP'F' 
o/v ~ dV d^~ 

(2-21) can be reformulated as 

(2-27) 

IV ,, ' r'/ 

£sL = "».e£mn +F'B e>t -!& e™ ** F 

(Of-frr)' 
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(2-28) 

This form is useful because F'' is both a function to be 

given to the equilibrium subroutines and a function, as 

detailed below, to be modified by the presence of the 

magnetic island. 

2.3 The Magnetic Island Structure 

To examine the effect of magnetic: islands upon the 

topology of the plasma confinement consider the equation for 

magnetic surfaces 

B:7f = 0 (2"29) 

where B is the magnetic field and f is the surface mapped 

out by the magnetic field lines. While this equation, in 

conjunction with the MHD equations, may have many solutions, 

the ones of principle interest form a set of simply nested 

flux surfaces. [1] 
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If one departs from the simply nested flux surface 

model f may be forced to take on a very complicated form. 

The problem at hand is: given a magnetic island, find the 

simplest form that f can take on consistent with a physical 

interpretation. 

To address this problem let 

£?- g6°9(v^vv) +$b°*(vvwb)i-$ 6lV(70x^) <2-30' 

where 

Q is the polodial angle, 

^ is the toroidial angle, 

\/ is the radial coordinate, and 

Q is the jacobian. 

0> » (D a r e t h e background equilibrium and O is 

the perturbed radial field (first order correction) of the 

form 

The perturbations to the toroidal and poloidal field 

components have been neglected (and thus the divergence of B 

is nonzero) since they make no contribution to the following 

analysis. 
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Also let 

•f-"fC)+ ifirtn^ljfwQ-^i)] (2-31) 

where tmri is a perturbed term. Use (2-30) and (2-31) in 

(2-29), linearize, and keep only the first order terms to 

produce for a single harmonic (isolated island) 

(2-32) 

o 
Since only the behavior of f near V=Vmn is of interest 

(rational surface) replace V with Vmn+X where X=V-Vmn. 

Introduce <?- 6 / 6 ° and rewrite (2-32) as 

c/f -hn& 
o& 

-rm) c/v g±y 
ft)n ( 2 . 3 3 ) 

Or\f) 

Now, taking the limit of the right hand side of equation 

(2-33) and assuming that the left hand side is approximately 

constant across the island, the following second order 

equation is produced: 

££_ -nfB's4mn 
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o 
In this case one gets for f (with the condition that 

f ' ( 0 ) = 0 ) 

O&fi 
Jl J- ^%8° -t-rmn x

z 

23'" 
( 2 - 3 5 ) 

4»/ 
iTfin 

Where f0 is a constant. Thus near the island center f has a 

parabolic profile, which was to be expected since the 

magnetic island connects plasma on either side of the 

rational surface, forming an even function across the 

rational surface. 

Using (2-35) in (2-31) and taking only the real parts 

one gets for f: 

BoeA C f~rmn v/2. J • / 
(2-36) 

n j no. a fvmn z J • j 
T=r0~ * & X --rMfiQjm.p 

or\f\ 

where 6 — fTf) 9 - f\£-> 

To determine the halfwidth of the island set the value of f 

at the seperatrix equal to that at the edge of the islandl 

,X=o)= A % ; ^ 
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or u s i n g (2-36) 

' 2 * C / / „ / . , , / • J\]XL H= ll^bll^Ps-^P* 

where 

(p^ is the value of (p at the seperatrix 

Qu is the value of p at the half width 

The maximum excursion occurs when 

h- Vs. \ fa - *V2-
giving for the half width, 

/ / = Z ^miO I 1Z. 
0 9 / 

n er ̂  
with all quantities evaluted at V=Vmn 

(2-38) 

(2-39) 
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2.4 Magnetic Island Effects 

Given the results of the previous section, it is now 

possible to compute the structure of the pressure and current 

functions within the magnetic island and determine the 

axisymmetric coeficients to be used in the differential 

equation. 

Near the magnetic island the function 

( d ^ / w O ^ ^ ) ^ " o (2-40) 

passes through zero and equation (2-28) has an apparent 

singular point. This singularity is only apparent however, 

since the radial magnetic field at the mode rational surface 

modifies the background equilibrium in such a way as to 

eliminate the singularity. This nonlinear effect is a 

charateristic of magnetic islands and its effect will be 

examined in this section. 

From equation (2-36) a solution to in the 

vicinity of a magnetic island was shown to be of the form: 

-p- -P +pM\fi ^ 20?-+ -P0 ~h /CMTL/
 (2"41) 

where U=(V-Vmn)/H, <p= ftn9- f\£? , fQ i s a c o n s t a n t , and H i s 
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the half width. Since f is a surface mapped out by the 

magnetic field lines, to a first approximation the pressure 

and current density are constant on a surface of f-constant. 

In this case P would be a function of f; however, the 

o 
differential equations (to first order) require dp/dv which 

may be thought of as the first term in a Fourier expansion of 

o, 
P(f). To obtain an expression for dP/dv note that P(f) can 

be expanded in a Taylor.series around f as 

x?>m*Tp«*h±%&-" df ^r+j-jp AMY) 0 + " * (2"42) 

Note that this is also a Fourier expansion in phi so that 

ph) = § ?(*)§- (2-43) 

Zfr 
The higher order terms in the Fourier expansion are involved 

with the neglected terms in J X Q and with the 

higher harmonics in phi. This thesis will approximate the 

island structure by using only the first term in the 

expansion; greater accurary in the island structure could be 

obtained by considering the higher harmonics and nonlinear 

terms, but only at the expense of a much greater 

computational effort. 

Of special interest and the topic of this thesis is 
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the force free case where T X u " O . In that case, 

?= K(l)~t (2-44) 

and 

-•? 

¥ - «<• (2-4 5) 

The above analysis applied to (2-45) leads to 

jl 
30<? 

K 
2TT 

0^? 

( 2 - 4 6 ) 

Note that .f?(^) is required in the differential 

f \ *r c / 
equation also. 

A pressure (or current) profile in the neighborhood of 

a magnetic island may be locally approximated at the widest 

point of the island as: 

p0+ P/HCU-I) OOI 

P= <y fo^^?0'^(l-az) -1<UL4 1 

P0+ ^ ' H ( U + I ) U < " 1 <2-47> 
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where P=P(Vmn), P*=dp(Vmn)/dV, and alpha is the "peaking" in 

the island. In terms of f (2-47) becomes: 

R+ P/H 
L 

-f— ) _ 2 INNJEK 
^ / I ETXsiE 

P= 4 P 0 + ^ H [ I -
M-+1-1 

z. _J 

3TMS»t>t (2-48) 

^ 'H[ (±M-i n 
2 

OUTER 

See f igure 2 - 1 . 

The interest is in the average of (2-48) since this 

provides the coefficients to be used in the differential 

equation. Using y) — 2UJ 4- /<2^ the following form for 

the average pressure can be obtained: 



w =VZ (oCn '(\ -2dz)-^/z) 

P°-Hi- ZO_H 

Tr 
/ 2 [{u^r co^jj),zr- i ] cUr 
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(2-49) 

< ° 

+ 
2o< 
Tr \jL~ (u^-hCO<&UJ)~] OUL 

(M^\/z (W'(1-2a?-) -Vz) 

See figure 2-2 for the path of integration. 

The second integral can be computed and the first 

approximated to give: 

tr coa(7r-
u\< 1 

JP-p' | u l = l 
7 7 " r° 

(2-50) 

-Ve.$<*r'(\-z«?X'Vz. 
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An examination of equation (2-28) will show that 

unless the equilibrium magnetic fields have a special form 

the pressure cannot be peaked in a magnetic island or the 

singularity will still be present; this condition does not 

apply to the force free current which can be peaked in the 

magnetic island. Using (2-50) , very near the island center 

(2-28) becomes 

J 81 -irniB1
 +FQd^'l2'S3^ll£l (2-5i, 

~T7-u9mf] ~ ' uluvrr<\()^r$umt) p 
a H n ^ a ojfLGuc^ 

where F* has an expansion similar to P, but of the form; 

+m. /** (^0 - >f) |xK1 
\ CsQ (7T-^)) / (2-52) 

?'=C0 I x h l 

X ^ ( ^ - ^ ^ n j / H/yn <jL fcp#/*-

The transformation to q space is a practical matter brought 

about because F'' is a function of q in the equilibrium 
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computations and the final algorithm for the computation of 

the magnetic island widths iterates on the island width in q 

space. 

