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SUMMARY 

Previous theoretical studies have shown that a poloidal potential variation of order c 

(= rjR), which is likely to be produced during high power electron and ion cyclotron 

wave heating (ECRH and ICRH), can significantly enhance neoclassical transport in a 

simple plasma model consisting of one ion species and electrons in the low collisionality 

regime. The more realistic case of a plasma model with one or more impurity ion 

species present, in which the effects of a poloidal potential variation are likely to be 

more significant, has not been investigated previously. 

In this thesis, the effects of a poloidal electric field of order e upon particle trans­

port and current in a tokamak plasma with a significant impurity content are studied 

theoretically. A kinetic theoiy approach is used to obtain the neoclassical transport 

coefficients for a large aspect ratio (e < 1) tokamak in the low collisionality regime. 

Calculations indicate that, in an impure plasma, a poloidal electric field can sig­

nificantly enhance (by a factor of ~ 3) ion diffusion, while its effect on the electron 

transport is similar to that obtained in the previous studies for a simple plasma. The 

magnitude of the ion transport enhancement is found to depend upon the impurity 

content, impurity species, and the magnitude of the poloidal electric field. 

Enhancement of the neoclassical conductivity is found to be similar to that ob­

tained in the previous studies; however, in the presence of a large impurity concen­

tration, results of the present work can sometimes differ from those in the previous 

studies by ~ 20%. A poloidal electric field causes a significant enhancement (a factor 

of ~ 2) of the bootstrap cuirrent coefficients. However, the nature of density and 

temperature profiles seem to be important in determining the change in the boot-

xii 



strap current. With parabolic profiles and carbon impurity, there is a decrease in 

the bootstrap current in most cases. The bootstrap current increases only when the 

potential on the outside is greater than that on the inside of the tokamak (as during 

ICRH) and the density profile is more peaked than roughly the square root of the 

temperature profile. 
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CHAPTER I 

INTRODUCTION 

Success of controlled fusion in a tokamak requires confining fuel ions, such as deu­

terium and tritium ions, under conditions which lead to substantial production of 

thermonuclear power. This requires heating the plasma to temperatures in excess of 

10 keV in order to achieve a significant fusion rate. Ohmic heating alone is probably 

not sufficient to raise the temperature to the desired levels. Two additional methods 

that are being actively pursued include neutral beam injection heating (NBI) and 

"radio-frequency" (RF) heating (included in this term are both radio-frequency and 

microwave heating). Neutral beam heating has been used successfully, but its disad­

vantages include its size, complexity, and inefficiency at high energies in its present 

form. RF-heating offers greater flexibility in depositing energy, decouples heating 

and fueling, and has the potential of being a continuous source of power. Two of the 

several forms of wave heating methods that are being considered are the ion cyclotron 

resonance heating (ICRH) and the electron cyclotron resonance heating (ECRH). 

With the emergence of RF heating as a dominant technique, it has become in­

creasingly important to understand the effect of wave heating on particle and energy 

confinement. High power wave heating can significantly affect particle transport. 

Study of transport, in addition to helping us understand confinement, could lead to 

novel methods of impurity control, fueling, and burn control. 

One aspect of transport that has been studied well over the last few decades is the 

collisional transport in the presence of the spatially varying magnetic field of a toka-
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mak. This theory, known as neoclassical transport, was first developed for a simple 

plasma consisting of only one; ion species and electrons (see the review by Hinton and 

Hazeltine [8]). Neoclassical transport is generally greater than the classical collisional 

transport in a uniform magnetic field. Connor [9] and Hirshman et al. [10] extended 

the neoclassical transport formalism to include the effect of impurities. It turns out 

that the presence of an impurity, even in small amounts, greatly enhances plasma 

transport. 

The presence of an auxiliary heating mechanism can significantly influence neo­

classical transport. Cyclotron wave heating, for example, can cause an increase in the 

trapping of the resonant particles (ions during ICRH and electrons during ECRH), 

leading to a poloidally varying potential. The potential variation, $(0), has been 

shown to reach magnitudes of order c, i.e. el(0)/T ~ c(= r/R) during high power 

wave heating [11]. Such a potential variation can also be caused by perpendicular 

and parallel NBI [12]. 

A poloidally varying potential of order e changes neoclassical transport signifi­

cantly. Chang [12] and Shuiygin and Yushmanov [13] have studied the effect of a 

poloidal electric field on neoclassical transport in a simple plasma. Chang concludes 

that a poloidal electric field can cause a significant (a factor of 2 or more) enhance­

ment of the neoclassical transport coefficients. A similar conclusion has also been 

reached by Shurygin and Yushmanov [13]. 

The purpose of the present work is to study the effect of a poloidal potential 

variation of order e upon neoclassical transport in a tokamak plasma with a significant 

impurity content. We will be primarily concerned with calculation of the particle 

transport and plasma current in the low collisionality, or banana, regime. In an 

impure plasma, the presence of. a poloidal electric field affects the collisional coupling 

between the main ions and the impurity ions in addition to affecting the electron-

ion collisional coupling. The result of such a modification is an enhancement (or 
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reduction) of the ion transport as well as plasma current. The thesis is organized as 

follows. 

In Chapter II, we first review briefly the wave heating theory. We then derive a 

form of the drift-kinetic equation commonly employed in studying neoclassical trans­

port. We end the chapter with a brief consideration of collision operators and the 

quasilinear theory. 

Chapter III is concerned mainly with a review of the theoretical literature on the 

effect of wave heating on particle transport. We begin by studying the production of 

electric fields during wave hearting. We then examine the effect of a significant poloidal 

electric field, likely to be produced during wave heating, on particle trapping. The 

effect of a poloidal electric field on transport is then examined. Finally, we end the 

chapter with a brief review of wave-induced transport. 

In Chapter IV, the experimental literature on the effect of wave heating on trans­

port is reviewed. Our emphasis here is on the experimental literature containing 

evidence of changes in electron and impurity transport during wave heating. We also 

consider such related effects as change in the plasma potential and plasma rotation 

that may have a bearing on particle transport. 

We begin solving the drift-kinetic equation in Chapter V. The solution method­

ology closely parallels the analytical technique used by Connor [9] and Hirshman et 

al. [14] in the absence of a significant poloidal electric field. The objective of this chap­

ter is to derive a closed set of equations for the so called restoring coefficients [14], 

which now include the new effects of a poloidal potential variation. We end the chap­

ter by deriving an expression for the neoclassical factor /t$ which contains the effect 

of the poloidal electric field. 

In Chapter VI, the restoring coefficients derived in Chapter V are used to obtain 

expressions for the diffusive electron and ion fluxes as well as the convective Ware 

pinch effect, which now contain the effect of the poloidal electric field. Numerical 
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results are presented at the end of the chapter showing the variation of the transport 

coefficients as a function of the magnitude of the potential variation, impurity content, 

and impurity species. 

In Chapter VII, we consider modifications to the plasma current due to the 

poloidal electric field in an impure plasma. We obtain expressions for the neoclassical 

conductivity and bootstrap current coefficients. Numerical results are presented on 

the variation of the transport coefficients with the potential variation as well as with 

the impurity concentration. We conclude the chapter with a consideration of the 

effect of density/temperature profiles on bootstrap current enhancement (reduction). 

Finally, in Chapter VIII, we give a brief summary of the important results obtained 

in this work and a few suggestions for future work in this area. 
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CHAPTER II 

BACKGROUND 

The purpose of this chapter is to introduce some background material relevant to the 

study of wave heating and transport in tokamak plasmas. We will be making use of 

much of the material in this chapter in the subsequent chapters. We first introduce 

briefly the fundamentals of ion and electron cyclotron resonance heating (ICRH and 

ECRH respectively). Much of the material on wave heating discussed here is based 

on Refs. [15-30]. We then derive a form of the drift kinetic equation commonly 

employed in transport studies. We also discuss some of the collision operators used 

for calculating the collisional transport in tokamaks. Finally, we present a brief 

discussion of the quasilinear operator commonly employed in studying wave heating 

of fusion plasmas. 

2.1 ICRH and E C R H 

2.1.1 General Theory 

Radiofrequency wave heating transfers energy from a remote source to the plasma 

by means of electromagnetic waves. It consists mainly of a rf-source, a transmission 

line, and a launch structure to ' inject ' the wave into the plasma. As an example, an 

ECRH system is schematically represented in Fig. 2.1. A list of sources, transmission 

lines and launch structures are shown along with other rf-heating parameters in Table 

2.1. 

5 



Launch structure 

(Wave Guide) 
B«i 

Transmission Line 

(Wave Guide)' 

Plasma Boundary 

Source 

(Gyrotron or FEL) 

Resonant Surface 

Figure 2.1: A Schematic Representation of RF-Heating (ECRH) Syst 
em. 
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Table 2.1: Characteristics of RF-Heating (ICRH and ECRH) Systems. 

Nature 
(type) 

Characteristic 
frequency (/) 

Density 
limit 

Direction of 
incident 
energy 

Energy 
source 

Trans­
mission 
line 

Launch 
Structure 

Comments 

ICRH 
(Fast 
wave) 

50-150 MHz n a 2 > J ^ 

with 
Tubes (Triode 
and tetrode) 

Coaxial 
Lines 

Coils (ridged 
wave guides 
may be possible) 

Minority 
Heating 

Second 
harmonic 
heating 

fi 

2/. 

U) = flj 

w = 2Q< 

From inside 
or outside 

From inside 
or outside 

ECRH > 50 GHz Gyrotrons 
FEL(future) 

Wave 
guide 

Wave guide 
or Horn 

High power 
FEL under 
development 

O-mode 
heating 

X-mode 
heating 
(u = Qe) 

X-mode 
heating 
(LJ = 2Qe) 

U 

f, 

Ve 

K < 2fi« 

nl<2Ql 

From inside 
or outside 

From inside 

From inside 
or outside 

Good spatial 
deposition 
control 

Poor spatial 
deposition 
control 

Good spatial 
deposition 
control 
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Once the wave is coupled to the plasma, it is required to propagate to the localized 

absorption zone with negligible loss. The requirements of accessibility of the absorp­

tion zone, its location and the process of absorption are matters of plasma physics. 

Fundamental to the understanding of propagation and absorption are the dispersion 

relations discussed briefly bellow. 

Dispersion relations 

Dispersion relations for a plasma determine the relation between the propagation 

vector k and the frequency u for which waves propagate in the plasma. The first 

step in developing the dispersion relations for a magnetized plasma is to derive an 

expression for the dielectric tensor K. 

We have the electric displacement D = eoE + P, where P is the polarization 

vector, E is the electric field and e0 is the vacuum dielectric constant. Assuming a 

perturbation of the type expi(k.r — u;t), the polarization current j = ^ = — iu>P. 

Hence D = e0E + £j = e0K • E , or 

D = eoE+-X>fcgJbvJb = eoK-E (2.1) 

Using the above relations in the Maxwell's equations 

V x E = "aT 
V x H = J + • -*^ r = 

we get [23], 

N x ( N x E ) + K - E = 0 

where N = kc/u>. Here, c is the speed of light in vacuum. The above equation with 

the expression for the dielectric tensor gives the dispersion relation. 

When the wave propagates through the plasma to the absorption zone, if its phase 

velocity vPh > vthj, where vth.j is the thermal velocity of species j , then the procedure 
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for developing the dispersion relation is simplified considerably. We can then neglect 

the thermal velocity of the particles and, in Eq. 2.1, v* is obtained using the Lorentz 

equation [23], giving us the dispersion relation, 

JTxJVl - UKj. - JVJ)(tfx + KS) - K\]N\ + ffu [(K± - iV,f)2 - K2
X] = 0 (2.2) 

where N± = K±c/u)\ N\\ = K\\c/u> and 

n2 

K, = 1 - E * (*» - nj) 

_ „ njak A* ~ t(<"2-^V 
where n2. = n\e\l^mk ; Qk = —ekBa/mk. Here, n*, m*, ejt stand for the number 

density, mass, and charge of sspecies k, and Bo is the magnetic field. 11* and ft* are 

the plasma frequency and the cyclotron frequency respectively for the species k. 

Normally, in rf-heating experiments, the N\\ spectrum is determined by the an­

tenna and u) is determined by the generator. Hence, Eq. 2.2 is an equation for N±. 

Solutions N± = 0 and N± —• co characterize cold plasma cut-off and resonance re­

spectively. While the cold plasma model is satisfactory for predicting the propagation 

characteristics and accessibility of the absorption zone, it breaks down close to a res­

onance. Also, it fails to predict resonances due to finite temperature effects. This 

is the case, for example, for ordinary wave heating with ECRH, for which the cold 

plasma model predicts no resonance. To develop the hot plasma dispersion relation, 

Vjt in Eq. 2.1 is replaced by 

< Vfc >= f J J Wkflkdv*dvydv* 
An expression for the perturbed distribution function fa is obtained from the lin­

earized Vlasov equation. The procedure and the results are rather cumbersome and 

will not be reproduced here. Detailed derivation of the hot plasma dielectric tensor 
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appears in Refs. [16,21,24]. Power absorbed per unit volume during wave heating is 

given by 

^ = £(FE)T = £ ( " 9 < V > E ) * 
Jfc Jfc 

where the overbar signifies time average. Using the warm plasma dielectric tensor 

[16,21,24], this expression reduces to 

P = = _ ! ^ ! [ E . ( K * - I ) - E < I + E*- (K-I ) -E] (2.3) 

where * denotes complex conjugate and I is the unit dyad. Alternatively, power 

absorbed may be obtained using a single panticle picture [22] or the WKB theory 

may be used to obtain the absorption coefficient as is commonly done in the case 

of ECRH [17,25]. Power absorption in specific heating methods is discussed in the 

following paragraphs. 

2.1.2 ICRH 

Heating the plasma in tokamaks near the ion cyclotron frequency may be done us­

ing the two-ion mode (minority heating and mode conversion), the second harmonic 

scheme or with the Ion-Bernstein waves (IBW). The two ion mode and the second 

harmonic schemes employ the fast Alfven wave. The slow Alfven wave is not suit­

able for heating tokamak plasmas because it does not propagate above the cyclotron 

frequency. (Fast and slow Alfven waves are low frequency (a; ~ fl*) electromagnetic 

waves. The fast wave has a larger phase velocity than the slow wave). As typical 

examples, we will consider two-ion (minority heating) and second harmonic heating. 

One or both of these schemes are being used in the present generation machines like 

JET, ASDEX and TFTR. 

The dispersion relation for hydromagnetic (fast and slow) waves can be obtained 

from Eq. 2.2 using the low frequency (| v | < fte), high conductivity (| Ez \<\ 

Ex |; | Ey | where Ex is the electric field in the direction of static magnetic field) 

10 



approximation. The resulting expression [22] is, 

Nh = A-Nl+f^P- (2.4) 

where N±^a and N\\.a are Alfven refractive indices defined by 

Nl« = «t fcs-y 
n? and A = .tfij^y The electric field polarization is given by 

£+ = Ex + JEy = ;gfc - Nla 

E~ E — iE - ^ i- N2 (2.5) 

The condition for fast wave propagation is obtained [15,22] by setting fc||:„ = 27rp/27ri? = 

p/R and k±,n = 2irq/2a = irq/a in Eq. 2.4. Here, fc||?n and fc^,n are the natural parallel 

and perpendicular wave numbers, p, q are integers, R and a are the major and minor 

radii of the tokamak. By setting p = 0 and q = 1, we get the marginal condition for 

propagation as 

ir2B2 ' ^ 2 

na2 >^!L = 5.lxlO"^y(^)m-' 
floTTltW2 \U>J \mH/ 

Here, mH is the mass of the hydrogen ion. This equation implies that fast; wave 

propagation requires relatively large and dense devices, especially if u < £V 

Minority Heating Scheme 

Heating a single ion species plasma at the fundamental ion cyclotron frequency is 

virtually impossible because the right handed component of the electric field, E+, is 

extremely small in magnitude. In fact, if we put iV||(a ~ 0 and u = fy in Eq. 2.5, 

we find E+ ~ 0. The inclusion of hot plasma effects gives a small but finite value 

for E+. Presence of a second ion species even in concentrations as small as < 5% 

improves the scenario dramatically. If we have a small percentage of hydrogen ions 
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in a predominantly deuterium plasma, we would find that E+/E~ = 1/3 for N^a = 0 

by setting UJ = £IH in Eq. 2.5. This procedure neglects the contribution of hydro­

gen ions and hot plasma effects. An exact calculation should take these effects into 

consideration [19,22]. 

Power absorbed by cyclotron damping may be computed using Eq. 2.3 or using 

the single particle approach as done by Stix [22]. The result of the second approach 

<p>m*Urt\E+\'* (2.6) 

miQir\ sin 6 \ 

where r,R and 0 are defined in Fig. 2.1. < P > is the power absorbed per unit 

volume at the location r. | E+ | is obtained from Eq. 2.6 by putting ft = ^minority 

or, more accurately, from the wave equation using the hot plasma dielectric tensor. 

In addition to cyclotron damping, power may be absorbed by the electrons moving 

along the magnetic field lines via Landau and transit-time damping. Particles which 

absorb power by these collisionless processes satisfy the resonance condition UJ -

k\\v\\ = 0. Detailed discussion of these phenomena appear in Refs. [16,21,22,24, 

28]. These damping mechanisms are active in a plasma with an electron distribution 

function having a negative slope in the neighborhood of the wave phase velocity. 

In the case of Landau damping, the force on the particles is qE\ for transit-time 

damping, it is -p,VBw, where Ji — l/2(mv^/B) is the magnetic moment and Bw is 

the wave magnetic field. Both mechanisms are active in fast wave damping, but the 

two effects are coherent and cross terms have to be included. The power absorbed 

can be computed using Eq. 2.3. It turns out that the transit-time terms cancel with 

the cross-terms leaving only the Landau damping term [22]. The result is 

P = Ey\
2exp-(-^-) (2.7) 

16V7T k\\vth. 

where (3e = (2ftQneTe)/B
2 and v\hz = 2Te/me, Te being the electron temperature. 
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Second Harmonic Heating 

Second harmonic heating is a finite Larmor radius effect. Indeed, when w = 2fti? 

the sign of E^.V changes twice during one orbit. If the electric field is spatially 

homogeneous, then the energy gained during one half of gyration is lost during the 

other half. If the wave has a finite perpendicular wavelength, the cancellation is 

incomplete and the particle gains energy. Power absorption during second harmonic 

heating is given by [26], 

n^QOeflS* \2R (nWL \ 
<P • mSUr\ sin 9 \ [ ~ ) (2"8) 

Here n± is to be obtained from the dispersion relation and E+ is obtained from 

the wave equation using the hot plasma dielectric tensor. If we use Eq. 2.5, we get 

E+~\Ey\. 

2,1.3 ECRH 

Radiofrequency heating near the electron cyclotron frequency can be done by launch­

ing either an ordinary wave with the electric field parallel to the magnetic field (O-

mode heating) or an extraordinary wave with the electric field perpendicular to the 

magnetic field (X-mode heating). One or both of these methods have been used suc­

cessfully to heat the plasma in several tokamaks like ISX-B, TFR, DOUBLET-III D, 

and T-10 [31]. ECRH is considerably simpler than all other rf-heating methods in 

all aspects except for the availability of high power millimeter wave sources. With 

the anticipated development of free electron lasers or high power gyrotrons, it could 

become a major heating method. 

The cold plasma dispersion relations for the O- and X-modes can be obtained from 

Eq. 2.2. For propagation perpendicular to the magnetic field, in the high frequency 

limit (UJ ~ Qe > Cli) we obtain, for the O-mode, 

* i = ^ (2-9) 
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and, for the X-mode, 
,2 _ [(II2 - a;2)2 - <72u,2] 

k±~ c v - nc
2 - ng. (2'10) 

Power absorption during ECRH can be obtained from Eq. 2.3 or, alternatively, wave 

damping can be calculated along the ray trajectories using the WKB theory. 

Ordinary Wave Heating 

An ordinary wave has its electric field parallel to the static magnetic field. From 

Eq. 2.9, it is clear that the O-mode has no resonance in the cold plasma limit. How­

ever, the inclusion of hot plasma effects introduces resonances at the cyclotron har­

monics. Physically, this is because the Lorentz force on the electron due to its finite 

parallel velocity and the wave magnetic field can be split into two components; the 

left circularly polarized and the right circularly polarized components. It is the right 

handed component of the force that accelerates; the electrons. 

From Eq. 2.9, the density limit for the O-mode propagation can be obtained by 

putting k± = 0 (cut-off condition) as 

II2 < ft2 or ne < e0B
2/m 

Furthermore, the wave can be launched from the outside of the tokamak. Power 

absorption during O-mode heating has been calculated using Eq. 2.3 by Fidone et 

al. [29]. In the nonrelativistic limit, power absorbed per unit volume is 

P=wxvth.e iq 2 
2J7T 2NnC KT2 , ^ V } 

where X = II2/u;2. Power absorption increases for JVj| —• 0. 

Alternatively, the absorption coefficient along a ray trajectory can be calculated 

[17,28,30] and the result is 

4o = i - r 0 
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where A$ is the absorption coefficient and T0 is the transmission coefficient [30]. 

T0 = exp(-2T7fo) (2.12) 

where 
Rata2 [1 - a2]1/2 Te 

7)0 =: 4c [1 + JV,f(l- a2)] mc2 

and a = n2/u/2. 

Extraordinary Wave Heating 

An extraordinary wave has its electric field perpendicular to the static magnetic field. 

The electric field polarization calculated using the cold plasma theory is given by 

E- = Em-iE, = -iE,\K*-K± 

As w —• £le , E~ —• 0. Hence, there is no electron heating unless we introduce warm 

plasma effects. Hot plasma theory predicts resonances at the cyclotron harmonics. 

The density limit for X-wa,ve heating can be obtained from Eq. 2.10 by putting 

k± = 0. This gives 

n 2 < 2Q2 or ne < 2c0S2/me 

Hence, X-mode heating has a higher density limit than O-mode heating. However, X-

mode heating at the fundamental frequency can be done only by launching the wave 

from the inside of the tokamak because the wave encounters a low density cut-off 

before resonance if launched from the outside. On the other hand, X-mode heating 

at the second harmonic can be done by launching the wave from the outside. Power 

absorption at the cyclotron fundamental has been calculated by Fidone et al. [29]. In 

the nonrelativistic limit, the power absorption per unit volume is 
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From this equation, it is clear that as N\\ —• 0, power absorption becomes negligible. 

Power absorption can also be written down in terms of an absorption coefficient [30], 

Axi = l-Txl (2.14) 

where 

TXi = exp(-2x77;n) 

RuNi 
(2-*>)-(!+ c^) 

For the X-mode second harmonic heating, absorption is given by [17] 

Ax2 = l-TX2 (2.15) 

. TX2 = exp(-2T^2) 

Rua2 (3 - 2a2\2/4(1 - a2)2 - l\1/2 Te 
Vx2" c V3-4a2> | ^ 3 - 4 a 2 

mc 

2.2 Drift Kinetic Equation 

Microscopic description of a thermonuclear plasma centers around the plasma kinetic 

equation 
dl = C(S) (2.16) 

where the left hand side is the substantial derivative of the particle distribution func­

tion along the particle trajectory and the right hand side is the collision operator. 

The collision operator C(f) describes scattering of particles of the species under con­

sideration (test particles) due to collisions with particles of the same species as well 

as other species (field particles). Eq. 2.16 has the form of a conservation equation 

in the phase space, and it can be derived from the Liouville equation for the many 

particle distribution function [21,32]. 
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The plasma kinetic equation is quite complicated and, hence, a simplified form 

of the kinetic equation, known as the drift-kinetic equation (DKE) is commonly em­

ployed in collisional transport studies. The DKE may be thought of as an equation 

for describing the motion of the guiding centers of the charged particles in the pres­

ence of electromagnetic fields and collisional scattering, DKEs for many applications 

have been derived by several authors [32,8,33,34]. We shall be particularly concerned 

with a form of the drift-kinetic equation relevant to tokamak transport applications. 

In the following sections, we will derive the drift-kinetic equation. The derivation 

follows arguments similar to those found in Refs. [8,33,34]. 

2.2.1 Basic Equations 

We write the left hand side of Eq. 2.16 in terms of the time coordinate t, space 

coordinates x, and the velocity space variables /i, E, and £. Here /z = (y\j2B) is the 

magnetic moment per unit mass, E = (v2/2 + e$/m) is the energy of a particle per 

unit mass, and f is the gyrophase of the particle. Referring to Fig. 2.2, 

<---•'fcf) 
With this, Eq. 2.16 can be written as 

3f •••"•£(*)• S (SMHS-™ <"" 
We note here that an equation similar to 2.17 has been derived rigorously from the 

Liouville equation by Balescu [32, Vol.1, chap. 2]. Eq. 2.17 forms the starting point 

in our analysis. We now derive expressions for the time derivatives of //, E, and f. 

