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SUMMARY 

The transport of neutral atoms and molecules at the edge of a magnetically confined plasma 

plays an important role in the overall plasma performance. This transport problem is 

characterized by geometrical complexity, widely varying mean free paths, and sharp particle 

density variations. Most of the methods used to study neutral particles in plasmas are limited 

either by excessive computational time (Monte Carlo), inability to treat complex geometries, 

failure to treat widely varying mean free paths (diffusion theory, discrete ordinates) or lack of 

accuracy in some regimes (diffusion theory). 

Two related computational methods for neutral particle transport in the outer regions of a 

diverted tokamak plasma have been recently introduced. These methods subdivide the 

computational domain into a number of relatively large regions, calculate transmission and 

escape probabilities for these regions using first flight integral transport methods, and then 

balance the partial currents or fluxes across the surfaces bounding these regions. While 

implementing these methods, a number of approximations were made in order to simplify the 

treatment of the angular distribution of particles and to characterize the transport probabilities. 

This work reports on the evaluation of the accuracy of these various approximations. This 

evaluation was based on a detailed comparison with Monte Carlo. In addition, a number of 

correction factors were introduced to improve accuracy. When dealing with the transport of a 

single species of monoenergetic neutrals, this model was shown to be capable of achieving 

accuracies comparable to Monte Carlo calculations at a fraction of the computational time. A 

further purpose of this work is to report the comparison of these methods and Monte Carlo 

calculations and experimental results for neutral densities in the DIII-D edge plasma. 
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INTRODUCTION 

1.1 The Importance of Neutrals in the Plasma Edge 

The transport of neutral atoms and molecules (particles that are unaffected by 

magnetic fields) at the edge of a magnetically confined plasma plays an important role in 

determining the overall plasma performance. Impurities in the plasma can dilute the fuel 

(i.e., D-T) and give rise to radiation losses. In order to restrict their entry into the plasma 

two techniques are used; the first is to make use of a material limiter to define an outer 

plasma boundary; the second modifies the magnetic field to produce a magnetic divertor 

to keep particles away from the vacuum vessel [1]. These techniques are shown in figure 

1.1 from Wesson [1]. 

(a) Vacuum Vessel 

Limiter 

Flux Lines 

Vacuum Vessel 
4 Divertor 

Figure 1.1. Separation of plasma from vacuum vessel by limiter (a) and 
divertor (b) (from reference 1). 
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In 1961 Sakharov [2, 3] first pointed out that neutral hydrogen could travel deep into a 

hot plasma by repeated charge exchange. The same is true for neutrals of other species. 

There is strong evidence that suggests a link between neutral particles and the overall 

plasma power and particle balances, temperature and density profiles, plasma confinement, 

particle and energy fluxes to the wall of the device, erosion of the first wall, performance 

of the pumping systems, etc. [2, 4, 5, 6]. For instance, Tendler [2] points out that neutral 

particles refuel the plasma as they become ionized, causing a net increase in the total 

momentum and energy of the plasma. He also states that limiters cannot shield the first 

wall from being struck by energetic neutrals emerging from the inner core after 

recombination and charge-exchange with neutral beams has occurred. Thus, sputtering by 

charge-exchange neutrals can constitute both a major source of impurities to the plasma 

and a major damage mechanism to the wall of the plasma chamber. Furthermore, in order 

to sustain long-pulse operation in reactors such as the International Thermonuclear 

Experimental Reactor (ITER), impurities have to be pumped. The efficiency of the 

pumping system depends on the amount and the type of impurities generated [5]. In order 

to avoid the extreme heat and particle loads to the divertor plate and first wall, a condition 

known as "detached plasma" is highly desirable. Detachment gives rise to radiative cooling 

by introducing impurities in the plasma edge. This reduces the temperature in the divertor 

region to a level low enough (~ 1 eV) to trigger the increase of neutrals by recombination 

of ions and electrons [7, 8]. Niemczewski [9] indicates that there are strong indications 

that the onset of detachment is influenced by the neutral population in the divertor region. 

More recently, Tsuchiya et al. [10] have reported that edge neutrals have an important 
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reported that in DIII-D continuous gas puff fueled high-power shots, the Multifaceted 

Asymmetric Radiation from the edge (MARFE) onset was coincident with the sharp 

increase in neutral density in the plasma edge. Therefore, neutral particle transport is by no 

means a trivial problem, and a better understanding of the behavior of neutral particles is 

of great relevance to the further advance of fusion plasma physics. 

1.2 Characteristics of Neutral Particle Transport in the Plasma Edge 

In contrast with the physical phenomena found in the plasma core, where the relative 

neutral hydrogen density (i.e., the ratio of neutral hydrogen to the total particle density) is 

on the order of 105 or less and temperatures reach 104 eV, the typical values for the 

neutral particle density and the temperature at the plasma edge are on the order of 

IO20-1021 m3 (near the divertor) and 5-20 eV respectively. As particle and energy fluxes 

emerging from the plasma core increase, the amount of recycled neutral gas also increases. 

The inelastic collisions of plasma particles with cold recycling gas (whose temperature is 

determined primarily by the energy of dissociated Franck-Condon atoms, which is about 

3-5 eV) are responsible for the temperature decline at the plasma edge [12, 13]. 

It is also important to mention that neutral particle density at the plasma edge may 

reach values close to 10% of the total particle density, and more importantly, that the 

neutral density near the divertor can exceed that of the ions. Indeed, according to Janev et 

al. [12] most of the particles found near the wall are neutral hydrogen with a density that 

approximates 50% of total charged particles found near the wall. Figure 1.2 from 
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of a tokamak plasma. 
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Figure 1.2. Typical temperature and density profiles in tokamak plasmas (from ref. 14). 
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1.3 Methods for Solving for the Neutral Flux Distribution 

1.3.1 Introduction 

The equation that determines the density profiles of the neutrals is the Boltzmann 

equation, in which all the relevant atomic processes are contained in the collision terms. 

The three-dimensional and time independent Boltzmann equation is 

v(E)Cl-Vn(r,Cl,E)+I,Xr,E)v(E)n(i:AE)=s(r,Cl,E) + 

(1.1) 

j(&'fdE'v(E%{f,Cl\E')l.s{f:Cl',E'->Cl,E) 
4K 

where v is the velocity of the neutral particle; n is the neutral particle density distribution; 

Zt is the total cross section for all the interactions between electrons/neutrals or 

ions/neutrals (ionization, charge-exchange, elastic scattering, etc.); S represents all the 

external neutral sources or internal creation processes such as recombination; and Zs is the 

cross section for all the events that change the energy and direction of the neutral particle, 

such as charge-exchange or scattering. 

A successful treatment of geometric complexities and widely varying mean free paths 

in present diverted tokamak plasmas is very challenging. Over the years many methods 

that were first applied to neutron transport have been adapted for neutral particle transport 

in the plasma edge. The most popular methods for solving for the neutral flux distribution 

are the spherical harmonics or Pn method (including the lowest order diffusion theory 

approximation), the discrete ordinates or Sn method (both Pn and Sn are approximations to 
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transport methods. The discrete ordinates and Monte Carlo methods are the ones most 

used today to analyze neutron transport in reactors. 

1.3.2 Spherical Harmonics or Pn Method 

The spherical harmonics method is the oldest method, with references dating back to 

1926 [15]. Even though this method is not widely used today, it is considered the 

theoretical basis for the diffusion theory, which is widely used. Nevertheless, the spherical 

harmonics method is still an important tool for transport analysis. The procedure for 

finding a solution to the one-dimensional transport equation is as follows. If I//, the neutral 

flux distribution, is defined as y/= nv and \x as the cosine of the angle made by the velocity 

vector v of the neutral particle and the x-axis; then the one-dimensional and time 

independent Boltzmann equation is 

VMx:^EhzXx,E)¥(X,ii,E)=s(X,li,E) + 
dx (1.2) 

±[dE'l4&ti'I.s(x:fJ.\E'->n,E) 

The idea is to write the unknown y/ (x, n, E) as an expansion of a finite number of 

known functions of angle, and since the integration over \i ranges from 1 to -1, the most 

convenient expansion functions are the Legendre Polynomials. With this in mind 



ij/{x,ll,E)=Jj(^)yfnUE)pM (1.3) 

The scattering term (i.e., Ss (x:/z', E' -^ fi, E) usually depends only on the scattering 

angle, in other words only on the relative direction of travel not on the absolute direction 

of travel. Thus this term can be written as 

SI(x,M„,£'^£)=i,(1f1K,(x,£'^£)P>0) (1.4) 
,1=0 

where fi0 - cos6 = \x'\i represents the scattering angle. 

Now these expressions can be placed in the original transport equation, equation 2, 

then multiplied by Legendre polynomials of various orders, namely, Pn I = 1, 2, ...N, and 

integrated over the angular variable. At this point the orthogonality, recurrence relations, 

and additive properties of the spherical harmonics [15-22] can be used to obtain the 

expressions: 

d¥l^X,Eh?:i(x,E)\f/0(x,E)= S(x,E)+ [°dE'I.s0(x:E'^ E) (1.5) 
dx Jo 

for / = 0, and 

for/ = 1,2,3,... 
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The angular components of the differential scattering cross section are defined as 

Z , / ( x , r - ^ £ ) = £ ^ 0 E J U E , ^ £ , / i 0 ) P > 0 ) (1.7) 

The boundary conditions, which cannot be imposed exactly due to previous 

approximations, can still be approximated by Marshak-type boundary conditions. For 

instance a vacuum condition, which otherwise can be represented as y/ (a, (i, E) = 0, can 

be represented as 

j^{^)y/l{a,E)fQPl(v)Pn(il)dll = 0 (1.8) 
n=0 

for / = 1, 3, ... N. Similar expressions can be found for reflective, incident flux, and other 

boundary conditions. 

In order to force closure of the equations, and thus obtain the Pn approximation, the 

last term if/ is dropped and what is left is a set of N + 1 coupled integrodifferential 

equations in space and energy. These equations can now be solved numerically by 

approximating the spatial derivatives with finite difference schemes, and the energy 

dependence can be implemented with multigroup techniques. 

It is very important to mention that the P, approximation leads to the well known and 

widely used diffusion theory. The P, expansion (ignoring energy dependence for the 

purpose of illustration) yields 
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rfv,M+(Si_SJv,oW=s (L9) 
dx 

i ^ W + (E,-Z„V1W = 0 (1.10) 
3 6UC 

solving for I// in (1.9) then substituting it in (1.10) 

d_ 

dx 

Ddy/0(x) 

dx 
+ (l,-Tj¥()(x)=S (1.11) 

where D = [3ZJ-1, and Z^ = St - Zs]. The multidimension extension of this equation is 

- V - D V v r 0 W + f e - 2 : j o V o W = 5 (1.12) 

This is the well known diffusion equation. 

When the spherical harmonics method is applied to two and three dimensions, the 

expansion terms become extremely complicated. However, Stacey et al. [23] have shown 

the possibility of reformulating the spherical harmonics equations as an extended diffusion 

theory and then extending it to multidimensions as above. Other methods are preferable 

when dealing with problems of higher dimension. One such method is the discrete 

ordinates or Sn method. The spherical harmonics method has been studied in great detail 

by many authors and on some occasions it has been applied to neutral particle transport in 

fusion plasmas [24]; references 15-22 are a good starting point for the reader interested in 

the subject. 



1.3.3 Discrete Ordinates Method 

The discrete ordinates method had its origin in radiation transport calculations in stellar 

atmospheres. Since then, the method has evolved and is now used extensively in reactor 

analysis calculations in situations where the diffusion theory has proved to be inadequate 

[17]. It has therefore become the dominant method for obtaining numerical solutions to 

the integro differential form of the transport equation. To put it simply, this method 

consists of evaluating the angular distribution of the neutral flux at discrete angular 

directions or ordinates. This is the prime characteristic that differentiates this method from 

the spherical harmonics method, in which the angular variable is treated as continuous. In 

principle, the solution of the transport equation can be found to a high degree of accuracy 

simply by taking enough discrete ordinates. Although the method is conceptually simple, it 

requires careful tracking in order to preserve particles. If every step is done correctly, the 

method leads to computer algorithms of high efficiency [17]. 

In the most general case, the total angular dependence of l/ẑ r, ju, E) is eliminated by 

taking a discrete number of directions, i.e., uv (n = 1,2, 3,..., N) where \iv = ifixn + ju 

+ k}izn where i, j , k represent the unit vectors in the x, y, and z direction. Therefore, the 

unknown function becomes l//(r, fin, E). In this way the integral over fi is now represented 

by a summation 
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[dtiv(r,v\E%%wMr,V,E) (1-13) 
«=i 

where the w are quadrature weights for the particular numerical integration scheme used 

to handle the angular integrals. Since the values of the \iin are not unique, the main factors 

that determine the choice of directions are the physical insights of the problem and the 

experience. For the one-dimensional and the time independent transport equation, this 

treatment leads to 

^M^E)+^{xE)¥{x^E)=s{x^E)+ 
ox 

(1.14) 
1 N °o 

^ Z f dE'wn^Ax^n> -*lin,E'^>E)\ir{x,iin.yE') 
^ n'—1 

This forms a set of N-coupled differential equations which, with the corresponding 

boundary conditions, can be solved by replacing the energy variable with a sum over a 

finite number of energy groups, and by making use of finite difference approximations to 

approximate the spatial derivatives. The implementation of the method is rather long, but 

the N-coupled differential equations can be solved on almost any computer. 

The selection of the quadrature weights, w , and of the directions cosines, fiv, are 

important when assessing the accuracy of the solutions of these equations. It is customary 

to obey the following requirements when selecting these quantities [19]: 

1) wn is always positive. This requirement arises from the intrinsic nature of the integral 

term in equation (1.2); i.e. its value is always positive. 
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2) Since particle flow is equally important in both positive and negative directions, then it 

is the norm to make a symmetric choice of quadrature weights and of directions about 

\i = 0. Thus 

\ln = -jUN+l-n a n d Wn = WN+l-n 

If N is even, then at a reflective boundary, (e.g. at x = 0, 1/̂ (0) =1// (0) for n = 1, 

2, ... N/2) and at a vacuum boundary (e.g. at x = a, l//(a) = 0, for n = N/2 + 1, N/2 + 2, ... 

N). Therefore, an even value for N will automatically provide the correct number of 

boundary conditions for the set of N-coupled differential equations. If N is odd then the 

direction cosine, \i = 0, would be perpendicular to the x axis, which implies that the 

derivative term vanishes. 

In closing, it is important to mention that it is possible to establish a relationship 

between discrete ordinates and spherical harmonics. Unfortunately this equivalence breaks 

down when treating complex multidimensional configurations. This method, though 

powerful, has been applied to a limited number of geometries (slabs, cylinders, and 

spheres). Unfortunately, plasma edge and divertor regions are geometrically complex, thus 

it is doubtful that the discrete ordinates method will be useful. This particular method has 

been studied in great detail [15-22], and has been used in geometrically simple neutral 

transport calculations in the past [25-28], but is not presently used in neutral calculations 

in the more complex divertor geometries. It is also important to mention that differential 

transport methods in general (i.e., discrete ordinates, spherical harmonics, etc.) have two 

shortcomings in treating plasma edge problems; 1) in order to achieve accuracy and 
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numerical stability it is required that the mesh spacing be smaller than the mean free path. 

This is a serious limitation in regions such as near the divertor plate where the mean free 

path can be a few millimeters, 2) they are not well suited for treating regions with a long 

mean free path (e.g., private flux regions, near-vacuum regions near the walls of a 

tokamak). 

In the treatment of the Sn and Pn computational methods, the errors are systematic. For 

instance there are uncertainties in the cross section data, and there are errors associated 

with the discretization of the angle-space-time-energy of the phase space, not to mention 

that with rare exceptions these methods do not allow the full representation of three 

dimensional geometries. Thus, much effort in these methods is spent on improving the 

computational time and accuracy, and less on trying to represent the complexity of three 

dimensional configurations [16]. 

1.3.4 Monte Carlo Method 

An alternative approach to solving the Boltzmann equation is to use the Monte 

Carlo Method. This method, first applied to neutron transport studies, found its way into 

the analysis of the problem of neutral particle transport after several modifications of 

techniques employed in neutron transport were made. The Monte Carlo method, unlike 

the previous methods, is capable of representing in a straightforward way very complex 

geometries (such as plasma and divertor chambers). Also, aside from uncertainties in the 

cross section data, the errors in Monte Carlo calculations take the form of stochastic 

uncertainties. The Monte Carlo method is, in r basic sense, the simulation of a large but 
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finite number of particle histories (in this case neutral particles) created by the use of a 

random number generator. For each history created, one or more random numbers are 

used to sample the appropriate probabilities distributions for energy, angles, path length, 

reaction types (charge-exchange, ionization, recombination, etc.), and so on. In fact, there 

is no need to make use of the transport equation for the most basic operations; the only 

thing needed is a complete (or even sufficiently accurate) mathematical description of the 

probability distributions that govern the stochastic variables in the problem in question. 

The final accuracy of the results attained with this method can be thought of as a function 

of the inadequacies of the physical model used, the uncertainties of the cross section data, 

and the inherent statistical nature of the method. Since the magnitude of the statistical 

error is inversely proportional to the square root of the number of particle histories 

generated, increasing the number of histories reduces the uncertainty in the final solution. 

This imposes a computational penalty on the time necessary for the analysis of the problem 

of interest. Nevertheless, this method has been used considerably in the computation of 

neutral particle transport, including the outer regions of a diverted tokamak plasma. 

Today's most powerful and extensively used Monte Carlo neutral codes in edge plasma 

calculations are DEGAS, EIRENE, and NIMBUS. The DEGAS code (the latest version is 

DEGAS2) was originally developed in 1982 by Princeton Plasma Physics Laboratory 

(PPPL); it has three-dimensional capabilities and enables the treatment of multiple 

hydrogen, H2, helium and hydrocarbons [2, 5]. The EIRENE code, used mainly in Europe, 

is capable of treating, in three dimensions, multiple hydrogen and H2 [2]. NIMBUS was 
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introduced in 1983 by Cupini et al. from NET and is capable of handling the three-

dimensional treatment of D-T and H2 [2, 29]. 

In closing, it is important to remember that the Monte Carlo method also provides a 

way to explore new parameters, as well as a means for validating the Sn and Pn methods or 

any other numerical or analytical method. Monte Carlo has proved to be a useful, highly 

accurate tool. It is the most widely used tool for the analysis of neutral particle transport 

in complex configurations when analytical solutions are almost impossible and numerical 

schemes are extremely time-consuming, and where the computational time is not a 

restriction. Unfortunately, because of its statistical nature, the iterative treatment of 

plasma/neutral reactions, often found when a Monte Carlo neutral code is coupled to an 

edge fluid code, is difficult. Calculations can take anywhere from several hours to several 

days to complete. References 15-22, 29-31 are a good starting point for the study of this 

subject. 

1.3.5 Integral Transport Methods 

The integral transport method (first used in the calculation of periodic flux distributions 

within the fuel-moderator-coolant cells of infinite reactor lattices) is quite different from 

the discrete ordinates technique already discussed. Instead of discretizing the angular 

dependence, the integral methods are based on integrating out the angular dependence of 

the transport equations. By eliminating the angular dependence, the angular variable can in 

principle be treated with perfect accuracy. In other words, the level of accuracy is 

determined by a willingness to evaluate numerically the expressions resulting from the 
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angular integration [17]. Thus, equation (1.2) can be integrated making use of an 

integrating factor 

Jo 
( r ' " ^ 

\\f e-
Z,dl — 

a/ 
r' 

= eJo"'"' S{x,E,fi) (1.15) 

where S represents the scattering term and the external source term. Integration leads to 

rl rl 

y(/,£,ji/)= \dl'e^'d[ S (/',£,/x) + e~^'d!\j/(0,E,fi) (1.16) 
JO 

From this point on the solution is an iterative procedure such that 

V̂  = | > B M , / i ) (1.17) 
n = \ 

where 

¥Xt,E,v)=ldl'e~^'dlS(l\E,ll)+Ssc(vnJ d-18) 

in which SK, the secondary source, is the n-1 iteration solution. 