The method of solution of the tearing mode equation is 

to vary the widths of the islands until the boundary 

RiV 'c conditions on each of the P**** Ocan be satisfied. In the 

case of spontaneously growing tearing modes, which are the 

subject of this effort, the boundary conditions are: 

Brmn (J^f^J^ 0 (2-54) 

where it is assumed that there is a conducting wall at the 

edge of the plasma. In general it is possible for a nonzero 

magnetic perturbation to exist at the plasma edge because of 

magnetic field errors in the applied magnetic field and these 

nonzero boundary conditions may effect the stability of 

otherwise stable modes. [68] This thesis will consider only 

the conducTing wall case since a reasonably high speed 

rotation of a tearing mode will limit the magnetic 

penetration of the tearing mode in the wall to a very thin 

region. [77] 
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2.5 Asymptotic Approximation 

To determine the limit of (2-12) and (2-21) near the 

orgin, the following low beta, large aspect ratio limit is 

taken: 

^ ol\ ^ ft Vf7' A 

This produces from (2-12) 

&(-$&,)'-^e" Jv rrnf) 
(2 -55) 

and from (2-21) 

- '8 a™ 6 j^ll^rJ 
(2-56) 

Near v=0 (2-22) and (2-23) can be approximated as 

z^iv 
Ztl 

vrmn ~~ 
a*- _ ^ &<™n __ (2-57) 

(E 2 +1 ) 
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rmn 

(E^+^dermn 

2EZV2-
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(2-58) 

where E is the plasma elongation; see Chapter III for the 

details of the equilibrium. 

To find the limiting tearing mode equation use (2-55) , 

(2-57), and (2-58) in (2-56) along with X " ^ ^ - - I S) B ^ Q 

to get 

4 \, J (n6'UB«)[-^X.n + UD~ "Y" 
rtr>n 

_ m(EHl) y - of </ / ^ T 0 ^ 
— 1 9 -^-nmr> u -j—/——T~ 

2/f2- A ( a* 

(2-59) 

Near V=0 the Right hand side of (2-59) vanishes since 

the current density gradient near the orgin is small for the 

cases of interest and (2-59) takes on the final form 

ol ./ J_ 
v <Jv c/v X nmn 

rm 2 - T7~ 

V 
\rC\T) = 0 (2-60) 

IV 
The s o l u t i o n for LP/mr) i s thus 

^ l V m n - l 

6^n ^ V 
(2-61) 

file:///rC/T
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near the magnetic axis. [12,14] 

Using (2-55) and (2-61) it can be shown that 

-AXmf) = 6 i ermn (2-62) 

Equations (2-61) and (2-62) are used as starting values near 

the magnetic axis in the computational form of the tearing 

mode equations to avoid the regular singularity at the 

magnetic axis. 

2.6 Functional Behavior 

The large aspect ratio limit suitable for the circular 

cylinder approximation is obtained by setting E=l in equation 

(2-59) g i v i n g 

n 
<L I -r°9v ( 2 ' 6 3 ) 

- A -^ jv i e>* ; 
where the subscripts have been dropped. [12] By letting, 

- buy -Vi Z- (2-64) 

(2-63) may be written in standard 2nd order form [63]: 



38 

/ / OU -h 4(\j) LU -O (2-65) 

with 

/mB 3v(e* J , A / ^ 2 -
d ^M'?-^"> ^ 

A0^ P d 9 
One can assume with no loss of generality that O , (D , 

m, v, k are all greater than or equal to zero and that for 
I 2-' 

the center peaked current profiles of interest ^r. ( * J- ) 

is less than or equal to zero. Thus for q greater than the q 

at the rational surface, g(v) will always be negative; for q 

less than q at the rational surface and v small, g(v) will 

again be negative unless -7— /- * „- ) is large near the dV ( ~W*? 
magnetic axis (which is unlikely) since the second term in 

g(v) is large and negative. The only region in which g(v) 

may be positive is on the inner edge of the island where the 

first term in g(v) is positive and only if this term can 

overcome the second negative term. A crude qualitative 

solution to (2-63) may be formed by approximating g(v) as a 

constant in the three regions; negative from the magnetic 

axis to a region near the inner edge of the island, positive 

from the region near the inner edge of the island to the 

center of the island, and finally negative from the center of 

the island to the plasma edge. This crude method of analysis 

leads to a qualitative solution of (2-63); when g(v) is 
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negative w will be locally exponental; when positive w v/ill 

be locally oscillatory. If g(v) is always negative, which 

may be the case for large m numbers, the solution to (2-63) 

will have (roughly) an exponentally growing like solution 

which cannot be matched to the desired boundary conditions. 

If g(v) is sufficiently positive somewhere, the locally 

oscillatory solution will be strong enough to "turn" the 

solution around so that the boundary conditions can be 

matched. Note that the only region where this is possible is 

in the region just before the inner edge of the island; in 

other words the slope of the current profile on the inner 

edge of the island is a major factor in determining the 

solution to (2-63). [13,46,48] 

2.7 Summary 

The quasilinear equations are derived as a 

perturbation analysis of the ideal MHD equations and these 

equations contain an apparent singularity at the mode 

rational surface. This singularity is shown not to exist 

because of the effect the magnetic island has on the 

background equilibrium at the mode rational surface; 

furthermore a specific form for the current and pressure is 

shown to apply in the magnetic island region. The method of 

solution of the tearing mode equation is to vary the widths 
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of the magnetic islands until the boundary conditions on €»ach 

radial perturbation term can be satisfied. Finally a 

qualitative analysis of the tearing mode equation reveals 

that the current density gradient on the inner edge of the 

island is of importance since it is in this region that the 

solution is "bent" to accomodate the boundary conditions. 
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CHAPTER III 

Computational Equilibria 

3.1 Introduction 

Up to this point it has been assumed that the 

background equilibrium existed in a form suitable for use in 

the tearing mode equations. This section will outline the 

developement of two new numerical subroutines for the 

computation of a two dimensional MHD equilibrium.' These 

subroutines were developed by the author because the 

currently available routines did not use the functions F and 

F' in forms that could be utilized in the tearing mode 

calculations. These new subroutines are completely general 

and may be used outside the context of the tearing mode 

problem. The equilibrium for the tearing mode calculation is 
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obtained in a two step process; first, the equilibrium is 

obtained by taking moments of the Grad-Shafranov equation; 

then this equilibrium is converted to a Hamada coordinate 

system. 

3.2 Moment Equations 

Two FORTRAN computer programs were developed to 

compute a background MHD equilibrium for the tearing mode 

calculations. These two programs,, subroutine MHD and its 

companion subroutine, HAMEQ, are numerical algorithms for 

computing a two dimensional MHD equilibrium. MHD solves the 

inverse Grad-Shafranov equation by a variational moments 

method and HAMEQ converts this equilibrium to a Hamada 

coordinate system. MHD is unusual in that it requires the 

user to specify F'' rather that the more usual FF'. 

Furthermore F'1 may be a function of yr , q, or both. This 

provides a large degree of flexibility and is useful for the 

solution of problems that require functions that depend on 

the q of the flux surface rather the the flux function. 

MHD solves the inverse Grad-Shafranov equation: 

S-o-̂ Jtff «f ̂ (f)y+^,' -
along with 



££>- ^m 
and 

-FCV) /2vRQ-^2eK 

r(v) R / 

where: 
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( 3 - 2 ) 

( 3 - 3 ) 

ap'* FF'r(wfj) ( 3 - 4 ) 

%&e - ^9 +^& ( 3 - 5 ) 

%vo - / ^ ^ + 2VZ 9 
( 3 - 6 ) 

and 

^^/tfaZv-KZ^ &<-v '^v<-ej 
( 3 - 7 ) 
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1 means differentiation by the appropiate variable in the 

v 22L 

case of single variable functions and A AJ means g„/ 

except for the metric elements ( d@Q <3V9 C\72_ ). C ( w O )
 a n d 

"Tn^p) are user specified functions and C>( is a parameter 

to be determined. 