The equation of motion for a charged particle in an electromagnetic field is 

Referring to Fig. 2.2, we write the following useful expressions 

vi. = (2//J3)1/2rii. = (2//B)1/2(€2COsf-€3sinO (2.19) 

17 



Figure 2.2: Guiding Center Coordinates 
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Also 

p z= fi x hj_ = e3 cos f + e2 sin f 

where n is the unit vector along the magnetic field line. With the help of these 

identities, Eq. 2.18 can be written as 

dv± dvu e „ 
"^T + ^ T = — E " n ^ a t a t m 

(2.20) 

where ft = eB/m is the cyclotron frequency of the charged particle. (In this section, 

the variables e and m denote the charge and mass of the species j.) By taking the 

dot product of Eq. 2.20 with Vj., v, and /?, we obtain the following expressions for 

the time derivatives of /z, E, and f (see Appendix A for details) 

d/z _ /z dB V|| dh e 
~di ~ "~B~dt~ ~BY±"dt mB 

E - v ± 

d£ 
d* m\dt 

0A 
0* 

— = fi! + e3 • -77 + —p • -T7 
d£ dtf Vj_ d£ m i / i 

p-E 

(2.21) 

(2.22) 

(2.23) 

where the electric field is given by E = - V $ - 4£ with A being the vector potential. 

Using the expressions 2.21-2.23, Eq. 2.17 can be rewritten as 

— + v\\h • V/ -f v±(e2 cosf - e3 sinf) • V / 
at 

+
d-l 
dfi B dt B x 

dn e 
'di^mB 

E -v± -f 
&E ra \#* 

+ at, 1 dt v± dt mv± 
p-E 

m / . 

= C(f) (2.24) 

2.2.2 Order ing 

Our next task is to introduce certain simplifying assumptions to obtain a set of 

ordering parameters which can then be used to obtain a hierarchy of equations from 

Eq. 2.24. It turns out that it is simpler to solve the simplified equations obtained 

after ordering than it is to solve the original equation (Eq. 2.24). 
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We note that the choice of the assumptions (or ordering parameters) depends upon 

the problem we want to solve. In the present case, we are interested in the solution 

of the kinetic equation for a tokamak plasma in the presence of large poloidal electric 

fields in the low collisionality regime. It should be pointed out that the neoclassical 

transport theory depends crucially on the presence of drifts caused by the magnetic 

field curvature (VB, curvature, and, in the present case, Eg x B drifts). Hence, the 

version of the drift kinetic equation to be derived would have to explicitly involve 

these drifts in addition to the collisional scattering phenomena. Our ordering scheme 

will indeed be influenced by these considerations. We will adopt most of the ordering 

assumptions of the standard neoclassical theory [8]. We will relax these assumptions 

only when the present problem requires such changes to be made. 

We begin by defining the scale length for changes in such macroscopic parameters 

as pressure, temperature, etc. by 

where p could be any macroscopic parameter. At this stage, we do not make any 

assumption regarding the aspect ratio (i.e. R/r) of the device. Hence, / is a fairly 

general gradient scale length. 

We define the transit frequency as 

. u> = y - (2-25) 

Defining the gyroradius as p = vihl£t = (mvth/eB), we have the basic ordering 

assumption as 

« = f=|«l (2.26) 

(It turns out that the more relevant parameter is 69 = (l/l)(mvtfl/eBs) = (B/Bs)6. 

In a low p plasma, B ~ B^ > B9. Hence 69 > 6. We shall adopt the stronger 

constraint 69 <C 1. We will, however, continue to use the symbol 6 to denote 6 as well 

as 69.) 
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We further assume that the macroscopic quantities like density, temperature, etc. 

vary slowly. Specifically, we a,ssume, consistent with Hinton and Hazeltine [8], that 

§i~Oi*») (2-27) 

Also, we assume the "drift ordering" [8], i.e., 

-£- ~ 0(6) (2.28) 

which merely states that the drift velocities (including the bulk rotation velocity) are 

small compared with the typical thermal velocity. This is expected to be the case for 

an ohmically heated plasma as well as for a plasma heated by perpendicular NBI and 

electromagnetic waves. 

The effect of ohmically induced electric field E\\ is expected to be significant only 

for the electrons due to their smaller mass. Hinton and Hazeltine [8] use an ordering 

scheme ("maximal ordering") according to which E\\ ~ 0(6e.e)Erun where Emu ~ 

™>evth.e/eTe. Here re is the electron-ion collision frequency given by [8], 

= _j mytKe 
Te 16y/TrZ2e4nikiA 

In the ion equation, it turns out that E\\ ~ 0(6lA)Erun [8]. Hence, E\\ is significant 

only in the electron equation. We, however, retain E\\ in the electron as well as ion 

equation in order to keep the formalism quite general, i.e. we assume, for ordering 

purposes, 

*~°('^) ("9) 

We assume initially that v\\ ~ v± ~ 0(vth) and the transit frequency u) ~ 0(y), where 

v is the collision frequency. Later, when we specialize for the banana regime, we will 

distinguish between the collision and transit frequencies. With the above choice 

of assumptions and ordering p>arameters, we order the various terms in Eq 2.24 as 

follows. 
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we first note that the operator v • V ~ 0(vth/l) ~ 0(w). 

I ~ °{62u) 

v\\h • V ~ 0(u) 

v± V ~ £>(u;) 

^ (Sir) ~ °<^> 
- ^ - V - V B ) - 0(w) 
d/x l £ 

I 

' 5*, 

£ G K <*•*>*) ~ OH 
£ ( ^ - £ ) ~ O(̂ ) 

Using the drift ordering assumption, i.e., (E/B) ~ C f̂o/**), 

l&^H^ 
^(mWJ~°^ 

Using our ordering assumption for E\\ = -(dA/dt) according to Eq. 2.29, 

die dA\ ^ , c x 

dEW-ar)-^) 
where we have used 1/r = ^ ~ <9(a;). 

n^ ~ o(n) 

C(/) - 0(u;) 
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With this, we now expand the distribution function / in terras of the basic ordering 

parameter 6. 

/ = /o + /i (2.30) 

where /i ~ O(foS). Using the; above expression in Eq. 2.24, we can obtain a hierarchy 

of equations by collecting terras of the sarae order. To facilitate ordering, we shall 

divide all terras in Eq. 2.24 by CI. 

Order 6° 

To the lowest order in <5, i.e. <5°, we have 

fi|| = 0 (2.31) 

This immediately leads to the conclusion that /o is independent of the gyrophase. 

Hence 

f»*M0 

Order 6 

To the order <5, we have 

v\\n • V/0 + v±(e2 cos£ - e3 sin £) • V/0 

0/o '_/±dB _ tji dn _ e _ E 

B dt B ± dt mB ± + ^ f l = C(/0) (2.32) 
d/x 

where, in the substantial derivatives, we have retained only the convective part ac­

cording to our ordering scheme. We have also used the property that /o is gyrophase 

independent in obtaining the above equation. 

Gyro-averaging Eq. 2.32, we have 

where F is the gyro-average of the quantity F defined by 

— 1 /"2ir — 1 f** 
F = i- F df 

2nJo s 
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Also, 
<5* _~ v_dB__n ~dfl , e

 E ~ 
d* ~ £ A B L' dt mB ' L 

While gyro-averaging, quantities which do not explicitly depend upon the gyrophase 

are treated as constants [35]. In the presence of a wave heating mechanism, some 

quantities like Ej. may not be independent of the gyrophase throughout the plasma 

volume. We, however, treat these quantities as gyrophase independent for the follow­

ing reasons. 

• In many wave heating scenarios, particles of only one species participate in 

the energy absorption process. For instance, during ECRH only electrons take 

part in the energy absorption process, while during ICRH, ions are the main 

participants. (We note that in some instances, electrons can also participate 

via Landau damping and transit time magnetic pumping). Furthermore, in 

many wave heating mechanisms, such as ICRH (minority heating), only a small 

fraction of particles participate in wave heating. 

• In most wave heating scenarios, the launched wave has k\\ ^ 0. This means that 

only a fraction of the particles satisfying the resonance condition w — k\\V\\ = 0 

participate in wave heating. Furthermore, the resonance zone where E.L may 

not be zero is confined to a thin region across a vertical plane. Hence, for 

the bulk of the particles over most of the plasma volume, Ej. = 0 is a good 

assumption. 

Carrying out the gyro-averaging process (see Appendix A), we find that 

5Lo 
dt 

to the order 8. Hence, to the order £, we have 
t/„n • V/0 = C(/0) (2.34) 
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Multiplying Eq. 2.34 by In /0 and integrating over the velocity space, we have 

jv\\h Vf0\nf0d
3v = jc(f0)\nf0d

3v (2.35) 

Specializing for a tokamak, and using the Jacobian to transform to /z, E, and f coor­

dinates, we get 

£ cB ( ^ ) / ^ In lodndEdf, = £ aB ( * j ) ^ / ( / „ In /0 - / o ) d ^ i ^ (2.36) 

where a is the sign of the paraJlel velocity (a = ±). Transforming back to the velocity 

coordinates, we have 

B v / | ( / o l n / o - fQ)d3v = J In fQC(fQ)d3v (2.37) 

Carrying out the flux surface average, i.e., for a tokamak 

<F>=C(B{i+ecoae)dB 

and noting that < B • VF >= 0, we get 

(J\nfoC(fo)d3v} = 0 (2.38) 

Here we note that C(/o) = C(/jo) = E t C(fjo, /to)- If the collision operator C(/ j0, fko) 

satisfies the H-theorem, we know that [36], 

y i n / o C ( / o ) ^ < 0 (2.39) 

Thus, in general, Eq. 2.38 can only be satisfied if 

Jd3v\nf0C{fo)d3v = 0 

which in turn is satisfied if C(/0) = 0 [8,32]. The solution of this equation is the 

Maxwellian 
/ m \ 3 / 2 / mv2\ /n An. 

/„ = n ( — ) exp| r—J (2.40) 
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Using this equation in the zeroth order kinetic equation, Eq. 2.34, we have, for a 

tokaraak, 
v\\B9dfo _ Q 

TB d$ 

Using the expression for /o, and noting that the energy of a particle is E* = (v2/2) + 

(e<§(0)/ra), where <§(0) is the poloidally varying component of the potential, we obtain 

j . dn _ e di(0) 
nd$~~T~dO 

or 

rc=<n>exp(-^^J (2.41) 

Here we assume the temperature to be a function of the flux surface only. Hence 

/ ra \ 3 / 2 / mE*\ ,n , . 
/ o = : " ° f e f J e x p ( - — ) <2-42> 

where no =< n >. 

2.2.3 Drift-Kinetic Equation 

Letting /i = /i + / i , where /i is the gyrophase independent part of /i and /i is the 

gyrophase dependent part, and noting that /o is independent of /i, Eq. 2.32 reduces 

t 0 

t;±(e2cosf - e3sinf) • V/0 = - ^ f t 

or 

/ i = " ^ 2 s i n ? + I3cos0 ' V/o = -^p • V/0 (2.43) 

Order 62 

To the order 62, Eq. 2.24 can be written as 

v\\h • V/i + v±(e2 cosf - e3 sin f) • V/i + 

t(f)*i(-J)+f-t (2-•)-«*> <2«> 
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where the derivatives of the velocity space variables are given by Eqs. 2.21-2.23. 

Using /i = /i + /i, we have 

v\\h • V/i + v±(e2 cos£ - e3 sin{) • V/i + -^ I -j£ J 

df0 (dE\ 0 / 2 ^ a/i (di \ „ _ _ 

+ ^ ( e 2 c o s i - e 3 s i n O - V 7 r + ^ ( j ) = C(/i) (2.45) 

We note that 

dt dt n• dfi\dt) dE\dt) d£ \dt) 

Dropping terms of the order 63 and higher, we obtain 

or 

v ^t(!)+f(f-°)-f-t° 
Using the above equation in Eq. 2.45, 

+« x ( e 2 cose -e : l s in«VA + ^ ^ = C ( / 1 ) (2.46) 

Gyro-averaging the above equation, and noting that 

»e »e 
due to the single valuedhess of the distribution function, we have 

. ?-?*^it+*-**-™ («7) 
where we have used the result f̂ = 0 to the order 62. Now we turn to the evaluation 

of the first term in the above equation. From Eq. 2.43, we have 

/ V±- - x-i r 

/i = - ^ V / „ 
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Denoting v±p/Q = p and V/o = h, we write the Eq. 2.47 as 

d / - u\ ev\\* d&df0 
- *<>• h> - •£* • wwi+v*h •vh = c{h)+c(h) (2-48) 

Carrying out the gyro-average of the first term in the above equation (see Appendix A 

for details), we obtain 

dfo 
(YD + «||ft) • V/o + -E\\n^ + V • V/i = C(h) + C(/i) (2.49) 

where v^ is the perpendicular guiding center drift velocity, given by 

*D = —^ + § x [nVB + ^(n • V)h] (2.50) 

and T?|| is the parallel guiding center velocity, given by 

«ll = ^[ft-(Vxft)] (2.51) 

As all the quantities in the collision operator (accept for j \ are independent of the 

gyrophase, C(/i) = 0. Noting that h • V/0 = 0, we obtain the drift kinetic equation 

as 

vnn-VTi+yvVf0 + ^En^ = C(T1) (2.52) 

Eq. 2.52 forms the basis of the neoclassical transport theory. Before proceeding with 

the solution of the drift kinetic equation, we shall examine a few collision operators 

commonly employed in transport calculations. 

2.3 Col l i s ion O p e r a t o r s 

We have so far not discussed the nature of the collision operator C(f) appearing in 

the Eq. 2.16. The collision operator is usually the Fokker-Planck operator (FPO) 

or a simplified version of it. Thus, we begin by discussing the FPO. We shall then 

discuss simplified versions of the FPO commonly employed in the transport theory. 

28 



2.3 .1 Fokker-Planck Col l i s ion T e r m 

The Fokker Planck collision operator is a very general collision term suitable for de­

scribing the evolution of the particle distribution function in a thermonuclear plasma. 

It can be used when small angle scatterings outnumber large angle scatterings. 

If G(vo, Av)d3tii is the probability that a particle with an initial velocity vo gets 

scattered by Av = vi - vo into a volume d3v\ around vi in unit time, then the rate 

of change of the distribution function /i(vi) at vi, 

/ g / l ( V l ) ' 

V & 

or, 

= — [particles lost] + [particles gained] 

(^f^) = - / / i ( v i )<S(v i , Av)d3(A*/) + Jf1(y0)G(y0,Ay)d3v0 (2.53) 

Using Taylor expansion, 

/i(v0)<3(v0,Av) = fi(vi)G(x1,Av) + (vQ-v1)i—f1(v1)G(v1,Av) 
avii 

1 fi fi 

+ 2(vo-viUvo-vi)jdv _dv /i(vi)G(vi,Av) + ... 

Putting this in Eq. 2.53, 
( l > r ) = -^-/i(vx)/(A J; i)G(v1 ,Av)d3(AW + 

\^^-f1(yi)f(Avi)(£,vi)G(vl,Av)d3(Av) 

i a a - -^(viHA^J+ - ^ 1 / ^ ) ^ 0 ^ ] 

All the higher order terms have been omitted. Here, the Fokker-Planck coefficients 

defined by 

(A^= J(Avt)G(y1,Ay)d3(Av) 

(At/OfAt/,-)^ = J(Avt)(Avj)G(y1,Ay)d3(Av) 
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are called the dynamical friction coefficient and the velocity space diffusion tensor 

respectively. For a thermonuclear plasma, these coefficients can be calculated by 

considering Coulomb collisions [21], leading to 

at) e 
d dh„ Id2 d2ga 

dvr dvi 2dvidvj
Utdvidvj

) Ta (2.54) 

where ft is the test particle distribution function and F« = 47rnaqfq2
t\iiA/m'2. Here 

In A is the Coulomb logarithm [21]. The summation over a denotes summation over 

all types of particles in the pl;isma. 

^ v ) = / f « ( v ' ) | v - v ' | d v ' 

*>-2/ hJv) = ^ / -M^Ldv1 

v — v i 

where /za = mtma/(mt + ma) and v' is the field particle velocity. The plasma kinetic 
equation with the FPO is usually solved numerically. In many cases, simpler forms of 

the equation are used to obtain analytical solutions. One such form used commonly 

to describe collisions of electrons with ions or ions with heavier ions is the Lorentz 

operator. It is obtained by approximating | v - v' | ~| v | in the formulas for ga and 

ha and by assuming mt/ma < 1. This gives [20], 

M)c - 2 
^ . U ( v ) . ^ " = CPAs(ft) (2.55) 

where 

U(v) = Utj(v) = ^ - ^ L 
. V | | V , 

. The above operator, also known as the pitch angle scattering operator, describes 

the change in the perpendicular velocity of the particle while conserving the total 

energy of the particle. 

2.3.2 Other Collision Operators 

The Fokker-Planck operator is quite complicated and, hence, in tokamak transport 

theory, simpler collision operators are employed. These collision operators are either 
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constructed using ad hoc procedures or derived rigorously from the FPO. Perhaps the 

simplest version of the FPO widely used in the transport theory is the Lorentz or the 

pitch angle scattering operator. As discussed in the previous paragraphs, the pitch 

angle operator provides an excellent approximation for electrons (or lighter particles) 

colliding with ions (or heavier particles). In terms of the magnetic moment variable, 

the linearized version of the pitch angle scattering operator is given by 

cMffufu)=<w/ii) = ^*f | ; ( w ) ^ r (2-56) 

where \i = v\/2B is the magnetic moment per unit mass and q is the magnitude of 

the parallel velocity (v\\ = aq with a = ±1). In Eq. 2.56, the subscript j refers to the 

lighter species, and the collision frequency i/jk is defined later in this section. 

The pitch angle scattering operator alone cannot be used for describing like par­

ticle collisions or collisions between particles of similar masses. Early studies in the 

neoclassical transport theory (Rosenbluth et al. [37], Rutherford [38]) used ad hoc 

procedures to construct collision operators for like particle collisions. The procedure 

is to write the linearized collision operator as [37] 

C(fjl) = CpAS(fjl) + CEStfjl) + Cpp(fjl) (2.57) 

where CES IS the energy scattering part of the collision operator (describing the change 

in the energy), and Cpp is the field particle response. We have seen that CPAS contains 

derivatives with respect to /z. CES contains derivatives with respect to the total 

energy w(= v2/2). In the neoclassical theory, change in v\\ (pitch angle scattering) is 

the dominant event. Hence, Rosenbluth et al. [37] assume dfji/d^ > dfji/dw^and 

hence, retain only the pitch angle scattering part. Thus the collision operator reduces 

to 

C(fji) = CpAS(fjl) + CFp(fjl) (2.58) 

Here Cpp(fji) is modeled as 

CMf»)='^ (2.59) 
Vth,j 
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where fjo is the equilibrium (Maxwellian) distribution function and vthj is the thermal 

velocity of the species j (vth.j = y(2Tj/mj)). p is a velocity, to be determined to 

satisfy the momentum conservation, i.e. 

Jc(fn)qd3v = 0 (2.60) 

Using Eqs. 2.58 and 2.59 in 2.60, p is found to be [37] 

2 l&Wjjqfa . v 
P — vthiT~Jk TT~ (*-"lJ 

""JtPWjjtffjo 
Connor [9] modified the operator 2.58 to handle unlike particle collisions as 

CJt(/,x«) = CPAS(f») + ";»(«?)# { f T v { " (262) 
V*L I. "th,k 

where x* = (rrijV2/2Tj). If the collision frequencies i/jk are determined to satisfy the 

constraint 

/
•? Q2 t -\ Q2 

d v-f— ujkfj0 = mk j (rv-2—Vkjfus 
vth,j J vth,k 

the operator 2.62 conserves momentum as well as number and energy. 

The ad hoc procedures used by Rosenbluth et al. [37], Rutherford [38], and Connor 

[9], while intuitively appealing, suffer from many disadvantages. 

1. The connection between the ad hoc procedures and the exact Fokker-Planck 

operator is not apparent. This is because the ad hoc operators are not derived 

rigorously from the exact Fokker-Planck operator. 

2. The operators possess only a few of the properties of the exact Fokker-Planck 

operator. In most instances, the operators are made to satisfy one or more 

conservation laws by defining collision frequencies (see Connor [9]) or by defining 

a velocity (see Rosenbluth et al. [37]). 

To alleviate these problems, Hirshman et al. [39,14,40] derived an approximate colli­

sion operator for transport theory applications from the exact Fokker-Planck operator. 
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The approximate collision operator has the form 

2v\\rkj 
cjk(fji,fki) = vjk£fii + 

Jth,j 

„S f V\J> ,.5iV\\UH (v)f VjkfjO + [l/jk - Vjk\—-2 /J'O 

where 

vfk = "jk 
\Vth,kJ \vth,k/\ \Vth.j/ 

is the deflection frequency (characterizing pitch angle scattering [39,41]). 

2Ti 
uik = 

J'O 

V mjj \vtKkJ \vth.j 

(2.63) 

(2.64) 

(2.65) 
TkO \ TTlj ) '" \Vth^k/ -yi/wij 

is the slowing down frequency (characterizing dynamical friction due to the field 

particles [39,41]). Here 

vih = ^nkeyk\ji Aft&Tjf2™1/2] (2.66) 

where ej = Zje and ek = Zke are the charge on the species j and k respectively. 

4>(x) — x(j!(x) 
G(x) = 2x2 (2.67) 

is the Chandrasekhar function, where <f>(x) = (2/y/7r) /0* exp(-t2)dt is the error func­

tion. The pitch angle operator is defined as 

/. V\\ & / v d (2.68) 

Also, 

Uji(v)fj0 = (3/4ir)jvlJjldSl (2.69) 

where dCl = 2irv~1dv\\ = ir^2a(Bd/i/w)(v/\v\\\) [14,40]. The momentum restoring 

coefficient rkj is defined as 

*"*> = 
_ j'TnkVk3v\\fk\<Pv 

mjnjirfk} 
(2.70) 

where the integration operator {} is defined as 

{Fjk(v)} = 2 / ( - 3 l - ) F^k(v)^d3v 
J \Vth.j) rtj 

^)Jo x)exp(-x*)F>k(xj)dXj (2.71) 
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where F'k(v) is an arbitrary function of the velocity v. We note that by setting 

vfk = vfk in Eq. 2.63, we recover operators similar to those given by Eqs. 2.62 and 

2.58. Collision frequencies defined by Connor [9] and Rosenbluth et al. [37] are similar 

to vfk. Thus, the Hirshman-Sigmar operator, in addition to its rigorous derivation, 

can be looked upon as an extension of earlier collision operators to include the differ­

ence between the pitch angle scattering frequency and the slowing down frequency. 

In many instances, the difference makes a significant contribution to transport cal­

culations. In addition, the collision operator 2.63 possesses most of the desirable 

properties of the exact Fokker-Planck operator, such as the conservation laws (par­

ticle, momentum, and energy), self-adjointness, and the H-theorem [39,14,40]. We 

shall be using the Hirshman-Sigmar operator (Eq. 2.63) in our calculations of the 

neoclassical transport coefficients. 

2.4 Quasilinear Theory 

Quasilinear theory, originally developed to study weak plasma turbulence, is widely 

employed in wave heating applications to describe the collisionless evolution of the 

distribution function. The theory separates the particle distribution / , the electric 

field E and the magnetic field B into a space independent component /o, EQ, BQ and 

a small, rapidly varying component / i ,Ei ,Bi . The component /i is obtained using 

the linearized Vlasov equation. The linearized solution f\ is then used in a nonlinear 

equation describing the time evolution of /o to determine /o. The basic idea behind 

quasilinear theory is explained below for an electrostatic wave in an unmagnetized 

plasma. Similar arguments hold for an electromagnetic wave in a magnetized plasma. 

Collisionless evolution of the distribution function /„ of a species a in an unmag­

netized plasma with an electrostatic disturbance is governed by the Vlasov equation, 

34 



and the Gauss' law 

V.E = 4TT Y, n*Q« I / « d v 

a J 

Eq. 2.72 is solved using a perturbation approach. 

fa = faO + fal 

where /a0 is the spatially averaged part 

/«o= y J fadx~-< /„ > 

and /ai is the rapidly fluctuating part. 

B0 = 0 ; E0 == 0 ; E = Ex ; < fal >=< Ex >= 0 

Under these conditions, an equation for the evolution of fao is obtained by spatially 

averaging Eq. 2.72, leading to 

y* = -£-Vr-<*iU> (2.73) 
at m„ 

An equation for fal is obtained by putting fa = /a0 4- fa\ in Eq. 2.72 and using 

Eq. 2.73 

(in + v - v ) /«i = - - E i . V v A o - — V v . ( E ! / a l - < Ei/a! >) \ot J ma ma 

Linear solution to fa\ is obtained by neglecting the second order quantities Ei/„i. 

Letting 

fai(t) = - ^ ffak(^t)dk (2.74) 
(2TT) J 

Ei(t) = ^ J Ek(x,t)dk 

where 

/«k = /akexp(tk.x)exp(-iurf) 

Ek = Eicexp(fk.x)exp(—iuji) 
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Using these forms, we find 

qa Ek.Vy/gQ . . 

'ak ~^rinr*:—;r ' 2 - 7 5 J 
ma 2(k.v — (jj) 

Eqs. 2.74 and 2.75, when used in Eq. 2.73, result in the following diffusion equation 

for fao 

at 
where 

9fa0 = Vy.JDy.Vv/aoW (2.76) 

D =,qa,
2l f E k . E . k kk dk 

-frvl 
ma V J 

i(k.v - w) k2 (2TT)3 

is the quasilinear diffusion coefficient. 

For the electromagnetic case, we arrive at a similar equation with a more compli­

cated expression for Dy [24,42]. 