Particles of a given source going in a particular direction are exponentially attenuated 

as the integral of the inverse mean free path along the direction of flight. For a fixed 

source, the solution to the flux distribution is simply dependent on the geometry of the 

problem. Unfortunately, if one of the processes by which the neutrals are attenuated (such 

as charge-exchange or recombination) gives rise to another neutral with a different energy 

and direction, the process is in itself a secondary neutral source which is uniquely 
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distributed in space. The same is true for processes that become tertiary, and quaternary, 

neutral sources. Thus, the solution to the flux distribution becomes an iterative process for 

which the next iteration step uses an approximate evaluation of the distributed source plus 

the exact solution of the particle transport from the approximate source. The iteration 

process becomes time-consuming because couplings exist among all spatial points 

(something that is inherent to the integral transport formulation). In order to speed up the 

iteration process, it has become customary to solve for the flux distribution of fixed 

sources (such as reflection from the wall) and to neglect all secondary sources. This 

procedure is good in just a few cases, in particular when the ionization rate is greater than 

the charge-exchange rate. The method becomes impractical for complex geometries and 

when the rate of processes that result in secondary sources becomes large (such as charge 

exchange near the wall and divertor plates) [16, 17, 19, 32]. Despite this limitation, the 

integral transport method has been applied in the edge region of fusion plasmas for simple 

one-dimensional problems [33]. 

1.3.6 TEP/ICB Method 

The Interface Current method has been used extensively in fission reactor calculations 

[17, 22]. Recently the one-dimensional Interface Current Balance (ICB) and its two-

dimensional extension, the Transmission/Escape Probability (TEP) formulations of integral 

transport theory, were introduced for the purpose of studying neutral particle transport in 

the outer regions of diverted tokamaks [32, 34]. The methods were implemented in one-

dimensional and two-dimensional monoenergetic neutral transport codes, namely, ICB and 
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GTNEUT. The methods are based on the balancing of particle fluxes/currents across 

surfaces and internal sources and are capable of treating complex geometries (GTNEUT) 

including regions of very long as well as short mean free paths. They have the advantage 

of coupling among contiguous regions in the spatial domain of the problem. This near-

neighbor coupling is the main benefit over the typical integral transport formulation where 

an all-regions coupling exists. 

Early studies showed that the TEP/ICB methods can provide an accurate and 

computationally economical solution of neutral particle transport in diverted tokamak 

plasmas. 

1.4 Conclusions and Objectives 

Neutral particle transport is an important issue in the outer region of a diverted 

tokamak. At this point in time there are no methods that can treat neutral transport in the 

plasma edge and divertor region with both computational economy and accuracy. 

Monte Carlo codes such as DEGAS2, EIRENE, and NIMBUS are the best 

currently available, and their use yields very accurate results -provided that computational 

time is not a pressing issue. Other methods (Sn, Pn, etc.) are limited by their inability to 

treat the complex geometrical configurations and widely varying mean free paths found in 

the plasma edge and divertor region. 

The recently introduced TEP method is promising in its ability to provide both 

accuracy and speed in treating problems with complex geometry and widely varying mean 

free paths. The ability of the method to handle neutral transport in complex configurations, 

18 



along with its versatility while treating long and short mean free path regions (a 

characteristic that no other method has), makes it very attractive. Moreover, the results 

obtained with a preliminary version TEP-based code, GTNEUT, are in good agreement 

with those obtained with DEGAS, and they were generated at a fraction of the 

computation time. Thus, this method has the two potential qualities -time economy and 

accuracy— that no other methods have been able to attain. 

A major purpose of this thesis is to investigate the validity of the basic transport 

assumptions of the TEP/ICB methodology. The accuracy of a number of approximations 

made in the implementation of the methodology are evaluated by comparing them with 

Monte Carlo. The thesis also presents correction factors which improve the accuracy of 

the method. In addition, this work compares the TEP-based code GTNEUT with Monte 

Carlo calculations for a number of diverted tokamak plasma models in order to evaluate 

the adequacy of the TEP method in its current state of development, for realistic neutral 

particle transport calculations in the edge and divertor plasma regions in tokamaks. 

Finally, it compares the TEP calculation with Monte Carlo and experimental results for 

neutral densities in the DIII-D tokamak. 
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CHAPTER II 

ICB/TEP TRANSPORT METHODOLOGY 

2.1 Introduction 

Commonly used in reactor core calculations [17, 22, 37-40], integral transport 

methods have been used for the calculation of neutral particle transport in the edge 

regions of fusion plasmas [33]. The purpose of this chapter is to review the Interface 

Current Balance (ICB) [34] formulation of integral transport theory and to demonstrate 

that when extended to multidimensions, the method is equivalent to the Transmission and 

Escape Probability (TEP) method [32]. 

2.2 Interface Current Balance: ID Transport Methodology 

The purpose of this section is to describe the one-dimensional Interface Current 

Balance and the two-dimensional Transmission/Escape Probabilities formulations of 

integral transport theory [33, 41]. 

Let 7+ /" represent the partial currents going forward and backward in a slab region 

bounded by surfaces i and i+\ as shown in figure 2.1. In addition, let }i be the cosine of 

the angle that the particle makes with the direction of travel (i.e., along the x axis). 

Furthermore, assume that 1) the region A, can be characterized by a uniform total cross 

section Zn\ 2) the incident angular fluxes at surfaces i and i + 1 are isotropically distributed 

in half space (i.e. double Po approximation); 3) both charge-exchange and scattering of 

neutrals result in an isotropic directional distribution, and that 4) the distribution of first-
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collided, second-collided, or n-collided particle sources is uniform over the region. 

JT+ * Ji+\ 

\|/(Xi+1,JLL) 

LI = COS(0) 
X 

Figure 2.1. Interface current model schematic in ID slab geometry. 

The emerging partial currents through surfaces i and i+\ can be expressed as the sum 

of incident partial currents and of any internal sources present in the region. Thus, the 

interface current balance over the interval Aj can be expressed as 

J^=Tij;+RlJM+^slPl + 
( 1 \ 

st — s 
2 

p 

J7=TiJ7h[+RlJ:+~slPl + 
1 ^ 

(2.1) 
st — s i 

2 
P„ 

where T-t represents the total transmission probability which can be written as the sum of 

21 



the first flight or uncollided transmission probability Tol, and the total reflection probability 

Ri 

T^T^+R, (2.2) 

With reference to figure 2.1, the first flight transmission probability Toi can be defined 

as the ratio of the uncollided partial current at xl+l over the total incident current at x„ 

J+ (x ) J+ (x ) 
nr _ J unc \A'i+] t _ u unc \A,i+\ / /o o\ 

°' " J+ (x ) ~ J + 

J total VA/ / J i 

It can be shown that if the neutral particle distribution function at x, varies as /(x„ fi) ~ ff, 
then 

Toi =(n + 2)En+,{AlZtl) (2.4) 

where En represents the exponential integral function of the nl order[17], namely 

£,(z) = £/t"V^d|i (2.5) 

Thus, for a uniform distribution function (i.e., for an isotropic incident flux) 

f(xi, ju) ~ ji , T0i= 2E3. For a cosine distribution function (i.e., cosine distributed incident 

flux), /(x/, ju) ~ jii , T0i = 3E4, etc. If there is an isotropic surface source at x;, then 

/(x„ fi) ~ JI and the transmission probability is Toi = E2 (A£n). 

The total reflection probability Ri, in equation 2.2, is defined as 
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i? i=ic (/5(l-2£,(A i3:,1)) (2.6) 

The quantity Ptin equation (2.6) represents the total escape probability (i.e., includes all 

the generations of charge-exchange and elastic scattering), which is a function of the first 

flight escape probability Poi (for the case of an isotropic collision rate distribution within 

the slab region) and of the fraction a of the collision rate that is due to scattering and/or 

charge-exchange (i.e., to events which do not remove the particle). This fraction of 

particles forms a source of once-collided particles, and it is assumed to have a uniform as 

well as an isotropic distribution (isotropic in this case means half the particles exit to the 

right and half exit to the left). Thus, 

J > , ^ t k ( i - J > J N 1
 Pf —, (2.7) 

«=o i-c^-Pot) 

where the first flight escape probability P0i in a slab can be defined as [42] 

p.-
A.Z, 

\-EA^«) (2.8) 

and the charge-exchange and scattering fraction a is (in the absence of neutral-neutral 

scattering and ion impact ionization) equal to 

(ov) + (ov) . 
c,. = ———^—^ (2.9) 

(ov) +(ov) , + — (av). 
\ I ex \ I el \ I it 
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where the (ov) represent the reaction rates, averaged over the Maxwellian distributions 

of both ions and neutrals, for the processes of charge-exchange, ex, elastic scattering, el., 

and over the electron distribution for the ionization process, ion. 

Solving for j + in the first of equation of (2.1) and substituting the result into the 

second equation leads to a matrix relation between the partial currents at adjacent surfaces 

/ ; 
J7 

fc-1) {-T-'R) Jjt 

{R^) ^-Rjr^ihW^ + 

•S;i -rr 
l-RJ: 

+ P„ 

( 
T; 

_ 1 > 
si — s i 

2 , 

+ i ^ 
S ' " 2 5 

/ 
RJ; st st 

2 

1 ^ 
:si 

y j j 

(2.10) 

This representation has the form of the response matrix formalism [17, 22] of neutron 

transport theory. The solution for this representation is obtained by simply sweeping from 

one boundary of the problem to the other in an iterative fashion. 

The ionization rate can be calculated by balancing the currents over the interval A{, thus 

_(l-c,)((/,+ + 7 - , ) ( l - 4 ) +S,(1-/U) 
/ | = ~(l-Cl(l-P0l)) 

(2.11) 

The main advantage of the ICB formulation over integral transport methods lies in its 

discretization scheme, which results in coupling between next neighboring regions rather 
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than, the coupling all regions of the problem. 

2.2.1 Boundary Conditions in Slab Geometry 

There are three easily identifiable boundary conditions that can be imposed on the left 

most surface of figure 2.1 (i.e., x = 0, i = 0). These are: 1) J* - Tin if a known current of 

particles r,n is incident from the left; 2) the incident current JQ =0 if a vacuum or a 

nonscattering medium exists for x < 0; and 3) when a source-free scattering medium 

exists for x < 0, the boundary condition can be adequately expressed as an albedo 

condition of the form JQ = a T~ where a represents the albedo and r~ the current across 

the left surface. 

2.2.2 Generalization of ID Methodology 

Extending the ICB methodology to higher dimensions is straightforward. Let J,+ = J\n, 

jr = Jr, j ; + i = J-;;, and /.;, = /.* . Let also 

A^/>=4^+^-^h 

where A* represents the fraction of escaped particles exiting through surface i and A*+] 

represents the fraction of particles exiting through surface / + 1. With the help of 

equations (2.2), (2.4), and (2.6-2.8), it is possible to cast equation (2.1) into 
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•c;=TJ:+(I - T„ pr+c y, /• A(+1+AU /> 
• C =7;,7;;,+(i-rOT)(7;" + y ; : 1 ) c ^A,+A>^ 

It is now clear that the exiting current across surface i or i + 1 is made up of three 

quantities: 1) the inward current across the surface in question times the probability Tot 

that the particle traversed the region uncollided and exited through this surface; 2) the 

inward current across the bounding surfaces of the region times the collision probability 

(1 - Toi) times the probability cx that the first collision was a scattering event times the 

total escape probability P, from region i times the directional probability A that the 

escaping particle moves across the given surface; 3) any internal source of particles si 

within the region times the total escape probability Pt from region /, times the directional 

probability As that the escaping particle crosses the surface in question. 

2.3 Two-Dimensional Extension of the Interface Current Balance Method 

In the two-dimensional configuration shown in figure 2.2, the generalization of 

equation (2.13) to two dimensions is done simply by writing the partial current from 

region k into i as /*.,-. The uncollided probability for particles going from region k to j 

through region i can be denoted by T^ . Finally, Ay can represent the probability that a 

particle born or scattered in region i can go into region j . Thus, the partial current from 

region i into region;, /,•.,• can be obtained by summing over all regions k adjacent to region 

/, namely 
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jl-J=tT*j«+iii~fj"v^^,+^SiPl (2.14) 

J ki*Oi 
kj 

Region k 

CiPAjJki 
f i \ 

1--ix V / ) 

Fig. 2.2. Interface current model nomenclature in 2D slab geometry. 

Once again, the three terms in the equation above represent: 

1) the sum of the currents entering region / from all adjacent regions times the probability 

that the particle will exit region i into region; without a collision; 

2) the sum of the currents entering region i from all contiguous regions times the total 

escape probability Pt that the particles escape region i after one or more scattering 

(including charge-exchange) collision times the probability a that the first collision was a 

scattering event, times the probability Ay that the scattered particle escaping from region i 

goes into region j ; 

3) any internal source of particles in region i (e.g. recombination), times the escape 
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probability Pi, that the particle in region / escapes into region j times the probability ASy 

that the escaping source particle will enter region j . 

Equation (2.14) is nothing more than a balance of currents over k regions, and in order 

to solve it, the first flight transmission and first flight escape probabilities must be 

calculated. For this reason, the higher dimensionality of the ICB formulation is commonly 

referred to as the transmission and escape probability method (TEP). 

The ionization rate in each region can be calculated by taking into account the 

ionization of any external neutral sources and of the collided fraction of neutrals flowing 

into the region of interest from all adjacent regions [32]. Thus 

/. = 
sA-Poihtth-, i-5> ( 

r * \ 
ki 

0< 

[l-CJ 

( l - c , ( l -P 0 , ) ) 
(2.15) 

The neutral particle balance in region / can be obtained from the balance of fluxes and 

of internal sources, thus 

N: = 
Si-tiih-i-h-k) 

k . 

NionH\on 

(2.16) 
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2.4 Transmission Probabilities in Two-Dimensional Geometries [41] 

Consider a region with volume V; with a plane cross section (x-y) as the one shown in 

figure 2.3, in which the z direction is normal to it. Let also figure 2.4 represent the three-

dimensional and vertical projections of figure 2.3. The location £i in figure 2.3 can be 

identified as the projection onto the horizontal plane of the vertical axis shown in figure 

2.4. The corresponding differential solid angle in this coordinate system is given by 

rfQ = —sin0 'd0 'd0 =—-cosOdOdQ 
An An 

(2.17) 

Figure 2.3 Planar projection of geometry for the 
calculation of the transmission probability in 2D. 
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r -RQ 

Figure 2.4 Three-dimensional and axial projection of geometry for the calculation 
of the transmission probability in 2D. 

The incident directional flux \|/(r - Rft,£2) out of volume Vi at location £i is attenuated 

when it traverses the distance R to reach the location t,2 before going into volume V3 

i^(r,Q) = ^ ( r - R Q , Q) e 1R (2.18) 

The incident partial current density (#/cm2-s) out of volume Vi at location ^ is given by 

j„{l)= Jjn(n„a)v(r-RCi) 
n,„-O>0 

Jnd(j) J^ d6 cos2 9 sin 0 y{r - RQ) 

(2.19) 

An 

where nin n = cos0sin$ was used. If the incident flux is isotropic in the incident hemisphere 

(double-Po approximation), equation (2.19) reduces to 
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• / T t e ) = ^ ( r - R " ) (2-20) 

By multiplying equation (2.19) by the (arbitrary) axial dimension H and integrating 

over £imm< £1 < ^imax, the incident partial current (#/s) is obtained, namely 

emax 

Jm = H\. dZJ,,^) (2.21) 

The contribution to the current into volume V3 from incident neutrals from volume Vj 

which entered volume V, at location £i within the solid angle subtended by volume V3, and 

traversed volume V,- uncollided to entered volume V3 is given by 

. t m a x _ 

Jo* =Hi,i ^ W ^ O ¥{r-RQ,n)e™ 
(n-»r)>o 
t̂e)33 ( 2 _ 2 2 ) 

rt™ r<t> rV £ ^^) ) 
= | I d$ \ ^d<t> \ 2d0 cos2 6 sin<t>e- «** y(r-R£l,n) 

' • ^min(^i) / 2 

where nouV£l = cos&sin$out (note that if the interfaces of volume V, with volumes Vi and V3 

are not parallel, nouVQ. is not necessarily equal to nin ft = cos6sin(f) and 0(£i)3 3 indicates 

angles </) from a point £i wliich intersect the interface with region 3. If the incident flux out 

of volume Vi is isotropic in the incident directional hemisphere, equation 2.22 reduces to 

C, = £- j r <£ J!"*"^/ ^ «"*». ^N*(4))) V^- M>) (2.23) 
All ^1 "min(^|) 
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Therefore, the transmission probability for an isotropic incident flux distribution out of 

volume Vi, uniformly distributed over ^mn< ^ < ̂ max, can be expressed as the ratio of the 

incident partial current out of volume V, over the incident partial current entering 

volume V,-. 

i3 f,» J^d^\^ysintMKh{u(m)) 
r '3 = ̂ - = -— ^ H ^ (2-24) 

v< jiso _ / emax ertun \ v ' 

where Kin represents the Bickley function of the n order [17, 43, 44], namely 

Kin(r) = \2de(smeyleUne) (2.25) 
Jo 

2.5 Escape Probabilities in Two-Dimensional Geometries 

The flux per unit surface area dA normal to the direction of flight at a distance R away 

from an isotropic point source is exp(-ZR)/4juR . As shown in figure 2.4, the surface area 

normal to the direction Q, of neutral travel is dA = RdOldQ = l2d6d§lcos6. Consequently, in 

regard to figure 2.5, the outward current of uncollided neutrals over the surface labeled t,2 

into volume V3 that is produced by an isotropic source of unit strength per axial length 

located at r; within volume V; is 
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Jlut(r) = \ {noul-Q) 
-m e^dA 

4nR2 

-11(0) f j2 \ 
COS0 

=L,3^L?6 ,( c o s 6 , s i n^)' 
yCOSO; 

An 
I 

r 1 f/ 
= j^sd(i>sm<poul—l2d0cos20e 

Ki3(zi{(t>)) 

cosO 
H(0) 

= [ ttysinfc 
In 

(2.26) 

where </) z)S3 indicates the range of <jWw < 0 < <?W subtended by side S3 at location r, within 

volume Vs. 

Figure 2.5 Planar projection of geometry for the calculation of the escape 
probability in 2D. 
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The probability that an isotropic, uniform neutral source si will produce an uncollided 

current s(A
Sj3P0j from volume Vj into volume V3 is the same as the average value of 

J3
0ut(x,y) over the planar 2D area A, of volume Vj 

Ai3poi = -j- L dx dy JoM (x> y) 
A:

 JA 

1 r . . r . . . . ^ W ) 
-A-\A

dxdy\^d^m^ 2n 

(2.27) 

The correct value of nout is the outward normal to the surface in question, and §0M is 

measured against the orientation of that surface. In contrast </) may be measured with 

respect to a fixed coordinate system. This means that usually §out * <p, although it simplifies 

matters to orient the coordinate system so that Qout = 0. 

The total uncollided escape probability, or first flight escape probability, is obtained by 

adding the contributions from equation (2.27) for aU volumes Vk that are adjacent to 

volume Vj 

^ =5>,,/>0, (2.28) 
k 

and the directional escape fractions can be calculated from 

A P A P 
Ait=--^= J ^ < (2.29) 

Poi Z A ^ o , 
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2.5.1 Approximations for the First Flight Escape Probability 

A more general expression for the probability that a neutral particle born uniformly and 

isotropically in a convex body B (shown in figure 2.6) will escape uncollided (i.e., 

equation 2.27) is given by [19, 42, 45] 

A f/. / n \ , /. \ .. A 
p^fJli-^-j^O^^f-K^XO dl 

(2.30) 

ns ^ * Q 

. ' k 
r o / ^ / 

/ " " / 

\ n'1/*- > ^ body B . \ n'1/*- > ^ body B . 