Equation (3-1) is known as the inverse Grad-Shafranov 

equation since one solves for R and Z as functions of V and 

Q rather then the other (more common) form of r(fijzL) • S e e 

figure 3-1 for the coordinate system. Note also that Q is 

not the geometric angle, but rather an angle that satisfies 

the variational properties oulined below,, 
R and Z are expanded in terms of V and Q as follows: 

N 

^^(vy^fi/)e^9-h^^0f)^(L^ < 3" 8> 

Z = E(v)Z_Pn(v)<^r\9 
n-i 

These expressions are used in developing a variational form 

which involves equation (3-1) and a set of weighing functions 

to determine an optimal set of expansion functions for E and 

the R's. The reader is assumed to be familiar with this 

proceedure and is referred to the references. [54,55] 

The result of this variational proceedure is the 

following set of integrals involving the inverse 

Grad-Shafranov equation and a set of weighting functions: 
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A 
(3-10) X ^ / ^ O 

where r 

<A> = J - \Kcl9 
and the weighting functions for Ro, Rnf Er and are 

respectively: 

" H = ( E M 2 n - MRn~) 14n^: M <3-i2, 

n 
~W •= ̂  £ M <3_L3) 

N4-i ^ _ ' ^n ' >2n 

~V\Zx, -W+2 

where 

(3-14) 

f L = R R0 *<*\ n 0 (3-15) 
'in 'A e 

K|Rn - R 2 e c ^ . n 9 

file:///Kcl9
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In the case of MHD the amplitude of the first harmonic 

has been chosen to be the coordinate V. This determines the 

remainder of the system and equations (3-1) to (3-14) produce 

the following matrix equation for the second derivatives of 

the expansion functions: 

<*/ / '* ' 4-im ' ' ' ^(y+t) 

a ru 

1 (Ml) 1 

r 

< 

4" 
o 

0 

k1 

B" if" 

_ 

c, 
Cz 

fis-hl 

N+Z 

(3-1.7) 

w i t h : 

<* /» = 

3 ^ 

V 
(3-18 



r7 

V») = C ^ * ' * /£ R 
3 ic-i 

Ks 
<L</n K© 

\ 
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(3-19) 

tf n(N+z) 
/"Wn 9̂9 

(3-20) 

<L ^/^Jn&eR 
nrm ~~ \ 

2 
^oeK / 

^T (ERQwm\9 -^c^^gy^ 
(3-21) 

and 

n ' - V y ^ v ^ - ^ ^ ^ ^ ^ L i c i v e Z) \/ -r -̂ -r— -Z- n '2. 

©e / ^ / 
V z ( RV ( ^ 9 ^ (3 -22) 

-f?v^>Rf^-Rv2 v^-©v 

/v / / 

k=i 
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The averaging over theta is done by a 10 point Gauss 

quadature routine and the integration is done using an Adams 

ODE method. More Gauss points do not appear to be useful in 

terms of accuracy with 4 or less harmonics. The Adams method 

appears to be the best choice for this problem since the 

matrix in equation (3-17) is time consuming to evaluate. 

[56,58] The only difficulty with (3-17) is that certain 

combinations of initial conditions can cause the determinate 

of the matrix to become singular within the region of 

integration. This may be the result of a separatrix creeping 

into the plasma region. The only practical way to deal with 

this situation is to select a different starting point for 

the nonlinear equation solver (detailed below) should 

problems arise. 

The boundary conditons are : 

Near V=0 

E= E^„_+t07y^ ( 3 - 2 4 » 

Rn = * W v ° (3"25) 

FF'- C (3-26) 



49 

2 ̂  #W/ (3-27) 
ZT 

(/•= ^ M2- ( 3 " 2 8 ) 

where 

.2. 

* = ̂ l ^ ^ ~ T 6 f ~ ) + - > (3-29) 

and E02,
 a n d Roz a r e 2 n d o r^ e r expansion terms. 

In actual practice setting Ro2> and Eo2>equal to zero 

makes little, if any difference in the solution; the code is 

not sensitive to their values. In MHD E02^is set equal to 

zero and RoZt is determined by solving (3-17) with the Rn's 

se(t equal to zero, Ro set equal to (3-23) , y^ set equal to 

\(3-28), F set equal to (3-27), and V equal to 1.0 percent of 

a, where a is the upper limit of th€» variable V. The 

approximate minor Radius of the plasma is a if the higher 

harmonics are small. 

At V=a 

R0- Ra. 

i 
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Rn- Z n*~ 
(3-32) 

P = 0 (3-33) 

Ra, Ea, Rna, Cma, qma, and a are given boundary 

conditions and Rma, Ema, Rnma, and alpha are to be 

determined. Ra is the major radius, Ea is the elongation at 

the plasma boundary, Rna's are the amplitudes of the 

harmonics at the plasma boundary, Cma is a measure of the 

toroidal current at the magnetic axis ( /^~TO(o) = 

R UOP(G) ~J"£m>a- ) ' q m a *s t h e q v a l u e a t t n e magnetic axis, 

and a is the upper limit of V. 

This set of equations is solved by using a shooting 

and matching technique. [56] The equations are first 

integrated from V=0 to V-a using an initial guess for Rma, 

Ema, Rnma, and alpha. The following residual vector is then 

generated: 

6W 
-O/Vfc 

te) 
( 3 - 3 4 ) 
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/ 
The division by T \6L) is to factor out the V^=* O solution 

a source of trouble. A hybrid nonlinear equation solver 

then attempts to reduce ^/^ to the zero vector by varying 

Rma, Ema, Rnma's, and alpha until 

l^rW^ is less than some specified 

tolerance. (k coresponds to the iteration number) It does 

this by choosing a step length and step direction that is a 

combination of a newton step and a gradient step. The 

particular algorithm used is that contained in the NAG 

library routine C05NBF. [57] The process is usually 

successful, but many times care must be taken in selecting 

the initial guess. 

3.3 Hamada like coordinates 

Given an arbitrary two dimensional magnetic field this 

section will detail its tranformation into a coordinate 

system such that: 

(w.xV9hyvfh-§"hV) (3-35) 

Since ^\ is only a function of V this system is known as a 

Hamada coordinate system. [49] To perform this 

transformation first write B in action angle form 



t = (ffe • vf) (Wxve) + (g ~£- 7©) (vf x w ) 
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(3-36) 

where Q and ̂  are angle like coordinates. The goal of 

this section is to write the magnetic field in the form: 

(3-37) 

where D and O are only functions of V, [2,49,59,60] 

Let OL be a function of V and Q . Also let ^?'\\ 

be a function of V, Q , and tl, . Use &\ and S L in (3-37) 

to produce 

B=9^f-B^ se / ( V V x V © 

+ B % 1 £ L ( T ? X 7 V ) 
(3-38) 

From (3-36) and (3-38) the following two equations can 

be produced: 

S^-Sh^tf4-^) (3-39) 



8B-ve = 9 ^ 9 | ^ 

Expanding (3-35) g i v e s : 
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(3-40) 

5 g j i = 9 3fv, 
^ e 8h 3 f 
Use (3-40) in (3-41) to get an expression involving 

9 h ' 

(3-41) 

Q and 

8 

3© " "6-79 
(3-42) 

Next integrate (3-42) from e-- o to e and set any constant 

terms equal to zero since the reference angle is arbitrary. 

This gives: 

9r 
^8V9 (3-43) 

J 3-ve 

In general \7©U will be multivalued in & . To avoid this 

e problem note that O has yet to be determined. If one sets 

9 
B = 

__P_ 
j/e___ 
(t- ve) 

(3-44) 
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where P is the period, the multivalued problem is avoided and 

the equation for OL becomes: 

e 
r c/9 

J '$-79) 

eh = - (3 -45) 

c/e 
? (it- ve) 

To f i n d t h e r e m a i n i n g a n g l e ~7 U , u s e (3 -41) in (3-39) 

to produce the following equation for <̂ ?i . 

*) c~J7\. K\fP,.X7C\ 
( 3 - 4 6 ) 

ahe>9 
3fh = ̂ i5?b - s^fî i) 
3© 6^v, 3? 
Choosing ^i ̂  y ~T" M (®?^/ a s a form for 

using this relation in (3-46) gives 

Integrating as before gives the equation for y L . 