In wave heating applications, the equation for the evolution of /o is of the form 

^ = V v . .D v .V v / 0 + ( ^ ) (2.77) 
at eft c 

where ( ^ ) is the collision operator. The above equation describes the situation 

where particles are gaining energy from the wave (described by the quasilinear oper­

ator) as well as losing energy to other particles (described by the collision operator). 
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CHAPTER III 

PARTICLE TRANSPORT DURING WAVE 

HEATING - THEORY 

In this chapter, we review the theoretical literature related to particle transport during 

wave heating. We begin by examining the production of electric fields during wave 

heating in tokamaks. We then examine, in section 3.3, the effect of poloidal electric 

fields on particle transport. Section 3.4 contains a summary and the conclusions of 

our review. 

3.1 Electric Fields during Cyclotron Wave Heating in 

Tokamaks 

Equipped with some of the tools of wave heating and transport theory, we are now in 

a position to study some of the effects of wave heating. In Section 3.1.1, we study the 

production of poloidal electric fields during wave heating. We then examine, heuris-

tically, in Section 3.1.2, the production of electric fields during the wave momentum 

absorption process. 

3.1.1 Poloidal Potential Variation During Wave Heating 

Production of a significant poloidal potential variation during cyclotron wave heating 

has been studied by Hsu et al. [11] and Chan et al. [43]. Much of the material 
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Trajectory of a 
Resonant 

Partide During 

RF-Heating 

(b) 

Figure 3.1: Particle Trapping During Wave Heating 

I *—- Resonance Layer • 

(a) ICRH (*>n < * „ , ) WBCRH (•*>*„) 

Figure 3.2: Potential Asymmetry during Wave Heating 
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presented in this section is based on Ref. [11]. 

Particle Trapping and Resonance Localization 

Production of a significant poloidal electric field in tokamaks during cyclotron wave 

heating is related to the phenomenon of particle trapping inherent in the tokamak 

geometry. In a tokamak, the magnetic field varies as 1/R and, hence, is weaker on 

the outside of the torus. It is this variation of the field that is responsible for particle 

trapping. Referring to Fig. 3.1, conservation of energy gives, 

where v2 = v2 + v\. Also, invariance of the magnetic moment gives 

(mvpo _ (mvpt „ 0 v 
M " 2Bn - 2Bt

 [6-Z) 

Using Eqs. 3.1 and 3.2, 

(3.3) *-4-©(t): 
As (Bt/B0) > 1, for particles with sufficiently small v\i0 , v\\.t can approach zero and 

the particle can be reflected at t. Indeed, in a tokamak with an inverse aspect ratio 

e, a fraction of particles, ~ y/i, are trapped in the manner described above, and such 

particles execute a 'banana' shaped orbit as shown in Fig. 3.1(a). Noting that for 

particles reflected at t, (mv^_/2)t = (mv2/2)0, 
^Bo 

\v Jo V &t 

Particle at o with (^ ) > J^jfc are reflected at t. 9ic is the loss cone angle shown in 

Fig. 3.1(b). ' 

Turning to cyclotron heating, we note that the very nature of cyclotron heating is 

to increase the perpendicular energy of the resonant particles. Assuming that reso­

nance occurs along a vertical plane X-Y in Fig. 3.1(a), Eq. 3.3 holds between points o 
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and t. From Eq. 3.3, it is clear that everytime a particle crosses the resonance region 

with an increase in its perpendicular energy, t/p grows smaller. Hence, marginally 

untrapped particles before wave heating get trapped as v^t approaches zero. The 

situation is depicted in Fig. 3.1(b), where an untrapped particle is shown crossing 

into the trapped region during rf-heating. Thus, during cyclotron heating the trapped 

particle population of the resonant species increases, leading to an increased in-out 

asymmetry in the electrostatic potential (see Fig. 3.2). 

In addition to particle trapping, rf-heating leads to resonance localization ,i.e., 

banana tips (point t in Fig. 3.1) of trapped particles slowly move toward the resonance 

layer. This follows easily from the conservation of energy. For a large aspect ratio 

tokamak with B(6) ~ Bo{l - ecosfl), we could write, referring to Fig. 3.1, 

Before wave heating, 

mv?, n 

—^ + JlBo{l -ecosOo) = JZB0(1 - ecos$t) (3.4) 

During wave heating, 

TflVu n , , , 

—U£ + 7i£o(l - ecos0o) = jlB0(1 - coos*,) (3.5) 
Jbt 

where 0't is the new position of the banana tip. Subtracting Eq. 3.5 from Eq. 3.4, we 

have 
cosfl0-cosfl; Jl 
C0S^o - C O S ^ / i 

Eq. 3.6 implies that as ~ji continues to rise, the banana tip moves closer to the reso­

nance location, i.e. 6t —• 9Q. 

Thus, during cyclotron wave heating, (i) there is an increase in the trapped particle 

population of the resonant species and (ii) the trapped particles experience resonance 

localization. The combined effect of these two phenomena gives rise to a poloidal 

asymmetry in the potential. The magnitude of the potential can be expected to rise 

until the potential has sufficient strength to expel particles out of the magnetic well. 
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This means that the potential asymmetry could be of the order of the magnetic well 

depth, which is of the order ~ e(= r/R). 

Poloidal Potential Variation 

Before outlining the formal calculation of the poloidal potential variation, we could 

get a quick estimate of the order of magnitude of the variation based on energy 

conservation considerations. Taking 0o = 7r/2, Eq. 3.4 reads, 

mv\n 

—^£+JiBo = JiBo(l-ecoset) 

After resonant heating, taking potential $(^0) = $(7r/2) = 0, 

2 

Using these equations, 

wii/j?,, , , , , 
11,0 + TL BQ = Ji B0(l - ccosflj) + e$(0t) 

e*(tft) (Ji' a, a 

~ e ^cos9t -cos0* IIBQ \ /i 

To maintain charge neutrality, if we demand B\ ~ 9U 

-=5~ - —Tp— - (r/R)(cosBt) — 

Here, (A/z)//! is roughly the temperature anisotropy (Jj. - T\\)/T\\. Rf-heating tries 

to maintain temperature anisotropy while collisions try to destroy it. Hence, it is 

conceivable that (A/Z/7Z) ~ 0(vrf/vc) where vrf is the effective rf-heating rate and vc 

is the collision frequency. Hence 

e*(Bt) ~ € ( ^ ) c o s f t (3.7) 
T 

The formal evaluation of potential variation makes use of the drift-kinetic equation 

df Ben df B, dj 
~M + ~BTee+ eE,v"~BW ~ QT'(S) + c(s) 

where Qrf and C are quasilineai and Coulomb collision operators and W = mvfi/2 + 

JLB. The equation is linearized in a manner similar to the one used in deriving Eq. 2.52 
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to yield 
d/o «|| B, dp B, df ft»,.r,^ „.x 
-dr+7TW+eE^-Bdw = Q"{n+CU) (3-8) 

Here f1 is of the order (VC/WB) < 1 where UJB is the bounce frequency. We are thus 

restricting ourselves to the low collisionality regime. Bounce average of Eq. 3.8 gives 

< q-1 > ~ =< q-lQrfU°) > + < <TlC(/°) > (3.9) 

where <? =| vil |. The angular brackets are defined by < x >= § x dd/ §d0. Subtract­

ing Eq. 3.9 from 3.8 gives 

Id/ 1 ed$df° 
agO 

T dO rd6 dW 
= Qrf(f°) + C(f)- < q-1 >~l(< q-'Qrfif) > 

+ < * " W ) > ) (3-10) 

where a = v\\/q and G = Be/B. This equation can be integrated over 0, over the 

velocity space and summed over a. This eliminates the collision terms, which are 

independent of the sign of v\\. If we restrict ourselves to fy ~ 0, the quasilinear terms 

are also independent of the direction of v\\ and, hence, vanish. The procedure gives 

an expression for the first order density perturbation in terms of the zeroth order 

distribution function. 

„.= / , .A .? / /« ,~»: ,3.,,, 

Charge neutrality gives, rii ~ ne, or 

r$ + nl = n0
e + nl (3.12) 

Restricting attention on ECRH, the ion distribution function can be taken as a 

Maxwellian to evaluate n? and n). This yields n* = n0(l - e$/T«). In the weak 

rf limit, i.e. vrfjvc = 6 < 1, /° in Eq. 3.11 can be assumed to be a Maxwellian to 

evaluate n\ to give n\ = (e$/Te)n0. Eq. 3.12 thus reduces to 

< ^ r ] = l--J-///e°^^ (3-13) 
li le no J J qm' 
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/° is obtained from Eq. 3.9. Equation 3.9 is solved by expanding f° and ^ in the 

small expansion parameter 6, i.e. 

/ ° = /o°+ */? + ..« 

— = v (— 6— 
dt c \dto dt\ 

To the lowest order, 

< ,"» > ̂  =< CUV1 > 

This equation is satisfied by taking f§ to be the Maxwellian 
3/2 

fS = »(*i) 
m 

2TT(«I) exp 
W 

T(h) 

Of? To the next order, setting - ^ [11], 

< 9"1 > ^ =< ^ / ( / p 0 ) > + < q-lC(fi) > 

The collision operator is taken to be the Lorentz operator 

(3.14) 

<^/°>=^|<<*-l>*f 
where i/« = 47rne4lnA/m2 and Ze// is the effective charge on the ions (Zeff = 

Hj^enjZf/ne). Also, for ECBlH, the rf-frequency vrf = e2E2./2^2meQeeTe. The 

quasilinear operator with the fundamental resonance at the plasma center reduces to 

< q-lQrf(n >= C o\ -^_ e2 | E~ |2 JlBoN 
;Cof° 4Trn0e[2m(W -JLBO)]V2' 

where £0 = ^ F + Ji^o, ^o is the cyclotron frequency at the resonance layer and N 

is the number of passages through the resonance region. Using the above operators, 

Eq. 3.14 reduces to 

n_ WT__ 3 £ 
n + T2 2T 

|

j " l 3 / 2 

fS f < 9_ 1 > <m= 
*/ u 

on qB-1 > 

i 
* mll2N \JLBQ 

+ k~ir[-t-\ 

dp. 

(W-JlBo)-1/2f^ (3.15) 
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Here, the prime denotes derivative with respect to t\. The details of obtaining this 

equation can be found in Ref. [11]. n /n and T'/T can be obtained from Eq. 3.14 

by multiplying the equation by 1 and W and integrating over the velocity space. 

Using f° = /o + 6f®, the charge neutrality condition reduces, after performing the /Z 

integration, to 

e$ 
Ti + Te\ 

= 1 -
6 f l ^BpqdWdp ( l\dfl 

-^J J—^a \~BJM (3'16) 
' 1 11 _ n(ti) 6 f I AvBoqdWdp. ( 1 \ df\ 

n0 n0J J m \BQJ dy. 
df° 

-^-, obtained from Eq. 3.15, can be used in Eq. 3.16 to determine the potential. 

The integrals are evaluated by Hsu et al. [11] for the trapped particles and passing 

particles separately to yield 
T +-yf <3-17) 

where 
< 

T 
^r - 0(6<?'2) 

and 

v _ T 0.2Se (3.18) 

Here $i is the cos0 component of the potential. $t and $p are the trapped and 

passing particle contributions to the potential. In Eq. 3.7, if we compute the average 

value of cos0< for trapped particles, we get < cos6t >~ 0.37. This would mean 

^GUo.37rf 

from Eq. 3.7, which is quite close to the value in Eq. 3.18. 

We note that in the above arguments leading to Eqs. 3.7 and 3.18, we have used 

0t ~ 9\ or, equivalently, assumed quasineutrality. We have, thereby, treated resonance 

localization to be weak. During high power rf-heating, resonance localization can be 

strong, leading to the movement of the banana tips closer to the resonance layer. 

Under such conditions the magnitude of the potential asymmetry can be larger than 

that given by Eq. 3.18. 
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Turning to ICRH, we could expect the procedure carried out above for ECRH 

to remain the same. The main difference comes from the collision operator, which, 

for ions, includes the slowing down effect in addition to pitch angle scattering. This 

may lead to a different numerical coefficient in Eq. 3.18. We note here that for large 

aspect ratio tokamaks, we may be able to represent the collision term by the pitch 

angle scattering operator even for ions. Also, if we assume the plasma to contain 

a relatively large amount of heavy impurities such that n/22/nt > 1, pitch angle 

scattering between ions and impurities is likely to dominate and we can expect the 

above calculations to hold good for ICRH. Finally, we note that a calculation of 

poloidal variation in potential in the collisional regime carried out by Chan et al. [43] 

yields a value for the potential much smaller than that obtained above. 

Before considering the effect of poloidal electric field on transport, we would like 

to estimate the magnitude of 6 in some experiments. 

In the case of ECRH, we consider typical DOUBLET III parameters: rf-power 

Prf = 1 MW, frequency / = 60 GHz, Te ~ 2 keV, n* ~ ne ~ 2 x 1019 m"3, R = 

1.67 m, a = 0.67 m. 

Considering resonance along the vertical chord through the center, the power 

density on the resonant surface is P = PTf/(2irR)(2a) = 71120 Watts/m2. Letting 

P =11 S 1=1 
E x B . El 

W) 2fA}C 

we obtain E0 = 7318 Volts jm,. Here, E0 is the amplitude of the wave which is 

assumed to be of the form E = Eo cos u?t. Also, we have assumed the phase velocity 

to be roughly equal to the phase velocity in vacuum (i.e. c). 

The right circularly polarized component of the wave is 

E- ~ k±pE0 ^ {vth.e/c)Eo = 0.1 Eo = 732 Volts/m 

For a point at r = 0.1 m, we get, 

e2E2 

V« = 2^meneeTe
 = ™/s 
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VC ~ Vet = 1/Tei With 

7*3/2 
rei = 1.09 x 1 0 1 6 - : — s _ _ s (Te in k^V) 

n(m-3) In A v ' 

Using this, vei = 9730/5. Hence 

6 = vrSjvei ~ 0.1 < 1 

Here, we have assumed the injected power to be 1 MW. With an increase in the 

injected power, we could expect almost a linear increase in i/rf and a decrease in !/„-, 

due to increased temperature, leading to a larger value of 6. Indeed, for power levels 

of the order ~ 10-20 MW, we could expect 6 ~ O(l). Furthermore, the focussing 

effect likely to be present during cyclotron heating increases the power density, and 

hence, the poloidal variation in potential can be expected to be higher. 

Turning to ICRH, we will consider the parameters relevant to PLT. We assume 

minority heating at the fundamental frequency in a deuterium-hydrogen plasma. We 

use nD ~ ne ~ 3 x 1019 m"3, TD = TH = Te = 1 keV, / = 25 MHz, R = 

1.32 m, a = 0.4 m, Prf = 500 kW. 

We again consider resonance along the vertical chord passing through the center. 

vTf = < P(r) > /nT where < P{r) > is the power absorbed per unit volume on a flux 

surface at radius r. Using Eq. 2.6, we obtain, 

e2El 
VTt = — 

mH£lHzTH I sintf | 

Whang et al. [44] obtain a value for E+ ~ 1700Volts/m for the typical PLT param­

eters. Using this and considering a point at r = 0.1 m, vrf = 23533/5. 

The relevant collision frequency to be considered during ICRH depends to a large 

extent on the ion slowing down process. For low to moderate energy ions, ion-ion 

collisions are important. For high energy tail ions, much of the slowing down is due 

to the background electrons. Considering ion-ion collisions, v^ = 1/ri with 
/ m \V2 T 3 / 2 

n = 6.60 x 1017 (—- - f — s (n in m"3; T{ in keV) 
KTRH/ nlnAi 
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For PLT>„ = 813/5. This gives 

6 = urfluu ~29 >> 1 

In the present case, due to the strong rf-effect in comparison with the weak collisional 

damping, we could expect a strong anisotropy in the resonant ion distribution function 

and, hence, strong resonance localization. Thus, a significant contribution to the 

potential asymmetry could be due to resonance localization. 

3.1.2 Electric Fields during Wave Momentum Absorption 

During plasma heating using neutral beam injection (NBI) or radio-frequency (RF) 

waves, considerable momentum (mechanical or electromagnetic) is deposited in the 

plasma. It has been pointed out by Diichs [45] that during perpendicular NBI, the 

absorption of momentum could lead to the creation of significant electric fields. Mi­

croscopically, the input neutral particle splits giving rise to an electric dipole. While 

we expect similar electric fields during RF heating, the mechanism responsible for the 

production of such fields, especially the microscopic mechanism, is not as transparent 

as it is in the case of NBI. During RF heating, the dipoles have to be created within 

the plasma during the energy absorption process. Indireshkumar et al. [46] studied 

the production of electric fields during the wave momentum absorption process using 

a simple model. The material presented below is based on Ref. [46]. 

Microscopic Picture 

We develop the microscopic model for the case of ICRH with k\\ ~ 0. Similar ar­

guments are expected to be valid for ECRH. During ICRH in a tokamak, resonance 

occurs along a vertical chord. As an ion-electron pair with coinciding guiding centers 

crosses the resonance region, the ion picks up energy moving to a larger orbit. In the 

present model, we assume that during such a process, the ion center of gyration is 
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displaced from the electron guiding center in such a way that the resulting electric 

field between the particles crossed with the equilibrium magnetic field (i.e. E x B) 

gives rise to field momentum in the same direction as that of the incident wave [see 

Fig. 3.3]. The ion picks up energy everytime it crosses the resonance layer, but keeps 

losing energy to non-resonant ions, impurities, and electrons. Thus, absorption of RF 

energy by the ions gives rise to electric dipoles in a manner similar to that produced 

by an external electric field in a dielectric. With this picture in mind, we proceed to 

calculate the electric field production rate. 

If v±j(t) is the initial perpendicular velocity of a resonant ion and v±j(t + At) is 

its velocity at the end of an interval of time At ( At could be taken as the time for the 

resonant particle to cross the resonance layer. We assume At < rc, the characteristic 

collision time) then the separation between the guiding centers of the ion and the 

electron (see Fig. 3.3) is, 

771 • 

xg = rf - Ti = j^g(v±,f ~ v±:i) (3.19) 

Here m*, Zj€ are the mass and charge of the ion, and B is the magnetic field. If nrea 

is the density of resonant ions, then the energy absorbed per unit volume in time At 

is, 

PAt = \mAvlj - vljnrea (3.20) 

If v±,f — v±,i *< v±.t-> we could write 

P • A* ~ ^rni(v±J - v^i).2v^tnres 

or 
P-At 

(VL.J - v±.i) = —•-—— (3.21) 
minreav^i 

Using 3.21 in 3.19 and putting v±ti ~ vthi (ion thermal velocity), we get 

xg= v
 P

D
At— (3.22) 

ZteBvthAnrea 
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Figure 3.3: Creation of Dipoles during RF-Heating 
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Thus we have an electric dipole with a dipole moment = Ztexg = {P • At) / {Bvth^nrea). 

With this, we have the electric field produced in time At due to nre3 dipoles as 

P • A* E,(t + At) = f=2-
eotfVth.i 

The electric field production rate is 

Ey = —= (3.23) 
eoBvth,i 

or, if one is willing to speculate on the lifetime of a dipole (say r), then 

Zo&Vthj 

where 7 is a factor which takes into account decreasing xg during r. 

During wave heating, the increase in the magnetic moment /Z is 

772 • 

*V = ^(<f ~ vh) (3.25) 

Using Eq. 3.20, 

ATI = 
Bn 

A / Z = ^ - ^ (3.26) 

Hence, diamagnetic depression of the field 

B 
AB ~ fioA]JnreaT = ^—^ (3.27) 

where /io is the magnetic permeability. 

Macroscopic Argument 

The macroscopic argument relies on conservation of momentum [45]. As the wave 

energy is absorbed by the plasma, the wave momentum must appear as the field 

momentum. 

If S and v^ are the Poynting flux and the wave phase velocity respectively, the 

momentum density, g ='S/vJ. 

50 



Wave momentum absorbed per second = Wave momentum contained in a volume 

Av<f> (A is the RF-beam area) = (S/v^.Av^ = (S^4)/^. 

This momentum must appear in the field, i.e. 

l e 0 ( B x B) = | d 1 (3.28) 
at v<f> Vres 

where Vres is the volume of the resonance region (~ A.Ax, Ax being the resonance 

zone thickness). 

Neglecting magnetic field depression and noting that close to the resonance zone 

v+ - Vth.i, 
• 1 SA P 

Ev a V eoBVj'Vres EoBVth.i 

in agreement with Eq. 3.23. 

Before we proceed to estimate the electric field in a tokamak, we briefly discuss 

below some factors which might cause a reduction in the electric field production rate 

and some consequences of the electric field. 

(a) The actual electric field is expected to be smaller because the background 

plasma acts like a dielectric with a dielectric constant e = (1 + m » y )g0 ( > £0). 

This reduces the electric field production rate to 

*•*•£; (3-29) 

Also, the electric field causes the background particles to drift with a velocity [referring 

to Fig. 3.3] 

v« = T ~ f * (3.30) 

(b) The dipoles move swiftly along the magnetic field lines to occupy a volume 

larger than Vre3. For central heating, assuming that particles on all flux surfaces are 

resonating, the particles move quickly to occupy the entire plasma volume (this is a 

reasonable assumption for T\\ = 2irR?[/v\\ < rc). Here ^ is the safety factor and v\\ is 

the parallel velocity of the particle. The picture might then look like that depicted 

51 



Resonance layer A x 

B 
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Figure 3.4: Polarization of the Plasma during Wave Heating 
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in Fig. 3.4. Hence, we should use the total plasma volume, VioU instead of Vres 

in estimating the power density. Fig. 3.4 also suggests the possibility of significant 

up-down potential variations. 

(c) Implicit in the above arguments is the assumption-of axisymmetry with regard 

to RF sources. In an actual tokamak with a finite number of RF sources, this clearly 

is not the case. Hence, the electric field is expected to be smaller than that estimated 

in the previous paragraphs. 

Example 

As an example, let us consider the data related to JET. Typical parameters during 

ICRH with D(H) minority heating scheme are [47,48] : 

i?=3 m, a=1.25 m, 6=1.7 m, B=3 T, Pr /=10 MW, T i=5 keV, n* = 3 • 1019 ra"3, 

k\\ ~ 0, Ak\\ ~ 9 m_1. Here a and b are the minor and major axes of the elliptic cross 

section. 

These parameters give us vthj — 106 m/s, the ion cyclotron frequency £2» — 3 • 108 

rad/s, Ax ~ RAk\\vth,il&i = 0.09 m. For central heating, assuming resonance across a 

vertical cylindrical shell passing through the center, Vre3 ~ A-Ax = (2irR)(2b)(Ax) = 

5.8 m3 

Using this to calculate the power density, Ey = 6.5 x 1010 Vm~ls~l 

In order to calculate the steady state electric field using Eq. 3.24, one needs to estimate 

the lifetime of a dipole. Here we give two estimates of the steady state electric field. 

(a) We could get an estimate of the smallest steady state electric field by using the 

electron-ion collision time, r„, as the lifetime of a dipole. (One could perhaps argue 

that T^ is the timescale over which the correlation between the electron-ion pair is 

destroyed.) Using 

rei = 1.09 x 1016 • T;2{teV?T - 2 • lO"4 s ni(m-J) • In A 

and taking 7 = 0.5, Eq. 3.24 gives Ey = 7.6 x 106 V/m. 
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The diamagnetic depression of the field is AB == 1.7 x 10"4 T. 

Accounting for the background plasma response, if we use e (e = 1260 in this case) 

instead of £o, we get Ey ~ 6000 V/m. 

In response to the field, the background particles drift with a velocity of Vdr. = 

2000 m/s close to the resonance zone. 

If we use Vtot ~ 125 m3 instead of Vres, we get an average electric field of Ey = 

280 V/m. 

(b) A second estimate of the field can be made by arguing that the field due to the 

dipoles persists until the fast ion is slowed down by collisions. Using ion-ion collision 

time 

,(,) = (e,o e l7).(-)1 / 2 .^fi = o,i2 
\mpJ 7ii(m 6). In A 

and taking 7=0.5, Ey = 3.9 x LO8 V/m 
The diamagnetic depression AB = 0.009 T 

If we use e instead of £o, the electric field is reduced to Ey = 3 • 105 V/m. 

Electric fields of this magnitude give rise to large particle drifts, v^x ~ 1 • 105 m/s 

close to the resonance zone. 

3.2 Effect of Poloidal Potential Variation on Particle 

Trapping 

Before we consider the effect of poloidal electric field on transport, we wish to examine 

the effect of potential variation on particle trapping. For time scales greater than 

1/vrf, the poloidal potential built up during wave heating acts on the background 

particles causing a redistribution of trapped particles. This phenomenon has been 

examined by Shurygin and Yushmanov [13] and Chang [12]. Following Chang [12], 

we examine particle trapping when (i) ej$tn < efimt and (ii) efiin > eft^t where 

$in and $ w t are the potential on the high field and low field side of the tokamak 
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respectively. Here e, = Z;e is the charge on the species j and Zj = - 1 , 1 , Z for the 

electron, ion, and impurity species respectively and e is the unit charge. 

3.2.1 e$(0)/T ~ 0(e) and efiin < e>;$<̂  

This situation obtains for ions during ICRH or electrons during ECRH. In the present 

case, particle trapping can be separated into two categories. The first type, called 

B-trapping, is the usual magnetic trapping on the low field side modified by the 

electrostatic potential. The second type of trapping, called E-field trapping, occurs 

on the inside of the torus and is due to the potential well. 

B-trapping 

Referring to the tokamak geometry in Fig. 3.1, we have, by conservation of energy, 

E = ^i^ + ^l +
 eJ^ = ^M+vl^ +

 eJ^l { 3 . 3 1 ) 
2 2 raj 2 2 rrij 

and 

u=}m=^Mi (332) 
M 2B(6) 2B(9') (i-i2) 

Here 9 and 9' refer to different poloidal locations. For reflection at 9' = 7r, V?,(TT) —• 0. 