Figure 2.6. Escape probability from a convex body. 

where (p(ls) denotes the chord distribution function of the body in question and ls is equal 

to the mean chord length. The main problem in computing (2.30) lies in the fact that it is 

very difficult to find an exact expression for the chord distribution function. These are 
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known only for a handful of basic geometries such as slabs, spheres, and cylinders. Thus, it 

is practically impossible to evaluate this integral analytically. Many approximations to the 

first flight escape probability have been made using series expansions, treating the integral 

in its corresponding limits, polynomials expansions, numerical tabulations for different 

geometries, etc. The first approximation to equation (2.30) was based on physical 

considerations. For instance, if the dimensions of the body are smaller than the mean free 

path, the exponential term inside the integral can be expanded. Subsequently, equation 

(2.30) reduces to 

7 
P 0 = l - - - ^ - « l (2.31) 

0 2 U 

The physical interpretation of this expression means that all particles will tend to 

escape from the body. Conversely, if the dimensions of the body are greater than the mean 

free path, the exponential term inside the integral vanishes, meaning that physically all 

particles will have a very small chance of escaping the body. Thus, equation (2.30) reduces 

to 

/ ^ i = ~ (2-32) 
/ 4V 

These observations lead Wigner et al. [46] to introduce a simple approximation to 

equation (2.30), namely, a rational approximation 
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where V and S represent the volume and surface area of the body respectively. 

It is evident that the rational approximation does not depend on the 0 (ls), but only on 

the mean chord length, which in general is / = 4V/S. Unfortunately, the rational 

approximation gives errors of up to 18% for intermediate values of / / X = 2^ for the case 

of a circular cylinder [19, 47-50]. In 1963, Sauer proposed an approach based on the 

method of chord theory [47]. His approach consisted of deriving from a carefully chosen, 

one parametric chord distribution function which has the same general properties as the 

exact chord distribution in the body of interest. A geometric index for the case of a 

circular cylinder was determined by requiring that the logarithm moment of the exact as 

well as the approximate chord distribution function be the same. Thus, the Sauer 

approximation to the first flight escape probability is 

p Sauer A 

° = ^ r 
i -

i+ u 
(*+i) 

(2.34) 

where the parameter n, the geometric index, is equal to 3.58 for the case of an infinite 

cylinder. Once again, for large S/ (i.e., X —» 0), Sauer approximation reduces to 
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pSauer __ + ._ - - . 

For small 2 / (i.e., A, —» °°), Equation (2.34) can be expanded: 

(2.36) 

= 1 - ^ 1 / 
2c 

It is evident from equation (2.34) that for n = 0, Sauer approximation reduces to the 

original Wigner rational approximation (i.e., equation 2.33). 

There are some more recent approximations of the first flight escape probability [47-

51]. These involve an expansion of some kind which require the use of a number of 

constant coefficients. Although these behave similarly to the rational and Sauer 

approximations for both large and small values of HI , they do not show the simplicity and 

mathematical elegance of the Sauer approximation. 

2.6 Total Escape Probability 

Once again Po represents the probability that a particle can escape from a region 

without a collision. However, it is also possible that the particle or its progeny can escape 

after one, two, or ^-collisions. For instance, (1 - Po)ciPo represents the probability that a 

particle escapes after one collision. The particle can escape after two collisions with 

2 2 

probability (1 - Po) Q Po and so on. Thus, the total escape probability can be 
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mathematically expressed as 

P = PoYfall-Po)Y = ^ (2.37) 

(ov) + (ov) 
where c, = - - represents the fraction of neutrals that have had a 

(ov) +(ov) , + —(ov). 
\ I ex \ I el \ I ion 

ni 

charge-exchange or scattering event. 
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CHAPTER III 

ACCURACY OF FIRST FLIGHT TRANSMISSION 

AND ESCAPE PROBABILITIES 

3.1 Introduction 

The first flight transmission and escape probabilities can, in principle, be calculated 

exactly. However, several approximations were made in the practical implementation of 

the TEP/ICB methodology in the interest of computational efficiency. The purposes of this 

chapter are to evaluate the errors introduced by such approximations and to develop 

improved approximations or correction factors where needed. 

3.2 Accuracy of the First Flight Transmission Probability 

3.2.1 First Flight Transmission Probability in a Uniform Region [35, 36] 

The expression that defined the first flight transmission probability (i.e., equation 

2.24) was derived assuming that the region was represented by uniform temperature and 

density distributions (i.e., uniform mean free paths). The purpose of this section is to 

evaluate, by comparison with Monte Carlo codes DEGAS and MCNP4B [5, 52], the 

accuracy of the algorithm used to calculate To- This was evaluated for a variety of regions 

with a totally ionizing medium, uniform plasma conditions (temperature equal to 10 eVs 

and density equal to l.OxlO19 m"3), vacuum boundary conditions, no internal sources and a 

cosine distributed source on one of the surfaces. The results that compare the To predicted 

by TEP-algorithm with Monte Carlo are shown in figure 3.1. The agreement between the 
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2X 

GTNElrT Monte Carlo 
T12 0.00571 0.00577 

T13 0.647 0.647 
|T 1 4 0.0140 0.0141 

GTNEUT Monte Carlo 
T21 0.06633 0.0667 

T23 0.05086 0.05137 

T24 0.02165 0.02154 

|T 2 5 0.06412 0.06491 

3.1. First flight transmission probability comparison. 
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of the analytical expression (i.e., equation 2.24) to computational algorithms and coding. 

3.2.2 First Flight Transmission Probability in a Nonuniform Region 

The expression (2.24) was later evaluated using a mean free path, ^av, calculated at the 

average plasma parameters to characterize nonuniformities (i.e., temperature or density) in 

a region. In general 

?o = 
2j^^K')Wsi°0ica«(0.g,)) 

' d( (3.1) 
iu.H ̂ iu) 

where a(0, î) represents the optical thickness of the region. It is evident that T0 is a 

function of the optical thickness along the total path traveled. It is possible, at least in 

principle, to calculate the actual optical thickness of the region exactly. Unfortunately, in 

nonuniform regions this can become a computationally-intensive task. Thus, it was 

computationally advantageous to approximate oc(0, £j) by means of an "average" mean 

free path, >̂ av. The simplest way to accomplish this was by using a linear average, namely 

K=^¥) (3-2) 

where x represents the quantity being averaged (i.e., temperature or density) and the 

subscripts 1 and 2 represent the boundaries of the region. 
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The evaluation was done for media with several optical thicknesses. This calculation 

was done on a square region for a case of a nonuniform temperature but uniform density, 

and for a case with uniform temperature but nonuniform density. The situations are 

illustrated in figure 3.2. 

In the first case, the temperature was allowed to vary linearly from the value at one 

boundary to the value at the opposite boundary, while the density remained constant at 

5xl018 m"3. It is important to mention that linear temperature or density profiles are not 

typical in the divertor region. However, if the computational regions are small, any 

nonuniformities can be approximated by a linear function. In this limit the present 

evaluation should be valid. The results of this study can be seen in table 3.1. 

Table 3.1; To (A,av) for a Region with Linear Temperature Variation, Uniform Density 

T (eV) = 100 - 50 100 - 10 100-1 10-1 
Optical thickness 2.130 2.252 2.240 2.164 
To exact 0.09062 0.08584 0.08751 0.09070 
To (Aav) 0.09355 0.08836 0.08719 0.09503 
Error % 3.23 2.94 -0.37 4.78 

T (eV) = 100 - 50 100 -10 100-1 1 0 - 1 
Optical thickness 0.213 0.225 0.224 0.216 
To exact 0.25058 0.24818 0.24863 0.25043 
To (A,av) 0.25138 0.24878 0.24816 0.25208 
Error % 0.32 0.24 -0.19 0.66 



Temperature 

100eV 

Density = 5E+18 m -3 

A = 0.5 m 

Density 

100eV E19m3 

50 eV 

10eV 

1 eV 

Temperature = 10 eV 

A = 0.5m 

1E19m"3 

5E18 m .-3 

1E18m ,-3 

• 5E17m ,-3 

Figure 3.2. Temperature and density distributions for a nonuniform region model. 
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than 5%. Over the same temperature range, but for an optically thin region, the error was 

not greater than 1%. 

In the second case the density was allowed to vary linearly while the temperature 

remained fixed at 10 eVs. The results agreed precisely with the exact solution. This was 

because the mean free path is directly proportional to the particle density 

(X1 = Z = na(T)) and because the TEP-based code GTNEUT does not include density-

dependent cross section data. The results of this evaluation for optically thick regions are 

shown in table 3.2. 

Table 3.2; To (A,av) for a Region with Linear Density Variation, Uniform Temperature 

1 n (m"3) = 1E19 - 5E18 1E19 - 1E18 1E19-5E17 
Optical thickness 3.354 2.460 2.348 
T0 exact 0.007656 0.02119 0.02409 
To (A,av) 0.007656 0.02119 0.02409 

| Error % 0.0 0.0 0.0 

Based on these results, the error that was introduced in calculating the uncollided 

fraction, To, of incident particles transmitted through a medium with a nonuniform 

temperature distribution was small enough to justify the use of an "average" mean free 

path. The same was true for regions with a linear density distribution. 
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In chapter II, the proper expression for the first flight escape probability, i.e., equation 

2.27, was introduced. This can be calculated exactly for any geometry of interest provided 

the proper chord distribution function is known. Although exact, this calculation would be 

very time consuming and would negatively affect the computational economy of the 

method. Section 2.5.1 in the previous chapter mentioned that to avoid this penalty, it was 

more practical and computationally efficient to calculate the first flight escape probability 

using some other simple approximations. One of these approximations was the rational 

approximation (equation 2.33) first introduced by Wigner in 1955 [46] and later re­

examined by Sauer in 1963 [47]. 

3.3.1 First Flight Escape Probability Test in a Uniform Region [35] 

3.3.1.a Parametric Dependence of Pn 

The purpose of this section is to discuss the rational approximations suggested by 

Wigner and Sauer for the calculation of the first flight escape probability, rather than using 

the more complex expression previously defined (i.e., equation 2.27). To avoid the 

evaluation of this difficult expression, Wigner suggested the expression, introduced as 

equation 2.33 in chapter II, 

Jo=—^— (3-3) 
0 1 + X 

A more general expression for cylindrical regions was later introduced by Sauer (i.e., 

equation 2.34) 
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Po=— M (3-4) 

1 nil 
where n = 4.58 and the parameter X = 4VA,S is defined in terms of the volume, V, the 

surface area, S, and the mean free path, X. 

The first step in this test was to calculate P0 using the Monte Carlo code MCNP4B in 

order to test whether the parametric dependence of P0 can be characterized by a single 

parameter, namely X. A variety of simple geometric figures (square, rectangle, triangle, 

circle and trapezoid) with different volume-to-surface ratios were used for this purpose. In 

order to calculate P0, each region contained a uniform plasma with <av>cx = <crv>ei = 0 

(i.e., only ionization processes were allowed), so that only the uncollided particles 

escaped. Each model also had a uniformly distributed neutral source and vacuum 

boundary conditions. Thus, P0 was equal to the ratio of the leakage to the total source, 

i.e., Po = L/Stot- The calculated P0's predicted by MCNP4B are plotted versus the 

parameter X in figure 3.3. It is clear that P0 is well characterized as a function of the single 

parameter X and does not otherwise depend strongly on the mean chord length or 

geometry. 

3.3.1.b Accuracy of the Rational Approximations 

As mentioned, it is desirable for the sake of computational efficiency to use a rational 

approximation for P0, rather than to calculate P0 from equation 2.34. Thus, the next test 
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Figure 3.3. First flight escape probability as calculated by Monte Carlo for various geometries 
and surface-to-volume ratios plotted versus the parameter X = 4V/A,S. 
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comparison with Po predicted with MCNP4B for a variety of geometries and surface-to-

volume ratios. Although Sauer's approximation strictly applies only to cylindrical 

geometry, it was also evaluated for the other geometries considered. This comparison is 

shown in figures 3.4 for trapezoidal geometry. Based on these results, it was concluded 

that both Wigner's and Sauer's rational approximations approached the analytical limit 

1/X as the parameter X becomes large. It can be readily seen that Wigner's rational 

approximation underpredicted Po for an intermediate range of X (0.1 ~ 20), a well known 

result from neutron transport [47-50]. On the other hand, Sauer's rational approximation 

overpredicted P0 over the same interval. It is worth mentioning at this point that all the 

detailed divertor models studied in chapter VII (ITER-EDA, DIII-D, and C-Mod) fell in 

the region where X is 0.01 ~ 100). In the limit as the parameter X becomes small, both 

Wigner's and Sauer's rational approximations approached the analytical limit of 1. Similar 

behavior was observed in all the geometries tested. 

To reduce the errors seen with Wigner's and Sauer's rational approximations, a new 

rational approximation is introduced with a form similar to that of Sauer's. This was done 

using all the values of Po predicted by MCNP for all geometries tested (see figure 3.3). 

The value of n that best fit all the geometries was 2.09. By way of example, figure 3.5 

shows Po as calculated by Wigner's, Sauer's, and the new (n = 2.09) rational 

approximations compared with the predicted Monte Carlo results as a function of the X 

parameter, for the trapezoid model. Clearly, the new rational approximation showed an 

improvement in the intermediate range 0.1 ~ 20 of X and still preserved the analytical 
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limits of Wigner's and Sauer's rational approximations. A comparison of the rational 

approximations for other geometries are shown in figures 3 . 6 - 3 . 1 0 . These figures show 

the percent error with respect to Monte Carlo for each of the geometries tested. Figure 

3.11 summarizes the error for the new rational approximation (n = 2.09) compared with 

Monte Carlo results for all the geometries tested. It is clear that the maximum relative 

error of the new rational approximation was about 5% for all geometries, with the 

exception of the cylindrical (circle), where the error could be as large as 12%. It is also 

clear that the new rational approximation is more accurate than the Wigner or Sauer 

approximation for all geometries except cylindrical (circle), for which the Sauer 

approximation was superior since it was explicitly defined for an infinite cylinder. 

3.4 Total Escape Probability 

Po represents the probability that a particle can escape from a region without a 

collision. It is also possible that the particle or its progeny can escape after one, two, or 

^-collisions. For example, (1 - P0)ciPo represents the probability that a particle escapes 

after one collision. The probability that a particle can escape after two collisions is 

7 7 

(1 - Po) CiP0 and so on. Consequently, the total escape probability can be mathematically 

expressed as 
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Figure 3.8. Error comparison for the three rational approximations for the circular geometry. 
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and the fractional error in the first flight escape probability respectively. The two errors 

are related by 

AP AP0 
£ = " 

ô 

1 _ . C ^ 
\-c P 
1 LirQ 

= £r ! _ c^ 
1-^Po 

(3.6) 

It is clearly seen in equation (3.6) that e is less than Eo- This fact is illustrated in figure 

3.12. For example, if P0 = 0.5 and cK = 0.8, then for a value £o = 0.06, the fractional error 

in the total escape probability, e, is approximately 0.2%. Thus, the relative error in the 

total escape probability, which is the quantity that enters the TEP calculation, will be less 

than the error in the first flight escape probability discussed in the previous sections. 

3.4.1 Escape Probability in a Uniform Medium with a Nonuniform Source Distribution 

Implicit in the development of the rational approximation and in the relationship 

between the first flight (P0) and total (P) escape probabilities are the assumptions that the 

escape probability is the same at every point within the region and that the collision source 

is uniformly distributed over the region. These assumptions are questionable for situations 

in which the primary source of particles in a region with dimensions greater than the mean 

free path result from collisions of particles incident across a bounding surface. For 

example, in the region in front of the divertor plate, there is a highly directional flux of 

particles recycling from the plate, and the first collision source within the region is highly 

peaked towards the divertor plate, rather than uniformly distributed (the second and later 
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Figure 3.12. Total escape probability error as a function of change in the first flight escape probability. 
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collision sources would be more nearly uniformly distributed). 

The purpose of this section [36] is to evaluate the accuracy of using the first flight (Po) 

and total escape (P) probabilities using the rational approximation with n = 2.09 in a 

region with a nonuniform source distribution. The evaluation was carried out in a simple 

square region (i.e., / = 0.5 m) using a linear source distribution within the region, a 

uniform plasma background, and vacuum boundary conditions. (The source distribution in 

front of the divertor plate is not linear, but more like an exponential or power-like 

distribution. However, if the computational space is small, the source distribution can 

present linear characteristics. In these terms, this evaluation should be appropriate). The 

model is shown in figure 3.13. 

The correct first flight and total escape probability were determined by using MCNP4B 

and compared to the predicted values obtained with equations 3.4 and 3.5. The evaluation 

was carried out for different values of c„ the average number of secondary collisions, and 

for various values of the mean free path. The results shown in table 3.3 revealed that the 

rational approximation predicted the first flight escape probability to within an error of 5% 

for problems in which the dimension of the region was greater than the mean free path. 

However, unlike the case with a uniform source, for which the error in the total escape 

probability was always less than the error in the first flight escape probability, the error for 

the total escape probability in a region with a nonuniform source distribution was about 

7% for regions in which the dimensions were significantly greater than the mean free path. 

For regions with dimensions equal to or smaller than the mean free path, the error in the 

total escape probability was smaller than the error in the first flight escape probability. 
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Figure 3.13. Model for the escape probability study for uniform 
square region with a nonuniform source distribution. 

Table 3.3. Escape Probabilities for Uniform Square Region 
with a Nonuniform Source Distribution 

Pure Ionizing Medium; ci = 0.0 
mfp(m) —> 0.11 0.53 5.3 
Monte Carlo P0 0.194 0.587 0.938 
Rational Approximation 0.203 0.573 0.934 
Error % (APo/Po) 4.63 -2.39 -0.43 

Scattering Me dium ; ct = 0.80 
mfp(m) —> 0.11 0.53 5.3 
Monte Carlo P 0.512 0.869 0.987 
Total Escape Prob. P 0.548 0.865 0.985 
Error % (AP/P) 7.03 -0.46 -0.20 
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In general, the plasma temperature and density distributions within a region will be 

nonuniform. In order to make use of the rational approximation for P0, it is necessary to 

define an effective mean free path based on average plasma parameters for the region. 

The purpose of this section is to evaluate the first flight and total escape probabilities in 

a square region (/ = 0.5 m) with a nonuniform temperature and density, but a uniformly 

distributed source. A pictorial description of the nonuniformities in temperature and 

density is shown in figures 3.14 - 3.15. The Monte Carlo simulation explicitly represented 

these nonuniformities and source distribution. An average mean free path, based on a 

simple linear average of the temperate and density (just as in section 3.2.2), was used to 

characterize the nonuniformities in the region (i.e., ^av= A,(xi + x2)/2 where x represents 

the quantity being averaged). These Xm were then used to evaluate the expressions for the 

escape probabilities. 

There were two cases of particular interest for the problem of a nonuniform density: 

1) A purely ionizing medium (no elastic scattering or charge-exchange); and 2) a medium 

with finite elastic scattering and charge-exchange. The results of this test are shown in 

table 3.4. 
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Table 3.4. Escape Probabilities in a Nonuniform Medium 

T(eV) n(m3) 
100 - 1 0 1 0 - 1 1E19 - 5E18 1E19 - 5E17 

Ci = 0.0, n = 5E18 m3 d = 0.0, T = 10 eV 
Optical Thickness 0.903 0.174 0.706 0.494 
Monte Carlo P0 0.596 0.894 0.659 0.743 
Rat. Approx. P0 0.567 0.904 0.645 0.725 
Error % (APo/Po) -4.88 1.15 -2.09 -2.44 

d = 0.55 - 0.78, n = 5E18 m3 d = 0.80, T = 10 eV 
Optical Thickness 2.252 2.164 3.354 2.348 
Monte Carlo P 0.567 0.875 0.602 0.712 
Escape Prob. P 0.553 0.895 0.623 0.708 
Error % (AP/P) -2.52 2.25 3.49 -0.53 

The results indicated that using X,av is adequate for evaluating the first flight and total 

escape probability in a nonuniform medium to within 5%, even when very large 

nonuniformities were present. 