Ac/9 

fh and 

(3-47) 

h 

0 d^e b1- fa V&) ) 4-
(3-48) 
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Again the multivalued problem is apparent and it can be 

avoided by choosing: 

J 
Finally, using (3-49), is determined. 

§§(B'Vg>c/e 
1= —r ;  

$ a ^ 
From (3-40) M\ is produced. 

dh = 
89 

(3-49) 

(3-50) 

(3-51) 

The fact that we can not independently select y h 

arises from the fact that V9^ and Vf 
L are both required 

to be single valued in & . If Q y. is not a function 

of Vr the forms for 9 ^ and "̂  b m a v n o t be general enough 

and different forms for © ^ and ^? L may be inferred. Also 

note that the transformation from V to a V* and thus A (V) 

to ^ (Vy will allow one to choose any £j p/ J desired. 

However, the former forms are general enough for the purposes 

of this work. 



56 

Finally, using (3-40) in (3-48) the final form for y> L 

is: 

K j(6-ve) J (t-ve) 
c/9 

4- (3-52) 

3.4 Transformation from moment equilibrium to Hamada 

equilibrium 

The Grad-Shafranov representation of the magnetic 

field is [1,7] 

6 = J ^ (Vx v<£) -h Ffo) v0 (3-53) 

wh ich when dotted into UQ and X7(n gives 

$-ve= -t'/d (3-54) 

6 • vj - F/K (3-55) 

where 
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8~A(zv#B-fiv2s) (3-56) 

Using equations 

(3-44) ,(3-45),(3-50),(3-51),(3-52),(3-54),(3-55) the 

following equations can be derived for the Hamada quantities: 

9 

9L = -J- Wg 
h S» / 

ae= -^' 

(3 -57) 

B ? = F 

h 

u 

5 h -

2rrSh 
27T 

K2-

(3 -58) 

( 3 - 5 9 ) 

( 3 - 6 0 ) 

2ir 

fk --JL 
r'J 

r 
© 

F. ^ + ̂  J£ ̂  + / ( 3 - 6 1 ) 

The representation of the current density in the 

Hamada form is also determined by HAMEQ. To derive it start 

with 

^8^9(vf^vv) + ShTYwxv0h) 
(3-62) 
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where J and J are to be determined. J may be 

determined by taking the curl of equation (3-53) and dotting 

/J VQ into the result thus producing 

l/0T'V9-//0~I9- ^'/c' /(Vvx7^)'7£ (3-63) 

which becomes 

-P© -V'F' 

MT — 
(3-64) 

£h 
-r( 
vJ can be determined from the force balance 

equation in Hamada coordinates: 

ft(Tfl6^lV)= p'R'fr (3-65) 

giving: 

' \ ^ J^B) 
(3-66) 

Near the magnetic axis (3-57) to (3-61), (3-64), and 

(3-66) may be approximated as 
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( 3 - 6 7 ) 

f^^r Ffco)/R Z ( 3 - 6 8 ) 

^ ^ (Rfn<SL Enr)0_ V 
( 3 - 6 9 ) 

6hm 9 (3 -70) 

f* r ^ 
( 3 - 7 1 ) 

^•^/M/^E 
•1 

^r\ £ -

//*T ^ F'feS)Ffci)Mm^ -//0P'(v=o) 

(3 -72) 

(3 -73) 

HAMEQ accomplishes the conversion from moment to 

Hamada equilibrium by first Fourier expanding ^ and 

Ĵ  /R (by means of fast Fourier transforms) in the 

following way: 

M 

3 - 3.(v) + ^ 8 n ( v ) ^ ^ 
^ n-i 

(3-74) 
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/ M 

VRZ = ^ ( v ) + Z 8 «n (0 c^n 9 
n - i 

Using (3-74) and (3-75) in (3-57)-(3-61) , (3-64) and (3-66) 

the following expansions in theta are obtained: 

ah=<9° < 3 - 7 6 > 
A/ 
> 

n-1 o° 
OL^ ^+Z-| iW<^A\n0 (3-77) 

39 •* - - ' 

^v ~tr^B* -$F/~ 
€UA\ n 0 

h=i v §tr / n 

39h = /^J:#c^n£ 
3© ' ' fad 

f^M^-^rO^ +/ (3 -80) 



N 
3 5 L - V \ ( F IV __1 
5 v 

n=» 
n 9 ~, [_&Rn * (8Ro&n+CJRo9n 

P O 

^ ^ l + z s ^ ^ l i Y F i f i : " ' 

isl 

61 

( 3 - 8 1 ) 

( 3 - 8 2 ) 

9 

- -*'/Bo 

Jb 
7v 

9 / / 

3° 
/r'LSOOL) 
1 a* y 

f _ 

/ / , , T e = - ^ ' O 

/ / , 0 

£ ,5.6 

( 3 - 8 3 ) 

( 3 - 8 4 ) 

( 3 - 8 5 ) 

( 3 - 8 6 ) 

( 3 - 8 7 ) 

( 3 - 8 8 ) 
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T i l e a u u v e I U L I U <_ue ( . u i i i p i c t c ac i_ u i e v j u a u i u u a u s c u xi i 

Sj and (<9/# / a r e determined by using (3-17);; no 

The above form the complete set of equations used in 

HAMEQ, 

finite differencing is used so that the accuracy of the 

Hamada quanities is determined by the accuracy of the fast 

Fourier decomposition and the accuracy of the terms delivered 

by MHD. 

3.5 Hamada Metric Elements 

The above details the transformation from the moment 

coordinate system to the Hamada coordinate system; however, 

the Hamada metric elements are in terms of the moment 

coordinate system rather than the Hamada system. In order to 

do the contravarient/covariant conversions the metric 

elements must be functions of the Hamada variables; in 

particular it may be useful to have them expanded in a 

Fourier series. This may be accomplished as follows: With: 

V } 0 h ) = 2^ g r m - ^ p ( l rTTTk 0 h (3-89) 
. ~|rm - ~ r r I ' "M ^ h J 

the expansion functions are determined by: 

Z<rr 
r 

ftr\ - ~ 
ZTT 

6 

^efJxjQ^(im9k(9l (3-90) 
-U^Jt/MUl i nn ^i[Vj ) 

30 
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keeping V constant. t/L is the Hamada angle, C7 is the 

moment angle, and ^jf]/. Qj is the metric element in the moment 

system. 

3.6 Asymptotic Metric Element Approximations 

In order to find the asymptotic limit of the tearing 

mode equation in section 2.5, it is necessary to determine 

the asymptotic limit of equations (2-22) and (2-23). Note 

that one is interested in V V - 7 V , VO'V& , and SJQ'VV , 

since the other terms have been discarded in the limit. 

VV'^V t V9-79 , and V9'VV can be obtained by inverting 

and taking the appropiate dot products of the following 

expressions: 

vz. = — vv + — ve °-92) 

vv ;>© 
giving: 

WW«/^(2^/^)/§ 2- (3-93) 
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ve-ve - f?.(2£± Rl ) / X < 3 - 9 4 1 

Ve-vv- -(ffa^+R^/f 

Using equations (3-8), (3-9), and (3-69) in (3-93) through 

(3-95), discarding terms of order V and smaller, and finally 

Fourier analyzing gives the following approximations near the 

magnetic axis: 

VV'VV 

ve-ve 

/TT ^ I - (3-96) 

(3-97) 

Zzr^ 

ve-w ^ o 

2y^B 
(3-98) 
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CHAPTER IV 

Solution of the Tearing Mode Equations 

4.1 General 

The method of solution of the tearing mode equations 

is to treat them as eigenfunctions and the island widths as 

nonlinear eigenvalues. A shooting technique is used as the 

numerical method; the tearing mode equations are integrated 

from the magnetic axis to the edge of the plasma and the 

deviation from the desired boundary conditions computed. The 

magnitude of this deviation or residual is to determine th€» 

island width for the next iteration by a quasi-newton method. 

[56,57] Each iteration involves recomputing the equilibrium 

using the new island widths, determining the amplitudes of 

the P 
tyon ^ that coorespond to the island widths, and finally 
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integrating the tearing mode equations to determine the new 

residual at the plasma edge. This proceedure is repeated 

until convergence is obtained by the pertuxbation field 

components approaching zero at the plasma edge. 