Hence, the boundary of the trapped particle region is given by 

vl(9) «iffl/2 + tijf(0)/2 + ej/mjfflO) - *(*)) 
2B(9) - B(TT) 

Taking B = BQ/1 + ecos9 and efi(9) = ej$ccQs9 (ej$c > 0), the above equation 

yields 

'Sf < e(l + cos9)(S2
± - \Zj\X0) (3.33) 

where S = v/vthj and tXo = (e$c/T). Here, we note that X0 ~ O(l). At this stage, 

we will not distinguish between the electron, ion, and impurity temperatures. We 

assume that Te ~ Tj ~ Tz = T, where the subscripts e, t, Z refer to electron, main 

ion, and impurity ion respectively. Defining the pitch angle variable A = HBQ/E, 
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Eqs. 3.31 and 3.32 can be used to determine the boundary of the trapped region on 

the A - E space. The result is 

«i«(0)' 
< l - « ) < A < ( l + «) l - ^ Z T ^ (3-34) 

[ rrijh J 
In deriving Eq. 3.34, we have set $(7r) = 0. 

E-trapping 

For E-trapping, we expect particle reflection on the low field side of the tokamak. By 

considering reflection at 0' — 0 and following similar steps as before, we obtain the 

boundary of the trapped region as 

St^cil-cosOWZjiXo-Sl) 

In the X — E space, the trapped region is 

«i*(0) 
(i + 0 1 - < A < 1-e 

(3.35) 

(3.36) 
rrijE 

We note that the minimum energy a particle can have is EQ = efijmy The trapped 

particle regions for B-trapping and E-trapping are shown in Fig. 3.5. The dotted 

lines show the trapped particle region for i(9) = 0. 

3.2.2 e$(0)/T ~ 0(e) and efiin > e^mt 

. This scenario holds good for ions during ECRH and electrons during ICRH. When 

ej$in > ej^out, only B-trapping is present. Letting e/$(0) = — ej$ccos# (ej$c > 0) 

and proceeding as before, we determine the boundaries of the trapped particle region 

in the S\\ - S± space as 

5|?<€(l + cos^)(5i + |ZJ|X0) (3.37) 

In the X — E space, setting ej$(0) = 0, the trapped particle region is bounded by 

€J$(7r) 
( i - 0 1 -

rrijE 
< A < ( l + e) (3.38) 
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S± = v±/vth 

S?\=€(l + cos8)(Sl-\Zj\Xo) 

F-Trapping 

B-Trapping 

B-Trap>ping 

'M/MM 
Sfl = Vu/Vtk 

\Sfi = e(i - cos0H\Z}\Xo - Sl) V// A = (1 + e)[l - ej*(Q)/mjEl 

Eo/ Ex = ej$(0)/mj E 

E-Trapping 

Figure 3.5: Particle Trapping when e^m < e^out 

S± = Vjvth 

B-Trapping 

Sfl=e(l + cos0)(S2
l +\ZAX, 

S\\=v\\/Vth 1-el-

B-Trapping 
A , - ( l - c ) [ l - e > * ( 7 r ) / m J - £ 7 ] 

Eo Ei = eJ-$(7r)/mi 

Figure 3.6: Particle Trapping when e.,$ln > ej$mi 
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Fig. 3.6 shows the trapped particle region in the velocity (S\\ - S±) space and X — E 

space. 

From the previous arguments and from Figs. 3.5 and 3.6, we note that the presence 

of order e poloidal potential variation leads to a redistribution of trapped particles. 

Such a redistribution could affect the way the problem of particle transport is handled. 

For instance, in a large aspect ratio tokamak, the collision operator is often taken as 

the pitch angle scattering operator [8] even among like species because of the smallness 

of the trapped particle region. As can be seen from Figs. 3.5 and 3.6, in the presence 

of a large poloidal potential variation, smallness of the trapped particle region is 

destroyed in the low energy region. In such cases, it may not be accurate to model 

the collision operator as pitch angle operator and the energy scattering may have to 

be included. 

3.3 Particle Transport During Wave Heating 

High power rf-heating could lead to significant changes in particle transport. This has 

been observed in many experiments (see Chapter IV) and several theoretical studies 

indicate a modification of transport of the resonant species and non-resonant particles 

during wave heating. A majority of theoretical studies have concentrated on ICRH, 

mainly because of its wide use in the current generation of fusion devices. For the 

purpose of the present review, we could put transport effects due to wave heating 

into two categories: (i) transport in the 'background' or non-resonant particles and 

(ii) transport due to wave particle interactions. An effect of the former type is the 

transport induced in the non-resonant species due to poloidal variation in the potential 

created during wave heating. Such a potential variation introduces an E x B drift 

in addition to the already existing VB and curvature drifts. Also, in the banana 

regime, there is a redistribution of trapped particles, as discussed in section 3.2, 
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causing additional change in transport. We discuss these effects in section 3.3.1. Rf-

heating causes banana orbits of the resonant particles to become wider, which could 

eventually result in the loss of some particles due to interception by limiters or other 

protruding metallic structures. In addition, injection of waves with k\\ ^ 0 can add 

an inward or outward component to the tail ion (or electron) flow. We review some 

of these rf-driven transport mechanisms in section 3.3.2. 

3.3.1 Effect of Poloidal Potential Variation on Transport 

From now on, we will be particularly interested in a regime known as the "Banana 

Regime" [8]. In this regime, the time taken by a particle to complete the trapped 

orbit (rB = l/o>s ~ qR/^vth where q is the safety factor) is much smaller than 

the effective collision time for the particle to be scattered out of the trapped orbit 

(reff = l/t'e// ~ er where r is the 90° scattering time), i.e., 

qR 1 
-7= < 1 

or 

! ! • vth 

where the collisipn frequency v = 1/r. Plasma ions and electrons in the core region 
1 
i 

of a majority of !the present and most of the future tokamaks are expected to be in 

the banana regime. Also, light to moderately heavy impurities are expected to be in 
1 this regime. In addition, the mechanism for the production of a significant poloidal 
! : 

electric field described in Section 3.1 is valid in the banana regime. Hence, we shall 

restrict ourselves to the study of transport in the banana regime. 

We note in pjassing that the effect of a poloidal potential variation of order e 

on neoclassical transport in the collisional regime has been examined by Chang et 

al. [49,50]. Similar studies for the plateau regime have been conducted by Hazeltine 

et al. [51,52]. These studies indicate that a poloidal electric field of the order e has a 
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significant effect upon neoclassical transport. 

Banana Regime 

The problem of transport in the collisionless banana regime in the presence of order 

e poloidal potential variation has been studied by Chang [12]. He reconstructed the 

kinetic theory of Ref. [8] to include the contribution of zeroth order (in gyroradius) 

poloidal electric field. Electron flux is obtained [12] for a large aspect ratio tokamak. 

Ion flux could be obtained using ambipolarity which gives I\ = Te. The problem 

consists in solving the first order version of the drift kinetic equation (Eq. 2.52). For 

electrons, Eq. 2.52 can be written as 

v„.V/el - (C\e 4- Cl
et)fel = -Vde-V/eo - (e/T^v^U (3.39) 

where Vde = -vy x V(v\\/£le), G\ is the linearized collision operator. Here ft = B/B 

and the gradient is taken at constant E = t/2/2+e7$(r, 0)/m and ^ = v\j2B. v^ now 

includes the contribution of the poloidal electric field. The zeroth order distribution 

function, obtained from the zeroth order version of the drift kinetic equation, is a 

Maxwellian 

/eo = n{m/27rT)^2exp[-(v2/2 + q*(e)/m)] 

Eq. 3.39 is transformed into an equivalent set of equations [12,8], 

V||.V5ne - Cl
egne = -a n / e 0 , n = 1,2,3,4 (3.40) 

which are obtained by putting 

, - 2 V M I , | W T w [hdlr(BF B*<E}]B>\ fel " ~^7U~{e,Te)fe0i Te\BE"- <B*> ) 
+vl]fae(B<EllB>/<B2>) + He 

where 
4 

" e = 2s 9neAne. 
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The four dynamical forces are 

A - d _L T « d 

Ale " drPe + ZiTe drPi 

A2e = -Q-T lnTe ; AZe = B0 < E\\B > / < B2 >, 

A^ = -(Tx/ZiTe)fM 

Here, u^ is the ion parallel flow and fae is the Spitzer function [12,8], $ is the 

integral along the poloidal projection of a field line. The parameter IM is related to 

the ion parallel flow by 

, (*k \ * ^ l n P l - (ZW3i)^A 
w /i \ #r dr 

Further, 

«» = V||.V(v||7M) 

7i = - * / i n * I ; 72 = (£7T-5 /2 )71 , 

73 = /.e//l 5 74= -1 /M ^ 1 

where £* = v2/2 + e$(0),/i =| Slep \ /Q^ = B9.0/Bd and fse = /je//«o. The particle 

flux is written as 

Te = ( f d3vvde.Vrfe\ = ^(Qi,p„e)A le 
**' ' n==l 

where the variational solution to Eq. 3.40 is given by [12] 

(am,9ne) = (Jd3vv]nmC°e(gl)) (3-41) 

Here g„e = v^f^ + G^e. The superscript 0 denotes a zeroth order quantity in 

e = r/R expansion. G^e is obtained by the constraint equation [8], 

/ f-C> l l7«/eO + O = 0 (3.42) 

We note that the transport coefficients, (am,pwe), can be written as 

(am ,^)==(/d 3w|7m(l/v | | )C e
0(^ ,)) (3.43) 
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Substituting for (l/v\\)C®(g®e) from the first order version of Eq. 3.40, 

(am,9ne) = ^Jdhvfpmh.Vgl^ 

= (2Jd3vlm(E* -fiB- e$(0)/m)h.Vgl} 

After integrating by parts, 

(<*m,9ne) = ~ (* J d*VhV[lrn{E* - nB)\9
lJj + ^ 2 j d \ h . V ( 7 m ^ ) ^ \ 

The first term gives the usual neoclassical contribution without a significant poloidal 

electric field, while the second term gives the contribution due to the potential 

variation on the flux surface. Chang has calculated [12] the transport coefficients 

(ai,0ie),(ai,02e), a n d (ai>03e)- It is found that (augu) and (ai,p2e) experience al­

most a linear increase with increasing $(0) for both $in < $^1 (ICRH) and $ i n > $„,, 

(ECRH). The enhancement in (a\,gu) over its value when $(0) ~ 0 is by a factor 

of ~ 2 for $in < Qmt and ~ 1.3 for $in > $^1 when e$(0) ~ e. For (ai,p2e), the 

respective enhancement factors are about 2.5 and 1.8. For the Ware pinch coefficient, 

(#1, <?3e), the enhancement factor is given by the fit [12], 

(a i . f t .Wr~. = (1 + h25Xg)i/2 * m < # O T l (3.44) 

= 1 - 0.59Xo + 0.39.Xo
2 - 0.048*0

3 $<„ > $ou, 

The value for Ware pinch coefficient 

(ai,03e)e*/T~o =: -1-46(1 + 0.67/Zi)(r/Ro)1/2(ne/Be.O) 

Qualitatively, the Ware pinch coefficient experiences a mild increase for $in < $ w t . 

For $iH > ^out, it decreases first up to XQ ~ 1 and then experiences a steady increase 

for XQ > 1. We note that the Ware pinch term can also change because of a decrease 

in E\\ caused by a drop in the resistivity during wave heating. 

Finally, the presence of an impurity species is found not to affect the transport 

coefficients calculated previously. This is because the inclusion of impurities results in 
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the replacement of vei with ZeffVei in the pitch angle operator used in the calculations 

and this would result in a uniform change in the value of the electron transport co­

efficients independent of Xo values. Chang, however, does not calculate the impurity 

or ion flux. 

Shurygin and Yushmanov [13] have recently considered the effect of large poloidal 

electric fields on ion transport in the banana regime. Their analysis differs from 

that of Chang [12] in that they include the quasilinear operator in their calculations. 

They point out that random changes in v± could lead to diffusion of classical type, 

D ~ P2/vrf, where the 'quasilinear collision' rate vrf ~ Dv/vfh (Dv is defined in 

section 2.4). They, however, argue that quasilinear collisions do not lead to diffusion 

of the neoclassical type for k\\ = 0 (we will discuss this later in this section). They 

argue that the dominant effect on transport is due to the poloidal polarization of the 

plasma. To see qualitatively how such polarization could affect transport, we note 

that in the presence of a poloidal variation in the potential of the type $(#) = $ c cos#, 

the effective magnetic well depth is ee/f = c[l — ej$c/T]. The neoclassical diffusion 

coefficient is D ~ yft7ffP2v ~ y e[l - $C/T]p2v. Hence, the diffusion coefficient can 

be larger or smaller than the neoclassical value depending on the sign of e7- and $c. 

This qualitative picture is not entirely accurate because any decrease in the B-well 

depth is somewhat compensated by the creation of an electrostatic potential well on 

the inside of the tokamak. It is the the combined effects of B as well as i2-wells that 

lead to changes in transport. Calculations by Shurygin and Yushmanov [13] indicate 

a decrease in the radial flux of ions during ICRH and a slight increase in neoclassical 

transport of ions during ECRH. Also, an increase in trapped ion population during 

ECRH leads the authors [13] to speculate on enhanced transport due to rippling. 
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Fluid Theory 

Finally, we discuss briefly a fluid theory due to Stacey [53] which qualitatively predicts 

an impurity flux component proportional to EB. The fluid theory by Stacey [53] 

is a modification of the theory originally developed by Stacey and Sigmar [54,55] 

to compute the impurity transport in a strongly rotating plasma (toroidal velocity 

v$ ~ vth) resulting during strong NBI. The particle flux obtained in Refs. [54,55] can 

be written as 

Tj = < rijVrj > = < TljVrj >PS + < "^j^rj >NC + < fljVrj >M 

+ < rijVrj >j + < rijVrj >$> + < rijVrj >4 (3.45) 

Here, j=i,Z for the main ions and impurity ions respectively. In the above equa­

tion, the first two terms are the usual Pfirsch-Schliiter (PS) and neoclassical (NC) 

components. The third, fourth, and fifth terms are the fluxes resulting from the 

beam-particle momentum exchange (M), inertial effects (I) and radial electric field 

($'). These fluxes depend on the poloidal asymmetry in the particle density and, 

hence, indirectly on the poloidal potential variation. The last term is the flux re­

sulting directly from the poloidal variation in the potential. In the limit of highly 

coUisional impurities (i.e. the impurity parallel viscosity ixz —• 0), this term for the 

impurities can be written as 

r* =< nzvrZ >4S ^^kjfc (^) E° (3.46) 

where nz is the flux surface avexaged impurity density, E® is the leading order radial 

electric field and v®z is the impurity-ion collision frequency. The potential variation 

is assumed to be of the form 

${r,0) == $°(r)[l + $ccos0 + $Jsin0] 

Pz is the normalized gyroviscosity [53] given by 

Pz = — with VM == 
vZi 2R2ezB 
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Here, Tz and ez are the impurity temperature and charge respectively and 0 is a 

quantity of the order unity for a strongly rotating (v^ c- vth) plasma. From Eq. 3.46, 

it is clear that for E® < 0 (counter-injection), ICRH ($c > 0) produces inward flux 

(r$ < 0), while ECRH ($c < 0) induces outward impurity flux (r# > 0). For strong 

co-injection, which could result in E® > 0, ICRH produces an outward impurity flux, 

while ECRH induces an inward impurity flux. In a non-rotating (v<j, « vtk) plasma 

heated by ICRH or ECRH, the gyroviscosity is expected to be small. Nevertheless, 

Eq. 3.46 qualitatively predicts an inward impurity flux during ICRH and an outward 

flux during ECRH if E®, which is negative during the ohmic phase, remains negative 

during cyclotron heating. (This seems to be the case on most devices. See the 

information on rotation velocities and potential variation during ECRH and ICRH in 

Chapter IV.) 

3.3.2 Transport Due to Wave Paxticle Interactions 

Wave particle interactions can affect the transport of the resonant species as well as 

the non-resonant species. We shall review a few important papers in this area. As 

mentioned before, much of the interest has centered on ICRH. However, some of the 

mechanisms described below ajpply to ECRH as well. 

Whang and Morales [44] arg;ue that during ion cyclotron wave heating, the toroidal 

canonical angular momentum, P<j, = mRv^ + eRA^, experiences negligible change 

in comparison with the magnetic moment, /i. Hence, when one allows for discrete 

changes in // at each localized resonance, keeping P^ constant, the minor radius of 

the drift orbit changes by [44] 

A r - f l A i ^ ) ' * ' ' ' i f f l (3.47) 
2y l + acos0 *h 

where a = (2€fiBo)/(mvf\0), v\\# is the parallel velocity at resonance and S = +1(-1) 

for co- (counter-) flowing ions. The change Ar is illustrated in Fig. 3.7. Discrete 
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changes in the minor radius by Ar leads Whang and Morales to conclude that rf-

heating leads to a diffusion coefficient of the type D ~< (Ar)2 > jit where t is 

roughly the transit (or bounce) time for passing (or trapped) particles and < > 

represents average over the phase between the particle velocity and the wave electric 

field. This diffusion mechanism has been contested by Shurygin and Yushmanov [13]. 

They argue that during cyclotron heating, only the perpendicular velocity increases 

and the parallel velocity does not change (this is true only for k\\ = 0). Hence, 

by conservation of toroidal canonical angular momentum, the particle has to pass 

through the same fixed resonance points (see Fig. 3.7). This would mean that only 

the type of the orbit changes, i.e., passing particles get trapped or trapped particles 

experience resonance localization (see Section 3.1.1) and an increase in the banana 

width, but there is no diffusion. 

While the mechanism described above may not lead to diffusion, successive dis­

placements Ar in the equatorial plane could result in a loss of the resonant particles 

if the collision frequency is low, i.e., vc > (Ar/(a - r^))^ where a and r& are the 

minor radius and the initial drift orbit radius respectively. Chan et al. [56] point out 

that loss of trapped orbits in the above manner could result in significant changes in 

the impurity transport. It is well known that in a tokamak, counter-streaming (with 

respect to the plasma current) ions execute larger banana orbits as depicted in Fig. 

3.8. During ICRH, the trapped particle orbits become wider, leading to the loss of 

some particles. From Fig. 3.8, it is clear that significantly more counter-streaming 

ions will be lost, resulting in an asymmetric confined ion distribution function which 

carries a net canonical angular momentum. Chan et al. [56] argue that the confined 

ions impart their momentum to the impurities via collisions causing them to drift 

inward. They solve the drift-kinetic equation with a driving term which includes col­

lisions between impurities and heated minority Ions to obtain an expression for the 
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impurity flux of the form 

< Tz >= -(mzZJmaZ) f(d9/2ir)hnzZ^eCOs9G (3.48) 

where the subscript (superscript) Z and a refer to impurities and heated ions respec­

tively and Vj = Vth.jU = OL,Z). The integral G = J d3v'(v^vl/v )fi/na is evaluated 

using the heated ion distribution function /"obtained by Stix [22] and subtracting 

the particles in the loss region (see Fig. 3.8). It is found that < Tz > is always 

negative, independent of the direction of plasma current with respect to the toroidal 

magnetic field, B^. As can be seen from Eq. 3.48, the impurity flux is proportional 

to the impurity charge. The flux is found to decrease with increase in the plasma 

current and density. Calculations [56] for PLT parameters indicate that for moderate 

densities ( ~ 2 x 1013cm~3), the impurity pinch velocity < Vz >=< Tz > /nz can be 

an order of magnitude larger than the neoclassical pinch. 

Chen et al. [57] have examined the transport of energetic trapped ions during 

ICRH when k\\ ^ 0. They use quasilinear equations as well as a single particle model 

to derive the particle fluxes. For simplicity, we consider their single particle approach. 

The results obtained agree with those obtained using the quasilinear approach. Dur­

ing cyclotron wave heating, for small k^/uf, wave damping primarily affects v±1 

which changes the banana width but not the radial location of the banana tip. How­

ever, for &u ^ 0, there are small changes in v\\(~ v^) which cause the banana tip to 

move radially. Conservation of toroidal angular momentum could be used to relate 

the radial displacement, 6r, of the banana tip to the change in parallel velocity, 6v\\, 

by 

6r = -6v\\/Q (3.49) 

Change in v\\ can be expressed in terms of change in the particle energy AW as it 

crosses the resonance zone. Following Kennel and Englemann [42], the change in the 

energy of a resonant particle, AW = m6(v2)/2. The gain in the parallel component of 
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energy, AW\\ = m6(v2)/2 = mv\\6v\\. The energy lost by the wave is AW = nhu/2TT, 

where n is the number of quanta of energy lost to the particle and h is the Planck's 

constant. Similarly, AW\\ = (nhl2-K)k\\V\\. Hence AW\\/AW = k\\V\\lu) or 

11 2u mw 

Using this in Eq. 3.49 
_ k\\AW 

mcuQe 

Chen et al. [57] have obtained the result 3.50 using a calculation involving the rate 

of change of P^. If rB is the time required for a particle to move from one banana tip 

to another, then the banana tips move radially at a velocity 

<6r> 2fc, <6W> 
%Rf ~ T^M ~ ~ mu,n,TB

 (3'52) 

The factor 2 appears because the particle passes through the resonance layer twice 

in time rjj. For the fundamental resonance at u) = Q in the k\\v\\/u) « 1 limit, using 

the result for < 6W >~< 6WL > computed by Stix [22], Chen et al. [57] compute 

the convective particle flux 

N < 6r > R2 ^ , . E+ 2k+ 
i ? o r | s i n 0 | £ ( l B^wNt*-

(3.53) 

where N is the number of paii;icles crossing the resonance region per second = 2 x 

2-KR I B9/B | / d?vf | i/|j | and NLp, is the density of trapped particles in the resonance 

zone. We note that for symmetric k\\ ~ k^ spectrum, IYC = 0. Hence the convective 

flux is important only when k\\ spectrum is highly asymmetric. Moreover, convective 

flux is inward or outward depending on whether k^ is +ve or -ve with respect to 

the plasma current. In addition to the convective flux, the authors [57] also find a 

diffusive flux with a diffusion coefficient 

n _ < (6r)2 >-<6r>2 _ 2k2W± < 6W± > ' 
Drf ~ 2(W2) " mWnj rB

 {4M) 
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Comparing Eq. 3.52 with 3.54 and noting that Vdiffustve ~ Drf/a, the diffusive flux is 

smaller than the convective flux when k+p < 1. Similarly, a comparison of IVC with 

the neoclassical flux by Chen et.al. [57] indicates that for strong asymmetry in the 

wave spectrum, i.e. k^R ~ 10-20, the rf-driven transport could be comparable to or 

higher than the neoclassical flux depending on the energy of the ions. The authors [57], 

however, conclude that in most of the present experiments, the above mechanism does 

not play a significant role apparently because of a lack of strong asymmetry in the 

wave spectrum. It is, nevertheless, conceivable that antennas which launch waves 

preferentially may be used to improve the particle confinement or remove impurities 

and helium ash. 

The formalism used in Ref. [57] does not contain the effect of collisions. Moreover, 

it concentrates mainly on the trapped particles while neglecting the contribution 

of the passing particles. In a recent paper, Chiu et al. [58] have generalized the 

above formalism to include collisions as well as passing particle contributions. They 

specialize for the case of ion heating using fast waves/ion Bernstein waves and take 

into account collisions between the main ions (self collision frequency i/3) and between 

the main ions and the impurity ions (collision frequency u\). When collisions are 

momentum conserving, i.e. vs > v\, they obtain a result similar to Eq. 3.53. The 

result, however, includes the contribution of passing particles. It has the total particle 

density UQ instead of the trapped particle density Nt.Pm. At the other limit, when 

v3 < J ^ I , they obtain a contribution to the total ion flux which could be an order of 

magnitude larger than the flux given by Eq. 3.53. 

Chang et al. [59] have recently studied neoclassical transport of ICRH-heated high 

energy tail ions for the case when k\\ = 0. They have solved the drift-kinetic equation 

with a quasilinear term in addition to the collision term. The mechanism for tail 

ion transport as formulated by Chang et al. can be explained easily using a single 

particle model. 
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In the absence of a toroidal force, conservation of canonical angular momentum 

gives 

eRAf + mRvf = const. 

or 
i)_rnRv± = const 

e 

where the poloidal flux function tp = —RA+. For the trapped particles, information 

about net radial motion can be obtained by taking the time derivative of Eq. 3.55. 

| = g + v . V , = W e ) ^ (3,0) 

Integrating over trapped particle orbits and noting that v^ = 0 at the banana tips, 

<v-^>=-(S) 
where < > denotes the average over a banana orbit. Using Maxwell's equations and 

Vtp = RBeh^, it can be shown that ^ = RE+, and 

< v.V^ >= - < RE+ > (3.57) 

which is the usual Ware pinch effect. As the banana particles suffer Coulomb collisions 

and rf-scattering, the above result will be modified. For k\\ = 0, rf-scattering does not 

contribute to the toroidal momentum. Coulomb collisions, however, add a frictional 

force which modifies Eq. 3.56 to yield, 

dtp dtp „ , . . . .d(vJR) F+R fn raX 

^ = ^ + v .V^ = ( m / e ) A A J + _£_ ( 3 .5 8 ) 

where F+ is the toroidal friction. The above equation gives, after carrying out the 

same steps as before, 

If the < F^R > term does not vanish, we have a new pinch (or inverse pinch) term 

in addition to the Ware pinch. Physically, two mechanisms are responsible for < 

iV?>^0[59] , 
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(i) Difference in the path lengths between the banana tips due to the magnetic 

shear gives a contribution 

._ m I v\\ I At d , _. /n nr^. 
< F , > t t _ L l l _ _ ( , * ) (3.60) 

where the friction force has been put in the form Jfy ~ (m | v\\ \ /rs). Here, we assume 

that ion-electron slowing down collisions are responsible for friction. Also, Aj, is the 

banana width and q is the safety factor. 