3.4.3 Directional Escape Fractions [35, 36] 

With reference to equation 2.14, Ay represents the probability that a neutral particle 

escaping from region / goes into region/ The current version of the TEP method used in 

the GTNEUT code assumes that there is no preferential direction for the collided escape 

probability, but that the escape fraction across a given surface is proportional to the 

fractional surface area of that surface. Thus, the escape fraction going across each surface 

of a square region with a uniform source and a uniform plasma background is simply 0.25. 

It seems necessary to examine the effect of nonuniformities (i.e., source, plasma density 

or temperature) on the fraction of neutrals escaping across each surface. A pictorial 

description of the nonuniformities studied are shown in figures 3.13 - 3.15. The Monte 
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Carlo results for the case of a nonuniform source distribution are shown in table 3.5. It is 

evident that the escape is preferentially across the surface where the source is largest and 

reduced across the opposite surface nearest the region of reduced source (i.e., the escape 

probability is greater than 0.25 across the left surface and less than 0.25 across the right 

surface of the square). It is important to note that the extent of this directionality effect is 

inversely proportional to the mean free path within the region. 

The Monte Carlo results for the cases with nonuniform temperature and density 

distributions, but with a uniformly distributed source, are shown in table 3.6 and 3.7 

respectively. It is evident from table 3.6 that for regimes with small and large optical 

thicknesses, the directionality of the escape fraction from a region with a nonuniform 

temperature and uniform source and density distributions is not very significant. However, 

the directionality of the escape fraction for a region with a nonuniform density and 

uniform source and temperature distributions could be quite significant. Table 3.7 shows 

that the directionality effect becomes more pronounced in situations where the density 

varies by more than one order of magnitude (i.e., a factor of between 10 - 20). These 

results suggested that when treating a physical region that has a large density gradient, it 

should be modeled with 2-3 computational regions in order to reduce the directional 

escape effects. 
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with a Nonuniform Source and a Uniform Plasma Background 

?ure Ionizing Medium; ct = 0.0 
mfp(m) —> 0.11 0.53 5.3 
Anght 0.0725 0.1537 0.1948 

Aiert 0.4307 0.3479 0.3068 
Aup 0.2470 0.2498 0.2485 

Adown 0.2498 0.2486 0.2499 

Scattering Medium ; ct = 0.80 
Anght 0.1093 0.1684 0.1963 

A|eft 0.3930 0.3318 0.3052 
Aup 0.2479 0.2493 0.2485 
Ad 

own 
0.2498 0.2504 0.2499 

Table 3.6. Directional Escape Fractions for a Square Region with 
Nonuniform Temperature and Uniform Source and Density 

T(eV) 
100 - 1 0 1 0 - 1 | 
ct = 0.0, n = 5E18 m3 

Optical Thickness 0.903 0.174 
Aright 0.2540 0.2658 
Aieft 0.2518 0.2312 
Aup 0.2490 0.2506 
Ad 

own 
0.2452 0.2524 

ct = 0.55 - 0.78, n = 5E18 m 3 | 
Optical Thickness 2.252 2.164 

Aright 0.2471 0.2633 
Aleft 0.2559 0.2335 
Aup 0.2448 0.2513 

I Adown 0.2486 0.2518 
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n(m3) 

Table 3.7. Directional Escape Fractions for a Square Region with 
Nonuniform Density and Uniform Source and Temperature 

1E19-5E18 1E19 - 5E17 
d = 0.0,1 r = io eV 

Optical Thickness 0.706 0.494 

Aright 0.2660 0.2799 

Aieft 0.2352 0.2205 

Aup 0.2348 0.2483 

-^down 0.2509 0.2513 

d = 0.80, T = 10 eV 
Optical Thickness 3.354 2.348 

Aright 0.2803 0.3132 

A|eft 0.2227 0.1952 

Aup 0.2480 0.2437 

-'Miown 0.2489 0.2479 

3.5 First Flight Source Distribution Correction [35, 36] 

In regions next to the divertor plate, highly directional incident recycling fluxes would 

be expected to create a strong nonuniform first collision source distribution, similar to an 

exponential or power distribution. Thus, significant directional escape probability effects 

would be expected, with preferential escape back towards the divertor plate. In order to 

correct for this directionality effect, a correction factor was determined from a number of 

Monte Carlo calculations of uniform regions with both isotropic and cosine distributed 

sources incident on one surface. The computational domain for the study was a square 

region with a characteristic dimension Ax and vacuum boundary conditions. The sources 

were incident on the left surface of the square region. The computational model is shown 

in figure 3.16. The study was done for a variety of Ax and X. For example, Table 3.8 
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shows the results for the directional escape fractions in a square region with a variety of 

Ax, mean free paths, c, = 0.8, and for an isotropic plane source incident from the left. It is 

clear that the first collision source distribution of an incident isotropic flux distribution was 

quite nonuniform. There was a substantial preferential escape across the incident surface. 

An escape directionality factor was defined from the ratio of escaping forward to 

backward neutrals, Af0rWard/Abackwani (i.e., neutrals escaping across the right surface, 7f0™ard 

over the neutrals escaping across the left surface, 7backward )• This ratio is plotted and fitted 

(see figure 3.17) as a function of the parameter Ex, where x is given by x = 4V/S for the 

square. 

0.5 m 
Figure 3.16. Computational model used to compute directional escape probability factor. 
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Incident on the Left Surface 
d = 0.80; V/S = 0.025 

mfp (m) —> 0.11 0.45 1.118 2.23 
/forwardA/total 0.5425 0.8009 0.8932 0.9357 

J backward/ J total 0.4575 0.1991 0.1068 0.0643 
-^forward* ^backward 0.6279 0.8930 0.9595 0.9817 

ci = 0.80; V/S = 0.05 
mfp (m) —> 0.11 0.45 1.118 2.23 
J forward/./ total 0.3369 0.6934 0.8286 0.8932 

J backward*./total 0.6631 0.3066 0.1714 0.1068 
A.Forward/A.backward 0.3688 0.7979 0.9187 0.9595 

Q = 0.80; V/S = 0.125 
mfp (m) —> 0.11 0.45 1.118 2.23 
./forwardA/total 0.0635 0.4825 0.6934 0.8009 

J backward* J total 0.9365 0.5175 0.3066 0.1991 
^forward/-^backward 0.0629 0.5533 0.7979 0.8930 

a = 0.80; V/S = 0.25 
mfp (m) —> 0.11 0.45 1.118 2.23 
J forward/ J total 0.0028 0.2614 0.5425 0.6934 

J backward* J total 0.9972 0.7386 0.4575 0.3066 
-/^forward/ -^backward 0.0027 0.2774 0.6279 0.7979 

Ci = 0.80; V/S = 0.5 
mfp (m) —> 0.11 0.45 1.118 2.23 
J forward* J total 0.0635 0.3369 0.5425 J forward* J total 0.0635 0.3369 0.5425 

J backward* J total 0.9365 0.6631 0.4575 J backward* J total 0.9365 0.6631 0.4575 
^forward/-^backward 0.0629 0.3688 0.6279 ^forward/-^backward 0.0629 0.3688 0.6279 
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^ 0.01 J 

13 

0.001 -

Aforward'Abackward ^ i — u . 9 y 

Aforward'Abackward Q = 0 . 8 0 

Aforward'Abackward ^ i = U.4o 

y5 = 8.296(^a739(A+1473) - e - 1 0 4 3 ( x + 1 4 7 3 ) ) 

Fits y1, y3, y5 for cosine plane source 
Fits y2, y4, y6 for isotropic plane source 

4 5 

Zx 

2.326 
-V6 ~ " f (x+0.268) ^ 

l + e °"6 

Figure 3.17. Directional escape probability factor (closed symbol: isotropic plane source, open symbol: cosine plane source). 
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3.6 R flection from a Material Wall 

The purpose of this section is to discuss the validity of the treatment of reflection from 

a material wall. The TEP based code, GTNEUT, assumes that reflection from a material 

wall is isotropic. On the other hand, both the MCNP4B and DEGAS codes are capable of 

reflecting particles from a "real" material wall (i.e., carbon, tungsten, etc.) with a cosine 

distribution. They also can model a "mirror" wall material with specular reflection 

characteristics. Thus, it seems appropriate to test the treatment of reflection since this 

condition can, under a number of circumstances, affect the angular distribution of particles 

in a particular problem. 

The test was done on a square region with a uniform plasma background, such shown 

in figure 3.18. An incident flux of particles entered the left side of the square. Vacuum 

boundary conditions were imposed on the four surfaces of the square. An identical model 

was used in the Monte Carlo calculation. 

Earlier it was discussed that the first collision distribution of an incident flux is 

predominantly towards the entering surface. Thus, the escape probability over the entering 

surface tends to be greater than the escape probability over the opposite surface. The TEP 

method assumes that there is no preferential direction for the collided escape probability. 

In fact, it assumes that the escape fraction across a given surface, A, is proportional to the 

fractional surface area. 

In order to isolate the effect of the treatment of reflection, the directional escape 

probability, A, was adjusted in GTNEUT to match the values of the exiting uncollided as 

well as collided fluxes (at each of the four surfaces of the square) to the predicted Monte 
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reflective boundary condition. In the Monte CarJo simulation, the wall material "mirror" 

was used on the top surface. The purpose of this study is to compare the use of the 

specular reflection condition in Monte Carlo and the use of the isotropic reflection 

condition in GTNEUT, under a variety of conditions. 

The comparison included both short and long mean free path regimes. The situation is 

illustrated in figure 3.18. The results of the comparison are shown in table 3.9. This shows 

the exiting current, Ji, at each of the surfaces of figure 3.18 as a function of mean free 

4 

path. The table also shows the total exiting current, i.e., Jtot = V Jn. In the short mean 
n=l 

free path regime, GTNEUT and Monte Carlo predicted essentially identical currents (i.e., 

collided, uncollided and total currents) exiting the box. In Monte Carlo a particle collision 

with the wall was treated as a specular reflection. Since the particle had a short mean free 

path, the next collision event occurred close to the wall. This created an isotropic 

distribution of particles near the wall which mimicked the isotropic reflection condition 

used by GTNEUT. This could explain the agreement between the two codes. 

As the mean free path became equal to or greater than the characteristic dimension of 

the region (Ax), the reflected particle had its next collision farther away from the wall and 

perhaps outside of the box. Thus, the distribution of the reflected particles was no longer 

isotropized near the reflecting wall in the Monte Carlo calculation. In these long mean free 

path regimes, the isotropic reflection assumption used by GTNEUT led to significantly 

different results than the specular reflection model in the Monte Carlo code. This is clearly 
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cases, GTNEUT agreed quite well the total current exiting the box; however, agreement 

in predictions of the separate collided, uncolJided and total currents exiting a given surface 

was poor. These results exposed a limitation in the GTNEUT code to model effectively 

reflection from a material wall (assuming the correctness of the Monte Carlo reflection 

model). The isotropic reflection assumption in GTNEUT only agrees with Monte Carlo in 

regimes in which the characteristic dimension of the region is greater than the mean free 

path. In other words, there is agreement only if Ax/A, > 1. 

3 J: 

0.5 m 

•/«,,= X- /„ 
n=\ 

0.5 m 

Figure 3.18. Two-dimensional reflection model. 
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mfp (m^ = 0.11 
GTNEUT Monte Carlo 

| Current Total Collided Uncollided Total Collided Uncollided 

Ji 0.1259 0.0783 0.0475 0.1200 0.0724 0.0475 

Ji 0.3097 0.3038 0.0059 0.2990 0.2990 0.0000 

Js 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

J4 0.0224 0.0142 0.0081 0.0231 0.0204 0.0027 

Jtot 0.4579 0.3963 0.0616 A 0.4421 0.3918 0.0503 

mfp (m) = 0.45 
GTNEUT Monte Carlo 

| Current Total Collided Uncollided Total Collided Uncollided 

Ji 0.2944 0.1208 0.1737 0.2857 0.1267 0.1590 

Ji 0.2293 0.1902 0.0391 0.2050 0.2050 0.0000 

Js 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

J4 0.2233 0.0822 0.1411 0.2518 0.1117 0.1401 

Jtot 0.7470 0.3931 0.3539 0.7425 0.4434 0.2991 

mfp (m^ = 1.11 
GTNEUT Monte Carlo 

| Current Total Collided Uncollided Total Collided Uncollided | 

Ji 0.3624 0.0790 0.2834 0.3478 0.0935 0.2543 

J2 0.1665 0.1032 0.0633 0.1165 0.1165 0.0000 

J3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

J4 0.3567 0.0613 0.2954 0.4206 0.0876 0.3330 

Jtot 0.8855 0.2435 0.6420 0.8849 0.2976 0.5873 
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A number of calculations were performed to assess the accuracy and validity of 

approximations used in the implementation of the TEP method. The expression (2.24) 

used to calculate the first flight transmission probability in uniform and nonuniform regions 

produced results that were in excellent agreement with Monte Carlo. 

Monte Carlo simulations performed on a number of geometries with different volume-

to-surface ratios and different mean free paths revealed that the first flight escape 

probability depended on only a single parameter, namely X = 4VAS. 

A new rational approximation (n = 2.09) generated by fitting the Monte Carlo results 

proved to be very accurate in the calculation of the first flight escape probability in a 

variety of geometries. The application of the new rational approximation in nonuniform 

mediums produced results that agreed well with those predicted by Monte Carlo. 

It was demonstrated also that the error in the total escape probability in regions with 

uniform conditions was always less than the error in the first flight escape probability. 

The study demonstrated that directional effects were of little importance in regions 

with nonuniform temperature distribution and a uniform source. However, the 

directionality error was significant in regions with a nonuniform density and a uniform 

source. 

Contrary to the nonpreferential direction for the collided escape probability, the study 

demonstrated that the first collision source distribution of an incident partial current was 

anisotropic. Particles escaped across the incident surface at a much greater rate than they 

did across the opposite exiting surface. This directionality error was represented by a fit 
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which was created by the ratio of the forward to backward escape fractions. 

Finally, Monte Carlo calculations indicated that the isotropic reflection assumption 

used by the TEP-based code GTNEUT was only valid in regions where Ax/A, > 1. 
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TEST OF THE ICB METHODOLOGY IN A SLAB GEOMETRY 

4.1 Introduction 

The purpose of this chapter is to explore the validity of the basic transport assumptions 

of the ICB method. During the implementation of the ICB method it was assumed that: 

1) the angular flux distribution at the interfaces is isotropic in each half space (i.e., double 

Po approximation); 2) a region can be characterized by a uniform mean free path; 3) 

charge-exchange and scattering are isotropic; and 4) the distribution of the collision rate 

due to scattering (once collided particles, twice collided particles, etc.) is also isotropic. 

4.2 Isotropization Error in a Purely Ionizing Region [35, 36] 

Embedded in the first assumption are the ideas that the uncollided and collided currents 

exiting a region have the same distribution, and that their combination gives rise to an 

isotropic angular flux distribution in the incident hemisphere as they enter successive 

regions. 

With reference to figure 2.1, it can be shown [42] that in a purely absorbing medium 

the emerging current at a distance L from an isotropic plane source S at x = 0 is 

JL(x = L) = ̂ E2{LZ„) (4.1) 

where E2 represents the exponential integral of the 2nd order previously defined in 

equation 2.5. 

78 



Since En(0) = 1 then J*otal (o)= —. Therefore, the first flight transmission probability is 

given by 

T0l = J:^XJ^ = E2(LZ„) (4.2) 
^ mai yJ) 

If the entire slab is to be treated as a single region, the transmission probability at the 

right boundary will be To = E2{LIni). However, if the slab of thickness L is subdivided into 

N equally spaced cells or subregions (i.e., A = UN), the transmission coefficient, as 

calculated by the ICB methodology, at a distance L from the source would be 

H&,) P 
~7~~= 2 

J o 

5>,Z f l .Un^AA, . ) (4.3) 
v(=i ; 

1=1 

If the angular flux is isotropic at each interface, the contributions of the uncollided and 

collided components of the flux would be the same regardless of the number of interfaces 

and the distance traveled. This situation is depicted in figure 4.1-a. However, those 

particles coming from a region directly in front of the interface will have to travel a 

distance A. Those coming from a region far away from the interface will have to traverse a 

distance / which is proportional to A/cos6. Thus, their attenuation is greater than those 

coming a distance A away, mainly, e"IA/cose. Subsequently, at each new interface farther 

away from the source, the angular distribution function of the uncollided flux becomes 

more forward peaked. This situation is shown in figure 4.1-b. Therefore, for intermediate 

cells of a multiregion problem, the transmission probability depends on the degree of 
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anisotropy of the neutral distribution function/(x, }i) at the interfaces. It can be shown that 

for a distribution /(x, fX) - //", 

T0k=(n + 2)En+,(Aki:kl) for£=2,N and n = 0, 1, 2,... (4.4) 

To,; in the cell adjacent to the isotropic plane source is equal to E2(AIZtJ). Yet the value 

for To,i for intermediate cells (i.e., To.k k = 2,N) can be calculated by using equation (4.4). 

For instance, if 

/ ~ jX1 (near a surface source) => T0 = E2(LZt) 

f ~ }JL (isotropic) => To = 2E3(LZt) 

f~H (cosine) => T0 - 3E4(LZt) 

Since the distribution function/(x, jLi) becomes more forward peaked further away from 

the surface source, the transmission probability corresponding to higher values of n are 

expected to be more appropriate for intermediate cells. 
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Angular Flux a 

- £ / _ -LA /cose 
C — C 

Anisotropic 
Angular Flux 

b 

Figure 4.1. Isotropization effect in a multiregion slab. 

This fact was demonstrated in a test with a simple slab with a totally ionizing medium 

with uniform plasma conditions. The slab had an isotropic plane source at the left 

boundary (x = 0), vacuum conditions on the right boundary, and an optical thickness 

(defined in equation 3.1) of 5. The test was done for a selective range of grid size over 

mean free path, Ax/A, (0.094 - 4.7), and for three representative distribution functions 

(i.e., n = -1, 0, and 1). A Monte Carlo simulation was carried out with a similar slab, 

source, and plasma conditions. The results are shown in figures 4.2 - 4.4. 

The results f o r / - \i (which is the flux distribution near an isotropic plane source) are 

shown in figure 4.2. The transmission probability at each of the intermediate interfaces is 

given by To - Ei{Ix). If the slab were treated as a single region (Ax/A = 4.7) the ICB 

result was in perfect agreement with Monte Carlo. However, when the slab was 

subdivided into 5 (Ax/A = 1), 10 (Ax/A = 0.5) or 50 (Ax/A = 0.09) cells, the isotropization 
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Transmission Probability: T0 = E2(I<x) 

1E+00 

C 
0) 
t 1E-04 
3 

o 
1E-05 

1E-06 

1E-07 

Totally Ionizing Medium 

°cx = <* el = 0 

• AX/A, = 0.094 
A AX/?I = 0.5 

o Ax/X = 1.0 
o A*/X = 4.7 

D D, 

D 
D 

D 

D 

T=En = 10eV 

n = 5.0E+19m" 

D 
• , D 

O, 

0 0.5 1 1.5 2.5 

Zx 

3.5 4.5 

Figure 4.2. Penetration problem with transmission probability To = E2(Ex) in a totally ionizing medium. 