Determination of the amplitudes of the E'rmn S expansions near 

the magnetic axis (See section 2.5) is also done using an 

iterative quasi-newton method. The amplitudes of the Orrno ^ 

expansions are varied until they coorespond to the appropiate 

magnetic island widths and, since all modes are done 

simultaneously, the mode mixing and nonlinear interactions 

due to the current density profile modifications are 

included. It should be noted that the iterations on the 

magnetic island halfwidth are done in q space rather than V 

space because the equilibrium subroutines require F''(q). 

All numerical integrations are done using an Adams ODE method 

and all integrations to determine the Fourier decompositions 

of equations (2-22), (2-23), and (2-24) are done by using 

Gauss quadature. [56] 

4.2 Limitations 

One of the major difficultes experienced in the use of 

this method is numerical accurary. Magnetic island widths 

can be determined to a maximum accurary of about 1 part in 

1000; since the island widths are products of mulitiple 
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integrations and iterations on nonlinear functions, both in 

the equilibrium routines as well as in the tearing 

computations, it is necessary that all routines be run at 

limiting or near limiting accurary to achieve useful results. 

This accurary limit is also manifest in a lower limit on the 

smallest island that can be computed. Experience indicates 

that the minimum island width that can be consistantly 

handled is approximately 0.02 times the q at the edge of the 

plasma; if an island is smaller than this, or if no island 

appears to exist, the amplitude of the appropiate 

perturbation is set equal to zero. The program is 

constructed in such a way that zero island width can be 

easily handled and that the island width can return to a 

finite value during the course of the iteration if necessary. 

The smallest island that can be determined is related to the 

number of radial grid points. The equilibrium subroutines 

return the functions as a sequence of values on a radial grid 

and since an adaptive integration routine is used in the 

integration of the tearing mode equation, functional values 

between the grid points must be determined by interpolation. 

in this program linear interpolation is used and experience 

indicates that at least 25 points across the magnetic island 

region are necessary for decent resolution and stability of 

the shooting method. Unequal grid point spacing has been 

tried, but the most practical solution is to use a large 

number of grid points - in the neighborhood of 501 to 2001 
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points. 

Another more general problem is the ability of the 

equilibrium subroutine to compute an equilibrium given an 

arbitrary set of magnetic island widths and the ability of 

the tearing mode shooting method to converge to the correct 

magnetic island width given an arbitrary starting value for 

the width. Occasionally a magnetic island width will be 

generated for which no equilibrium can found (note that this 

does not mean that the equilibrium does not exist); in this 

case the program stops and gives an error message. If a 

starting guess for a magnetic island is too small the program 

may incorrectly indicate that no magnetic island exists; this 

problem may be overcome by trying a new, larger set of 

initial guesses for the island widths. If the starting guess 

is far too large, the program may find itself trapped in a 

local minimum and falsely indicate convergence; this can be 

noted by examining the residuals which are printed out for 

each iteration. Both of these problems seem to be more 

severe as the number of islands increase and as the saturated 

magnetic island width becomes smaller. Other than the above 

concerns, which can be easily identified, the numercial 

method works well in a reasonable amount of time. 

Figure 4-1 illustrates the program flow and control. 

The actual computer program makes use of several external 

libraries as well as being constructed in a modular fashion 

to aid in trouble shooting and modification. All input is in 
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the form of namelists and an extensive graphics capability is 

provided as will be shown in the next chapter. The ouput 

includes all the equilibrium function values as well as the 

magnetic island information. 
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CHAPTER V 

Results 

5.1 Interpretation of Model 

This chapter will detail the effects of plasma global 

current density profile, current density peaking within a 

magnetic island, plasma toroidicity, plasma elongation, 

nonlinear magnetic island coupling, and linear magnetic 

island coupling on the saturated width of the resulting 

magnetic islands. The most important new finding is that the 

saturated width of a magnetic island is sensitive to the 

amount of current density peaking within the magnetic island 

and this new finding may make prediction of magnetic island 

widths more difficult because of the great accurary required 

in modelling the current density profile,, 
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The results presented in this section are obtained by 

starting with a consistant background axisymmetric 

equilibrium, modifing a parameter such as island current 

profile, and letting the computer algorithm find a 

neighboring three dimensional equilibrium from this two 

dimensional starting equilibrium. Note that this does not 

coorrespond to a time evolving process, but rather a search to 

determine what equilibrium near the starting equilibrium can 

satisfy the mathematical model. 

In the cases studied the form for F11 was chosen to 

be: 

Fn= «(C0+C,% + CtXz+Cb><?)S 

where C0 through C3 are coeficients chosen by the user and 

they are usually in the range 0.0 to 5.0; S is a user 

selected exponent, and X - (q-qaxis) . In all the cases 

presented in this chapter S was set equal to -0.5, qaxis was 

1.0, and the C's are shown on each seperate run. (alpha is 

selected by the equilibrium subroutines - see chapter III) 

This form for F'' allowed a wide range of current profiles to 

be represented as well as being fast and convenient to 

compute. Also note that because of the boundary conditions 

on F' (see chapter III) the current profile is always zero at 

the wall; this corresponds to the physical situation. 
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The examples presented in this chapter are the results 

of a parameter study to determine the effects of various 

plasma attributes upon saturated magnetic island widths. 

This approach was chosen rather than detailed studies of 

particular equilibria because: 

1. It was found that the magnetic: island width is very 

sensitive to the current density profile near and 

within the magnetic island,, To simulate this 

situation with the computer model would require very 

accurate data in a very narrow region of the plasma; 

this requirement is probably beyond what could be 

actually measured because current density profiles 

are indirectly inferred from the observation of 

other parameters such as the electron temperature. 

This proceedure is subject to the limitations of the 

electron scattering data and to the specific 

relationship between the current density profile and 

the electron temperature. [78,79 J With this type of 

situation a parameter study is useful because 

generic behavior may be deduced. 

2. It was the most efficient way to use the computer 

resources available. Since a single computer run 

could take as long as 15 minutes, which was the 
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weekly allocation of this author, it was not fesible 

to do several runs in an attempt to match a 

particular current density profile. Again, useful 

qualitative and generic information may be obtained 

with the parameter search approach. 

Before proceeding with a discussion of the results, it 

is necessary to explain some nomenclature. In figures 5-1 to 

5-24, Vmn refers to the position of the mode rational 

surface, in V space, under discussion; Qe is the q value at 

the edge of the plasma; E is the elongation of the plasma; 

the width of the island is in V space; and all results are 

for a low beta plasma. Since it was not possible to do a 

parametric study encompassing all possible plasma 

configurations, a subset was selected that enabled the 

desired characteristics to be examined consistant with the 

numerical stability of the method and reasonable computing 

time. 

Figures 5-la through 5-2d and figures 5-24a-e are the 

graphical output of the computer program. R0, Rl, R2, and E 

coorrespand to the moment expansion (see equations 3-8 and 

3-9); a limited number of expansion harmonics were used and 

in all cases one moment expansion harmonic and two hamada 

expansion harmonics were found to be adequate. Psi is )r , 

bzeta is O , btheta is O , ujzeta is tf„ <J , ujtheta is 
-Y-0 & £>JLV -r-lV 

JL{0 J , bvmn i s Om* , ujvmn i s / / ^ J ^ , and F ' ' i s shown in 
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the region of the magnetic island. All variables are plotted 

in V space. Finally, dq/(dq/dv) is the width of the magnetic 

island in V space, the halfwidth in q space being just above 

it; "amp of this harmonic" refers to the coeficient of the 

asymtotic expansion of the radial perturbation near the 

magnetic axis; note that the parameters for a given island 

are confined to the page that contains its graph. 