(ii) As T, a Te
3/2/ne, the gradients in Te and ne give rise to an imbalance in the 

friction force, 
m\ vn I / 1 dne 3 dTe\ . . 

< f , > a e _ U I ( _ _ _ _ _ j (3.61) 

The combined effect of the two phenomena would be to give us 

< v.v^ >, 4-^KA, (__( W ) + _ _ - _ ^ j (3.62) 

From a fluid perspective, the particle flux is 

Tr =< nu.V^ >= — < R2V</>.(F - V.P + enE*)> (3.63) 

In the standard neoclassical theory, the main contribution to the particle flux is due to 

the friction F and the toroidal electric field E .̂ Due to the fact that the lowest order 

distribution function is a Maxwellian, the off-diagonal elements in the stress tensor are 

of second order, making the second term in Eq. 3.63 small compared to other terms. 

During ICRH, the lowest order distribution function departs significantly from the 

Maxwellian, giving rise to a lower order contribution to the second term. It should be 

noted that from Eq. 3.62 the radial pinch velocity vr is of the order ~ (v\\/Q»r)Ab/T3. 

Hence, particle transport due to the above mechanism is quite small, the maximum 

rate being of the order of one banana width in one slowing down time. Also, we note 

that the direction of the pinch term is inward due to the density gradient term and 

outward due to other terms. 
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Core [60] has studied the problem of resonant ion diffusion during ICRH with 

k\\ ^ 0 using a guiding center version of the Fokker-Planck equation which includes, 

in addition to the Coulomb and quasilinear collision operators, a term representing 

diffusion in the configuration space. He uses a diffusion coefficient very similar to the 

one given by Eq. 3.54. His analysis shows that for high power heating over long time 

scales, there is a pump-out of resonant ions from the region of resonant interaction 

into regions where damping is weak. Also, there is a degradation in the heating 

efficiency and thermonuclear reactivity. 

3.4 Summary and Conclusion 

In this chapter, we have surveyed the effects of cyclotron resonance wave heating 

on particle transport in tokamaks. We find that high power wave heating leads to 

the build up of an order e poloidal potential variation, $(6), in the low collisionality 

regimes. It was found that such a variation in the potential could cause a redistri­

bution of non-resonant trapped particles in the banana regime. A modification of 

trapped particle population along with the E x B drift due to the poloidal electric 

field produces significant changes in neoclassical transport. In a two species plasma 

(main ions and electrons), there is found to be an increase in the electron diffusion 

coefficient for both ICRH and ECRH, while, for ICRH, the Ware pinch coefficient 

shows a modest increase. For ECRH, it decreases first up to e$(6)/T ~ e and then 

increases for e$(d)/T > e. The effect of the presence of an impurity species on ion or 

impurity transport has not been studied. 

The problem of transport of high energy tail ions created during ICRH has received 

much attention. During wave heating, the trapped particle population increases and, 

in addition, the trapped particles experience a widening of their orbit. Loss of some 

of these high energy (significantly more counter-streaming) ions by interception with 
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limiters or other structures results in a confined ion population carrying a net canon­

ical angular momentum. These ions impart their momentum to the impurity ions 

causing them to drift inward. The inward drift, however, decreases rapidly with in­

creasing density and plasma current. Furthermore, the highly non-Maxwellian nature 

of the tail ions is found to give rise to a convective flux of tail ions. The magnitude 

of the flux is small compared with the neoclassical flux. 

The above mechanisms operate even when k\\ = 0. For wave heating with k\\ =fi 

0, trapped particles experience diffusive as well as convective motions. While the 

diffusive motion is present for symmetric as well as asymmetric fey spectrum, the 

convective flux is present only for an asymmetric k\\ spectrum. The convective flux 

is found to be larger than the diflfusive flux, but smaller than the neoclassical flux 

for the conditions in the present experiments. The magnitude of the convective flux 

is found to increase when collisions between different species (for example, ions and 

impurities) dominate. 

Thus, in conclusion, there is considerable theoretical evidence for significant changes 

in the particle transport during cyclotron (ICRH and ECRH) heating. ECRH and 

ICRH cause an order e poloidal variation in the plasma potential. Such a variation in 

the potential is found to produce almost a linear increase in the neoclassical transport 

coefficients. Other mechanisms due to wave particle interactions induce changes in 

the non-resonant particle transport which are small in comparison with the neoclas­

sical values. The present neoclassical formalisms, however, do not include the effect 

of impurities in calculating the particle transport in the presence of large poloidal 

electric fields. The presence of even a small amount of impurities can cause a signif­

icant increase in the main ion transport over the values for a plasma with only one 

ion species and electrons. As the present devices find a large impurity content during 

wave heating, it is imperative that the neoclassical theory should be reconsidered in 

the presence of impurities and large poloidal electric fields. 
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CHAPTER IV 

WAVE HEATING AND TRANSPORT -

EXPERIMENTS 

The purpose of this chapter is to review some experimental observations related to 

particle transport during wave heating. 

4.1 ECRH 

4.1.1 Changes in Electron Density 

In most small and medium sized tokamaks, ECRH is accompanied by a decrease in 

the electron density [31]. Results from ISX-B, TEXT and JFT-2 show this tendency 

[1,61,62]. Typical data from ISX-B during ECRH (Prf ~ 80 kW) is shown in Fig. 

4.1. On T-10 (Prf < 2 MW), electron density profile broadening as well as a loss of 

particles has been observed [63]. The increase in Te and consequent fall in the loop 

voltage results in reduced neoclassical pinch. This effect, however, is not sufficient 

to explain the magnitude of the drop in the electron density [31]. A recent study on 

TEXT [64], with ECRH power up to 200 kW, indicates an increase in the electron 

diffusion coefficient in the outer regions of the plasma, while it remains constant in 

the interior. On DOUBLET III, which is a large device, no change in the electron 

density has been observed for Prf < 0.7 MW [65]. 

Finally, we briefly mention a study on electron transport during ECRH on the 
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IMS stellerator [66]. Central heating with ECRH (Prf ~ 2 kW) on the IMS steller-

ator produces electron density profiles which are hollow compared to the fairly flat 

profiles resulting during edge heating. Computer simulations using an 'anomalous' 

pinch velocity in addition to the diffusion terra in the transport equation give good 

agreement with the measured density profiles. Furthermore, it is found that the 

poloidal electric fields are greater for the hollow profiles than for the flat profiles. The 

authors [66] indicate that the convective term is most likely a result of the increased 

poloidal electric field. 

4.1.2 Impurity Transport 

There have not been many studies of impurity transport during ECRH in tokamaks. 

This probably is due to the relatively low increase in the radiated power during ECRH. 

There are, however, two recent studies which deal with the problem of impurity 

transport during ECRH in considerable detail. These studies have been conducted 

on TFR and TEXT. 

In TFR, the behavior of intrinsic impurities has been investigated in great detail 

[2]. Transport simulations have been carried out with a computer code using two 

transport parameters (a diffusion coefficient, D and an inward convective velocity, V) 

and using the experimentally determined ne and Te profiles. 

For high density plasmas (ne(0) ~ 3.5 x 1019 ra~3) with a large iron concentration 

(nFe(0) > 5 x 1016 ra~3), transport simulations with D = 0.4 m2/s and V = 6 m/s 

give agreement with the experimentally determined impurity radiance for both the 

ohmic and ECRH (Prf ~ 520 kW) heated plasmas (see Figs. 4.2 and 4.3). Thus,, there 

seems to be no change in the transport properties during the high density discharges. 

Also, during these experiments, electron density changes were relatively small. 

For the low density discharges (ne(0) ~ 2 x 1019 ra~3) with an iron concentration 

similar to that mentioned above, the transport coefficients vary significantly. For 
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Figure 4.1: Central Electron Temperature, Loop Voltage, and Line-Averaged Electron 
Density vs Time for 80-kW microwave pulse of 16-ms duration. Data from ISX-B [1]. 
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Figure 4.2: Experimental radiances of six iron lines for high density D-He iron dom­
inated (ID) discharges ('fond' refers to background radiation). The central Te and 
PEC are also shown. Data from TFR [2]. 
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Prf = 520 kW, the transport coefficients had to be increased from D = 0.6 m2/s and 

V = 6 m/s during the ohmic phase to D = 1.8 m2/s and V = 18 m/s during ECRH 

to give agreement with the experiments (see Fig. 4.4). The increase in the transport 

paiameters is well above the uncertainty in their determination. The combined effect 

of increase in D and V is found to be a reduction in the impurity confinement time. 

Furthermore, during the low density discharges a strong pump-out in the electron 

density and an increase in the trapped electron population has been observed [2]. 

Transport simulations similar to the ones described above have been carried out 

for low density, low iron (ne(0) ~ 1.25 x 1016 m~3) discharges. The results again show 

an increase by a factor of 3 of the impurity transport coefficients during ECRH. 

In the TEXT tokamak, the transport of both intrinsic as well as injected impurities 

has been investigated [3]. Titanium was the major intrinsic impurity in TEXT. During 

ECRH (Prf ~ 200 kW), the titanium concentration in the plasma increases. There 

is also an increase in the titaniitim source by ~52% [3]. In order to better understand 

transport, scandium, an element similar to titanium, was injected by the laser ablation 

technique. This allowed a precise control over the impurity source. Transport studies 

with scandium reveal that the decay time for the scandium charge states that peak 

at r/R > 0.7 decreases during ECRH (Fig. 4.5). Furthermore, concentration of the 

central charge states of scandium decreases during ECRH. These results may indicate 

an outward impurity flux for r/R > 0.7 which could oppose the increase in the 

impurity source. However, the decay times for the charge states that peak at r/R < 

0.5 remains relatively unchanged during ECRH, indicating insignificant transport 

changes at the core of the plasma. As in the case of TFR, numerical simulations 

have been carried out using two transport parameters ( diffusion coefficient, D and 

convective velocity, V). Reasonable agreement with the data presented in Fig. 4.5 is 

obtained by increasing D from 1.0 m2/s during the ohmic phase to 1.5 m2/s during 

ECRH while keeping V fixed at 10 m/s. Thus, for power levels up to 200 kW, 
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there seems to be a significant change in the diffusion coefficient for radial locations 

r/R> 0.7. 

4.1.3 Other Effects Related to Tramsport 

In addition to the transport effects described above, ECRH induces changes in other 

plasma parameters which may directly or indirectly contribute to the observed trans­

port effects. 

One such effect is an increased trapping of the resonant species during ECRH. As 

described in Ref. [11] and in Chapter III, cyclotron heating increases the perpendicular 

energy of the resonant particles, leading to increased trapping. Such an effect has 

been observed on TOSCA, T-10 and TFR [67,31,2]. This effect is seen as a local 

peak (toward the outside of the torus) in the soft X-ray profile. 

ECRH causes an increase in the plasma potential. Plasma potential measurements 

made on TEXT [68] using a heavy ion beam probe indicate that the potential increases 

(becomes less negative) during ECRH. The magnitude of the change is ~20%. At 

the center, the potential changes from ~-800 to -620 volts. 

Another effect, which may be related to the potential changes, is the change in the 

plasma rotation velocity. Rotation measurement on DOUBLET III [69] indicates that 

the rotation velocity drops from 25200 m/s (co-rotation) during the ohmic phase to 

10-15200 m/s during ECRH (PTf < 1 MW) for the effectively heated discharges with 

the electron temperature increasing from 0.8 keV to 1.2 keV during wave heating. 
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Figure 4.3: Experimental (left) and Simulated (right) Radiances of the High Density 
Discharges presented in Fig. 4.2. Simulated signals: the solid lines are for D ~ 
0.4 m2 .5 -1 and V = 6.0 m/s; the dashed lines are for D 
12.0 m/s. Data from TFR [2]. 
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Figure 4.4: Experimental (left) and Simulated (right) Radiances of the Low Density 
ID Discharges. Simulated signals: the solid lines are for D - 0.6 m2.s~l and V = 
6.0 m/s; the dashed lines are for D = 1.2 m2.s~l and V = 12.0 m/s with 1 gyrotron 
and for D = 1.8 m2.s~l and V - 18.0 m/s with 2 and 3 gyrotrons. Data from 
TFR [2]. 
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Figure 4.5: Typical Behavior of Intermediate Charge States of Injected Scandium. 
With ECRH, the Decay Time for S'c+12 decreases. Data from TEXT [3]. 
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4.2 ICRH 

4.2.1 Effect on Electron Density 

In most tokamaks, the electron density rises with the application of ICRH. This has 

been observed on PLT, TFR, TEXTOR, JET and JIPP T-IIU [70-73,4]. Fig. 4.6 

shows the density evolution during ICRH on the JIPP T-IIU tokamak [4]. The density 

increase in Fig. 4.6 is mainly due to enhanced recycling due to ICRH and it scales 

almost linearly with the rf power. On TEXTOR (Prf ~ 1 MW), the increase in 

density is attributed partly to a profile broadening effect and partly to an increase in 

the central electron density during ICRH [72]. Studies on JET [74,75] indicate that 

there is no change in the electron transport coefficients (i.e., diffusion coefficient, D 

and convective velocity, V) during ICRH. Thus, it appears that any change in the 

electron density during wave hearting is due mainly to an increase in the electron 

source and not due to changes in the transport coefficients. In ASDEX, which is a 

tokamak with a divertor, no change in the electron density has been observed during 

ICRH [76]. 

4.2.2 Impurity Transport 

In most devices, application of ICRH results in a higher impurity content. The 

change in the impurity content can be due to a change in the impurity source and/or 

due to a change in the impurity transport coefficients. It seems certain that ICRH 

always results in an increase in the impurity source. The mechanisms responsible for 

impurity generation are not completely understood. It is believed that erosion and 

sputtering of the wall (e.g. by the fast ions produced during ICRH) and a release of 

the antenna screening material (due probably to the impact of ions accelerated by 

the high rf fields) may be playing a major role. There seems to be a relation between 

the heating efficiency and the impurity release. Poorly heated plasmas have a higher 
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Figure 4.6: Typical Discharge on JIPP T-IIU with PRF = 2 MW. Wp and We(0) are 
the total stored energy and stored energy density of electrons respectively. Data from 
JIPP T-IIU [4]. 
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impurity content. 

Impact of high power ICRH on the impurity transport coefficients has been studied 

in a few tokamaks. In a study on JET, diffusion coefficients for nickel have been calcu­

lated [77] for ohmically heated plasmas. A diffusion coefficient, D ~ 1 m2/s, assumed 

to be constant across the plasma, and a convective velocity, V = -2Dr/a2, give good 

agreement between the experimentally determined nickel (Ni XXVI) intensity and 

the computer simulation. The authors [77] indicate that the diffusion coefficient (and 

hence the convective velocity) increases during ICRH. They, however, do not present 

any quantitative results. 

An investigation of impurity transport from the vacuum vessel wall to the core of 

the plasma has been carried out on ASDEX [5]. In some experiments, titanium was 

injected into the plasma by the laser blow-off technique and the time evolution of the 

titanium line, Ti XX, in the core of the plasma was recorded for ohmic, neutral beam 

heated, and ICRH heated plasmas. Fig. 4.7 shows the result of such an experiment [5]. 

The decay time for titanium is of the order of the confinement time for titanium in 

the core of the plasma. From Fig. 4.7, it is clear that the confinement time for 

titanium is smaller for ICRH heated plasmas tham for ohmic plasmas. However, 

for comparable powers, ICRH results in better titanium confinement than NBI (co-

injection). Diffusion coefficients ha;ve been calculated for the above shots via computer 

simulation. For ohmic, NBI and ICRH heated plasmas, D is respectively 0.5, 1.0 and 

0.9 m2/s. Thus, there is a clear increase in the impurity diffusion coefficient during 

ICRH in comparison with the ohmic values. There seems to be a slight decrease in the 

diffusion coefficient for ICRH in comparison with NBI (co-injection) for comparable 

power levels (P ~ 1.2 MW). In an earlier paper, Steinmetz et al. [76] have indicated 

that the improvement in the particle confinement time during ICRH with respect to 

NBI discharges may be due to an enhancement of the inward drift rather than due 

to a reduction in the diffusion coefficient. It appears that the computer simulations 
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mentioned above do not take this effect into consideration. 

Impurity transport studies have also been conducted on TEXTOR [6].' For ICRH 

powers up to 1 MW, there is a noticeable increase in the concentration of light im­

purities such as oxygen and carbon. The impurity content scales linearly with the rf 

power. A typical example of light impurity behavior during ICRH is shown in Fig. 

4.8 [6]. After ICRH is turned off, oxygen emission drops to a lower value. The time 

constant for the decay is of the order of the impurity confinement time (~ 75 mil­

liseconds). As the increase in O VI brightness during ICRH is much more than could 

be explained by the changed plasma conditions (for e.g., increased Te), the authors [6] 

conclude that there was an influx of impurity during ICRH. They, however, do not 

present any data on the transport coefficients. 

4.2.3 Other Effects Related to Transport 

As in the case of ECRH, ICRH induces changes in several plasma parameters that 

may be directly or indirectly related to transport. 

ICRH produces significant changes in the plasma rotation. Central rotation veloc­

ity during ohmic heating has been measured on JET using MHD diagnostics [78,79]. 

The velocity is typically 2 - 2.5 x 104 m/s counter to the plasma current. When 

ICRH is turned on, the plasma velocity increases in the counter direction. 

Rotation velocities during ohmic heating and ICRH have not been measured on 

TFTR. However, velocity measurements made during balanced NBI (total beam 

power ~4.7 MW; 1 beam co-; 1 beam ctr-injection) show that the plasma is ro­

tating in the counter direction at ~ 2.5 x 104 m/s [80]. With the application of 2 

MW of ICRH, the central rotation velocity increases in the direction counter to the 

plasma current to ~ 5 x 104 m/s. This is in agreement with the measurement made 

on JET. Another point of interest is that the rotation velocity during NBI for co- and 

counter-injection decreases when ICRH is turned on [80]. Similar results have been 
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Figure 4.7: Time Dependence of the Ti XX signal after Laser Blow-ofl' into Ohmic 
and Auxiliary Heated Discharges. Data from ASDEX [5]. 
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Figure 4.8: Brightness of O VI (1032 A) emission during ICRH Shot. /p=343 kA; 
ne = 3.0 x 1013 cm-3; Te(0) = 700 eV. Data from TEXTOR [6]. 
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obtained on JET [78]. 

Finally, there is some evidence for resonance localization, discussed in Chapter 3, 

fromPLT[81]. 

4.3 Summary and Conclusion 

There is considerable evidence that cyclotron heating (ECRH and ICRH) induces 

significant changes in the particle source rates as well as the particle transport coef­

ficients. These effects for ECRH and ICRH are briefly summarized below. 

In most devices, ECRH leads to a decrease in the electron density. ECRH also 

increases the particle source rate, but the increase is apparently not serious at the 

present power levels. There is good evidence from TFR and TEXT [2,3] that the 

impurity transport coefficients increase during ECRH. The increase in the transport 

coefficients sometimes (as in the iron dominated plasmas in TFR) leads to an outward 

flow of impurities. The changes in the impurity transport coefficients are substantial 

for low density discharges, while they appear to be small for high density discharges 

at the present ECRH power levels, which are quite small in most devices. 

In plasmas heated by ICRH, the situation is more complicated. In most devices, 

ICRH causes a rise in the electron density and impurity concentration. In all cases, 

ICRH greatly enhances the particle source rate. In most devices, the rise in the 

electron and impurity densities has been attributed to a rise in the particle source 

rate. Evidence from JET [74, 75] indicates that the electron transport coefficients 

experience only small changes during ICRH. There is, however, evidence from JET 

and ASDEX [77,5] that the impurity transport coefficients increase during ICRH. It 

seems likely that at least for the impurities, the increase in their concentration can 

be attributed to an increase in both the source rate and the transport coefficients. 

In conclusion, it appears that cyclotron wave heating induces significant changes 
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in the particle transport coefficients as well as the particle sources. However, the 

mechanisms for these changes have not been clearly established. With improved 

diagnostics, it may be possible to identify the mechanisms causing changes in the 

transport coefficients. Also, development of better theoretical models which include 

the impurity effects should make it easier to interpret the experimental results. 
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CHAPTER V 

TRANSPORT IN THE BANANA REGIME 

In this chapter, we shall solve the drift kinetic equation derived in Section 2.2 in the 

banana regime for a large aspect ratio (R/r = 1/e > 1) tokamak. The solution will 

be obtained for a multispecies plasma in the presence of an order e poloidal variation 

in the potential. We use an analytic procedure similar to that used by Connor [9] and 

Hirshman et al. [14]. We will reduce the drift kinetic equation to a set of algebraic 

equations for the so called "restoring coefficients" [14]. The restoring coefficients will 

be used in the subsequent chapters to obtain expressions for the particle transport 

and parallel current. 

5.1 Low collisionality Ordering 

The drift kinetic equation, derived in Section 2.2, forms the basis of our calculations. 

For a species j , the drift kinetic equation is written as 

V||ft-V/yl + v w - V / i o + ^ | | t » | | ^ = C ( / i i ) (5.1) 

For the drift velocity, we use the small /? result obtained in Appendix A. 

vw = -»,* x V [£j 

Noting that V/JO has only a radial component, we find 

v Vf = miB*^ d (VU\ df>° ~ mJv» d (VA d^ Dj Jj0 €j B r dd \BJ dr - ej r 06 \B J Si 
B 

dr 
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where we have set B^cz B due to the fact that Bg/B^ < 1 in a small /? device [8]. 

Hence, Eq. 5.1 can be written, after using the Maxwellian form for /JO, as 

Beldfn ntjq d (q\djj0 e.j -r(f\ 

where oq = v\\ with a = ± and q = \v\\\. Dropping the bar over fj\ and writing [9] 

f3l~ ejBe dr ¥9j [°'2} 

we obtain 

B9l d ( mj((7q)dfj(s\ crqBgdgj 

B rdO \ ejBe dr J r B dB 
+?*S(f)^-c<'*> + £ < " • * ' * (5.» 

Using B9 = Bj/(1 + ecosfl) and B+ = Bj/(1 + ecostf), £*/£ = £g/£° = 9. Making 

use of this expression, the drift kinetic equation reduces to 

y 6 ^ = C(ffl) + ^ ( c r ^ / y o (5.4) 

We now make use of the fact that, in the banana regime, the typical time taken by 

a particle to complete the banana orbit (TB = 1/^.B) is much less than the eifective 

collision time for the particle to scatter out of the trapped orbit (re// = l/i/eff), i.e., 

^ « i 

WB 

where veff and UJB are defined in Section 3.3.1. Expanding gj in terms of the small 

parameter veff/wB [9], i.e., gj = pj + g) + • • • where g)jg] = 0(veff/w3), we obtain, 

after using our ordering assumptions for C(fji) and E\\, 
dg^ 

if=° (5-5) 
To the first order in veff/vB, 

?GSf = C(/jl) + frfaWio (5.6) 
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Using the Hirshman-Sigmar collision operator, Eq. 2.63, we write 

aqe dg) _ D v|| d dfn v 2vj|Ty s 

+ 2J^'* ~ ^'fcJ—IT-/>o • + -7^-^||/io 
lb 

Substituting for /yi using Eq 5.2, 

a ^ e a ^ _ ^ rrij dfjo D NpT .P^ d
 (llrTn\

d^ , NT 2(*g)r*j T,5 f 

+ 2Jyjk-Vjk\ ~2 JjO-r-Pp-^\\fjO W-7) 
k U 13 

We now divide the velocity space into three regions: (i) the untrapped particle region, 

(ii) the trapped particle region, and (iii) a thin layer between regions (i) and (ii) in 

which the particles are marginally trapped (untrapped). Here, we will be chiefly 

concerned with the solution of Eq. 5.7 in the untrapped and trapped particle regions. 

We do not perform a detailed analysis of the boundary layer (see Appendix B for a 

discussion of the boundary layer). However, we use the behavior of the drift kinetic 

equation in the boundary layer to match the solution of Eq. 5.7 at the interface 

between the trapped and untrapped regions. 