Transmission Probability: T0 =2E3(Xx) 

Totally Ionizing Medium 

-MCNP 
n A*/X = 0.094 
A AX/1 = 0.5 
o AX/X = 1.0 
o AX/% = 4.7 

T = E n = 10eV 

n = 5.0E+19m -3 

D 
• , 

1 1 h-
0 0.5 1 1.5 

H h 

2.5 

EX 

3.5 4.5 

Figure 4.3. Penetration problem with transmission probability To - 2£j(Zx) in a totally ionizing medium. 
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Transmission Probability: T0 =3E4{I<x) 

Totally ionizing Medium 

°cx = CJel = 0 

• A*/x = 0.094 
A Ax/?t = 0.5 

0 AX/% = 1.0 
o Ax/^ = 4.7 

T=E n = 10eV 

n = 5.0E+19m -3 

0 0.5 1 1.5 2.5 

IX 
3.5 4.5 

Figure 4.4. Penetration problem with transmission probability To = 3E4(Zx) in a totally ionizing medium. 
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assumption implicit in the transmission probabilities for each of the intervals generated a 

considerable amount of error. As the number of subdivisions increased, the isotropization 

error increased as well. This caused penetration in the slab to be underpredicted for 

practically all optical thicknesses. Note also that the degree of underprediction increased 

with the number of interfaces at which the isotropization assumption was made. 

The results for / ~ jLL° (which corresponds to an isotropic flux distribution due to a 

cosine plane source) are shown in figure 4.3. The transmission probability at each of the 

intermediate interfaces is given by To = 2Ej(Zx). In this particular case the distribution 

function becomes more forward peaked, thus reducing the isotropization error by a 

noticeable amount. The results for the Monte Carlo simulation were the same as in the 

previous problem. The isotropization error was small for all model problems with Ax/X < 1 

up to an optical thickness Zx of 1. However, for an optical thickness greater than 1, the 

isotropization error in the model problem with Ax/X = 0.094 became dominant, and 

penetration was reduced considerably. The isotropization error for model problems with 

Ax/X = 1 and Ax/X = 0.5 became important for optical thicknesses Zx greater than 3. For 

an optical thickness Zx less than 3, the ICB code predicted currents were in good 

agreement with Monte Carlo. It is important to note that good agreement was obtained 

between the Monte Carlo and the ICB results for the model problem with Ax/X = 1 up to 

an optical thickness Zx of 5. 

Lastly, the results fo r / - JJ,1 (which is the equivalent to a cosine flux distribution at each 

interface) are shown in figure 4.4. The transmission probability at each of the intermediate 
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interfaces is given by To - 3E4(Lx). The predicted currents were in fairly good agreement 

with the predicted Monte Carlo results. The isotropization error was such that the 

penetration was overpredicted slightly for Ax/A = 1 and for Ax/A, = 0.5. For Ax/A = 0.094 

the error was positive (overprediction) up to an optical thickness Zx of 2.5 and then it 

turned negative (underprediction). 

4.3 Isotropization Error in a Medium with Charge-Exchange and Scattering [35, 36] 

In a real plasma, the conditions are such that a pure ionizing medium is not very likely. 

In fact, the most likely situation is that charge-exchange and elastic scattering would 

account for 50% to 80% of the neutral interactions. Charge-exchange and elastic 

scattering have an isotropizing effect on the distribution of the uncollided fluxes. Thus, 

charge-exchange and elastic scattering would tend to reduce the underprediction of the 

first flight transmission in the forward direction that was investigated in the previous 

section. 

The previous three calculations were repeated f o r / - ji° and f ~ fi1, but now with a 

fraction of charge-exchange plus scattering, c, equal to 0.8. The resulting currents can be 

seen in figures 4.5 and 4.6. The isotropizing effect of charge-exchange and scattering can 

be seen in figure 4.5. Once again, the transmission probability at each of the intermediate 

interfaces in the slab was calculated with T0 = 2E3(Ex). It was shown in chapter III that 

with charge-exchange and elastic scattering, the forward directed escape probability was 

overpredicted because of the effect of a distributed first collision source within each 

region. It is very important to note that when Ax/A = 1, the isotropization and escape 
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Figure 4.5. Penetration problem with transmission probability To = 2E3(Zx) and c, = 0.8. 
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Figure 4.6. Penetration problem with transmission probability To = 3E4{Ix) and ct = 0.8. 



directionality errors appear to balance each other. In this instance, the predicted ICB 

currents were in excellent agreement with those predicted by Monte Carlo. When 

Ax/A < 1, the isotropization error was dominant, causing penetration to be underpredicted. 

When Ax/A > 1, the escape probability directionality error became quite dominant, causing 

the overprediction of penetration. 

Figure 4.6 shows the isotropizing effect of charge-exchange and scattering on a 

problem where the transmission probability at each of the intermediate interfaces in the 

slab was calculated using To ~ 3£4(Xx), corresponding to the assumption of strong 

forward peaking of the flux distribution. Since the flux distribution is strongly peaked 

forward, the presence of charge-exchange and scattering had a modest effect on the 

isotropization of the uncollided fluxes for all model problems with Ax/A < 1. This was 

evident from the results since the compensating of errors effect proved to be rather 

insensitive to the number of subdivisions in model problems with Ax/A < 1. The results 

revealed that a very good agreement with Monte Carlo could be found when Ax/A = 0.5. 

For Ax/A > 1 the escape probability directionality error was very dominant relative to any 

isotropization error. 

Since the effect of compensation of errors is a function of the amount of charge-

exchange and elastic scattering found in the region, it was necessary to carry out a couple 

of calculations with c, = 0.45. The new results are shown in figures 4.7 and 4.8. These 

confirmed that the isotropization and escape directionality errors tended to compensate 

almost exactly for Ax/A = 1. 
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Figure 4.7. Penetration of an incident current in a slab with transmission probability To = 2E3(Zx) and c, = 0.45. 
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Figure 4.8. Penetration of an incident current in a slab with transmission probability T0 = 3E4(Zx) and c, = 0.45. 

91 



4.4 Compensating Errors In Penetration Problems [35,36] 

With reference to figure 4.5, it is evident that charge-exchange and scattering 

isotropized the angular distribution function at each interface. These results clearly 

indicated that when the mean free path was greater than the dimension of the region 

(Ax/A, < 1) the isotropization error increased and became dominant. When Ax/A, > 1, the 

governing error was due to the directionality of the escape probability. A compensating 

balance was achieved when Ax/A, = 1. 

The most likely way to correct for the anisotropy error is to use a higher order double 

Pn expansion of the angular flux distribution. In this manner, the method would be able to 

handle the increasing anisotropy of the distribution at successive interfaces. Unfortunately, 

this can become a very complex task with adverse effects on the computational economy 

of the method. The escape probability error can be handled and perhaps corrected 

completely by using a directional escape probability factor. This factor was introduced in 

chapter III. It is possible to redefine the reflection coefficient introduced in equation (2.2). 

Instead of an isotropic reflection, the new reflection coefficients would have a forward and 

backward component, namely 

'A,Kx c<P0,[l-2E3(A,Zj] 
R7> 3 A' 

1 - c, (l - P0,) 
(4.5) 

where A V -
1 + 

A 
* * = 

1 + 
A 

/ 

(4.6) 
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These ratios (i.e., fA ) are given in figure 3.17 

Thus, the new transmission and reflection coefficients are 7) = Toi + R{ and Ri = R.f. 

The application of this directional escape probability factor to a problem with an isotropic 

plane source, a distribution/ ~ fj°, for c, = 0.8, and for Ax/X = 0.09 - 4.45 is shown in 

figure 4.9. The uncorrected results are shown as closed symbols. The isotropization and 

escape directionality errors were present in all the uncorrected results. Once again, when 

Ax/X < 1, the dominant error was due to the isotropization assumption, which caused 

penetration to be underpredicted. When Ax/X > 1, the escape probability directionality 

error was the governing error in the problem, causing penetration to be overpredicted. 

When the escape directionality factor was applied, the second error was eliminated, 

leaving only the isotropization error. The underprediction of penetration is clearly evident. 

By suppressing the escape directionality error, all the results for Ax/X = 1, 2.2, and 4.45 

collapsed to a result (open symbols) that showed only the isotropization error. The 

corrected results did not have good agreement with Monte Carlo, but rather had 

selfconsistency. 

4.5 Effective Transmission and Reflection Probabilities [35,36] 

In the previous problem, the isotropization and escape probability directionality errors 

balanced each other for the uncorrected Ax/X = 1 results (closed symbols). These results 

agreed quite well with the predicted Monte Carlo results. This fact was used to generate a 
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Figure 4.9. Penetration of an incident current in a slab with transmission probability T0 = 2E3(Zx) and a = 0. 
(closed symbol uncorrected, open symbol corrected). 

10 

94 



set of effective transmission and escape probabilities for regions in which Ax/A, ^ 1 

(i.e., Ax/A, = 1/3, V2, 1, 2, 3, etc). This was accomplished by solving the matrix equation 

fA ^ \ ( A v 
— = n\ = ft — = 1 

U ; L U ;. 

This matrix k is the right hand side of equation (2.25). A few of these effective 

transmission and reflection coefficients are shown in table 4.1. The application of these 

effective coefficients was demonstrated by solving the same problem used in the previous 

section. The results are shown in figure 4.10. The closed symbols represent the 

uncorrected results. The open symbols represent the results obtained with the effective 

transmission and reflection probabilities. It is clear that by using coefficients Ax/A. = 1 as 

the basis of the matrix in equation (4.7), the net effect of both isotropization and escape 

probability directionality errors was minimized. The new results were in very good 

agreement with the results predicted by Monte Carlo. It is evident that the use of this 

approach showed results far superior than the use of an escape probability directionality 

factor alone. In this latter approach both errors were systematically reduced. 

Figure 4.11 shows the results of the application of the effective coefficients to a 

problem with a cosine plane source, a distribution / ~ / / , a = 0.8, and for 

Ax/A, = 0.09 -4.45. 
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Table 4.1. Effective Transmission and Reflection Probabilities 
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Figure 4.11. Penetration of an incident current (produced by a cosine source) in a slab with transmission 
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This section discusses the accuracy of using an average mean free path, X^, (based on 

an average plasma parameters) which characterizes a nonuniform medium, in the 

calculation of transmission probability To. In general 

T0 = (n + 2)E„Ja(A)) 
PA dx (4.8) 

«(A)=J 
X(x) 

where a(A) represents the optical thickness of the region [17]. It is clear that To is a 

function of the optical thickness along the total path traveled. It is possible, at least in 

principle, to calculate the actual optical thickness of the region exactly. Unfortunately, this 

can become a computational-intensive task in nonuniform regions. Thus, it was 

computationally desirable to approximate a(A) by means of an "average" mean free path, 

Xav. The simplest way to accomplish this was by using a linear average, namely 

K = ̂ W) (4-9) 

where x represents the quantity being averaged (i.e., temperature or density) and the 

subscripts 1 and 2 represent the boundaries of the region. 

The expression (4.9) was evaluated using the above prescription for the A,av- This 

calculation was done on a 50 cm thick slab region subject to two nonuniform situations. In 

the first case, the temperature was allowed to vary linearly while the density remained 

constant at 5xl018 rn3. In the second case, the density was allowed to vary Linearly while 
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several optical thicknesses. Both situations are illustrated in figure 4.12. 

The results of this study can be seen in table 4.2. For optically thick regions with a 

temperature range of 1 - 10 eVs, the error was about 10%. Over the same temperature 

range, but for an optically thin region, the error was not greater than 1.4%. 

Table 4.2. To = 2£j(AA,av) for Slab with Linear Temperature Variation, Uniform Density 

|~T (ev) 100 - 50 100 -10 100-1 1 0 - 1 

Optical Thickness 2.130 2.252 2.244 2.164 

To exact 0.0513 0.0441 0.0446 0.0492 

To (Â v) 0.0517 0.0429 0.0410 0.0543 

Error % 0.78 2.72 8.07 10.3 

|~T (ev) 100 - 50 100 -10 100-1 1 0 - 1 

Optical Thickness 0.213 0.225 0.224 0.216 

T0 exact 0.6891 0.6757 0.6765 0.6854 

To (A,av) 0.6898 0.6731 0.6692 0.6943 

Error % 0.07 0.38 1.07 1.3 

The results, shown in table 4.3, revealed that T0 could be predicted exactly in all 

problems with a nonuniform density distribution. This was due to the fact that 

X~l= X = no(T), but more importantly because the density was allowed to vary only 

linearly and also because the TEP-based code GTNEUT does not include density-

dependent electron impact ionization cross section data. 
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Figure 4.12. Temperature and density distributions for a nonuniform region model. 
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Table 4.3. To =2£,j(A/X,av) for Slab with Linear Density Variation, Uniform Temperature 

n (m3) 1E19 -5E18 1E19 -1E18 1E19 -5E17 

T0 exact 0.011749 0.034224 0.039226 

To (Aav) 0.011749 0.034224 0.039226 

Error % 0.0 0.0 0.0 

Based on these results, the error that was introduced in calculating the uncollided 

fraction, To, of incident particles transmitted through a medium with a nonuniform 

temperature distribution was small enough to justify the use of an average mean free path. 

The same was valid for regions with a linear density distribution. 

4.7 Neutral Energy Dependency 

It is evident that both the transmission and escape probabilities depend on the mean 

free path of the particle. 

I = A"' = 
_ n(ov(Tn)) _ n(ov(Tn)) _ n(ov{Tn ,1])) 

(4.10) 

It is important to keep in mind that the reaction rate (crv) can also be a function of ion 

temperature, ion density, or electron density and that the mean free path is inversely 

proportional to the energy of the neutral. The original version of the TEP-based code, 

GTNEUT, assumed that the neutral energy remained fixed throughout the lifetime of the 

neutral. This assumption is valid in a medium where the neutral can travel undisturbed, 
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such as in a vacuum or in a medium with very little scattering. However, in a medium with 

strong scattering and/or charge-exchange, such as in front of a divertor plate, this 

assumption breaks down. The neutrals can either gain or lose energy through successive 

scattering or charge-exchange with energetic ions. A more realistic assumption might be 

that after a collision event, a neutral acquires some or all the energy of the ion. Another 

possibility might be that a neutral attains an average energy based on the local energy 

distribution of the ions in the region in question. Therefore, for a number of divertor 

conditions, the assumption that the neutral gains a Maxwellian energy distribution at the 

local ion temperature seems more plausible. 

The previous sections in this chapter demonstrated that in model problems 

characterized by a directional flow of particles, transport was sensitive to isotropization 

and escape directionality effects. It was noted, however, that both effects tended to 

balance each other when Ax/A- ~ 1. It was observed, in this instance, that in uniform one-

dimensional multiregion problems the TEP-based code GTNEUT and Monte Carlo agreed 

well. It was assumed in these problems that the neutrals had a Maxwellian energy 

distribution characterized by the local ion temperature of the region in question. Under 

these circumstances, energy effects were minor or not noticeable given the magnitude of 

the isotropization and escape directionality effects. Energy effects could be more 

noticeable in nonuniform multiregion problems, particularly in problems where Ax/A, ~ 1 

(since both isotropization and escape directionality effects compensate for each other). 

In order to evaluate the assumption that the neutrals acquire an energy corresponding 

to a Maxwellian at the local ion temperature, two nonuniform one-dimensional multiregion 
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problems were tested. Both models consisted of ten regions subjected to a linear 

temperature distribution and uniform density. Vacuum boundary conditions were imposed 

on the left and right surfaces of the models and a source of puffed neutrals with strength 

equal to 1 #/s was located on the left boundary. In the first model the temperature varied 

from 10 eV on the left boundary, to 100 eV on the right boundary. In the second model, it 

varied from 1 eV to 10 eV over the corresponding boundaries. The characteristic 

dimension Ax of each region was set equal to the mean free path of the neutral in the 

region, thus forcing the necessary condition for which isotropization and escape 

directionality effects are miniiriized (i.e., Ax/X = 1). The charge-exchange and scattering 

fraction in the first model problem varied between 0.78, in the first region to 0.59 in the 

last region. In the second model, this varied from 1.0 in the region next to the source to 

0.78 in the rightmost region. The first model is illustrated in figure 4.13. A similar 

arrangement was used in the second model. 

In GTNEUT, the neutral puff had a Maxwellian energy distribution at the local ion 

temperature of the first region. In DEGAS, neutrals were also puffed and their energy also 

corresponded to a Maxwellian distribution at the ion temperature of the first region. While 

in GTNEUT the angular distribution of the puffed neutrals was isotropic, in DEGAS this 

was cosine distributed. 

The GTNEUT calculation assumed that the neutrals going from region to region 

acquired a Maxwellian energy distribution at the local ion temperature of the region in 

question, i.e., En = Tt. DEGAS, on the other hand, calculated a continuous energy 

distribution. 
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Figure 4.13. Temperature distribution and spatial arrangement for a nonuniform 
multiregion model. 

The results of the GTNEUT and DEGAS predictions showing the ionization rate can 

be seen in figures 4.14 and 4.15. These figures also show the GTNEUT prediction for a 

neutral puff with fixed energy (x symbol). The predicted results of the GTNEUT and 

DEGAS codes for the local ion temperature model showed excellent agreement in both 

model problems. However, the results for the constant neutral energy model showed some 

larger discrepancies, particularly in deep penetration. With reference to equation 4.10, by 

assuming that the neutral energy is constant, the predicted neutral energy should 

underpredict the actual neutral energy (which should be approximately a Maxwellian at the 

local ion temperature). Furthermore, this assumption would cause the neutral velocity to 

be underpredicted in regions where there are large differences between the constant 
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C'J r \ I ion 

since it depends primarily on the electron temperature. However, the quantity that would 

be more affected by the constant energy model would be {o^)cx and (<yy)elas since they 

depend on En and 7). Thus, the constant neutral energy model would tend to underpredict 

(<5v)cx and (<yv)elas • Since vn and (ov) are underpredicted, the net results would be the 

overprediction of the mean free path (longer mean free path) which in turn would cause 

the underprediction of penetration. This effect is clearly visible in figure 4.14 and 4.15. 

The results of these two nonuniform one-dimensional model problems demonstrate that 

the assumption that the neutrals acquire a Maxwellian energy distribution with the local 

ion temperature is adequate and that it would not limit the accuracy of the calculation. 

They also suggest that a full treatment of the neutral energy dependence would not be 

necessary, although it could be very useful in more practical applications. 

4.8 Conclusions 

By assuming that the uncollided and collided components of the angular flux are 

isotropic at each interface, a considerable amount of error was introduced in the 

calculation of the penetration of the uncollided flux component. This error 

(underprediction of penetration) became progressively larger wherever Ax/A, < 1. 

The study indicated that by assuming that the spatial distribution of the collision rate 

due to scattering is uniform, an escape directionality error was introduced. This error was 

manifested in the failure to account for the predominant escape of particles back across the 
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wherever Ax/A, > 1. 

The Monte Carlo and GTNEUT comparison indicated that the isotropization and 

escape probability directionality errors tended to balance almost exactly in regions where 

AxA,= l. 

It was demonstrated that the directional error could be eliminated by making use of an 

escape directionali y factor (shown in figure 3.17) which was a function of Ax/X and c(. A 

more effective way to correct the isotropization and escape directionality errors relied on 

the fact that both errors compensated for each other when Ax/X = 1. This served as the 

basis for defining a new set of effective transmission and reflection probabilities. 

The accuracy of using a mean free path calculated at the average plasma parameters to 

characterize a nonuniform region was demonstrated. A simple linear average of the form 

Âv = X(x\ + X2)/2 generated an error of 10% or less in regions with temperature 

distributions typically found in edge plasmas. 

Finally, the results of nonuniform multiregion problems indicated that the energy of the 

neutrals can be described adequately by a Maxwellian energy distribution with the local 

ion temperature. 
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TRANSPORT IN 2D MULTIREGION PROBLEMS 

5.1 Introduction 

In chapter III, the various assumptions involved in the calculation of the 

transmission and escape probabilities were discussed, and the errors to be expected in 

the calculation of transport within and across a single region v/ere evaluated. In 

chapter IV, the cumulative effect of these various assumptions on multiregion 

calculations were evaluated for one-dimensional geometry. The purpose of this chapter 

is to evaluate the cumulative effect of the various assumptions in two-dimensional 

model problems. 