5.2 Global Current Profile 

One important parameter to be examined in the context 

of magnetic island widths is the effect of the shape of the 

background current density profile; in particular one is 

interested in the influence of "rounded", low q edge value 

current density profiles vs the influence of "peaked", high q 

edge value current density profiles. This study was 

accomplished by varying the parameter C3 in equation (5-1) to 

produce a set of profiles that had the current increasingly 

"peaked" or concentrated near the magnetic axis. The trend 

produced was a reduction in the width of the magnetic island 

as the profile became more highly peaked in a way qualitively 

similar to reference [13]. Two widely different cases are 

illustrated in figures 5-la-d and 5-2a-d„ This reduction in 

magnetic island width is not, in general, monotonic however, 

and should be viewed in the light of the next section which 

will examine local effects. 
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Comparison of the two profiles is somewhat complicated 

because it is desirable to keep the q on the magnetic axis 

the same for each run both for physical reasons as well as 

minimizing the number of variables to be modified for each 

run. Since the q on the magnetic axis was kept the same, the 

mode rational surface was closer to the magnetic axis for the 

peaked current density case than for the rounded case and the 

effect of the inward shift of the magnetic axis could not be 

eliminated; it was desired to keep the q on axis near 1.0 

since much lower values may be unphysical due to the sawtooth 

oscillation and much larger values are not representative of 

most tokamak discharges. Nonetheless it is possible to 

outline the trend and make some comparisons. 

In the cases presented in this section, the 2/1 

magnetic island was selected since it was found to be the 

most unstable which is consistant with the experimental 

observations. [16,71,75] The plasma parameters were: aspect 

ratio-4.0, plasma elongation=l.0, flat island current density 

profile, C0=1.0, Cl=0.3, C2=0.0, and C3 was varied to produce 

various degrees of current density localization near the 

magnetic axis. C3 was selected to be varied because a smooth 

series of profiles could be generated; the cubic term has its 

greatest effect in the outer regions of the plasma and these 

resulting profiles covered a wide range of current density 

localization. A plot of q at the plasma edge vs C3 is shown 

in figure 5-3; an increase in C3 resulted in greater 
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"peaking" and less total current, thus the higher q edge 

values. Figure 5-4 shows that outside of a small maximum 

near C3=1.0, the 2/1 magnetic island width generally 

decreased with increasing current density localization at the 

magnetic axis and the resultant q edge increase. Note that 

as C3 is increased the mode rational surface shifts inward 

because of the reduction in total current - see figure 5-5. 

Finally, observe that outside of a small peak in the curve, 

figure 5-6 demonstrates that the width of the 2/1 magnetic 

island shrinks as the mode rational surface shifts inward and 

q edge increases. The peak in figure 5-6 may be due to the 

effects discussed in the next section. Note that in the 

peaked case (see figure 5-2a-d) the perturbed magnetic field 

has a long decaying tail and a sharper slope near the 

rational surface than does the rounded case (see figure 

5-la-d); these two effects combine to produce a smaller value 

for the perturbed magnetic field at the mode rational surface 

and thus a smaller island. This seems to indicate that the 

plasma current makes its largest contribution to the 

perturbation on the inside of the mode rational surface since 

the long tail is characteristic of a vacuum like solution. 

In general, it appears that the more "rounded", low q edge 

value current density profiles are the most unstable to 

tearing modes. This is consistant with the observed 

experimental results from a number of tokamaks: 



77 

1. The TOSCA Tokamak group indicated that special 

helical coils were necessary to suppress the 2/1 

mode so that a plasma with a low q value at the edge 

could be obtained. [67] 

2. The DIVA Tokamak could sustain low q discharges only 

if the impurity concentration of the plasma could be 

kept low - a disruption could be initiated by the 

injection of neon gas which caused the plasma 

radiation loss to jump from 15 percent of the Ohmic 

input power to about 100 percent of the Ohmic input 

power. The 2/1 mode is observed to rapidly grow 

just before the disruption indicating a connection 

between the current density profile, suddenly 

modified by the neon impurity, and the 2/1 magnetic 

island. [71] 

3. In the DITE Tokamkak soft disruptions are suspected 

to be caused by impurities cooling the plasma edge 

and forcing the current channel to contract which 

raises the effective q of the discharge. This 

combination generates an unfavorable current density 

profile and the resulting growth of the 2/1 magnetic 

island. [73] 

All these observations should also be reviewed in 

the context of the next section which will examine the local 
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current density gradient in the neighborhood of a mode 

rational surface, 

5,3 Island Current Profile 

The preceeding section concerned itself with the 

effects of modification of the global current density 

profile. This section, in contrast, will consider the 

effects of local current density modifications within the 

magnetic island itself and to the equilibrium current density 

profile at the mode rational surface. Both cases will be 

examined while holding the equilibrium global current density 

profile constant. 

The current density profile effects within a magnetic 

island may be studied in a parametric manner by varying gamma 

in equation (2-52). Figure 5-7 is a plot of the 2/1 magnetic 

island width vs gamma; note that as gamma increases , the 

mganetic island width increases. The plasma parameters for 

this series of runs were: aspect ratio«4.0, elongation=l.0, 

C0=1.0, Cl = 0.5, C2=0.0, and C3=1.25. Figure' 5-8 illustrates 

the trend of q at the plasma edge vs gamma; figure 5-9 shows 

how the mode rational surface shifted with gamma; note that 

figures 5-8 and 5-9 depict changes in the range of 12 

percent, while figure 5-7 shows a change in the magnetic 

island width of about 60 percent. 



79 

In order to understand the influence of different 

current density profiles within a magnetic island, keeping 

the global .current density profile constant, it is useful to 

compare the difference in the derivatives of O/yf) A across 

the island for different local current density forms. with 

the assumption that the local magnetic island current profile 

will only locally modify the form of D/rnO , one would expect 

A±V 
that the form of &rmo will remain independent of the 

magnetic island current profile outside the magnetic island. 

Since the equation for the magnetic perturbation is linear, a 

difference in the derivative of Pnr\f\ would imply a scaling 
±V 

»f ^ r m n if it were of the proper sign. A larger 

difference in the derivative, if of the proper sign, would 

A ± V 

imply a larger ^mnn. anc* consequensely a larger island. If 

the difference were large but of the wrong sign, it would 

indicate the possible elimination of the island. 

To estimate this difference for a given magnetic 

island current density profile, start with the large aspect 

ratio limit and assume all terms except to be 

constant along an island so that 

Z 'i -2S^rr^no 

"imn Vrtnn 

ttV 

L 
V^n *k<£*<H>\ 

(5-2) 

where X=V-Vmn, (nq-mJ'vnq'X, Vmn is the location of the mode 

rational surface, q,, q£ , X. imr\Dare t n e terms evaluated at 
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Vmn. Define the normalized difference in the derivative 

across the magnetic island as: 

A= [X^ {\/u H) - X ̂  ( v H)J / X Tfr\Y\( V ^ r \ 

r 

v, rmn 

rm 2. 1 

V, ton 
7 
H 

(5 -3 ) 

where H is the halfwidth. With a flat island 

2--fc (^7er) - XVH 
2.4) 

so that (see section 

; = 2 ^ H 
4 V 

V v 

Z. 
rmq 

(5-4) 

where the f signifies the "flat" island profile, with a 

peaked island ^ fa^/^) ^ -^K^/H so that 

P + V m n o ^ / 
(5-5) 
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where the p signifies the "peaked" island profile. Note that 

this definition of / \ is somewhat different than the 

/ \ used in the literature since (5-3) uses the modified, 

rather than the orginal current density density profile. 

Asymptotically in the island halfwidth H, the order of A; 

is smaller than that of /\j) ; in fact the island peaking can 

completely dominate the /\J2 term. By making gamma larger 

in magnitude and of the correct sign the edges of the island 

are forced farther apart. The computation model supports 

this result and the numerical results for a typical profile 

with a 2/1 magnetic island are shown in figure 5-7. Note 

that since Ko' is negative in the center peaked current 

profiles of interest, a positive gamma corresponds to a local 

current dip within a magnetic island; a negative gamma 

corresponds to a local current profile peak within a magnetic 

island. For the purposes of this thesis, any nonzero gamma 

will be refered to as "peaking". Also of interest is the 

observation that the island peaking can destabilize otherwise 

stable islands; figure 5-10 illustrates this behavior with a 

3/2 island. Note that with gamma equal to zero no magnetic 

island was found; the plasma parameters for this series of 

runs were: aspect ratio=4.0, elongation=l.0, C0=1.0, C1=0.0, 

C2=*0.0, and C3=0.5. Figure 5-11 shows that the q at the 

plasma edge varied little with gamma and figure 5-12 plots 

the mode rational surface vs gamma. Note that by changing 

the sign of gamma (figure 5-7) the island can be reduced in 
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width which leads to speculation of a possible means of 

magnetic island control. In the large aspect ratio 

approximation suppression of magnetic islands is shown to 

occur by the unique current distribution caused by RF driven 

currents. [61,72,74] If specific regions could be 

selectively heated (by perhaps RF) or cooled (impurities?) 

it may be possible to control the width of a magnetic island. 