5.1.1 Untrapped Particle Region 

For untrapped particles, we multiply Eq. 5.7 by l/27c(crq) and integrate between 0 

and 2?r. 

e_L/2V_£Uo = ! ^ ( i - / " £ < ^ 
r 2ir JQ dO e, dr \2TT Jo B9 J 

Here, vf = £**$, if = £fc*ffc, and E° = (l/27r)/0
2,r£|| dB. We note that due 

to the presence of a significant poloidal variation in the potential, the collision fre­

quencies and the velocity integrals Uj\(v) and r^ depend upon the poloidal angle. 
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This is due to the poloidal angle dependence of the velocity t/, which is given by 

v2 = 2{E* -e$(0)/m]. We can divide the untrapped particle region into (i) untrapped 

particles forming a part of the boundary layer (marginally untrapped particles) and 

(ii) well untrapped particles. In the present analysis, we will not carry out a detailed 

boundary layer analysis. We consider only the untrapped particles with a large kinetic 

energy in comparison with their potential energy. Hence, we treat the velocity to be 

independent of poloidal angle for these particles. It should be noted that Chang [12] 

also treats the kinetic energy as constant in his analysis. With this, Eq. 5.8 can be 

written as 

„D d „ (<v\\>\ d9°j _ ™; dfj0 D 2/ i 0 v s 

"tTS\r&-)-dt - ~^sr* j ~*Ljr kj jk 

f \j> l.s]
<un(v)> ^ 0 

where 

< x > 
1 r2* 1 r2* 

= — / hxd$~-— (l + ecos0)xd0 
2irJo 2* JO V ; 

for a large aspect ratio tokamak. Integrating the above equation with respect to fi 

and insisting that dg®/dn remain finite at /i = 0, we obtain 

M =
 B° 

dp < V|| > 

mi A/jo , m i / i0 y^ c _ ^ ,.s 

+ 
/ uf\ <Ujl(v)> ej 0/>0" 

I,1 " vf) V2 fj0 + T^ J?m 
(5.9) 

We note that for the passing (or untrapped) particles, the direction of the parallel 

velocity is the same when the particle traverses the flux surface. Hence, from Eq. 5.9, 

dgU dg*_ , v 

Jt + Jt = Q (5-10) 
where the subscripts + and - refer to the sign of the parallel velocity. 
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5.1.2 T r a p p e d Par t i c l e s 

Turning our attention to trapped particles, we divide Eq. 5.7 by aq and integrate it 

with respect to 9 between 9\ and 92 (the turning points for the trapped orbit). This 

leads to 

+Yfj0Cd9E" 
Writing the above equation for each value of cr, i.e., for a = + and a = —, and 

subtracting the second equation from the first, we get 

7W+W») - sU(»i) ~ 9}-(62) + g}_(9i)\ = 

§-A£^i)t*fA£<"?i)t <-> 
where p°+ and g®_ are the solutions when the parallel velocity is v\\ = +|t/||| and 

v\\ = — |t/||| respectively. In obtaining the above equation, we have used the fact that 

the collision frequencies and the velocity integrals Uji(v) and rkj do not depend on 

the sign of the parallel velocity. 

We now note the important fact that the distribution function #, must be contin­

uous at the turning points of the trapped orbit, i.e., 

0;+(02) = Pi-(fc); 9J+(0i) = 9j-(0i) 

Hence, g®+ = g®_ due to the fact that g® is independent of the poloidal angle (Eq. 5.5). 

Using this in Eq. 5.11, we get 

fAC^i)t" 
or 
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where K is a constant to be determined by the boundary condition for the trapped 

region. 

Boundary Condition for the Trapped Region 

We determine the constant K by examining the behavior of the solution to the drift 

kinetic equation in the boundary layer [33,82]. In the boundary layer, the low colli-

sionality expansion is invalid (see Appendix B). Hence, we consider the unexpanded 

version of the drift kinetic equation (Eq. 5.4) in the boundary layer. Dividing Eq 5.4 

by crq, and integrating this equation across the boundary layer centered around /io 

with thickness A/i, we have 

where 6\ and 02 are defined in Fig. 5.1. The integration limits UT and T refer to the 

untrapped and trapped regions respectively. Writing the above equation for a = + 

and a = — separately, and subtracting the second equation (for a = —) from the 

first, we obtain 

? £>+(«») -a+Wd -»-(*)+'»-(«i)] = 
T JUT 

where the subscripts + and — refer to the sign of the parallel velocity. Again, we have 

used the fact that the collision freqmencies and the velocity integrals Uji(v) and rkj do 
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Marginally Untrapped Particle 

Marginally Trapped Particle 

Figure 5.1: Marginally Trapped - Untrapped Orbits 
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not depend on the sign of the parallel velocity. For marginally untrapped particles, 

•'gi+(e2) = gi+(el)\ 9j-(e2) = 9j-(8i) 

For marginally trapped particles, continuity at the turning points implies, 

9j+(B2) = gj-(82)\ 9j+(0i) = 9j-(6i) 

Hence, the left hand side of Eq. 5.13 = 0 for all particles. This gives us 

'd9i^ *r •(¥)[(*), + 
(09i-\ _(d9± 
\dfi JT \ dti 

= 0 
r \ d^ JUT \ d^ J T \ d^ / VTI 

Outside the boundary layer, using the expansion gj = g® + g) -\ and retaining only 

the lowest order terms, we have, for the untrapped region, 

(a*) +(?a=) m(m JdJ=) =o 
V ^ JUT \ dV JUT \ d^ JUT \ dl* JUT 

Here, we have used Eq. 5.10 in the untrapped region. Expanding gj in the trapped 
particle region, and noting that <?!?+(02) = Py_(#2) == 9j(O2) and g® is independent of 

0, we have 

M = 0 
dn 

or 

dfi 
= 0 

Hence, the constant K = 0, and we have 

B° I jni dfjo , mi/io v^ <̂  r , ^ isS 

7^«d7+ i>f *-* < r*i > uik 

dp 

<V\\ > I € 

+ 
0 

(i-^^^/io + ip0^ for passing particles (514) 

for trapped particles 

5.2 Solution of Drift Kinetic Equation 

Using Eq 5.1, we get 
dfji _ rrij dfjodv\\ dgj_ 
dfi €jBe dr dfi dpi 
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Using V|| = ±y/2(E - (iB — e$)1/2 to obtain the derivative of v\\, and retaining only 

the zeroth order term p°, we get, after using Eq. 5.14 

dfn rrij B 1 dfjo B( 

e3 Be v\\ dr < v\\ > 
v* \ < un(v) > 

rrij dfjo rrijfjQ 
+ ? 3 r £ < ^ > ^ 

ejB$ dr 7 > f <-k 

+ ['-$ 2 /iO+^^j 

A 
ei \B$) dr [t»„ < vn > <v\\> 

(5.15) 

where 

_ DO A = B 
m ljfj0 ^<r,^vs4-(\- ^ \ < Ujl^ > f 4- C'' F°fj0 

5.2.1 Calculation of < ttji(v) > and r ^ 

Calculation of < Uj\(v) > 

Using the definition of Uj\(v) from Eq. 2.69, we obtain, after integrating by parts in 

& 

MiW-E^/*^ 
d/i 

where we have required that fj\ remain finite at // = 0 and j 3 \ —• 0 faster than 

/i —• oo. Using the expression for dfji/dn derived in the previous section, we get 

/iô w = - E ^ / ^ [ ^ ( § ) df: jO 

dr lv\\ < v\\ > 
A 

<v\\> 

mj(B
Q\ dfjo Adding and subtracting P\/v\\ from the integrand, and defining /?=•/?! + TMfirJ-Jjr, 

the above equation can be written as 

ZB 
fjoUji(v) = - £ _ w / ? y d/*/* + 2^ -r-vaPi I &w— 

We note that P is not a function of //. Multiplying the above equation by v2
hj/v

2 = 

l/xj and flux surface averaging, we obtain 

^p= - -feS-*1/** 1 1 
V,, < V|| > 
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+(?£*47<% 
= / + // (5.16) 

The second term in the above equation can be integrated easily to obtain, after 

neglecting the dependence of the velocity v on 6 (see Section 5.1.1), 

_ 2 / y < 
«=^£<r«>'&+ 1-^ 

vf\ < un(v) > , _ 2e,-_ 0/jo 

* ? 
/yo + - * £ 

TTlv 1^ 3 k \ "3 / "*> "V "J 

Noting that /? is independent of the poloidal angle, we can write the first term in 

Eq. 5.16 as 

,2 

' = -(?S^/^ 1_ 
V\\ < V\\ >J 

= -™ (¥ (5.17) 

Evaluation of the coefficient fa depends upon a knowledge of the trapped-untrapped 

particle distribution. In the standard neoclassical theory, i.e., when $(6) cz 0, the 

trapped-untrapped boundary is independent of the particle energy, and for a large 

aspect ratio tokamak, fa = ft^ 1 46ye [37,8,9,14,32]. In the presence of a poloidal 

potential variation of the order e, as discussed in Section 3.2, particle trapping is a 

function of the particle energy. Hence, the coefficient fa is a function of the particle 

energy. We will evaluate the factor fa in the presence of poloidal potential variations 

for a large aspect ratio tokamak in Section 5.3. Using Eq. 5.17, Eq. 5.16 can be 

written as 

< Uji(v) > 

xi 

if (1 - M + vffa 
= - / , t# 

mi t&jfl/jo 
ejB$ fj0 Or 

+2(1 - fa) 
e3E° ^ ufk < rkj > 

1Thuj k V; 

Using a notation similar to that used by Hirshman et al. [14], we write 1 - fa = fa 

and i/f }<# + vf fa = !/,•#. Here, the subscript $ denotes the presence of significant 

98 



poloidal electric fields. With this, the above equation can be written as 

< ttjl(tQ > _ _ , _™j_ 2 dhlfjottf 

~ h*e,Bfthj dr v„ x\ 

+2(1 -fa) [raw Y 
Vjk<rkj > (5.18) 

This equation differs from a similar expression for < Uji(v) > derived by Hirshman 

et al. [14, Eq. 14] in that the quantities /**, / ^ and z^$, which contain the effect of 

the poloidal electric field, are now energy dependent. In the absence of a significant 

poloidal electric field, the above expression reduces to Eq. 14 in Ref [14]. 

Calculation of Restoring Coefficients 

The momentum restoring coefficient is defined as [Eq. 2.70] 

_ J' rrikV^vwfkitfv 
h " rrijUjiu^} 

Calculation of rkj is similar to the calculation of Uji(v). Transforming the velocity 

variables to w, fi, and integrating by parts with respect to fi, we obtain 

t o r 

rn -• C J dwdin^jii-j^- (5.19) 

where 
2TTB mfcv> 

In deriving Eq. 5.19, we have used the same boundary conditions used for deriving 

Uj\(v). Using the expression 2.42 for /to, and noting that v2/2 = E — e < $ >/T -

dl JbO 

dr 
= f fcO 

%o | ek<$> 
njbo Tk 

f
 T * 

_ JkOjT 

mkE* (5.20) 

where the prime denotes derivative; with respect to r. Using the same notation ais 

Hirshman et. al. [14], we define the "driving forces" as 

n, A _ "-fco 3T f c _ Tk 

TlkQ 21k ifc 
A* = E° (5.21) 
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Using these definitions and Eq. 5.15 for Ofki/dfi, and making use of the result 5.18, 

we can write < r^ > as (see Appendix B for details) 

<*>--TO(&)M^£M*(¥)H 
^(^JlteMr'+Tf) 

In the above expression, the effect of the poloidal electric field is contained in /<# (= 

1 - /**)> J'jbs* and E*(= v2/2 + e#(0)/ra). The most significant effect is contained 

in the neoclassical factor /** (= I — /<#). As we shall see in the next section, the 

factor fa contains the effect of modification of the boundary between the trapped 

and untrapped regions in the velocity space due to the poloidal electric field. When 

$(0) ~ 0, the above expression reduces to Eq. (26) in Ref. [14]. Noting that Vk* = 

fc*Vk = j _ U*Vk 

Vk* ^ w 

Using this result and summing the Eq. 5.22 over j [9], we obtain, after changing the 

dummy index / to j , the following useful expression 

v - r s i r i ekEQ Tk \\i4vk , \(A e&'\ 

( ^ w V Tk / J J mjfc [i/k* J 

•-?{^ /-}'<r*> (523) 

We will find this equation helpful in determining the particle fluxes. 
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5.3 Calculation of / t$ 

The factor /f* defined by Eq. 5.17 plays an important role in the neoclassical theory. 

The factor ft$ is closely related to the fraction of trapped particles. In the absence 

of poloidal potential variation, the factor has been computed for a large aspect ratio 

tokamak by Rosenbluth et al. [37] and more recently by Balescu [32]. The value of 

ft* in the absence of a poloidal electric field is approximately 1.46^ [37,32]. In 

the presence of poloidal asymmetries in the potential, the trapped particle distribu­

tion changes and, as discussed in Section 3.2, the boundary between the trapped-

untrapped regions is a function of the particle energy. We will calculate the value 

of /** for the case of a large aspect ratio tokamak using a method employed by 

Chang [12]. From Eq. 5.17, 

Defining £ = \v\\\/v and X' = iiB/w, we obtain, 

- ?(iKx^V?(iMl^' 
where the first integral is over the trapped particle region and the second integral is 

over the untrapped particle region. Here, due to the large aspect ratio assumption, 

we have used B ~ B°. We now observe that due to the large aspect ratio assumption, 

and due to our neglect of the boundary layer, 

]-7T>~°M 
Furthermore, referring to Figs. 3.5 and 3.6, A^nx ~ 1 - e over most of the velocity 

space. Hence the second integral makes a contribution of the order (1 - e)2G(e) ~ 

0(e). Hence, to the lowest order in e, we write 
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Expressing A' in terms of f, we obtain 

/.*=E(!M-2/r(i-m 

We now examine the integration limits. 

When ej$in < efi^ : 

For B-trapping, using Eq. 3.33, we obtain, 

C\ZJ\XQT . . 

1 + -!—^ (1 + COS0) rtiiW 
Am,„ = ( l - e ) 

or, in terms of the variable £, 

£crtt = Vt(l + cosO)1/2 

For E-trapping, using Eq. 3.35, 

*mm = ( ! + *) 

< A' < (1 + c) = A, 

1 -
\Zj\X0T 

rriiiv 

1/2 

> ? > o 

1 e ^ i -^oT, m 

1 —L^-! (1 - cos0) TTliW 
<A' < ( l + e) = A1 

or 

&rit = V ^ ( l - C O S 0 ) 1 / 2 \ZJ\XQT 
T l / 2 

- 1 
TTliW >f >o 

W h e n Cj^f-B > e ^ ^ : 

In this case, we have only B-trapping. From Eq. 3.37, we get 

€\Zj\XQT 
ATO,n = ( l - 6 ) 1 -

m,w 
(l + cos0) <A < ( l + c) = A, 

or 

&^ = v^(l + cos0)1/2 1 + 
1^-l^oT 

-.1/2 

m^w 
>f >0 

(5.24) 

(5.25) 

(5.26) 

From Eqs. 5.25 and 5.26, we can determine the lower limit on x2 = rrijiv/T by setting 

tcrit = 1. This gives, 
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For e3$in < efiout, 

2 d^cos^j^jXo _ 2 
3 — l + e(l-cos0) j.crit (5.27) 

For ej$jW > e , ^ , , 

2 €(1 + 008^)^1X0 _ 2 

' ' " l - e ( l + cos0) " jcnt (5.28) 

Using Eqs. 5.24, 5.25, and 5.26, we obtain 

Using Eqs. 5.27 and 5.28, the maximum value of /*« is found to be 1. Hence, ft* < 1. 

For Xj > Xj.crit, we can simplify the above equation by retaining only the first term. 

In this case, 

/«* a \ < U, > +0(e3/2) 

Here, we have used £* <j2 = 2. In the present work, the factor /<* appears in the 

velocity integrals of the type {} (Eq. 2.71). As will be shown in the next chapter (see 

Section 6.3), the contribution to the integral from the low velocity region is negligible 

for a large aspect ratio tokamak. Hence, the above expression for ft$ is adequate for 

our purposes. Using the results 5.24, 5.25, and 5.26, we have for e,$in < e ^ ^ , 

A. * ^{( l -cos*) 1 ' 2 ) \Zj\XoT 
mjW 

1/2 

= ft 

Similarly, for e,$ tn > eft^, 

1 -
\Zj\XoT 

rrijW 

1/2 

(5.29) 

U ~ ^ ' ( ( 1 + cos*)1'2) 

\7AYr.T 1 / 2 

= ft 

1 + 
\Zj\XoT 

rtiiW 

1/2 

1 + 1 Zj\X0T 
rriiW 

(5.30) 

Here, we have used the fact that < (1 - cos0)1/2 >=< (1 + cos0)1/2 >. In either 

case, we note that /<$ > yfl. This justifies our neglect of the the untrapped particle 
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contribution, which is of the order e. We observe that when $(#) ~ 0, i.e. Xo ~ 0, we 

have ft* = ft. = 3/2 < (1 ± cos#)1/2 > y/l = 1.35y/l. This value is somewhat smaller 

than the value (lA6y/e) quoted before. The main effect of the poloidal electric field 

is contained in the term |1 ± \Zj\XoT/mjw\1/2, and hence, for the present work, the 

above expressions for /t$ are adequate. 
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CHAPTER VI 

PARTICLE TRANSPORT 

In the previous chapter, we derived a linear system of equations for the momentum 

restoring coefficients rik. In this chapter, we will derive expressions for the particle 

fluxes in terms of the restoring coefficients for a large aspect ratio tokamak. The 

results of calculations for a three species plasma (electron, ion, and an impurity 

species) will be presented at the end of the chapter. 

6.1 Expression for Particle Flux 

The radial particle flux is defined as 

^ = (Jd3V fjV*j) (6.1) 

where v^rj is the radial component of the drift for the species j . Using the definition of 

the flux surface average and the radial component of the drift velocity (see Appendix 

A), we can write 

r - x f2*hHf) fsr27rBdwd^mJvW d (VU\ t 
Tj-2iJo m l \ hi 7-Jde{Bjfj 

where we have expressed the velocity integral in terms of the variables w and /z. 

Integrating by parts in 9 and using the drift kinetic equation (Eq. 5.1) to express 

dfj/dO in terms of the collision term and the parallel electric field, we obtain 
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where 

Rjk == J d3v rnjV\\C(fjiJki) 

Here, we have used the large aspect ratio assumption in flux surface averaging over 

the second integral. Using momentum conservation and quasineutrality in Eq. 6.2, 

we find that the particle fluxes are ambipolar, i.e. 

E ^ I ^ o (6.3) 
j 

Making use of the Hirshman-Sigmar collision operator (Eq. 2.63), 

2V\\Tkj Rjk = Uvrnw vftCfa + Zp-vtj, JjO 
'th,i 

,D „S^\\UiM 
+ L|/ifc-|/ifcJ ~2 W 

Using the definitions of rkj,Uji(v), and changing the integration variables to w and 

//, the integrations can be carried out to yield 

Rjk = -mfcnfc{i/fi}rjk + mjnj{i/^k}rkj 

Using the momentum conservation relation, fnj7ij{ufk} = rnknk{i/kj}, we get 

Rjk = -mjnj{Vjk}lrjk - rkj] (6.4) 

Hence, 
r - /V* minJ^ik)\Tj^ ~ rkj\ \ _ nj0E

0 

lj*-\^ e,Be 7 Bi 
Again, using the large aspect ratio approximation, and retaining only the lowest order 

terms in e, the first term can be simplified to yield 

_^mjnj0{i>sk} nj0E° 
rJ* = Z , — T B o — [ < 7 V * > - <rkj > J - - - 5 o ~ V6'5) 

Interchanging j and A: in Eq. 5.23, and using the resulting expression for the restoring 

coefficients in the above equation, we obtain 

m, 
r>« — 

e Wh-W^M'^mi 
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where the restoring coeflicients are given by Eq. 5.22. We note here that the procedure 

used for obtaining the above expression for the particle flux in the presence of a 

poloidal electric field is similar to that used by Connor [9] and Hirshman et al. [14]. 

The above expression for the particle flux differs from the corresponding expression 

[Eq. (30a)] in Ref. [14] in that /t$ is energy dependent and E* = v2/2 + e$(Q)/m. 

When $(9) = 0, the above expression reduces to Eq. (30a) in Ref. [14]. 

6.2 Calculation of Transport Coefficients 

Equation 6.6 reveals that the particle fluxes depend upon the known "driving forces" 

Aij, i4^-,i43, the radial electric field $', and the momentum restoring coeflicients 

< rkj >. We shall shortly show that the radial electric field does not contribute to 

the particle fluxes. Hence, our tasl; is to solve for the restoring coeflicients in terms of 

the driving forces Aij, A2j and ^3. The restoring coefficients are given by (Eq. 5.22) 

<->--w(a)M*-+#H*(¥)H 

+ i t ^ ^ ( i 4 / e t } + £74T(^/c t}<T l f c> (6.7) 

Eqs. 6.7 constitute a linear system of equations for the restoring coefficients with 

A\k, A2kyA$, and $' as the driving terms. Hence, we can determine the restoring 

coeflicients by considering the driving terms individually [14]. 

6.2.1 Response to the Radial Electric Field 

Setting A\k = A2k = ^3 = 0 in Eq. 6.7, we obtain 

•<rw>+^ = ^?{itrMl< .n i > +5y. 
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As the restoring coefficients < r^, >, < r/t > are all determined by the driving force 

$'/Bff, which is independent of any particular species, the only solution to the above 

system of equations is 
* ' 

<rkj > = < r / f c > = - - - o 
He 

Using this in the expression for the particle fluxes, Eq. 6.5, we immediately see that 
the radial electric field does not contribute to the particle flux, i.e., 

6 .2 .2 P a r t i c l e F l u x d u e t o t h e G r a d i e n t T e r m s 

We now set $' = Az = 0 in Eq. 6.7 and calculate the response to A\k and A2k- Using 

the expression 

Ls.^M + i M ^ U K f i , ! 
I 3 "k* Vk* J I *ft# J 

Eq. 6.7 can be written as 

2_, \ fa- ( 77JT < rkj > - <rik>\ = ~TTT —50 M4** l /** ( 

M*&f&\\ 
Mi) I ŵ J 

Here, we note that for a large aspect ratio tokamak, /<* = 1 — /** > /** over most of 

the velocity space. This fact and the form of the Eq. 6.8 suggest that the restoring 

coefficients can be expanded in ft* as 

< rkj >= V* + fa < rkj >i + • • • (6.9) 

where, to the zeroth order in / t$, the restoring coefficients of all the species equal 

a common rotation velocity V*. Such an expansion has been used by Hirshman et 

al. [14] to solve for the particle fluxes. As discussed in Ref. [14], the validity of such 

an expansion depends upon two conditions. 
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1) Collisional coupling among passing particles of the various species should be 

sufficiently strong to establish a common flow. This condition is usually met in a 

device even with a small impurity concentration. 

2) The trapped particle fraction is sufficiently small. As observed in Section 5.3, 

the quantity ft$ is proportional to the fraction of trapped particles. In a large aspect 

ratio tokamak (e -C 1), when &(6) ~ 0, this condition is satisfied. In this case, 

fa = ft ~ O(yfl). In the presence of a poloidal electric field, we may obtain one of 

the two scenarios outlined below. 

1. When XQ ~ 1, for electrons, ions, and lighter impurities the following discussion 

is valid. 

In the presence of a significant poloidal electric field, we have found that the 

boundary between the trapped-untrapped particle regions is a function of the 

particle energy (see Section 3.2). Referring to Figs. 3.5 and 3.6, we find that 

for the low energy particles, the extent of the trapped particle region in the 

A direction is not small. Analytically, this difficulty manifests in the velocity 

dependence of the quantity /**, which is velocity independent when $(6) = 0. 

As a result, velocity integrals of the type {ft*F(v)} ^ ft{F(v)} where F(v) 

is an arbitrary function of velocity. Actually {ft$F(v)} > ft{F(v)}, especially 

for large values of the poloidal electric field (i.e. X0 > 1). However, we note 

from Figs. 3.5 and 3.6 that the extent of the region with increased trapping 

is small in the E direction for a large aspect ratio tokamak. Furthermore, the 

contribution of the low velocity region with enhanced trapping to the velocity 

integrals of the type {ft*F(v]\} is small (see Section 6.3). We, therefore, assume 

that \ft*F(v)} ~ 0(ft). Specifically, we assume that the enhancement of 

velocity integrals of the type {ft$F(v)} over similar integrals when $(0) = 0 is 

only by a factor less than an order of magnitude. 
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2. When X0 ~ 1, for a heavy impurity (Zj = Z > 1), the quantity |1 ± 

ZXoT/mzwl1/2 can be quite large and /** can approach unity for moderate 

values of <Jl. Physically, this means that most of the impurity particles are 

trapped in the electrostatic potential well. If this situation obtains, the expan­

sion 6.9 is not valid. 

From now on, we concentrate on those situations where ft* < 1. With this, we use 

the expansion 6.9 in the expression for particle fluxes to obtain 

'• - -iprhr*^-] 2iV'*^r\w)i 
hni0 \h*vfvj\v 

iBl \ v* J 
T72j 

e*. 
(6.10) 

Here, we have retained only the lowest order (in ft$) restoring coefficient V$ to obtain 

the particle fluxes to the order /t*. Using the ambipolarity condition to obtain the 

common toroidal rotation velocity V$, we get 

_ E > ^ [ ^ { ^ } + ^ { ^ ( ^ ) } ; 

Using this expression in Eq. 6.10, we obtain the following expression for the diffusive 

particle fluxes. 