5.2 Transport in a Uniform Nine Region Model 

The purpose of this section is to explore the transmission and escape probabilities 

approximations in a two-dimensional multiregion setting. The main objective was to 

determine how good the approximations were in model problems that are sensitive to 

these aspects of the calculation. The model used was a square region composed of 

nine identical cells. The characteristic dimension of each cell was Ax = 0.30 m. The 

model had uniform plasma conditions and vacuum or reflective boundary conditions 

on the four surfaces of the box. An incident flux of particles entered the right surface 

of the sixth cell. The same cell arrangement and plasma parameters were used to run 

the Monte Carlo and GTNEUT simulations. The cell arrangement is illustrated in 

figure 5.1. 
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Figure 5.1. Nine uniform regions model. 

There were three regimes of particular interest: Ax/X > 1, Ax/X < 1, and Ax/X ~ 1 . 

As stated earlier, the TEP method assumes that there is an isotropic angular 

distribution at each of the interfaces. Furthermore, it assumes that for a uniformly 

distributed first collision source, the directional escape probability A,y is proportional to 

the surface area of each cell (in the case of the square, Ay for each of the surfaces is 

equal to 0.25). It was found in the one-dimensional model problems discussed in 

chapter IV that 1) the isotropization assumption introduced an underprediction of 

penetration error which increased with increasing mean free path in the region, and 

that 2) the assumption of A(y proportional to the surface area introduced an 

overprediction of penetration error which increased with decreasing mean free path in 

the region, for problems with an incident surface flux on one of the boundaries. Both 
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errors were found to increase with the number of interfaces (regions) in the problem. 

These assumptions are illustrated schematically in figure 5.2 
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Figure 5.2. Assumptions made by the TEP method. 

In the first case considered, the temperature was fixed at 10 eV, and the density at 

1 Q n 

1x10 m~ . The fraction of charge-exchange/elastic scattering in this problem was 

Ci = 0.8. The mean free path of the neutral was X = 0.112 m., which was smaller than 

the characteristic dimension of each cell (i.e., Ax/A, = 2.7). For AxA » 1, the 

directional escape probability error should be dominant over the isotropization error, 

resulting in a net overprediction of penetration. The first collision source distribution 

was peaked towards the entering surface. This caused the true escape probabiJity over 

the entering surface to be greater than the escape probability over the opposite surface 

(between regions 6 and 5). The escape directionality error (due to the assumption that 

A = 0.25 for all surfaces) caused the overprediction of particles emerging from the 

opposite surface of region 6 into region 5. In other words, penetration was 

112 



overpredicted. Thus, the particle ionization rate predicted by GTNEUT was expected 

to be greater than that predicted by Monte Carlo in the cells further away from the 

source (i.e., cells 1, 4, 7, 2, 5, 8), and indeed it was. With reference to figure 5.3, the 

results for cell 6 were in excellent agreement with Monte Carlo because the total 

escape probability (i.e., total number of particles leaving the cell) was the same for 

both GTNEUT and Monte Carlo. The results in cells 3 and 9 were also in good 

agreement because the directional escape probability from region 6 across the lateral 

surfaces into regions 3 and 9 was not sensitive to the distribution of the first collision 

source rate. 

Recalling from chapter III that GTNEUT assumes an isotropic distribution of wall 

reflected neutrals and that DEGAS uses a specular reflection condition (for the 

"mirror" material option), but that when Ax/A, » 1 the specularly reflected particles 

are isotropized near the point of reflection by scattering and charge-exchange, the use 

of reflecting boundary conditions was not expected to introduce any false differences 

between the GTNEUT and DEGAS calculations. 

The vacuum boundary conditions were replaced with a reflective condition on the 

top, bottom, and right surfaces, and the calculations were repeated. As shown in figure 

5.4, the differences between the GTNEUT and DEGAS calculations were similar to 

those with vacuum boundary conditions and arose primarily from the directional 

escape probability error in GTNEUT. 
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the amount of charge-exchange/elastic scattering were identical to those in the first 

case. The mean free path of the neutrals was X = 1.12 m. so that Ax/A, = 0.26 « 1. 

When the characteristic dimension of the region was smaller than the mean free path of 

the particle, the uncollided fluxes became more forward-peaked while traversing the 

region, thus introducing an increasing isotropization error at each new interface. This 

isotropization error underpredicts penetration and would be expected to dominate the 

directional escape probability error for Ax/A « 1. This would cause the ionization rate 

predicted by GTNEUT to be less than that predicted by Monte Carlo in the cells away 

from the source (i.e., cells 1, 2, 4, 5, 7, 8). This result can be observed in figure 5.5. It 

is also noteworthy that the results in cells 3, 6, and 9 were in excellent agreement with 

Monte Carlo. The reason for this is the same as in the fust case (i.e., correct total 

escape from cell 6 and fractional escape from cell 6 into cells 3 and 9). 

Replacing the vacuum boundary condition on the top and bottom with a specular 

reflective condition generally increases the right-to-left penetration of incident particles 

in the DEGAS calculation, whereas the isotropic reflective condition used in 

GTNEUT has no tendency to bias the penetration. The reflective condition on the 

right and lateral side boundaries would tend to increase the number of neutrals in the 

problem relative to the case with vacuum boundary conditions. The effect of the 

reflective boundary conditions can be seen by comparing the ionization rates in regions 

1, 4, and 7 between figures 5.5 (vacuum) and 5.6 (reflective). 
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Figure 5.6. Ionization rate density for nine regions model with Ax/A = 0.26, reflective boundary conditions, and c, = 0. 
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In the third case, the ion density was equal to 3.7xl018 rn3. The temperature and 

the amount of charge-exchange and scattering were identical to those in the first case. 

The mean free path of the neutrals was A = 0.30 m. When the mean free path was 

equal to the characteristic dimension of the region (i.e., Ax/A =1), the isotropization 

and directional escape probabilities errors tended to balance each other. Thus, a good 

agreement was to be expected. This agreement can be seen clearly in figure 5.7. 

Substituting the vacuum conditions on the top, bottom, and right surfaces with a 

reflective surface would be expected to cause DEGAS to predict more penetration 

than GTNEUT because of the specular reflection in DEGAS; however, comparison of 

figures 5.8 and 5.7 indicates that this effect is very small for Ax/A, = 1. It is interesting 

to note that cells 3 and 9 had two wall segments bordering them. This explains the 

higher ionization rate predicted by GTNEUT than by DEGAS, since the contribution 

from the isotropic reflection from the walls was greater than in Monte Carlo. 

Similar effects were observed in a problem with a characteristic Ax/A = 1, but with 

a ci = 0.6. Figures 5.9 and 5.10 illustrate this point. Once again, the effects of the 

isotropic reflection condition, present in GTNEUT, were clearly observed in two of 

the corner cells (i.e., cells 3 and 9) shown in figure 5.10. The contribution from the 

wall segments around these cells was greater than any other cell. 
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5.3 Transport in a Uniform Thirty Six Region Model 

Since the isotropization and directional escape probability errors tended to 

compensate for each other in the previous series of model problems when Ax/A- = 1, it 

was necessary to determine if this was indeed the case for all values of Ax. Thus, a 

new model problem consisting of 36 cells in a squared grid was prepared by dividing 

each of the cells in the previous model problem into four equal square cells. Each new 

square cell had a characteristic dimension of Ax = 0.15 m. The boundary and plasma 

conditions used in this new model were similar to the conditions used in the first 

model A flux of particles was emitted on the right surface of cells 18 and 24. An 

identical model was prepared to run the Monte Carlo simulation. The arrangement can 

be seen in figure 5.11. 

0.90 m 

Ax = 0.15 m 

0.90 m 

Figure 5.11. Thirty six uniform regions model. 
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The results for the cases of interest are shown in figures 5.12 - 5.14. It is clear that 

results shown in figures 5.12 and 5.13 exhibit differences between the GTNEUT and 

DEGAS calculations that are similar to those found in the 9-region model, for 

Ax/A, > 1 and for Ax/A, < 1. However, for Ax/A, = 1 shown in figure 5.14, the almost 

exact compensation of the isotropization and directional escape probability errors 

found in the 9-region model was not found in the 36-region model of the same spatial 

domain. The results in cells 12, 18, 24, and 30 were expected since there would be 

little error caused by the fractional escape probability across a lateral surface. 

However, the significant underprediction of the ionization rates in the left part of the 

domain (i.e., regions 1, 7, 13, 19, 25, 31, 2, 8, 14, 20, 26, 32) indicated that GTNEUT 

was underpredicting penetration of the flux incident on the right surface, which implied 

that the isotropization (underprediction) error was dominant over the directional 

escape probability (overprediction) error. The results of cells 6, 12, 18, 24, 30, and 36 

were not unexpected since in these cells the governing error was due to escape 

directionality. 

The good agreement expected for the case Ax/A, = 1, shown in figure 5.14, did not 

materialize. GTNEUT underpredicted penetration. A possible explanation for the 

disagreement could be that the model was formulated with twice the number of 

interfaces in the direction of penetration than in the previous model. Thus, the value of 

Ax/A at which exact compensation is found between the isotropization and directional 

escape probability error depends on the number of regions into which the 
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made). It can be inferred from these results that the value Ax/A,, at which compensation 

of errors occurs, generally decreases with the number of interfaces in the direction of 

penetration. 

5.4 Transport in a Uniform Multiregion Slab with Internal Sources 

In the previous sections the presence of an incident surface flux induced the onset 

of isotropization and escape directionality errors. In this section the original TEP 

assumptions were tested in a multiregion model with internal sources and in the 

absence of an incident flux. The slab model consisted of 50 regions or cells, each of 

which was 1 cm thick and 50 cm high. The uniform plasma condition was set by fixing 

the temperature at 10 eV. Each region in the slab had a uniform volumetric internal 

source of strength equal to 0.5 #/s. The charge-exchange/elastic scattering fraction, cL 

in this problem, was 0.8. Vacuum boundary conditions were imposed on every surface 

of the slab. The Monte Carlo (DEGAS and MCNP4B) simulations had identical cell 

arrangements and plasma parameters, and were run with 100,000 histories. Figure 

5.15 depicts the multiregion slab model. 

A problem like this could very well represent the conditions in the divertor region 

in which recombination and molecular dissociation could constitute an internal source 

of neutrals. 
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The results in chapters III, [V, and those from the previous sections of this chapter 

indicate that the isotropization and escape directionality errors are specifically 

associated with penetration. Thus, these errors would always be present in problems in 

which there is a strong directional flow of particles. However, it is unknown if the 

isotropization and escape directionality errors would be present (and if they were 

present to what degree) in problem models without strong directional flow effects. The 

main objective of this section was to determine if these errors were present in 

problems without an incident flux of particles. Furthermore, this section also tried to 

demonstrate how well the assumptions of the transmission and escape probability 

method will hold in both long and short mean free path regimes in problem models 

with internal sources. 

To understand this aspect of neutral transport, a selective range of region thickness 

over mean free path ratios, Ax/A,, varying from 0.01 to 10 was used. The predicted 
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Carlo codes DEGAS and MCNP4B, for the different ratios of Ax/A,, are shown in 

figure 5.16 - 5.21. In the short mean free path regime (Ax/X - 10) shown in figure 

5.16, charge-exchange and scattering were the most dominant effects. In these 

simulations, the Monte Carlo and GTNEUT codes yielded comparable results. It is 

noteworthy that in this regime, diffusion theory would also be able to predict similar 

results. 

In reference to the TEP method, it seems clear that the neutral flux distribution 

going from one region to the next is quite isotropic. This is due to the isotropization 

effect that charge-exchange and elastic scattering have on the outgoing fluxes. Thus, 

two of the basic assumptions of the TEP method —that the incident neutral flux is 

isotropic over the inward hemisphere and that the neutral flux is uniformly distributed 

over the surface— are well justified in this model problem. 

Based on the results of the problem with an incident flux, it was expected that for 

Ax/X =10, the directional escape probability error would be the dominant transport 

effect. However, no such effect was observed. 

In all the long mean free path regimes tested, the results predicted by GTNEUT 

were in good agreement with those predicted by Monte Carlo. It was expected that for 

all regimes with Ax/X < 1, the isotropization error would be dominant, causing the 

underprediction of penetration. However the results shown in figure 5.18 - 5.21 did 

not show any larger discrepancies with Monte Carlo. The results indicated that both 
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Figure 5.16. Ionization rate density for slab with a uniform source, Ax/A, = 10, and a = 0.8. 
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internal source. The results also indicate that in these kind of problems (problem models 

with internal sources) the TEP method is applicable for all regions with Ax/X greater than 

0.01. 

5.5 Conclusions 

The results observed in the two-dimensional multiregion problems were similar to 

those observed in the one-dimensional configurations. The presence of a surface flux 

induced the onset of isotropization and escape directionality errors. It was confirmed that 

the isotropization assumption introduced an error that caused underprediction of 

penetration with increasing mean free paths in the region (i.e., Ax/X < 1). The assumption 

that the directional escape probability, Ay, was proportional to the surface area introduced 

an overprediction of penetration in regions away from the source when the characteristic 

dimension of the region was greater than the mean free path (i.e., Ax/X > 1). 

It was also noted that in two-dimensional multiregion problems, the total escape 

probability was in very good agreement with Monte Carlo in the region adjacent to the 

surface source, and that the directional escape probability across lateral surfaces was not 

sensitive to the distribution of the first collision source. 

The results indicated that the isotropization and directional escape probability errors 

tended to balance each other, independent of the fraction of charge-exchange and 

scattering when Ax/X = 1. This observation could be useful in the preparation of two-

dimensional multiregion models when the plasma conditions are well known. However, 
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was subdivided further (i.e., going from a nine region problem to a thirty six region 

problem). This last result indicated that the value of AxA, at which the exact compensation 

could be found depended on the number of interfaces into which the computational 

domain was divided. 

Finally, the results confirmed that in the absence of a directional flow of particles (i.e., 

no surface sources) the escape directionality and isotropization errors were nonexistent, 

and that in such conditions and with problem models with internal sources the TEP 

method is applicable in all regions with Ax/A, > 0.01. 
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COMPARISON OF THE TEP/MONTE CARLO CALCULATIONS 
FOR REALISTIC SOL/DIVERTOR MODELS 

6.1 Introduction 

The results of simple model problem calculations intended to isolate and test the basic 

transport treatment in the TEP/ICB method were discussed in the previous chapters. The 

results, for both the treatment of internal sources and for incident neutral fluxes, were 

generally in good agreement with those obtained with DEGAS and MCNP4B; and where 

disagreement was found the cause was identified and sometimes corrections factors were 

developed. 

Since the most likely application of the GTNEUT code will be to model the transport 

of neutrals in a diverted tokamak, it was appropriate to consider a few cases for more 

realistic diverted plasmas. A quantitative understanding of the neutral fluxes is not only 

fundamental in analyzing recycling divertors, but also an essential component in the 

calculation of particle and heat fluxes to the divertor plate. This section presents the 

comparisons of the GTNEUT and DEGAS codes for three diverted plasma models. The 

plasma models selected for this purpose were for the General Atomics Doublet III-D 

(DIII-D) and the Massachusetts Institute of Technology's Alto Campo Torus (Alcator C-

Mod) fusion experiments and the International Thermonuclear Experimental Reactor 

engineering design activities (ITER-EDA). 
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Located in San Diego, California, the General Atomics DIII-D is the nations largest, 

best diagnosed and most versatile fusion experiment at the present time [53]. This third 

generation tokamak has done extensive work on particle exhaust, density limit and 

magnetic divertor configurations. These experiments have provided a wealth of data that 

the scientific community has used as benchmarks to improve the understanding of 

plasmas. Thus, a neutral particle transport simulation of this fusion experiment would be a 

representative test of the ability of the TEP method to calculate neutral densities in present 

tokamak experiments. 

A neutral transport simulation with a full scale DIII-D geometry was performed. The 

representative geometry of the plasma, scrape-off layer (SOL), divertor, and plenum 

regions are shown in figure 6.1. The DIII-D geometric model was represented in 

GTNEUT with 48 cells [54]. The low density regions near the wall were represented by 

the cells with odd numbers between 1 and 41. The SOL region was represented by the 

cells labeled with even numbers between 2 and 42. The inner divertor plate was 

represented by the wall segment 52. Particles were recycled in front of the inner divertor 

plate in cell 2. The wall segment 75 represented the outer divertor plate. The 

corresponding recycling cell was 43. The private flux region was represented by cells 44 

through 48. Table 6.1 summarizes the location of different regions of interest for the DIII-

D model. The background plasma temperatures and densities that were selected were 

representative of DIII-D plasma conditions. These are summarized in table 6.2. 
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Figure 6.1. Neutral atom transport model for the DIII-D plasma. 
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2.2X1022 s"1. The ion flux was reflected as neutrals atoms with a Maxwellian energy 

distribution characterized by the ion temperature just in front of the divertor plate and then 

transported into the corresponding adjacent cells, i.e., cells 2 and 43. The GTNEUT 

calculation assumed that the neutrals reflected from the divertor plate, those reflected from 

the wall, and those neutrals transported into a given region (acquired via charge-exchange 

and scattering) a Maxwellian energy distribution with the local ion temperature of the 

region in question. 

Table 6.1. Cell Assignments for the DIII-D Model 

Location Cells Wall Segments 

Wall-vacuum odd numbers 1-41 52-81 

SOL even numbers 2 - 42 -

Outer Divertor 43 75 

Inner Divertor 2 52 

Pump - Vacuum 4 4 - 4 8 76-82 
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Cells Temperature (eV) Density (#/m3) 1 

Central Plasma 200 l.OxlO20 

Cells (odd numbers) 1 -41 10 5.0xl018 

Cells (even numbers) 8 - 4 0 100 l.OxlO19 

Cells 2, 43 10 l.OxlO20 

Cells 4, 6, 42 50 5.0xl019 

Cells 44 - 48 10 5.0xl018 

The wall segments were assigned a reflection coefficient equal to 1.0 and a pumping 

fraction of 0.0. The wall segment 76 represented the location of the opening of the 

pumping duct. Here the assigned values for the reflection coefficient and pumping fraction 

were 0.0 and 1.0 respectively. 

For comparison, a benchmark DEGAS simulation was carried out with the same cell 

arrangements and plasma parameters. In the GTNEUT calculation ions were reflected 

isotropically, whereas in the Monte Carlo calculation they were specularly reflected 

("mirror" wall boundary condition). It was demonstrated in section 3.6 of chapter III that 

specular reflection was adequate in regions with short mean free path since the next 

collision would occur close to the wall, thus creating an isotropic distribution of particles 

that would mimic the reflection condition used by GTNEUT. The recycling of the incident 

ion flux was approximated by a puff of neutrals with an energy corresponding to a 

Maxwellian with the local ion temperature of the region in front of the divertor plates (i.e., 

regions 2 and 43). DEGAS calculates the neutral energy distribution in all regions. 

144 



The results of the GTNEUT and DEGAS simulations showing the ionization rate 

distribution and neutral particle density are shown in figures 6.2 and 6.3. With reference to 

figure 6.3, the results of GTNEUT and DEGAS agreed quite well in the vicinity of the 

recycling source in the divertor region and reasonably well in the lower part of the model 

where the neutral density was significant. For example, the GTNEUT and DEGAS 

compression ratios at the X-point, nD]y/nXpu which were on the order of 102, were in 

excellent agreement; but above the midplane, where the compression ratio was greater 

than 103, the disagreement between the GTNEUT and DEGAS predictions were an order 

of magnitude different. 