This remains to be seen, since controlling the proper 

position of this heating or cooling may be very difficult,. 

It is useful to estimate the magnitude of the possible 

current peaking within an island. The gradient of the 

~T-°f current density profile at the rational surface is 0 ; 

V-T0/*' 

within the island it is approximately H « , Assuming that 

the current gradient within the island has the same magnitude 

as that within the plasma proper, one can equate the two 

terms and estimate that gamma is of order one. Thus while 

the current peaking is moderate, the fact that F,,/(nq-m) is 

no longer zero at the mode rational surface is of great 

consequence. This implies that the second derivative of the 

current density is important near the mode rational surface. 

Another related phenomena of interest is the effect of 

local peaking of the background equilibrium current density 

profile. In these cases the current density profile in the 

magnetic island is flat and only the equilibrium current 

density profile is peaked in the vicinity of the mode 

rational surface by means of a step function placed on F**. 
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The step function is of amplitude Si across the island, 

decaying exponentially to zero on either side of the island. 

See figure 5-13. This function produces a large local change 

in T°f on the scale length of a magnetic island width. 

Such great local current gradients may not be entirely 

physical, but this study is useful because it allows one to 

examine the sensitivity of island widths to the local current 

gradient. Figure 5-14 shows this relationship. The current 

density gradient effect is not unique; different local 

profiles can give somewhat different results, but figure 5-14 

illustrates the trend that larger local current density 

gradients give larger island widths. The other plasma 

parameters were: aspect ratio=4.0, elongation=1.0, C0=1.0, 

C1=0.0, C2=0.0, and C3=0.5. This result and the previous one 

show that the current density profile within and around the 

magnetic island is of the same importance, or perhaps more 

important, than the gobal profile and should be seriously 

considered. 

Comparing the above conditions with experiment is 

spectulative because both conditions demand highly detailed 

information about a discharge, but some parallels may be 

drawn: 

1. The impurity neon injections in DIVA noted in the 

previous section may also modify the gradient of the 
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current density profile near the q=2 surface and 

cause a radiation loss within the island itself. 

Note that both a current density dip within an 

island and an increased current density gardient at 

the mode rational surface cause larger islands; thus 

a very complicated series of current density 

modifications involving both global and local 

effects may be taking place in this set of 

experiments, [71] 

2. The JIPP T-II Tokamak group has achieved low q edge 

operation by a combination of gas puffing and a 

second transformer current rise. By controlling the 

rise time of the second plasma current pulse, its 

penetration into the plasma can be limited to the 

plasma edge regions; this provides a means of 

controlling the current density profile. The rise 

time of the pulse controls where the current is 

induced and the gas puffing adds an electron power 

loss term; thus by appropiate controls on both the 

current pulse rise time and gas puffing the current 

density gradient in the neighborhood of the mode 

rational surface as well as the global current 

density profile may be controlled. By careful 

control, low q edge discharges have been obtained. 

[70] 
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5.4 Nonlinear Coupling of Magnetic Islands 

The effect of two magnetic islands of different 

helicity n numbers coupling through the background current 

density profile is of great importance. When a magnetic 

island exists, it modifies the background current profile and 

in some cases may radically steepen the current density 

gradients on either side of it and nonlinearly couple to and 

destablize nearby islands. This type of behavior can be 

illustrated by examining the interaction of the 3/2 and 2/1 

magnetic islands. When the 3/2 island is present, the 2/1 

island is found to be larger than it was without the 3/2 

island; figures 5-15a-e show the effect of both islands on 

the background current profile. The width of the 3/2 island 

is approximately the same as before the existence of the 2/1 

island, but its presence modifies the current density 

gradient between the two islands and this effect further 

destablizes the 2/1 island. As the current density peaking 

within the 2/1 island is increased, the combination of 

current density gradient destablization and current density 

peaking cause a large increase in the width of the 2/1 island 

and a small reduction in the width of the 3/2 island. The 

total region occupied by magnetic islands increases however. 

The net result is that the two islands begin to coalesce as 

the coupling increases and the background equilibrium current 

density profile shows a high degree of modification by the 
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islands - a "ledge" begins to appear in the plasma middle 

region. The location of the mode rational surfaces seem to 

be important - the closer they are the greater the coupling 

effect - however, because of the limited number of runs done 

it was difficult to evaluate this topic. The plasma 

parameters were: aspect ratio=4.0, elongation=l.0, C0-1.0, 

C1=0.0, C2=0.0, and C3-0.50. Unfortunately, the nonlinear 

coupling can make convergence of the computer program 

difficult and time consuming, so only a limited number of 

runs could be done. The major problem is that the time spent 

on a computer run grows rapidly as the number of islands 

increase. Nonetheless the nonlinear coupling demonstrated by 

this series of runs shows the importance of the phenomenon 

and it is interesting to note that one scenario for the major 

disruption is the interaction of the 3/2 and 2/1 islands 

which may overlap and destroy a major portion of the plasma 

confinement volume. [16,67] Another importance effect is the 

interaction of the 1/1 and 2/1 islands, but since the 

simulation of the 1/1 island requires inertial terms, the 

interaction could not be modelled. In general it is very 

difficult to model the time dependent behavior of two islands 

overlapping and the resulting plasma disruption; however, the 

quasilinear model can demonstrate the nature of this 

instability. One interesting topic that could not be 

adressed was the combination of the following three islands: 

3/2, 5/3, and 2/1. Since the 5/3 island is in between the 
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3/2 and 2/1 islands the possiblity exists that it may be 

destablized by the presence of the 3/2 and 2/1 islands and 

make a further contribution to the chaos of island overlaping 

and destablization. 

Even though the actual time dependence of the current 

density coupling of magnetic islands can not be represented 

with this model, useful qualitative explanations of 

experiments can be shown: 

1. Observed disruptions in the PDX Tokamak are 

preceeded by the growth of a 2/1 island which is 

often preceeded by an internal disruption; this may 

be as a result of both linear and nonlinear coupling 

of the 2/1 island to the 1/1 island which is beyond 

the scope of this thesis. [69] 

2. In the JIPP T-II Tokamak disruptions of a low q edge 

value plasma are observed to be preceeded by an 

abrupt growth of the 3/2 and 2/1 modes. [70] 

3. The low q edge discharges in DIVA disrupt with the 

sudden growth of a 2/1 mode; other modes exist, but 

disruption only occurs with the presence of a 2/1 

mode. [71] 
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4. When a low q edge discharge with q edge less than 2 

and when impurity control to stablize the 2/1 kink 

mode is obtained, no major disruptions are observed 

in the DIVA Tokamak. [71] 

5. Soft disruptions in the DITE Tokamak are caused by 

the interaction and overlap of the 1/1 and 2/1 

island. [73] 

5.5 Metric Element Mixing 

Since equation (2-21) is a relationship involving both 

the contravarient and covariant vector components one would 

expect harmonic mixing when converting from one form to 

another. Equations (2-22)-(2-24) detail this conversion. 