V* = - (6.11) 

where 

TJJ 

•LlO A — '12.* 

Tit(A,A2)= £ Lt,tAak 
*r;n=l,2 

(6.12) 

jj$ 

L\\A 

Ljk 
i i .* — 

— ^iTi 

[ , vDvS ] 

I m^n^/rt-JJ-j. mknk 

Dwijj/ts^^-J 

110 

' i * 



jk _ y * «• \ n )Jrjk 

'12'* " J , "f"f\ n-

and 
,S„D mi11.in.; i . i i> 

L, 
m^Tj \ v?v? } 

'** ~ ejBf Y* vi% \ 

From the above equations, it is easy to see that 

ft-(/!) 
Hence, in order to satisfy ambipolarity, Tz ca -(ei)/(ez)Ti. Thus ion and impurity 

diffusion occur at a comparable rate at the beginning of the discharge. Over a longer 

time scale, the ion and impurity density and temperature profiles adjust to make the 

ion and impurity fluxes comparable to the electron flux. When this condition (known 

as the "stationary state" [9]) obtains, ambipolarity gives 

re.& = Zi^i* + ZY z<\ 

Using the expression for the particle flux [Eq. 6.12] in the above expression, we find 

that the stationary state is reached when 

II 
Zi 

n'i t ( 3 \ Tjl Tz \nz ( 3 \ T'z 
(6.13) 

where 

Vi* =: f , ^ n - (6-14) 

V«^t) 
6.2 .3 P a r t i c l e F l u x d u e t o t h e Para l le l E lec tr ic F ie ld 

The effect of the parallel electric field is expected to be significant only for the electrons 

due to their smaller mass. We shall, therefore, calculate only the electron flux due 

to the parallel electric field. Perpendicular transport of electrons due to the parallel 

electric field is also known as the Ware pinch effect [83]. We have discussed this 
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effect in Section 3.3.2. The solution method used here is similar to the one used by 

Connor [9]. Setting Aik = ^ t = $ = 0 in Eq. 6.7, we obtain 

< rkj > = — ^ 3 7 - c T \ —f<* ( + 2^ T s T \ —/«* f < r*fc > ™* Kj} l"w J i M,} I "*« J 
Noting that /c* = 1 — /**, to the lowest order in / t*, we have 

™* H j l l ^ w j iMj)\ "** J 

Again, as discussed before, we have used the assumption {ft*F(v)} ~ 0(ft) in ob­

taining the above equation. An examination of the order of magnitude of the first 

term on the right hand side of Eq. 6.15 indicates that 

< rej > 
< Tij > o Lme^e* ",£»' 

Similarly 

Hence 

< rej > 
< T!, > o 

m[i/iQ 

mei/e$ 
> 1 

(6.16) < rej » < r^ >, < rjj > 

Retaining only the driving term A3 in Eq. 6.6, the expression for the particle flux can 

be written as 

For electrons, using Eq. 6.16, we write 

meneo 
Te*(A3) = 

B°e \ "e* ) 
< r„ > 

n&M 
B2 

If***) 
1 ^e* J 

Using Eq. 6.15, we obtain < ree > as 

< T„ > = 
m c I I'c* J 

Using this, the electron flux can be written as 

(6.17) 

r (A)- ****\U»»?\ , {*^H£}" (6.18) 
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6.3 Results and Discussion 

Before we present the results on transport coefficients, we wish to make an additional 

simplification which greatly facilitates the calculations. In the absence of a poloidal 

electric field, Vj = uf + f%{yf - vf). For a large aspect ratio tokamak (ft < 1), we 

can set Vj = vf to the lowest order in ft [14]. In the presence of a poloidal electric 

field, Vj* = Vj+ft*(vf -vf). Noting that ft* = ft\l±\Zj\XQ/x]\1/2, we observe that 

in the low energy region where x = v/vth < 1, ft$ can be quite large, approaching 1 

(see Section 5.3). Hence, we have to examine the consequences of ft* a 1 in the low 

energy region on the velocity integrals appearing in the transport coefficients. 

We begin by observing that most of the velocity integrals appearing in the trans­

port coefficients are of the type {ft*F(v)/i/j$} where F(v) is an arbitrary function 

of velocity. We specifically consider F(v) = vfvf. The conclusions drawn below are 

expected to be valid for other forms of F(v) appearing in the transport coefficients. 

We have 

I u>* ) v*, U + A.@-i) 

w^Lj'^-^ 
vfU* 

i + *.(sH 
dxj (6.19) 

In the absence of a poloidal electric field, Xj:Crit = 0, and the lower limit in the above 

integral is zero. In the presence of a poloidal electric field, for large values of Xj, i.e. 

Xj; > 1, ft$ —• ft and we can set Vj* = vf. We, therefore, examine only the region 

of the velocity space where ft* as 1. We have, in this region, Xj ~ 0(ftJXo\Zj\) < 1 

for ft —• 0. Setting /t$ = 1, the integrand in the above equation reduces to 

Integrand ~ x* exp(—Xj)i/f 

In this region, Xj ~ O(xj.crtt) < 1, and uf scales as ~ l /x | for electrons and ~ 1/XJ 

for ions as well as impurities. Hence, the value of the integrand is < Xj exp(-a^) < 1, 
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leading to negligible contribution from this region of the velocity space. Hence, the 

contribution to the velocity integral from the region where ft$ cz 1 is small for a large 

aspect ratio tokamak. We, therefore, set i^$ ~ uf in the transport coefficients. With 

this, the expressions for the rotation velocity, diffusion coefficients, and the Ware 

pinch effect can be written as 

E, =gjft [AV {f«vf} + A2j {f„vf (qf)}] 
J2j™jnj{ft**f } 

Vfc = ~ (6.20) 

where 

and 

r ^ ( ^ i , ^ 2 ) = £ L\UAnk 
Jb;n=l,2 

T33 
-^11.* 

J33 _ 
'12,* 

Lik 
11,* — 

I * 12,* — 

/ Lift mlnl {f«"P} 
\ £i"Vii{/«W} 

{Mfmh,, 
{ / - f i "•* 

_ £> ft / mtnt{/rtfrf} 

_ Mf)}^ 

Ly$ 

' j * 

'11,* 

Lj$ — 
mjTijTj 

if**?} 

Te*{A3) = -
neoAi 

Bi m + {^Kf} = L 13.*^3 

(6.21) 

(6.22) 

(6.23) 
{f(^-^e)} 

For $(0) = 0, /*$ = /* and the diffusion coefficients L{„ reduce to the form given by 

Hirshman et al. [14, Eq. 36]. For $(0) = 0 and vfk = vfk, the Ware pinch coefficient 

reduces to the expression for Ware pinch derived by Connor [9, Eq. 38]. 

We note that some of the velocity integrals in the above expressions involve E* — 

w + e$(0)/m. As the effect of a poloidal electric field is significant only in the low 
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velocity region, and as the contribution of the low velocity region to the velocity 

integrals of the form {.F(t;)} is small, we use E* ~ w in evaluating the velocity 

integrals. 

In the following sections, we discuss the electron and ion diffusion coefficients, 

electron Ware pinch, and the plasma rotation velocity in the presence of a poloidal 

electric field. Impurity transport can be obtained using the ambipolarity condition 

The velocity integrals appearing in the transport coefficients (see Eqs. 6.20, 6.21, 

and 6.23) are analytically intractable. Hence, consistent with the approach used by 

Chang [12], we present numerical results for the transport coefficients. 

6.3.1 Electron Transport 

In the presence of significant impurity concentration, electron transport is much 

smaller than ion transport until the "stationary state" [9] is reached when the ion 

and impurity profiles adjust to make the ion and impurity fluxes comparable to the 

electron flux [Eq. 6.13]. 

To facilitate comparison of our results with previous results, we write the diffusive 

electron flux as 

T 
T, 

i r ee ee i r ee I „, v \ 

+«u(&)(^-i)g+^(ft)g-S 
~TZ

L"* [i [n, + iy'* ~2jt\ 

!+(«»-f)8]] (6-24) 
This equation is obtained by rearranging the terms; in Eq. 6.21 and by neglecting 

some terms of the order -~ Jmejm,i. Setting ^$ ~ vf, we obtain y^ from Eq. 6.14 
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A brief list of symbols relevant for the results in Chapter VI 

$m> $<mt Potential on the inside (at 6 = w) and outside (at 0 = 0) of the 
tokamak respectively 

$ c Amplitude of the poloidal asymmetry in the potential 

X0 e$c/eT, is the magnitude of the poloidal potential variation. 
XQ ~ 0 in the standard neoclassical theory 

Zeff Ej^e njZJ/Tle 

în,$> L{„ Diffusive transport coefficients in the presence (subscript $) and 
absence of a significant poloidal potential variation respectively 
(n = 1,2; j,k = e,i,Z) 

F{n ^in,*/^i« ls the transport enhancement factor 

/e* Neoclassical factor (Eqs. 5.29-5.30) 

yj* {ft*vf (rrijE*/!))}I{Jt$vf} where E* is the total energy of the 
particle 

F{3 L\3$IL\3 is the Ware pinch enhancement factor. L\3 $ and L\3 

are the Ware pinch coefficients in the presence and absence of the 
poloidal electric field respectively 

FRH Rn.*/Rn 1S t n e enhancement of the rotation coefficients. Here, 
R„Q and i?J are the rotation coefficients in the presence and ab­
sence of a significant poloidal electric field respectively (see Eq. 
6.30) 
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as 

{/•WW)} 
\ItiVf) 

We now define the transport enhancement factors as 

F& = ^£ (6.26) 

where n = 1,2 (refer to Eq. 6.21). Here, LJ*-# and L^n are the transport coefficients 

with and without a poloidal electric field respectively. L{„ is obtained by using 

ft* = /* in Eqs. 6.21. 

The electron transport enhancement factors Ff* (k = e,Z) and the quantities y^ 

(j = e, i, Z) as functions of the magnitude of the poloidal potential variation XQ are 

shown in Fig. 6.1. Deuterium is the main ion and the impurity species considered is 

carbon. We also set Te ~ Ti ~ Tz- We note that the topology of the curves seems 

to be related to the nature of the factor /t$, which is proportional to the trapped 

particle fraction (see Section 5.3). As discussed in Section 3.2, when q$in > qQaut, B-

trapping is enhanced by the potential variation. Behavior of the enhancement factors 

Fif seems to reflect this. For q$i„ < q^out, the situation is somewhat complicated. 

For the low energy particles, there is a reduction in B-trapping, which, however, is 

somewhat compensated by the presence of E-trapped particles. It is not clear whether 

the total trapped particle fraction increases or decreases, especially when Xo is small. 

It appears that for small values of Xo, there can be a decrease in the trapped particle 

fraction which is reflected in the behavior of enhancement factors for small XQ. It also 

appears that for large values of XQ, there can be an increase in the trapped particle 

fraction. The quantity y^ is related to plasma rotation. We discuss plasma rotation 

in Section 6.3.4. 
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Fig. 6.1 Particle Transport Coefficients as a Function of Xo 
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Effect of Impurity Content on Transport Enhancement 

Fig. 6.2 shows the variation of electron enhancement factors i^f, F{% and the quan­

tities ye$, ya with Zeff in the presence of carbon impurity. Variation of Fff and 

yw with Zeff is generally weak, with the increase in Fft being < 10% when Ze// 

varies from 1.2 to 3.8. These results seem to confirm the conclusion reached by 

Chang [12] that the presence of an impurity does not affect the electron enhancement 

factors. However, as we shall see later in connection with Ware pinch enhancement 

and neoclassical conductivity reduction, the presence of an impurity species can have 

a significant effect upon some of the enhancement factors. 

Contrary to the behavior of Fff, the factor F{% decreases as Zeff increases. How­

ever, due to the smallness of the transport coefficient Lff in comparison with L\\, 

the impact of the transport enhancement factor Fff upon electron transport is small. 

The behavior of Fff is similar to that of the ion enhancement factor F{\, which we 

will discuss later in Section 6.3.2. 

Comparison with Previous Results 

Our main purpose here is to compare our results on electron flux in the absence of 

impurities with the results obtained by Chang [12] for a two species plasma in the 

presence of a poloidal electric field. We will also comment on the nature of our results 

in relation to those obtained by Connor [9] for a three species plasma in the absence 

of a poloidal electric field. 

1. Comparison with Chang's Results: Referring to Eq. 6.24, we note that in 

the absence of impurities, Lff $ = 0, njne = nju^ and the last two terms in 

Eq. 6.24 vanish. The resulting expression is similar to the expression for the 

diffusive electron flux in a two species plasma obtained by Chang [12] using a 

variational approach. The expression for the electron flux in Rei [12] can be 
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written as 

r e = (aug^Fi? ( l + ^ ) J + [(tti.ft.)^'? + («i.fla.)JS'J | 

.+<a^»@H)l (627) 

Here (ai,£ie) and (ai,g2e) are the transport coefficients in the absence of a 

poloidal electric field [8]. F$ and F^ are the transport enhancement factors 

in the presence of a poloidal electric field and y is the variational parameter [12]. 

To facilitate comparison with the results obtained by Chang [12], we define a 

transport coefficient £f2TO.$ as 

î2m,* _ ^ii,# I Ve* — 2 J 

and the corresponding enhancement factor as 

T ee 

*•&> = -£=* (6-28) 
L>\2m 

A comparison of the transport enhancement factors F[^ and F$ reported in 

Ref. [12] with the corresponding quantities F{{ and F^m calculated in this 

thesis (Eqs. 6.26 and 6.28) indicates a significant discrepancy. The discrepancy 

is about 15% at X0 = 4 and Ffi, Fgm are smaller than F1
(J), F$. The 

diiFerence is smaller for lower values of XQ, being about 5% at XQ = 1. Our 

calculation of the enhancement factors F$ and F[2 using the expressions in 

Ref. [12] yields a much closer agreement between Fff, F{2m and Fil\ F[2\ 

the diflference being less than ~ 2% at XQ = 4. Furthermore, a comparison of 

the variational parameter y with the corresponding quantity j/,$ in Eq. 6.24 

indicates very good agreement between the quantities. 

2. Relation to Connor's Results: While our principal interest in this work is 

the calculation of transport coefficients in the presence of a poloidal electric 

field, it is of some interest to compare our results when $(Q) ~ 0 with those 
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obtained by Connor [9] using the heavy impurity assumption (mz > m*). We 

note that our results are obtained in the presence of an impurity species of 

arbitrary mass. 

Connor's results [9] on electron transport are valid after the stationary state 

is reached. When this condition obtains, as a consequence of Eq. 6.13, the 

last term in Eq. 6.24 vanishes and we obtain an expression for the diffusive 

electron flux which is similar in form to that obtained by Connor [9, Eq. (51)]. 

Agreement between L\\ and ye (L\\ and ye$ when i(9) — 0) calculated in this 

work and those obtained by Connor [9] is exact. However, due to the large 

impurity mass assumption, Connor's results for y^ differ from those calculated 

in this work significantly as the impurity mass decreases. For example, when 

a = 7izZ2/niZ? = 1, the discrepancy between our results and Connor's results 

for yi increases from 5% to 30% as the impurity is varied from tungsten (mz > 

mi) to carbon. We discuss this point further in connection with ion transport. 

Finally, we note that our expression [Eq. 6.24] for the electron flux is valid even 

before the stationary state is reached. 

6.3.2 Ion Transport 

We now consider ion diffusion coeflicients. Again, to facilitate comparison with pre­

vious results, we express the main ion flux as 

Ti 

Ti 'J"~ 

mene{U^} \ 1 K _ / 3 \Ti] 
Mi mknk{U^} [Ze [ne \2 ye*J Te\ 

r — ^*^e
 T « 

1 ** — rri - " 1 1 . * S-(|-»»)|]-ft[S-(|-«'»)ft]] 
Hk^i 

i -6-«) an ZTe 

As expected, in the absence of impurities, the above equation reduces to Eq. 6.24 with 

(ZiTe/TfiL'iM = (l/Zi)Lff $ to satisfy ambipolarity. In the presence of impurities 

122 



the second term is negligible, and we recover an expression which has the same form 

as the one obtained by Connor [9, Eq. (48)]. The transport enhancement factor F[\ 

and the quantities j/,$, yz* as a function of XQ are shown in Fig. 6.1. The behavior 

of ion enhancement factors is qualitatively similar to that of electron enhancement 

factors. However, the ion enhancement factors depend upon the impurity content as 

well as the type of the impurity species. 

Effect of Impurity Content on Ion Transport Enhancement 

The dependence of the ion transport enhancement factor FR upon impurity concen­

tration as shown in Fig. 6.2. In the presence of a poloidal electric field of the order e, 

i.e. e$(9)/T ~ O(e), due to their larger charge, the fraction of impurity ions trapped 

in the electrostatic potential well its greater than that of the main ions. This causes 

a reduction in the collisional coupling between the main ions and the impurity ions, 

resulting in a drop in the ion transport coefficients. This effect is more pronounced 

for smaller values of Ze// due to the increasingly important role being played by 

the impurity species in determining the ion transport. We note that the electron 

enhancement factor Fff also exhibits a behavior similar to that of Fi\. 

Effect of Impurity Species on Ion Transport 

In considering the effect of impurity species on ion transport, we are primarily in­

terested in the effect of impurity charge and mass upon ion transport at constant 

a = nzZ
2/riiZf. As discussed in Section 6.2.2, the fraction of impurity ions trapped 

in the electrostatic potential well increases with Z. This causes a reduction in the 

collisional coupling between the impurity ions and main ions, resulting in a reduction 

in the ion transport. This effect, which is due to the impurity charge, is somewhat 

offset by the impurity mass. An increase in the impurity mass leads to an increase 

in ion transport and it appears that, at least for small to moderate Z impurities, 
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Table 6.1: Effect of Impurity Species on Ion Transport (XQ = 1) 

Impurity Z mzlmt 
T?tt 
^11 Impurity Z mzlmt 

$ t « < $vut ™t'«. > ™out 

Helium 2 2 1.098 1.777 
Carbon 6 6 1.342 2.065 
Iron 26 28 1.454 2.249 
Tungsten 60 92 1.427 2.201 

the transport enhancement due to the impurity mass is more important than the 

transport reduction due to the impurity charge. 

Table. 6.1 shows the transport enhancement factor F{\ in the presence of different 

impurity species for a = 1 and XQ = 1. F{\ increases as the impurity mass increases, 

reaching a maximum for iron. For tungsten, the enhancement factor is smaller than 

that for iron, apparently indicating the transport reducing effect of impurity charge. 

We note that the charge state indicated in Table 6.1 corresponds to an electron 

temperature of ~ 10 keV. We also note that a heavy impurity like tungsten may 

not be in the banana regime under conditions that prevail in most tokamaks. The 

comparison presented in Table 6.1 is intended to demonstrate the opposing effects of 

impurity charge and mass on ion transport enhancement. 

Finally, we note that in the absence of a poloidal electric field the quantities 

£n,#, 2/«*> and yz* depend upon the impurity mass*. Our calculations indicate that 

the discrepancy between our results and those obtained by Connor [9], using the 

heavy impurity assumption, can be quite large when the impurity mass is small. For 

example, when the impurity strength parameter a = 1, the discrepancy in L%{x, jji, and 

yz can be ^ 90%, 30%, and 20% respectively for carbon impurity. The differences 

decrease as the impurity mass increases. However, even for tungsten, the discrepancy 

in JLJ\ is ~ 30% when a = 1. 
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6-3.3 Ware Pinch Effect 

We define the Ware pinch enhancement factor as 

re ^13,$ 
1̂3 - 7 7 " 

•^13 

Fig. 6.3 shows the variation of the Ware pinch enhancement factor as a function 

of XQ. The Ware pinch enhancement factor is topologically similar to the diffusion 

enhancement factors. However, the enhancement is much weaker than that of the 

diffusion coefficients. 

Variation of F{3 with Zeff is shown in Fig. 6.4. The Ware pinch enhancement 

factor generally decreases with increasing Ze//- However, when $in > ^ ^ and 

for XQ < 1, it remains constant or might even increase slightly. Referring to Eq. 

6.23, the effect of electron-electron collisions is contained primarily in the second 

term. It appears that the presence of impurities generally leads to a reduction in the 

contribution of the electron-electron collisions relative to the first term, leading to 

a decrease in the Ware Pinch enhancement factor. The behavior of the Ware pinch 

enhancement factor with increasing Zeff is similar to the behavior of the neoclassical 

conductivity reduction factor. We discuss this in Section 7.4.1. 

Comparison with Previous Results 

We now compare our result for the; Ware pinch enhancement factor (Ff3) with the 

result (F$) obtained by Chang [12] in the absence of impurities. Fig. 6.5 compares 

the result of the present work with the result obtained by Chang. We have used the 

analytical fit in Ref. [12] to reproduce Chang's results. The analytical fit for the Ware 

Pinch enhancement factor is 

F$ = 1 - 0.59Xo + 0.39X0
2 - 0.048X0

3 

As with the electron diffusion coefficients, we find that our results differ from those 

obtained by Chang by ~ 20% for XQ = 4 and the enhancement factors calculated 
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here are smaller than those in Ref. [12]. 

Finally, when $(6) = 0, our results for the Ware pinch are identical to those 

obtained by Hirshman et ah [14]. Also, if we set vfk = vfh and ve* = j/f in Eq. 6.18, 

we obtain results identical to those obtained by Connor [9]. 

6 .3 .4 P l a s m a R o t a t i o n Ve loc i ty 

While deriving the expressions for the diffusive fluxes, we obtained an expression 

for the common plasma toroidal rotation velocity, V* (Eq. 6.20). Neglecting the 

contribution of electrons, we write the rotation velocity for a three species plasma as 

V* = £ K.*Ank (6.30) 
fe;n=l,2 

where 

Rk (mknkTk\ {ft*Vk} 
1 '* ' I CfcBj J HjmMiUv?} 

_ (mknkTk\ { / ^ ( y ) } 
# 2 . * 

As in the case of transport coefficients, we define the rotation enhancement factors as 

FL = ^ r (6.31) 

Fig. 6.6 shows the variation of rotation enhancement factors with XQ. We observe that 

for constant gradients, the rotation velocity decreases for most values of XQ. With 

increasing XQ, most of the rotation enhancement factors asymptotically approach a 

constant value. It appears that the drop in the rotation enhancement factors is a 

result of reduction in the collisional coupling between the main ions and impurity 

ions caused by enhanced trapping clue to the poloidaJ electric field. 

Fig. 6.7 shows the variation of rotation enhancement factors with Zeff. The 

behavior of the enhancement factors is analogous to the behavior of the ion transport 

enhancement factor Fx". As with ion transport, the drop in the rotation velocity is 
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caused by increased trapping of the impurity ions due to their larger Z. This results 

in reduced collisional coupling between the main ions and impurity ions, leading to a 

reduction in the common flow velocity. The presence of an impurity species of larger 

Z has a similar effect upon the rotation velocity. 

For an electron-ion plasma, Shurygin and Yushmanov [13] have calculated the 

radial electric field enhancement factor in the presence of a poloidal electric field. 

Their calculations indicate that the radial electric field, which is proportional to the 

rotation velocity, shows a behavior similar to that displayed by the enhancement 

factors F%
Rn. Furthermore, the variational parameter y, calculated by Chang [12], 

and the quantity %•« [Eq. 6.25] show a behavior similar to that of i% $. 

6.3.5 Summary and Conclusion 

In this section, we summarize the important results, discuss their significance, and 

comment upon some of the experimental observations related to transport during 

wave heating. 

Summary of Theoretical Results: 

1. The results presented in this chapter indicate that the electron and ion diffusion 

coefficients, and the electron Ware pinch exhibit qualitatively similar behavior 

in the presence of a significant poloidal potential variation. The transport co­

efficients increase monotonically for ej$tTC > e ^ ^ . For ej$in < efiwU the 

transport coefficients decrease slightly for smaller values of X0 (X0 ~ 1) and 

increase when X0 becomes larger (X0 > 1). 

2. The presence of an impurity species does not seem to cause a significant change 

in the enhancement of the electron diffusive fluxes. The change is typically < 

8%. The change in the electron Ware pinch enhancement can be more significant 

(^ 16%) at larger values of the poloidal electric field (Xo ~ 3). 
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3. We find that the main ion diffusion coefficients increase by a factor up to 2 

during both ECRH ($,„. > ft^t) and ICRH ($in < Q^i) for most values of the 

potential variation (Xo = el(0)/Te), implying an increase in both the outward 

diffusion of main ions and the inward diffusion of impurities. Only when the 

poloidal potential variation is small, i.e. Xo < 1, do the main ion diffusion 

coefficients decrease slightly (~ 10%) during ICRH, which implies only a small 

reduction in the inward impurity diffusion (Tz ~ —Zi/Z 1 )̂. It seems unlikely 

that any significant reduction in the inward impurity diffusion can be achieved 

with either ECRH or ICRH. 

4. Enhancement of the ion diffusive flux is affected by both the impurity content 

and impurity species. An increase in the impurity content generally leads to a 

decrease in the ion enhancement factors. In addition, ion enhancement factors 

seem to depend on the impurity mass as well as charge. For low to moderate 

Z impurities, the mass effect seems to dominate, causing an increase in the 

transport enhancement factors. 

5. The presence of a poloidal electric field seems to cause a significant (> 50%) 

reduction in the common rotation velocity for an impure plasma, if the density 

and temperature profiles do not change with the application of poloidal electric 

field. 

Relation to Experimental Results 

We now make a few remarks about the experimental results related to particle trans­

port and examine the significance of the present results to experiments. 

1. As discussed in Chapter IV, the experimental results on transport processes do 

not present a very clear picture. There seems to be some evidence for inward 

impurity flow during ICRH. ECRH could cause a slight reduction in the inward 
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impurity diffusion. However, the evidence is much weaker for ECRH. The re­

sults obtained in this chapter indicate otherwise. As discussed above, ECRH 

can lead to enhanced outward ion flux and inward impurity flux. For ICRH, 

depending on the value of Xo, there can be a small reduction or an increase 

in the ion (impurity) flow. We, however, note that most of the experimental 

evidence for particle transport is indirect and subject to various interpretations. 