The DEGAS calculation was carried out with 500,000 histories, and the error bars 

were less than 1% for regions 1-10 (in or near the inner divertor region) and for regions 

37-48 (in or near the outer divertor region). The error bars fluctuated from 12% to 40% in 

regions located between the midplane and the upper stagnation point, i.e., regions 14-27. 

In these regions GTNEUT showed a neutral attenuation relative to the neutral density at 

the divertor plate on the order of 105 at the midplane and 108 at the upper stagnation 

point. The corresponding DEGAS attenuation was 104 and 106, respectively. There were 

large discrepancies between the results of the two codes in regions 12-36. These can be 

explained, in part, by the DEGAS statistics in those regions. Larger differences began to 

be observed in regions 11 and 37 where the results for the ionization rate and neutral 

density differed by a factor of approximately two. It is believed that these were due to the 
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Figure 6.2. Ionization rate density for the DIII-D model. 
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difference in the treatment of the reflective boundary conditions at the wall and edge-core 

interface in the two codes. In general, the agreement between the two codes was good in 

all regions where the neutral density did not attenuate more than 10 -10 with respect to 

the divertor plate (i.e., regions 1-12, 36-48). 

The simulations were done on a Cray J90. The time required to carry out the 

GTNEUT calculation was 18 cpu seconds, while the time needed by DEGAS to run 

500,000 histories was 12,784 cpu seconds. 

6.3 C-Mod Model 

MIT's Alcator C-Mod fusion experiment is well known for its compact size and high 

field environment. It can produce the density and the confinement necessary for a useful 

fusion reaction. As a result, Alcator experiments have performed at levels rivaling the 

largest fusion experiments in the world [55]. 

A realistic neutral transport simulation with a full scale Alcator C-Mod geometry was 

carried out. The main goal in solving this problem was to find the neutral particle density 

and the ionization rate distribution everywhere within the regions of interest, in particular 

near the divertor plates. The representative geometry of the plasma, SOL, divertor, and 

plenum regions are shown in figure 6.4. The C-Mod-like model was represented with 70 

GTNEUT cells. The low density regions near the wall were represented by the cells with 

odd numbers between 1 and 55. The SOL region was represented by the cells labeled with 

even numbers between 2 and 62. The inner divertor plate was represented by the wall 

148 



A - A 

CMOD Modei CMOD Model 

1200 -

1000 

800 -

£ 600 
>-

400 

200 

0 

0 200 400 
X (mm) 

400. 

100 200 300 
X (mm) 

Figure 6.4. Neutral atom transport model for CMOD plasma. 
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segments 74 through 78. Particles were recycled in front of the inner divertor plate in cells 

1, 2, 3, and 5. Wall segments 104 through 109 represented the outer divertor plate. The 

corresponding recycling cells were 57, 59, 61, 63, and 64. The private flux region was 

represented by cells 65 through 70. Table 6.3 summarizes the location of different regions 

of interest. The background plasma temperatures and densities that were used in the 

GTNEUT model were taken from a recent UKAEA report [7], and are summarized in 

table 6.4 and in figure 6.5. 

Table 6.3. Cell Assignments for the CMOD Model 

Location Cells Wall Segments 

Wall-vacuum odd numbers 1-55 74 - 108 

SOL even numbers 2-62 -

Outer Divertor 57,59,61,63,64 104 -109 

Inner Divertor 1,2,3,5 74-78 

Pump - Vacuum 65-70 110- 118 
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Figure 6.5. Ion temperature and ion density distributions in Alcator C-Mod, from reference 7. 
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Cells Temperature (eV) Density (#/m3) 

Central Plasma 100 1.5X1020 

Cells (odd numbers) 7 - 55 15 2.5xl019 

Cells (even numbers) 8 - 56 35 7.5xl019 

Cells 1, 2, 3, 5 1.5-7.5 2.0-7.5X1020 

Cells 4, 6, 8 3.5 0.7-5.0X1020 

Cells 57, 59, 61, 63, 64 1.5 1.1 -8.75X1020 

Cells 58, 60, 62 3.5-5.0 1.1-2.5X1020 

Cells 65 - 70 1.5 1.0-5.0xxl020 

The ion flux (also taken from the UKAEA report) incident upon the inner and outer 

divertor plates varied from 8.5xl022 to 1.8xl023 s'1, and 4.1xl022 to 2.4xl023 s"1 

respectively. The ion flux was reflected from the divertor plates and entered the 

corresponding adjacent cells, i.e., cells 1, 2, 3, 5, 57, 59, 61, 63, 64. The GTNEUT 

calculation assumed that the neutrals reflected from the divertor plate, walls, and those 

neutrals going from region to region acquired a Maxwellian energy distribution with the 

local ion temperature of the region in question. The DEGAS calculation, on the other 

hand, calculates a continuous neutral energy distribution. 

The wall segmerts were assigned a reflection coefficient equal to 1.0 and a pumping 

fraction of 0.0. The wall segment 111 represented the location of the opening of the 

pumping ducts. Here the assigned values for the reflection coefficient and pumping 

fraction were 0.0 and 0.5 respectively. Identical cell arrangements and plasma parameters 
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were used to run a DEGAS simulation. Ions, in the GTNEUT calculation, were reflected 

as neutrals with an isotropic distribution. The DEGAS calculation, on the other hand, 

treated the collision with the wall as a specular reflection ("mirror" option). Specular 

reflection generates an isotropic distribution of particles near the wall only in regions with 

short mean free path. Thus, this condition was similar to the assumption used by 

GTNEUT. The recycling of the incident ion flux, in Monte Carlo, was approximated by a 

puff of neutrals with an energy corresponding to a Maxwellian with the local ion 

temperature of the region in front of the divertor plates (i.e., regions 1, 2, 3, 5, 57, 59, 61, 

63, and 64). 

6.3.1 Analysis of the Results 

The results of the GTNEUT and DEGAS simulations showing the volumetric 

ionization rate and the neutral particle density can be seen in figures 6.6 and 6.7. With 

reference to figure 6.7, the predicted results of the GTNEUT and DEGAS codes agreed 

fairly well. Both codes predicted similar X-point, nDW/nXpu and midplane, nD]y/nMld7 

compression ratios. GTNEUT predicted nDw/nXpi and nDW/nMid compression ratios of 

6.0x102 and 2.2x108 respectively. DEGAS predicted an X-point compression ratio equal 

to 1.4xl04 and a midplane compression ratio equal to 1.74xl07. The DEGAS calculation 

was carried out with 400,000 histories, and the error bars were less than 1% for regions 

1-5 (in or near the inner divertor region) and for regions 60-70 (in or near the outer 

divertor and private flux region). The error bars were less than 10% for regions 6-14 near 

the inner divertor plate and for regions 50-59 near the outer divertor plate. The error bars 
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Figure 6.7. Neutral particle density for the CMOD model. 
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the midplane and upper stagnation point of the C-Mod model. There were large 

discrepancies between the results of the two codes in regions around the X-point, namely, 

regions 6, 7, 58, and 60. In these regions the ionization rate and neutral density differed by 

a factor of 2-4 and 2-7 respectively. There were also large differences between the results 

of the two codes in the private flux region (i.e., regions 65-70). In these regions the 

ionization rate and neutral density varied by a factor of 2-4. Since statistics in DEGAS 

were rather poor in all regions in and above the midplane, it would be premature to draw a 

conclusion about the results in this general location. For instance, the value for the 

midplane compression ratio (1.74xl07) predicted by DEGAS was questionable. 

On the other hand, the discrepancies in regions 1, 2, 6, 7, 63, 64-70 could be attributed 

to the differences in reaction cross sections at low temperatures (1.5 eV - 7.0 eV). Those 

errors in regions 6, 7, 58, and 60 were more likely to be caused by the different treatment 

of reflection between the two codes (the mean free path varied from 3 to 10 cm). 

However, other possible reasons for the disagreement in the regions near the divertor 

plates, X-point and private flux region could be the inadequate treatment of the isotropic 

and escape probabilities errors in GTNEUT, and the assumption employed by GTNEUT 

that the energy of the neutral is given by a Maxwellian with the local ion temperature. In 

general, the agreement between the two codes was fair in all regions where the neutral 

density was not attenuated more than 103-104 with respect to the divertor plate (i.e., 

regions 1-10,58-70). 
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The simulations were done on a Cray J90. The time required to carry out the 

GTNEUT calculation was 35 cpu seconds while the time needed by DEGAS to run 

400,000 histories was 70,542 cpu seconds. 

6.4 ITER Model 

The International Thermonuclear Experimental Reactor, ITER, is the product of a 

summit level initiative that took place in 1985. Today, the ITER program involves the 

collaborative efforts of three of the four major fusion programs in the world (European 

Community, Japan, and Russia). The main objective of this "next generation tokamak 

experiment" is to demonstrate the scientific and technological feasibility of fusion energy 

for peaceful purposes [56]. 

The ITEFt model used in the neutral transport calculations presented here corresponds 

to the now finished Engineering Design Activities (EDA) phase. The representative 

geometry of the outer half of the ITER-EDA plasma, SOL, divertor, and plenum regions 

are shown in figure 6.8. The divertor configuration modeled here corresponded to the 

vertical target option whose cross section and isometric views are shown in figure 6.9 

[57], The ITER-EDA model was represented with 29 GTNEUT ceUs. The low density 

regions near the wall were represented by the cells with odd numbers between 1 and 23. 

The SOL region was represented by the cells labeled with even numbers between 2 and 

26. The wall segment 46 represented the outer divertor plate. The corresponding recycling 

cell is 25. The private flux region and pump were represented by cell 29. The dome area 
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was represented by cell 28. Table 6.5 summarizes the location of different regions of 

interest. The background plasma temperatures and densities that were used in GTNEUT 

cells are summarized in table 6.6. 

Table 6.5. Cell Assignments for the ITER Model 

Location Cells Wall Segments 

Wall-vacuum 1,3,5,7,9, 11, 13, 15, 17, 19,21,23 -

Pseudo SOL 22, 24, 26 -

SOL 2,4,6 ,8 , 10, 12, 14, 16, 18,20 -

Divertor 25 46 

Pump - Vacuum 29 51 

Dome 28 55 

Table 6.6. Temperature and Density Assignments for the ITER Model 

Cells Temperature (eV) Density (#/m3) 

Central Plasma 500 1.3X1020 

Cells 1, 3, 5, 7, 9,11,13,15,17,19, 21, 23 50 l.OxlO15 

Cells 2, 4, 6, 8,10,12,14, 16,18, 20 160 1.3X1020 

Cells 22, 24, 26 85 7.1xl020 

Cells 25 10 1.3X1021 

Cells 27, 28,29 50 l.OxlO15 

The total ion flux incident upon the divertor plate was taken to be equal to 

1.71X1024 s"1. The ion flux was reflected from the divertor plate and entered the 
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neutrals reflected from the divertor plate, walls, and those neutrals going from region to 

region acquired a temperature/energy corresponding to a Maxwellian with the local ion 

temperature of the region in question. The Monte Carlo simulation assumed a continuous 

energy distribution of neutrals. 

The wall segments were assigned a reflection coefficient equal to 1.0 and a pumping 

fraction of 0.0. The wall segment 51 represented the location of the opening of the 

pumping duct. Here the reflections coefficient and pumping fraction were 0.0 and 0.5 

respectively. Identical geometry and plasma parameters were used to run a DEGAS 

simulation. The Monte Carlo calculation treated the ion collisions with the wall as a 

specular reflection ("mirror" wall boundary condition option). GTNEUT assumed that the 

particles were reflected isotropically. The treatment of reflection in DEGAS was proven 

satisfactory only in regions with short mean free paths. In this regime neutrals isotropize 

near the wall, thus approximating the isotropic distribution used by GTNEUT. The 

recycling of the incident ion flux was approximated by a puff of neutrals with an energy 

corresponding to a Maxwellian with local ion temperature of the region in front of the 

divertor plate (i.e., region 25). 

6.4.1 Analysis of the Results 

The predicted results of the GTNEUT calculation along with the predicted results of 

the DEGAS simulation for the ionization rate distribution and neutral particle density can 

be seen in figures 6.10 and 6.11. It is evident from these figures that both codes predicted 
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Figure 6.10. Ionization rate density for the ITER-EDA model. 
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Figure 6.11. Neutral particle density for the ITER-EDA model. 
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results were in excellent agreement; they only differed by a factor of 0.74. For the most 

part, the agreement between the two codes was fairly good in all regions where the neutral 

density was not attenuated more than 103-104 with respect to the divertor plate (i.e., 

regions 22-25). However, the predictions of both codes showed some discrepancies. 

It is clear, from figure 6.11, that the neutral density was largest near the divertor plate 

and decreased rapidly towards the cells surrounding the plasma core. DEGAS failed to 

produce meaningful results in regions near the mid-plane and stagnation point (i.e., regions 

1-16). The error bars in these regions were greater that 50%. This explained the poor 

DEGAS results in those cells. GTNEUT predicted a compression ratio equal to 1.6xl05 at 

the X-point and 2.95x108 at the midplane. DEGAS predicted an X-point ratio equal to 

0.6xl05 and a midplane ratio of 2.9xl06. However, due to the large uncertainty in the 

midplane region (± 90 %), the midplane compression ratio predicted by DEGAS was 

questionable. 

In the cells just above the divertor, GTNEUT consistently underpredicted DEGAS in 

calculating the ionization rate and neutral density. There were large discrepancies between 

the results of the two codes in regions 23, 24 and 26. These could not be explained by the 

poor DEGAS statistics since the error bars (for example in regions 23 and 24) were less 

than 5%. The error in region 26 was about 23%. It is believed that specular reflection in 

the DEGAS calculation was projecting the fluxes up the divertor throat. Region 23 was a 

vacuum; here the mean free path was about 1000 m. Under these conditions and 
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isotropization error decreased (i.e., fluxes were less forward peaked) causing an 

underprediction of penetration. However, since the mean free path was so long, the 

treatment of reflection in GTNEUT was no longer isotropic. In fact, the uncollided fluxes 

became highly peaked, causing paiticles to be transported to other regions. DEGAS did 

not yield results in regions 27 through 29. This was attributed to the extremely low 

electron/ion densities used to characterize these regions. Another possible reason for the 

disagreement in the regions near the divertor plates and X-point was the assumption used 

by GTNEUT that the energy of the neutral is given by a Maxwellian with the local ion 

temperature. 

Both simulations were performed on a Cray J90. The time required to carry out the 

GTNEUT calculation was 10 cpu seconds while the time needed by DEGAS to run 

100,000 histories was 2,984 cpu seconds. 

6.5 Conclusions 

The results of neutral transport calculations with full scale diverted tokamak models 

were very encouraging. The TEP-based code, GTNEUT, was able to predict both 

ionization rate and neutral particle densities everywhere in the models. DEGAS, on the 

other hand, had problems scoring in regions far away from the divertor plates. The results 

were in excellent agreement with those predicted by Monte Carlo in close proximity to the 

recycling region and divertor plates. There were some noticeable differences between the 

predicted results of both codes in regions located a distance away from the divertor plates, 
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in particular near the X-points and midplanes. These were attributed to the treatment of 

reflection and the compensating isotropization and escape directionality errors in 

GTNEUT. In addition, GTNEUT was able to carry out the transport calculations in 

geometrically complex models at a fraction of the computer time required by Monte Carlo. 
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CHAPTER VII 

COMPARISON WITH DIII-D NEUTRAL MEASUREMENTS 

7.1 DIH-D Neutral Experiment 

The purpose of this chapter is to compare the neutral density, as predicted by the TEP-

based code, GTNEUT, with both a recent measurement of the neutral density near the 

X-point in the DIII-D tokamak and a plasma fluid/Monte Carlo neutrals calculation. 

A new method to measure the neutral density around the X-point region was 

developed recently [58]. It consisted of measuring the Da hght emission in the lower 

divertor by means of a tangentially-viewing charge injection device (CID) video camera 

(TTV). The image obtained was later used to generate a poloidal Da light distribution. The 

electron temperature and density were measured at the divertor Thomson scattering 

location shown in figure 7.1. 

Divertor Thomson Scattering 
Data Points 

Neutral Density Volume 

Figure 7.1 Location of divertor Thomson scattering data points (•) , and tangential 
TV intensity data sampling areas (rectangles), taken from reference 58. 
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IDa=nen0(
G(Te>ne)ve)exc (7.1) 

where the quantities ID , ne, and (<j(Te,ne)ve)e represent the intensity of the TTV, the 

electron density measured by the Divertor Thomson Scattering (DTS), and the electron 

excitation rate coefficient respectively. During the process of taking the measurement, the 

location of the X-point was adjusted and held in place for 0.5 seconds. Three time slices 

were taken of shot #96740, namely, t = 2250 ms, t = 3750 ms, and t = 4250 ms. The 

corresponding X-point heights above the divertor floor for these three time slices were 

13.8 cm, 10.0 cm, and 6.9 cm, respectively. The measurement taken at t = 2250 ms 

provided the most data, as well as the best data. 

A two-dimensional model based on an iterated solution of a plasma fluid (B2.5) and 

Monte Carlo (DEGAS) neutrals codes was used by Colchin et al. to predict the 

experimental measurements [58]. The geometry for the two-dimensional GTNEUT model 

was based on this DEGAS model (which used the background plasma solution from 

B2.5). In the GTNEUT calculation, it was assumed that neutrals acquired an energy 

corresponding to a Maxwellian with the local ion temperature of the regions in question. 

DEGAS, on the other hand, calculated a continuous energy distribution in each region. 

The geometric model consisted of 190 regions, chosen to represent as accurately as 

possible the location of the divertor plate, the X-point, SOL, and plasma core. The model 

is depicted in figure 7.2. The X-point was located at 13.8 cm above the divertor floor. The 
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Figure 7.2. Neutral atom transport model for the DIII-D plasma experiment. 
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regions representing the location at which the measurements were taken are summarized 

in table 7.1 and shown in figure 7.2. The plasma background temperature, density, and 

source were also taken from DEGAS. The results predicted by GTNEUT, along with the 

predicted results obtained with DEGAS and the experimental measurements [58], are 

shown in figure 7.3. 

Table 7.1. Location of the Regions in the GTNEUT 
Model Corresponding to the Height Above the Divertor 
Floor at Which Measurements Were Taken 

Height above the floor (cm) Cell 

5.2 145 

6.5 144 

8.6 143 

11.3 142 

17.4 (62 + 132)/2 

20.8 (63 + 133)/2 

22.8 64 

The results obtained with the DEGAS model showed very good agreement with the 

measured neutral density above the X-point in the core plasma. The results were not as 

good for those regions below the X-point. The discrepancies between the DEGAS model 

and the experiment were attributed [58] to two factors: 1) the fluid code's inaccurate 

representation of the plasma parameters in the region below the X-point, and 2) the 

neglect of the molecular contribution to the total intensity of the Da light emission in 
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Figure 7.3. Neutral density as a function of height above the divertor floor (molecular effects and 
density-dependent ionization rates included in DEGAS, but not in GTNEUT). 
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contributions to the Da light emission). Molecular effects should be important in regions 

close to the divertor plate at low temperatures (2-3 eV). They should be relatively 

unimportant inside the core, given the fact that very few molecules are present. The 

GTNEUT calculation, which did not include molecular effects, agreed with the experiment 

to within the error bars. However, for regions above the X-point, the GTNEUT code 

overpredicted both the experimental measurements and the predicted DEGAS values by at 

least a factor of two. 

7.2 Monte Carlo and GTNEUT Modeling Differences 

With reference to figure 7.3, GTNEUT obtained somewhat better agreement with the 

experiment in the private flux region than DEGAS because both GTNEUT and the 

interpretation of the experimental data neglected molecular effects, whereas molecular 

effects were included in the DEGAS calculation. 