The analysis of these equations proceeds along the following 

line: Starting with: 

&= g(e)2 B^^Y^-n^) ] 
^ 0,fnr\ ' *- -1 

(5-6) 

where ^ l " / represents a metric element term. Rewritting 

using the decomposed form of B X gives 

n,rm 
Bknnn^f^-^l^aC©)^ B*^[f (̂ -nf) (5-7) 



89 

Since C{ is not a function of ^ one may write for 

n : 
each 

Wi 
6xrmn^[^°] = ^(0)Z £^n^[]rrr,9] (5 -8 ) 

or 

z ^ 
n 

^ » = i ^ ke>[ZB,,'„^0(*-m)eM'•••' 
The metric elements provide cross harmonic driving 

terms and modes with the same n number may influence each 

other through this coupling. The principle coupling elements 

are toroidicity and plasma elongation both of which are 

expected to be present in future Tokamaks. Figure 5-17 shows 

the 2/1 magnetic island width vs inverse aspect ratio and 

figure 5-21 shows the 2/1 magnetic island width vs 

elongation. In both of these graphs the q on axis remained 

constant, C0=1.0, 01=0.5, C2=0.0, C3=1.25, gamma=0.0, and 

both consider the 2/1 mode. With the method of equilibrium 

computation used (see chapter III) it is not possible to keep 

q edge constant; it increases both with a decrease in aspect 

ratio and an increase in elongation, and thus the family of 

equilibria generated in the aspect ratio study differs 
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somewhat in the magnetic field configuration as well as the 

aspect ratio. See figures 5-16, 5-18, 5-20, and 5-22. The 

effects of toroidicity and elongation on the magnetic island 

width depend on the position of the magnetic island to some 

degree, being somewhat greater for islands nearer the edge of 

the plasma where the metric elements have the strongest 

dependance on theta; however, again this is profile 

dependent. The effect of toroidicity is to reduce the 

saturated magnetic island width as the aspect ratio 

decreases; this is qualitatively consistant with reference 

[64]. As the aspect ratio was decreased, the mode rational 

surface shifted (see figure 5-18) into the plasma and the 2/1 

perturbation developed a decaying tail similar to the center 

peaked current case. Since the form of the current density 

profile changed as the aspect ratio changed, it being 

dependent upon the specific equilibrium solution, there may 

be some question as to whether the toroidicity causes the 

current density profile to change which then causes the 

reduction in magnetic island width, rather than a direct 

connection between the island width and toroidicity. Plasma 

elongation also appears to reduce the saturated magnetic 

island width, but care should be taken when interpretating 

these results since the equilibrium current density profile 

changes radically with large changes in plasma elongation. 

As the elongation increases the mode rational surface also 

shifts inward as in the toroidal case (see figure 5-22), but 
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to a lesser extent. With either current peaking, 

toroidicity, or elongation, a reduction in the magnetic 

island width has generally been associated with the inward 

shift of the mode rational surface. See figure 5-19 for the 

aspect ratio case and figure 5-23 for the elongation case, 

Since this inward shift of the mode rational surface cannot 

be separated from the equilibrium computations used in this 

model, a further examination of elongation and toroidicity 

with a global plasma transport model would be a useful 

extension of this work. 

5.6 Mode Mixing 

Mode mixing occurs when perturbations of the same n 

number interact through metric element coupling to enhance or 

suppress each other and thus modify the magnetic island 

width. In the cases studied the effect of the 2/1 island on 

the 3/1 island was examined and it was found that the 2/1 

island could drive a 3/1 island in equilibria that could not 

otherwise support a 3/1 island provided that there was a 

large amount of plasma elongation present. With only small 

amounts of elongation no effects could be detected; even with 

large amounts of elongation the 3/1 island width was only 

about one percent of the minor radius; the 2/1 magnetic 

island remained essentially the same. See figures 5-24a-e. 
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In this case the plasma parameters were: aspect ratio=4.0, 

elongation=2.0, C0=1.0, C1=0.0, C2=0.0, and C3=0.0. The 

aspect ratio had only a minor effect on the mode mixing. 

Unlike some work done using the reduced MHD equations, 

the 1/1 mode could not be generated (because in general it 

oscillates in time and does not saturate) and thus what may 

be the major harmonic driving term could not be modelled. 

[62,73] Another difference is that the magnetic island is 

allowed to modify the background current density profile in 

the model of this thesis, while the background resistively 

remained only a function of the radial coordinate rather than 

a function of the magnetic surfaces in the work of many of 

the references; this may result in differences in the 

functional form of the perturbed radial magnetic field 

components. [65,66] The 3/1 island has been observed to play 

a roll in a limited number of disruptions in the PDX Tokamak; 

however, the 2/1 island is considered to be the most active 

mode in disruptions. [69] Other tokamak groups have observed 

a large number of MHD modes; however, these higher m number 

modes do not appear to cause any major problems. 

[16,70,71,73,75] 

5.7 Summary 

The major parameter effecting the magnetic island 
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width is the local current density gradient and the current 

profile within the magnetic island. Modification of the 

background current profile by the presence of multiple 

islands can and does destablize otherwise stable islands; it 

may be the major coupling effect. Toroidicity and elongation 

are shown to modestly reduce the saturated magnetic island 

width and a general trend of smaller magnetic island width 

with the inward shift of the mode rational surface is noted. 

Mode mixing coupling has been shown to exist, but its effect 

has been very modest. Possibily the inclusion of the 1/1 

mode, which this work cannot address, would show a greater 

influence. Overall, good qualitative agreement with 

experiment has been shown. 
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CHAPTER VI 

Conclusions 

The quasilnear model has proven to be useful in the 

computation of saturated magnetic island widths, Unlike the 

reduced MHD equations, the quaslinear equations consider only 

the asymtotic time limit and thus do not follow the evolution 

of the equilibrium as a function of time. They can, however, 

handle cases of greater geometric complexity within a 

reasonable computing time limit and this factor along with a 

somewhat simplier equation set is their source of attraction. 

One major limitation is the inability of the equations to 

model tearing modes that oscillate in time such as the 

m=l,n=l mode. In order to include the modes that oscillate 

in time it is necessary to consider the inertial terms of the 

MHD equations, such as the mass density and velocity, with 

the consequence of greater complexity. [17,18,65,66] 

In the course of the derivation of the quasilinear 
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equations it has been shown that the magnetic island 

influences the background current density profile and, using 

a simple approximation for the pressure and current density 

within a magnetic island, the effect of the magnetic island 

on the background equilibrium has been quantified and a self 

consistant set of equations formed. This set of equations 

has been solved for a varity of parameters, including 

torodicity, plasma elongation, equilibrium current density 

profile, and current density profile within a magnetic 

island. The new results of greatest interest are the effects 

of the current density gradient local to the magnetic island 

and the current density profile within a magnetic island 

itself. 

The large aspect ratio limit has been used to provide 

a qualitative analysis of the structure of the radial 

magnetic field perturbation and this analysis points to the 

region on the inner side of the magnetic island as important 

to the existence of the radial perturbation. It is in this 

region that the solution is forced to "bend" or turn to meet 

the boundary conditions at the edge of the plasma and this 

effect is found to depend on the local gradient of the 

current density. It has been demonstrated that the magnetic 

island width increases as the local current gradient at the 

mode rational surfaces increases. 

The most unexpected effect is the fact that peaking 

the current density profile within a magnetic island can 



96 

cause a large increase in the width of a magnetic island and 

can also destablize otherwise stable magnetic islands. This 

result enables speculation on a possible means of magnetic 

island control - devise some means to locally heat or cool 

the plasma so that the local current density profiles can be 

modified to suppress the existence of the magnetic islands. 

Local heating by RF, or perhaps, beams could be used, but 

control may be difficult - this is an open issue. 

The nonlinear coupling of magnetic islands through the 

background current density profile has been found to increase 

the saturated width of magnetic islands when the current 

density gradient at the inner edge of the island is increased 

by the presence of another magnetic island. This effect is 

independent of the mode numbers of the islands involved and 

thus all the islands within a plasma will be coupled to a 

degree which depends on the relative spacing between the 

islands and the width of the islands themselves. Linear 

coupling of magnetic islands with the same n number occures 

when toroidicity and/or elongation is present. This linear 

coupling can cause normally stable islands to be driven 

unstable by their unstable neighbors and thus increase the 

amount of the plasma that is occupied by magnetic islands. 

In the work done, however, this was found to be a relatively 

minor effect possibly because the 1/1 magnetic island could 

not be included. when toroidicity and/or elongation is 

increased in a plasma with only a single mode present, the 
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saturated magnetic island width showed a small decrease. In 

all the cases studied it was noted that, in general, the 

magnetic island width decreased as the mode rational surface 

drifted inward pointing to low q edqe plasma as being the 

most unstable to tearing modes. 

Since the saturated magnetic island width and even its 

existence depends to a large extent on the local current 

density profile, knowledge of the global current density 

profile may not be sufficient to predict magnetic island 

behavior. In cases such as these the predicition of the 

saturated magnetic island width may, by necessity, take on a 

probabalistic nature unless the appropiate current profiles 

can be externally controlled, perhaps by operation in 

restructed regions of Tokamak discharge phase space. 
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Figure 2-1. Magnetic Island Pressure Profile 
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