However, in the core region above the X-point, where molecular effects are 

unimportant, there was a factor of at least two difference between the DEGAS simulation 

and the GTNEUT calculation. At least seven possible explanations could account for these 

discrepancies: 1) different treatment of geometry in DEGAS and in GTNEUT, 2) different 

treatment of molecular and ionization rate effects in DEGAS and in GTNEUT, 3) different 

treatment of the wall boundary condition in DEGAS and GTNEUT, 4) different treatment 

of particle recycling in DEGAS and GTNEUT, 5) inadequate treatment of the directional 

escape probability, A, in GTNEUT, 6) inaccurate description of the flux distributions at 
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the interfaces in GTNEUT, and 7) the assumption in GTNEUT that the neutral energy 

distribution is a Maxwellian with the local ion temperature. 

The first four explanations could be considered nontransport differences and could be 

explained by the differences with which Monte Carlo and GTNEUT modeled the 

experiment. To understand these differences, a number of simulations were performed 

with DEGAS to determine the degree of importance of each of these effects. 

7.2.1 Geometrical Differences 

GTNEUT modeled the experiment using a cylindrical geometry. DEGAS, on the other 

hand, explicitly treated a toroidal configuration. Thus, it seemed necessary to study the 

sensitivity of the DEGAS simulation to geometric effects. Two DEGAS runs were made. 

Both runs were done with identical plasma parameters, differing only in the geometric 

setup. The results of the cylindrical Monte Carlo simulation were divided by 2KR (where R 

corresponds to the radius at which the measurements took place) to obtain toroidally 

equivalent results. The predictions shown in figure 7.4 indicate that geometric effects in 

DEGAS are not important. Thus, it is doubtful that a geometric difference could account 

for the differences seen between the Monte Carlo and GTNEUT predictions in figure 7.3 

7.2.2 Molecular and Cross Section Differences 

The data for the reaction rates used by the GTNEUT code did not include molecular 

effects. These data also assumed that the electron impact ionization rate, <av>von, was 

independent of density. Since DEGAS treated molecular effects and density-dependent 

<av>10n, it seemed necessary to study the sensitivity of the DEGAS simulation to both of 
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Figure 7.4. DEGAS geometry effect. Toroidal geometry ( • ) versus cylindrical geometry (•). 
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these assumptions in order to evaluate their effect on the direct comparison of the 

GTNEUT and DEGAS transport calculations shown in figure 7.2. Thus, two additional 

DEGAS runs were made. In the first run, the Monte Carlo simulation was performed 

without molecular effects, but with the electron impact ionization rate <ov>ion dependent 

on density. In the second run, the Monte Carlo simulation was carried out without 

molecular effects, and with no ionization dependence on density. The error bars for these 

two new Monte Carlo simulations (for 100,000 histories) were less than 4% both in the 

private flux region below the X-point and in the core plasma. 

The results shown in figure 7.5 compare the two new DEGAS calculations with the 

Monte Carlo predictions that included molecular and density-dependent <Gv>10n and the 

experiment. Comparison of the two calculations ( • and U), which differed only by the 

treatment of the density dependence of <av>ion, indicated that this is a relatively small 

effect, albeit one which contributes to the differences between the GTNEUT and DEGAS 

calculation shown in figure 7.3. Comparison of the two calculations (A and • ) which 

differed only by the treatment of molecular effects indicated that the treatment of 

molecules is quite important, particularly in the private flux region below the X-point. 

Ignoring molecular effects can increase the neutral density by a factor of between 1.5 - 4.0 

in the private flux region. The treatment of molecular effects clearly makes a large 

contribution to the difference in the DEGAS and GTNEUT calculations of the neutral 

density in the private flux region shown in figure 7.3. 
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predictions in figure 7.3 could be due in large part to differences in the treatment of 

molecular and cross section effects in the two calculations. 

The three calculations all agreed with the experiment to within the error bars. 

However, the calculations which ignored molecular effects were generally in better 

agreement with the experiment, which also ignored molecular effects in defining the 

measured neutral density, in the private flux region below the X-point. 

7.2.3 Wall Boundary Condition Differences 

GTNEUT assumes that reflection from the walls is isotropic. The mean free path in 

practically all regions near the wall was about 1 meter. Thus, an isotropic treatment of the 

reflected fluxes from the walls could lead to inaccurate flux distributions. In DEGAS, 

reflection is a function of wall material and of the energy of the incident ions. Furthermore, 

particles are reflected with a cosine distribution, and the reflection coefficient depends on 

the material being used. The material used in the original DEGAS simulations was 

"carbon." Thus, the Monte Carlo treatment of particles reflected from a carbon wall is 

different than that used by GTNEUT. In order to understand the effect of this difference 

on the angular distribution of the reflected particles (cosine in DEGAS, isotropic in 

GTNEUT) two DEGAS simulations were performed. Both simulations were done in 

toroidal geometry and with the same plasma conditions (no molecules and <ov>lon^f(n)) 

and differed only in the wall boundary condition. In the first simulation the wall material 

was "carbon." In the second it was "mirror," which has specular reflective properties. The 
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the isotropic reflection condition used by the GTNEUT code (since particles would 

isotropize near the wall). (See section 3.6 in chapter III). The Monte Carlo predictions, 

shown in figure 7.6, indicate that the angular distribution of the reflected particles is very 

important in the private flux region. The results for the simulation with a "carbon" (•) wall 

differed with the "mirror" (O) wall by a factor of 2 to 5 below the X-point in the private 

flux region. The difference between the two simulations in the core plasma is unimportant. 

It seems probable that the choice of wall material could contribute to the difference seen in 

the private flux region between the Monte Carlo and the GTNEUT predictions in figure 

7.3. Since this effect seems to be on the same order as the molecular and cross section 

effects, it is difficult to determine which one is more important. 

7.2.4 Recycling Particle Source Representation Differences 

Another potentially important difference between GTNEUT and DEGAS is the 

treatment of recycling particles. DEGAS recycles D+ into D° using an elaborate physics 

module. The current version of GTNEUT, on the other hand, does not have a recycling 

model. In GTNEUT, particles enter the "computational space" by means of a particle puff 

or as the isotropic reflection of an ion flux incident on the divertor plate. Since DEGAS is 

capable of simulating the injection of neutral particles using a Maxwellian puff, it seemed 

necessary to study the sensitivity of the results to these two different representations of 

parade sources. Two additional DEGAS simulations were performed. Both simulations 

were done in toroidal geometry and with the same plasma conditions (with molecules and 
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manner in which the particles entered the computational space (i.e., a neutral puff or ions 

recycling from the plate). The recycling module in DEGAS selected an ion energy Et from 

a Maxwellian at the local ion temperature of the region in front of the divertor plate and 

incident energy was then increased by the sheath acceleration, 3Te. The incident ion was 

either reflected with an energy E-x + 3Te and a probability R or reemitted as a molecule 

with an energy Edesorption and probability (1 - R). This may be written 

En = R(EMaxw fc ) + 3 7 ; ) + (l - R)Edesorptwn (7.2) 

The reflection coefficient, R, or the wall material is a function of the ion's incident 

energy and angle, and Edesorption is the energy of desorption of the atom or molecule 

(usually a Maxwellian at the wall temperature). It is evident that the average energy of the 

recycled neutrals is the sum of two Maxwellians. 

In the puff model in DEGAS, the initial energy of the neutral puff was calculated by 

taking a volume averaged temperature (of ions and electrons) of all regions directly in 

front of the divertor plate. In essence, the energy of the neutral puff was a Maxwellian 

f(En)= fMax(Tn) at Tn = fa). GTNEUT also assumed that the energy of the neutral puff 

was a Maxwellian at the local ion temperature of the regions in front of the divertor plate. 

It is important to mention that the angular distribution of the entering neutrals in both 

the puff and the recycling source options was cosine distributed. In GTNEUT the angular 

distribution of the entering neutrals is isotropically distributed. 
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neutral density distribution in the private flux region. However, in the region inside the 

plasma core, a small difference was observed. The neutral density distribution for the 

puffed neutrals was about 1.5 times greater than that of the recycled neutrals. Similar 

results were observed for a simulation done without molecules. 

These results indicate that the choice of the particle source representation could 

contribute to the difference seen between the Monte Carlo and GTNEUT predictions in 

the core plasma in figure 7.3. However, the particle source differences are not as 

important as the atomic/molecular effects and wall boundary condition. Thus, it is unlikely 

that the choice of recycling particle source representation can account for discrepancies 

observed in figure 7.3 both above and below the X-point. 

7.3 Monte Carlo and GTNEUT Benchmark 

The results from the previous sections suggested that nontransport differences in the 

modeling of the experiment by DEGAS and GTNEUT could account, at least in part, for 

the differences observed between DEGAS and GTNEUT in figure 7.3. Thus, it seemed 

necessary to carry out a final comparison between the two codes to determine the extent 

of the nontransport differences. For this purpose, a "benchmark" DEGAS model was 

constructed which modeled the atomic/molecular physics and recycling treatments used in 

GTNEUT as closely as possible. 

This benchmark was done using the representative experimental model with cylindrical 

geometry, "mirror" wall material, no molecules, and density independent ionization rate. 
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reflected neutrals isotropize near the wall creating an isotropic particle distribution similar 

to the isotropic reflection condition used by GTNEUT. 

The particle source used in the Monte Carlo simulation was a neutral puff with a 

Maxwellian energy distribution characterized by the volume averaged ion temperature of 

the regions in front of the divertor. Similar energy distribution was assumed by GTNEUT. 

The results of this final comparison are shown in figure 7.8. Figure 7.8 also shows the 

original DEGAS calculation (which includes molecules and density dependent ionization) 

and the experimental measurements. The agreement between GTNEUT and the new 

DEGAS predictions was remarkably good both below and above the X-point. It is 

important to mention that these new results also agreed with the experiment within the 

error bars. 

The results strongly suggest that nontransport differences in the modeling could 

account for most of the differences observed between the GTNEUT and the original 

DEGAS calculation shown in figure 7.3. 

7.4 GTNEUT Recycling Model 

The previous section demonstrated that if the different nontransport effects were 

eliminated, the Monte Carlo and GTNEUT predictions were in very good agreement. 

Furthermore, these calculations agreed within the experimental error bars. 

It was found that the nontransport differences that affected the Monte Carlo 

predictions the most were: 1) the presence of molecules, 2) the wall boundary condition 
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(which affected the angular distribution of the reflected neutrals), and 3) to a lesser extent 

cross section effects. 

In an effort to improve the agreement between GTNEUT and Monte Carlo and the 

experiment, this section introduces a simple particle recycling model for GTNEUT. The 

model assumed that a portion of the incident ions would be reflected from a carbon 

surface as neutrals with the incident energy. The reflection coefficients for the carbon 

surface were based on the reflection coefficient for monoenergetic particles that Thomas 

et al. compiled [23, 59, 60]. The incident energy of the ions was increased by 3Te, the 

sheath acceleration. The model also assumed that another fraction of the ions would be 

reemitted as molecules to be immediately dissociated into D+ and D . The mean energy of 

the dissociated fractions was equal to 4.3 eV. Thus, the energy of the recycled neutral is 

similar to the one used by DEGAS, namely 

En=R{TlMaxw+3Te) + (1-R)43 (8.3) 

These neutrals were recycled as an isotropic source. The predictions of GTNEUT with 

the recycling model are shown, along with the original GTNEUT results, the Monte Carlo 

predictions and the experimental measurements in figure 7.9. The recycling model actually 

resulted in a slightly poorer agreement with DEGAS and the experiment (by about a factor 

of two) in the plasma core above the X-point. 
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Based on this study and the results obtained in the previous sections, it can be inferred 

that in GTNEUT the treatment of the angular distribution of the reflected neutrals is more 

important than a correct treatment of the energy of recycling neutrals. 

7.5 Conclusion 

The GTNEUT calculation agreed with the measured neutral density to within the error 

bars. The discrepancies observed between GTNEUT and DEGAS in figure 7.3 were 

attributed for the most part to nontransport differences. When the experimental conditions 

were simulated without taking molecular and cross section effects into account, the 

GTNEUT and DEGAS results were both in very good agreement with the experimental 

results, which were interpreted without accounting for molecular effects (see figure 7.5). 

The approximately factor-of-two difference in the GTNEUT and DEGAS results observed 

in figure 7.3 could be attributed primarily to the different treatment of molecules and wall 

boundary conditions (which affect the angular distribution of the reflected neutrals) and to 

a lesser extent to cross section differences between the two codes. 
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CHAPTER VIII 

CONCLUSIONS 

8.1 Conclusions 

This thesis has investigated the validity of the basic transport methodology of the 

transmission and escape probabilities (TEP) and interface current balance (ICB) methods, 

and of the assumptions made in their practical implementations. The accuracy of a number 

of approximations made in the implementation of the methodology were evaluated by 

comparing them with Monte Carlo. Furthermore, this work compared the TEP-based code 

GTNEUT with Monte Carlo calculations for various diverted tokamak plasma models and 

with recent experimental results for neutral density in the DIII-D fusion experiment. 

The detailed evaluation of the transport assumptions of the one-dimensional interface 

current balance and of the two-dimensional transmission and escape probabilities methods 

revealed the following findings: 

1. The first flight escape probability, Po, depends on a single parameter, namely X 

(X = 4V/A-S). The parametric dependence was demonstrated by the Monte Carlo 

evaluation of Po on a number of geometric regions with different volume-to-surface ratios 

and with uniform properties. 

2. A new rational approximation, PQ = — 1- 1H with n = 2.09 provides an 
1 f 

1-
( x^ 
i + -

- n \ 

X l L n ) / 

alternative approach to avoid the time penalty associated with the exact calculation of the 

first flight escape probability as defined by equation 2.27. This Sauer-like rational 
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approximation was superior to those suggested by Wigner (n = 1) and Sauer (n - 4.58) 

over an intermediate range of X. The Po predicted by the new rational approximation was 

within 5% of the one predicted by Monte Carlo for all geometries tested except 

cylindrical, for which Sauer's approximation was superior. 

3. First flight transmission, To, and escape probabilities, Po, in regions characterized by 

linear nonuniformaties can be calculated by using a mean free path, A,av, based on a linear 

average of the nonuniform quantity (i.e., temperature and/or density). Calculation of To 

and Po in nonuniform regions with different optical thicknesses produced results that were 

within 5% of those predicted by Monte Carlo. 

4. The presence of a directional flow of particles, such as recycling from the divertor plate, 

creates a nonuniform first collision source distribution in a region which leads to 

preferential escape back across the incident surface. Neglect of this escape directionality in 

the present implementation of the methodology caused the overprediction of penetration, 

which increased as AxJX > 1. 

5. A significant error was introduced in the calculation of the penetration of the uncollided 

component of the angular flux in problems with a strong directional flow of particles. This 

error arose from the assumption that the angular flux was isotropic at successive 

interfaces. This isotropization error caused an underprediction of penetration which 

increased as Ax/A. < 1. 
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6. In problems with a directional flow of particles, when Ax/A, = 1 the isotropization and 

escape directionality errors tend to balance each other almost exactly. In this instance, 

Monte Carlo and ICB predictions were in very good agreement. 

The directionality error could be eliminated by making use of an escape directionality 

correction factor (see figure 3.17). However, a more effective and systematic way to 

correct both the isotropization and escape directionality errors is by defining effective 

transmission and reflection coefficients for an arbitrary Ax/A, to match the results that 

would be obtained if the problem was subdivided into regions with Ax/A, = 1. 

7. The isotropic reflection assumption used by the TEP-based code GTNEUT only agrees 

with Monte Carlo calculations using specular reflection in regimes in which the 

characteristic dimension of the region was greater than the mean free path of the neutral, 

so that the specular reflected Monte Carlo neutrals were effectively isotropized near the 

wall. This assumption is only valid when Ax/A, > 1. 

8. The energy of the neutrals is adequately described by a Maxwellian distribution with the 

local ion temperature. This was demonstrated in uniform and nonuniform one-dimensional 

multiregion problems, and corroborated in two-dimensional diverted tokamak models. 

9. The TEP-based code, GTNEUT, is able to predict, at a fraction of the computer time 

required by Monte Carlo, both ionization rate and neutral particle densities in all regions in 

full scale diverted tokamak models (DIII-D, CMOD, and ITER-EDA). However, some 

models present some noticeable differences in regions located near the X-points and 
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midplanes. These can be attributed to the inadequate treatment of the isotropization and 

escape directionality errors, as well as to the inadequate reflection condition in GTNEUT. 

10. A GTNEUT calculation agreed with a recent measurement of the neutral density near 

the X-point in the DIII-D tokamak to within the experimental error bars. A detailed 

comparison of the neutral density, as predicted by the GTNEUT and DEGAS codes 

presents some discrepancies attributed for the most part to nontransport differences 

between physical models in the two codes. These discrepancies arise primarily because of 

the different treatment of molecules and wall boundary conditions (which affect the angular 

distribution of the reflected neutrals). When these differences are removed, a very good 

agreement between the two codes is achieved. 

8.2 Recommendations 

This work has identified two potentially major deficiencies in the present implementation 

of the TEP/ICB methodology. These deficiencies are both associated with strong directional 

flow away from a source. The first deficiency is an isotropization error introduced by 

assuming that the collided and uncollided components of the angular flux have an isotropic 

angular distribution within the forward hemisphere regardless of the number of interfaces 

the computational domain might have. The second deficiency is an escape directionality 

error introduced by the assumption that the first collision source rate distribution within a 

region is uniform. Therefore, the calculation of penetration of neutrals due to a plane source 

located on a bounding surface of a multiregion problem has a combination of these two 

errors. The isotropization error causes underprediction of penetration and the escape 
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comparison with Monte Carlo, that when the characteristic dimension of a region is greater 

than the mean free path (i.e., Ax/A, > 1), the escape directionality error is dominant. In 

contrast, when the characteristic dimension of a region is less than the mean free path (i.e., 

Ax/A < 1), the isotropization error dominates. It was also shown that when the 

characteristic dimension of a region equals the mean free path (i.e., Ax/A = 1), the two 

errors tend to compensate almost exactly. 

The escape directionality error can be eliminated by using an escape directionality factor. 

Unfortunately, since this factor is a function of both mean free path and the charge-

exchange/scattering fraction, a substantial amount of work would be necessary to prepare 

such a correction factor for practical application. 

A more convenient way to eliminate these errors is to use a set of effective transmission 

and reflection coefficients. It was shown, at least in one dimension, that this approach 

reduces the net effect of both isotropization and escape directionality errors. The 

computational algorithm is manageable for integer values of Ax/A; for fractional values the 

task can be very difficult, but is still possible. 

The present implementation of the TEP/ICB methodology makes the assumption that 

the incident current is isotropically distributed in angle over the inward half-space, for the 

purpose of calculating uncollided transmission probabilities. The flux is assumed to be 

isotropic in both the forward and backward directional hemisphere. However, the 

probability for a direction in the forward hemisphere is different than the probability for the 
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symmetric direction in the backward hemisphere. This derivation corresponds to a double Po 

expansion. Since the isotropization error underpredicts the uncollided component of the 

angular flux, a higher order double Pn expansion could correct this problem. This subject has 

been studied extensively in heterogeneous reactor transport calculations. Most of the work 

done has focused on a double "Pi expansion about an arbitrary direction" [61, 62]. It has 

been demonstrated by a number of authors that this approach improves the accuracy of 

results in multicell problems [39, 61-68]. Therefore, extension of the methodology to a 

higher order double Pn expansion is recommended. 

Another major recommendation is to develop a first collision source correction to allow 

the calculation of directional escape probabilities. 

In closing, the TEP/ICB method has proven, after considerable testing, to be capable of 

handling neutral transport calculations in complex diverted plasma configurations. In spite 

of the identified potential deficiencies, the method was shown to compare quite favorably 

with Monte Carlo and the experiment in practical calculations of fusion experiments. The 

method is robust and versatile, capable of treating accurately and at a fraction of the 

computation time, regions with long and short mean free paths. Thus, the method has the 

qualities for performing routine realistic neutral calculations in the edge plasma and divertor 

region of fusion plasmas that no other method has. 
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