Furthermore, it is likely that any change in the impurity concentration during 

both ECRH and ICRH is due to changes in the particle source rates as well as 

transport. A direct comparison of the results presented here with experimental 

data will only be meaningful when well defined experiments dedicated to the 

study of the effects of ECRH/ICRH on transport are available. 

2. It is generally thought that neoclassical transport is small in comparison with 

other anomalous processes causing transport in a tokamak. However, recent 

analysis of JET results by Giannella et al. [84], Pasini et al. [85] indicates that 

the impurity and electron diffusion coefficients are close to the neoclassical levels 

in the core region of the plasma (r/a < 0.4). Fussmann et al. [86] have analyzed 

the ASDEX data. They report good agreement for impurity transport between 

experimental measurements and simulations based on neoclassical predictions 

for pellet fueled and counter NBI shots. 

Transport enhancements of the type discussed in this work are likely to be 

important in such regimes where the transport coefficients are of the same order 

of magnitude as those predicted by the neoclassical theory. 

3. Our calculations indicate that the rotation velocity drops during both ECRH 

and ICRH for most values of XQ. AS discussed in Chapter IV, on JET during the 

ohmic phase and on TFTR during balanced neutral beam injection, the central 

rotation velocity increases in the counter direction when ICRH is turned on. 
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This seems to contradict the results obtained in this chapter. We, however, 

note that in these experiments, the presence of ICRH also leads to a steep 

temperature gradient close to the center. Hence, even with reduced rotation 

coefficients, increased rotation could be predicted if the temperature gradient 

sharply increases. A dedicated analysis would be required to draw conclusions 

about the predicted net effect. 

There have been few experimental measurements of rotation velocity during 

ECRH. The results from D-III tokamak seem to indicate that for some shots 

the rotation velocity decreases even with increased temperature gradients. This 

seems to agree with the results obtained in this work. However, the data on 

rotation are limited and, therefore, any comparison with experimental measure­

ments is only tentative. 
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CHAPTER VII 

PLASMA CURRENT 

In this chapter, we discuss the effect of a poloidal potential variation of order e upon 

the plasma current. First, we derive the expressions for the neoclassical conductivity 

and bootstrap current for a large aspect ratio tokamak. We then evaluate the neo­

classical conductivity for a plasma with an arbitrary number of species. Finally, the 

bootstrap current coefficients are evaluated for a three species (electron, ion, and an 

impurity species) plasma. 

7.1 Expression for Plasma Current 

The general expression for the flux surface averaged plasma current is 

J =- ^ejTij <Uj> (7.1) 
3 

where the parallel velocity of the species j is given by 

Uj == — fdPvaqfji 
Ft 4 «/ 

Here, a is the sign of the parallel velocity and q is the magnitude of the parallel 

velocity. The procedure for calculating < Uj > is similar to that used for calculating 

< un(v) > and rkj [Section 5.2.1]. Expressing the velocity integral in terms of w and 

ju, we obtain, after integrating by parts in JJL, 

UJ = y^^Bcr dw daa-^— 
rije J J on 
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Using Eq. 5.15 to express dfji/dfi and carrying out the steps similar to those in 

Section 5.2.1, we obtain 

<Ul> m,UoW ™,UoW 
where /? and & have been defined in Section 5.2 and the operator {} is defined by 

Eq. 2.71. Using the expression 5.18 for < Uji(v) > in /? and /?i, we can write 

j ^ f (î j) to]+?{^r}< T":>+ VteiJ 
{(S-')(3»)£}+?{2H>-£teH 

< Uj > = 

+ 

where 

H^HfM^H 
By setting A\j = A2j = A3 = 0, we find that < «j >= — < # >' /Bj , which is 

the common plasma rotation velocity and, hence, does not contribute to the parallel 

current. 

7.2 Parallel Conductivity 

We now compute the component of the parallel current due to the parallel ohmic 

electric field. Setting Aij = A2j = < $ > ' = 0 in Eq. 7.2, we note that the electron 

parallel velocity is much larger than the ion and impurity parallel velocities. In fact, 

< ue > I < Ui >~ 0(Jmi/me). Hence, we consider only the electron contribution. 

Furthermore, as discussed in Section 6.2.3, < ree » < 7\e >, < r/e > (see Eq. 6.16). 

Hence, we can write 

< u„ >= - \ Ve* J ™e l^e*JJ l ^ * J 

To the order /*#,'< ree > is determined from Eq. 6.7 as 

™c I "c* J 

< TPP > ~ 
eA3 

mt {^}(73) 

< rPP > = 
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Using Eq. 7.4 in 7.3, the parallel ohmic current can be written as 
, 5 . 2 

_ nee
2Az 

mf 
feK-{/i-L„i [(•4 - {/»%54] 

In the absence of a significant poloidal electric field, the above expression reduces to 

the expression (38a) in Ref. [40]. The above equation is valid for an arbitrary number 

of species. 

7.3 B o o t s t r a p Current 

We now compute the parallel currents due to the perpendicular gradients A\j and A2j. 

We begin by expressing Eq. 7.1 for the current in terms of the velocity differences. 

Rewriting 7.1 as 

J = ~^2nkek{< ue > - <uk >) + ^nkek < ue > 
k k 

and using quasineutrality, 52k nkek ~ 0, we obtain 

J =~Y,nkek{<ue>-<uk>) (7.(5) 
ib 

Thus, to calculate the bootstrap current in a n-species plasma, we have to calculate 

the n-1 parallel velocity differences in the presence of the driving terms A\j and ^2 ; . 

We will follow the procedure used by Hirshman et al. [14] for calculating the velocity 

differences. Using the expressions for the restoring coefficients [Eq. 6.7], the parallel 

velocity [Eq. 7.2], and the particle flux in the absence of ^3 [Eq. 6.6]^ we obtain, 

correct to first order in / t$, the following expression for the parallel friction [see 

Appendix C for details] 

< Rjk > = -mjTiji^} [ (< Uj > - < uk >) 4- (u%* - ttjii#) 

+ £ [ A f [ ( < U ( > - < W i > ) + < $ ] 

-Af'[(< ut > - < uk >) + <4*]]] (7.7) 
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where 

and 
^-(^)<S^+(&H^ (78) 

111$ 

1_ 

J, 

} 
- . i^KS.U iff, / ^ y ^ i x 

-{,„(=f)£}] 
* - [{^)T4I-{|}] 

The above expression for < Rjk > is accurate to the order Af9 (Af9 < 1). Consistent 

with our approach in Section 6.3, we have used i/p$ ~ v& in deriving the above 

expressions. We note that the quantities uj»ff.*>T»*> and TJ?$ have a fonn similar to 

those of UJ^TJ*, and ip defined by Eqs. (51a), (51c), and (51d) in Ref. [14]. The 

expression for Af9 is identical to that given by Eq. (51b) in Ref. [14]. The difference 

between «Jg.#,7jS, and 7JI and the corresponding quantities in Ref. [14] is due to 

the energy dependence of the quantity fa when $(6<) ^ 0. Setting $(0) = 0 causes 

the differences to vanish. 

An important point concerns the quantity 7 j | . As pointed out by Hirshman et 

al. [14], in the absence of a poloidal potential variation, 7JJ = 7J9 =fi 0 when v^q ^ v%q. 

In other words, the component of the parallel friction proportional to 7J9 is driven 

by the difference in the slowing down and pitch angle diffusion frequencies. Setting 
vvi ~ vvicauses tn*s component of the friction to vanish. In the presence of a poloidal 

potential variation, setting i/£q = v®q does not cause 7JI to vanish. In this case, the 

component of the parallel friction proportional to 7^| is driven by the difference 

between v^q and v®q as well as the energy dependence of the neoclassical factor fa. 

Using the expression 7.7 for the parallel friction in Eq. 6.2 for the particle flux and 

retaining only the gradient terms, we obtain the following equation for the parallel 
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velocity differences [see Appendix C for details] 

where 

X)m>nip/fc(< Uj > - < uk >) = r i«(e i£j)+ < Rj0j > (7.12) 
Jb 

^ = K}{§}+EHW/ (713) 
and 

< Ri0,t >= m^ £ [{„f} { 4 } <,* - [{•&}«?„ - EK}A?'<*] (7.14) 
/ J 

Here, pfk is identical to the quantity vf and < .fyo,* > is similar in its form to Rao 

in Ref. [14]. Eq. 7.12 provides an expression for the (n-1) parallel velocity differences 

that can be used in the equation 7.6 to obtain the bootstrap current. We will explicitly 

evaluate the bootstrap current coefficients for a 3-species plasma in Section 7.4.2. 

7.4 Results and Discussion 

We now present the results on parallel conductivity and bootstrap current in a multi-

species tokamak. For simplicity, we consider a large aspect ratio tokamak and make 

use of the approximation i/j* ~ vf in our calculations [see the discussion in Section 

6.3]. The results on parallel conductivity are valid for a plasma with an arbitrary 

number of ion species. Due to algebraic complexity, we limit our consideration of 

bootstrap current to a two-ion species plasma. 

7.4.1 Neoclassical Conductivity 

Writing the expression 7.5 for the parallel ohmic current as 

J = cr*E§ (7.15) 

where _ 
nee

2 

<j$ = 
m„ 

+ (7.16) 
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A brief list of symbols relevant for the results in Chapter 
VII . (See page 116 in Chapter VI for additional symbols.) 

e$c/cT, is the magnitude of the poloidal potential variation. $ c 

is the amplitude of the poloidal potential variation. Xo ~ 0 in 
the standard neoclassical theory 

*eff 

Ll3n,i'> Tk 

FL 

&NC# <?NC 

^ 3 3 

Jnc,$ j Jnc 

^e^zj/n, 

Bootstrap current coefficients in the presence (subscript $) and 
absence of a significant poloidal potential variation respectively 

^3n.*/^3n *s the transport enhancement factor 

Neoclassical conductivity reduction factor in the presence (sub­
script $) and absence of a poloidal electric field respectively 

0NC.*I<7NC is the enhancement (or reduction) of the neoclassiccd 
conductivity reduction factor 
Bootstrap (neoclassical) current in the presence (subscript $) and 
absence of a poloidal electric field respectively 

a„, ay Density and temperature profile exponents defined by 

nj(r) = nj0(l - p2)a"; 7}(r) = 7}0(1 - P2YT 

where p = r/R. 
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For a large aspect ratio tokamak, we can write a$ as 

0"* = &CL - ft^NC* (7.17) 

where CTCL, the conductivity in a plasma with a uniform magnetic field, is given by 

. S i 2 
nee* 

(JCL = + Wi 
{vg} {^df^} 

(7.18) 

and <TNC,$, the neoclassical conductivity reduction factor, is given by 

,s -.2 

&NC.Q = 
nee* f/^fl 

1 K 5 ) 2 J + »{»}{*&?), {f} { *#F} 
fi&LdfddX + 

(7.19) 

Here the expression for <TJVC,* is accurate to the order /*,$. When &($) ~ 0, the 

expression 7.15 for the parallel current reduces to Eq. 49 in Ref. [14]. Also, when 

ufk = vfh and 4(0) = 0, the expression 7.15 reduces to Eq. (46) in Ref. [9]. 

In the standard neoclassical theory [&($) cz 0], cr^c is only a function of Zeff. In 

the present case, due to the energy (dependence of the boundary between the trapped-

untrapped regions [see Section 3.2], <JNC* is a function of the poloidal electric field. 

Consistent with our approach in the previous chapter, we define the enhancement 

factor for the neoclassical conductivity reduction as 

F33 = 
0NC& 

&NC 
(7.20) 

F33 is a function of Zeff and, hence, is independent of the number of ion species. Fig. 

7.1 shows the variation of F33 with the magnitude of the poloidal potential variation, 

XQ. The behavior of F33 is similar to that of the Ware pinch enhancement factor F13. 

When $in < Qaut (as during ICRH or NBI), B-trapping of the electrons is enhanced by 

the potential variation. The monotonic increase in F33 seems to reflect the increase in 

trapping. As discussed in Section 6.3.1, the situation is somewhat complicated when 

$in > $out- For the low energy particles there is a reduction in B-trapping, which 

is to some extent compensated by the presence of E-trapped particles. It appears 
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that for smaller values of XQ, the decrease in B-trapping is the dominant effect, while 

for larger values of Xo, increased El-trapping more than compensates for the decrease 

B-trapping. The behavior of F33 for $*n > $„„* seems to reflect this change in the 

trapped electron contribution. 

Effect of Impurity Concentration 

Fig. 7.2 shows the variation of the enhancement factor F33 with Ze//. For $in > $0^ 

with Xo > 1 and for $*n < $w , , the enhancement factor F33 decreases, signifying a 

decrease in the neoclassical conductivity reduction factor. However, for $in > $out 

and XQ ~ 1, F33 increases with Zeff. 

Before we attempt an explanation of the behavior of F33 with an increase in the 

impurity content, we note that the neoclassical conductivity reduction factor <TNC.* 

has three terms (see Eq. 7.19). The first term in Eq. 7.19 contains primarily the 

effect of electron collisions with main ions and impurity ions, while the other two terms 

depend mainly on electron-electron collisions. As pointed out by Hirshman et al. [10], 

an increase in the impurity content causes a decrease in the neoclassical conductivity 

reduction by increasing the electron-ion collisions as well as by decreasing the effect 

of electron-electron collisions. The former effect results in a decrease in the first term 

in Eq. 7.19, while the latter effect causes a reduction in the last two terms in Eq. 

7.19. 

The presence of a poloidal electric field affects &NCA primarily by affecting the 

fraction of trapped particles. When $in > $„„* and X0 ~ 1, the trapped electron 

fraction decreases in the region of the velocity space where v ~ vth> [We note that 

the major contribution to velocity integrals of the type {F(v)} comes from the region 

where v ~ 0{vth)] Hence, the conductivity reducing effect of impurity ions is weaker, 

giving rise to a slight increase in F33 with Zeff. In all other cases, the fraction of 

trapped electrons in the region of the velocity space where v ~ vth increases, and 
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hence the conductivity reducing effect of impurity ions is stronger. This results in a 

decrease in F33 with Ze//. We note that the behaivior of Ware pinch enhancement 

factor Ff3 as a function of Ze// is similar to that of F33. Hence, the present discussion 

applies to the behavior of F{3 as well. 

Comparison With Previous Results 

Comparison of the results obtained in this work with those obtained by Chang [12] 

in the absence of impurities indicates a ~ 20% discrepancy between the two results 

at Xo ~ 4. As with the Ware pinch enhancement factor, the values obtained in 

the present work are smaller than those obtained by Chang. It appears that the 

discrepancy decreases as Xo becomes smaller. We note in passing that in Ref. [12] 

the analytical fit for the neoclassical conductivity reduction factor (a3,p3e) for the 

case $in > Qout does not seem to reproduce the curve shown in Fig. 12 [12]. Our 

comparison here is with the curve in Fig. 12 in Ref. [12]. 

Finally, we note that Chang [12] concludes that the presence of an impurity species 

in modest amounts (nzZ « ne) does not alter the transport enhancement factors 

calculated for an electron-ion plasma. As can be seen from Fig. 7.2, this clearly is 

not the case. While the effect of impurities on electron diffusion is insignificant, the 

effect is significant for the Ware pinch and conductivity reduction factor, especially 

at Xo > 1. As can be seen from Fig. 7.2, even for Zeff close to 1, the change in 

the enhancement factor F33 seems to be significant. It appears that the cause of the 

discrepancy can be found in the way Chang treats the electron collision term. The 

electron collision term Ce can be written as Ce = Cee + C^ 4- Ce/« If one neglects 

electron-electron collisions, as Chang seems to do, then Ce = C^+C^t ~ (I'S+V^C — 

ZeffV%C, where C is the Lorentz operator and Ze// = Y^j^e njZf/ne. In this case, the 

effect of including an impurity species is equivalent to replacing v^ by ZeffV% in the 

expressions for enhancement factors for a pristine plasma. Ze// cancels leaving the 
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enhancement factors unaltered. In the present work, the results on diffusion as well 

as Ware pinch and conductivity were obtained in the presence of electron-electron 

collision terms. In this case, Ce ~ (i/ee + Zeffi/£)£ and Zeff does not cancel when we 

compute the enhancement factors. 

7.4.2 Bootstrap Current 

The bootstrap current is obtained using Eq. 7.6 and the expression for the parallel 

velocity difference, Eq. 7.12. As the solution of the simultaneous equations [Eqs. 

7.12] is complicated for a general multispecies plasma, we illustrate the bootstrap 

current calculations for a two ion species plasma. Unlike Ref. [14], our calculations 

are valid for a plasma with an impurity species of arbitrary mass. 

Using Eq. 7.12, we obtain the following expressions for the velocity differences for 

a two ion species plasma 

< ue > — < Ui > = 
< Re$ > 

* .* vs 
m.lleir: 

1 - 1 
V 

< Rw > 1 vfi < ifa > 1 
rmniPfi T> Pfe miTiiP^ v 

(7.21) 

*-*, ^ « - « > _ < * * * > * • < fr« > 1 *g *% , < ^ * > 1 pei / 7 9 9 x 
< ue > — < Ui > = To~— H rrrrcTF + ie~rT5" (7.22) 

meneu^ v mttiiVfi vv^v^ miU^ vvs
el 

where 
< Rj$ > = Tj$(ZjeBQ)-\- < Rjo,$ > 

and 
PSP?rP? 

KlWli 

Using the above expressions for the velocity differences and the expression 7.12 for 

the current, we can write the gradient driven current as [14] 

Jnc. 

(7.23) 
Jb;m=l,2 

where the expressions for the bootstrap current coefficients are of the form 

^3i,« = L0— [CejjLufl + Ci/,«^ii,^J (7.24) 

(~* . 
•^32.* = ^OTTT K ' e J . * ^ . * + ^t/,*^12.<A + ^ » (7-25) 
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where L{„Q are the diffusion coefficients [see Eq. 6.12] and 

n _ m eZt B% 
'ex — * -Q -

ne ft V& 
A A ' i 

The quantities Cej^, CUA, and Lh,* are complicated functions of the collision fre­

quencies and they are given in Appendix C. Our calculations indicate that 

&~°{ffl <™> 
From the expressions 7.24 and 7.25 for bootstrap current coefficients and the expres­

sions for the diffusion coefficients L{\$ in Eq. 6.12, it is easy to see that 

^3i,$ - ZiL%
31i = ZLzli (7.27) 

As mentioned in Ref. [14], this is a consequence of ambipolarity of the particle fluxes. 

Before proceeding with a discussion of the results, we wish to illustrate the re­

lationship between the bootstrap current and the cross field diffusive particle fluxes. 

Using the expressions for the particle flux [Eq. 6.12] in Eq. 7.23, we can write the 

bootstrap current as 

n̂c,* — LQCC 

A A - ^ A 

Ce/̂ Te* -)- Cii.$Trt + 2^ DktA2k 
k 

(7.28) 

For simplicity, we consider the case of zero temperature gradients, i.e., A2k = 0. 

In this case, the last term in Eq. 7.28 vanishes. In the absence of a significant 

impurity concentration, T^ ~ Tj$ and, as a consequence of Eq. 7.26, the second 

term in Eq. 7.28 negligible. In the presence of a significant impurity concentration, 

a similar situation obtains after the stationary state (r^ ~ Tt$) is reached. Before 

the stationary state is reached, 

If* ~o( l^\' 
I\* ~ VVmJ 
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and the second term in Eq. 7.28 is comparable to the first term. Thus, in the 

presence of impurities enhancement of the ion flux due to a poloidal electric field will 

have a significant effect on the bootstrap current. We note here that an analysis of 

the relation between the particle fluxes and the bootstrap current similar to the one 

given here has been carried out by Connor [9] in the absence of a poloidal electric 

field. 

Finally, we write the expression for the bootstrap current in a form which facili­

tates comparison with Chang's [12] results in the absence of impurities. 

5 T 
_ e 

T. 
( T \ n r 5 

1 + TjTy"J ZT + Te ^31,* + (^32.* "" 2^31,*) 

«M&)'(fH)i-Ml-9 
-(?)*.($)• {(?)*, (3) • *«* ® • 
+3i(li, - fl&t) (Ij) (7.29) 

We note that, of the six transport coefficients L*n (n = l,2;fc = e,i, Z), only five 

are independent. The coefficient I-fj is dependent on the transport coefficients LfiX 

and L31 (see Eq. 7.27). Furthermore, the coefficient Lf2 is generally small. Hence, 

we will primarily concentrate on the behavior of four transport coefficients, X*n (n = 

1,2; A: = e,i). 

We now present the results of our calculations of the effect of a poloidal electric 

field upon the bootstrap current coefficients. We consider a two ion species plasma in 

which the impurity is carbon. We will later comment on the effect of impurity species 

on the bootstrap current coefficients. 

Effect of Poloidal Electric Field 

We define the bootstrap current enhancement factor as 

FL = T T 4 (7.30) 
^3m 
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where L3m are the transport coefficients in the absence of a poloidal electric field. 

Variation of the bootstrap current enhancement factors F*m as a function of the 

poloidal electric field is shown in Fig. 7.3. The magnitude of the transport coefficients 

when <§(#) = 0 are also shown on Fig. 7.3. Due to Onsager symmetry [14], L31 = 

£f3, and hence, the variation of F31 with Xo is identical to that of the Ware pinch 

enhancement factor, Ff3. As can be seen from Fig. 7.3, enhancement of the bootstrap 

current coefficients over their magnitude for $(6) = 0 is at the most by a factor of 2. 

Furthermore, it is clear from Fig. 7.3 that electron and ion enhancement factors (F£n 

and F3n) behave differently for for $in > Q^i- Hence, the effect of a poloidal electric 

field upon the bootstrap current cannot be deduced easily from the behavior of the 

individual enhancement factors. We will evaluate the effect of the enhancement of 

bootstrap current coefficients and temperature/density profiles upon the magnitude 

of the bootstrap current later in this chapter. 

Effect of Impurity concentration 

Fig. 7.4 shows the variation of the bootstrap current enhancement factors F31, F32 , F31 

and F\2 as a function of the impurity concentration (Ze//) for XQ = 1. Due to On­

sager symmetry, the variation of F^ is identical to that of F{3. As with the diffusion 

coefficients, the variation of the bootstrap enhancement factors with Ze// is more 

pronounced for smaller values of Zeff due to the increasingly important role being 

played by the impurity species in this range of Zeff. As Zeff increases, the transport 

enhancement factors asymptotically reach a constant value. The presence of an impu­

rity species increases collisional coupling among the species, resulting in a decrease in 

L31 as well as L31. The presence of a poloidal electric field in an impure plasma affects 

the bootstrap current primarily by increasing (or decreasing) the trapped ion and im­

purity fraction, and hence the collisional coupling between them. We recall here that 

the bootstrap current is primarily a trapped particle effect. When $*n < $„,<, for 
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moderate values of XQ (XQ < 4), the trapped ion population decreases, resulting in 

a decrease in F^v For $*„ > $0**, the opposite effect occurs, i.e., the trapped ion 

fraction increases, causing an increase in F^. 

Effect of Impurity Species 

Comparison of the bootstrap current enhancement factors in the presence of different 

impurity species is meaningful for smaller impurity concentrations as the tolerable 

level of impurity content drops sharply for heavier impurities. The behavior of the 

electron enhancement factors F|n is not significantly affected by the impurity species. 

As the impurity enhancement factors F^n are small in comparison with other en­

hancement factors, we will consider only the behavior of ion enhancement factors 

FL-
Table 7.1 shows the variation in F^ for a = 1 at X0 = 1. The behavior of F%2 

is similar to that of F£v An explanation of the behavior of F^ in the presence of 

different impurity species is complicated by the fact that F^ is a function of Zeff, 

Z, and mz in this case. Even when a is held constant, Ze// varies from 1.33 for 

helium to 1.97 for tungsten. From Table 7.1, it appears that F^ generally decreases 

for #ttt < ^out and increases for $*„ > $„,< when we change the impurity species 

from helium to tungsten (equivalent to changing Zeff, Z, and mz). This behavior 

is similar to that of F^ when Ze// is changed with a fixed impurity species (see the 

previous discussion on the effect of Zeff on F^). However, in the present case, the 

impurity charge and mass also change. An increase in Z leads to enhanced trapping 

of the impurity ions in the electrostatic potential well. This causes a reduction in 

the ion-impurity collisional coupling, which can enhance F£v This seems to be the 

case for $*n < $OTt when the impurity species changes from iron to tungsten. Here, 

it appears that the transport reducing effect of Zeff is being offset by the transport 

enhancing effect of increased Z. 
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Table 7.1: Effect of Impurity Species on Bootstrap Current Enhancement Factor 
(X0 = 1.0) 

Impurity Z mz/rrii Zeff F i 31 
Impurity Z mz/rrii Zeff 

™ t n •*"•» ^<mt * m > ™out 

Helium 2 2 1.33 1.08 0.77 
Carbon 6 6 1.71 0.79 0.89 
Iron 26 28 1.92 0.67 1.09 
Tungsten 60 92 1.97 0.67 1.18 

Comparison with Previous Results 

We now compare our results on the bootstrap current with the results obtained by 

Chang [12] in the absence of impurities and with those of Hirshman et al. [14] obtained 

in the presence of impurities for the case of negligible poloidal electric field. 

1. Comparison with Chang's. Results: Referring to Eq. 7.29, in the absence 

of impurities, Lf1<# = Lf2 $ = 0, n'Jrii = rie/ne, and the last five terms vanish. 

The resulting equation has the following form 

j^t - r.LSlt# (I + - ^ J J + Tt 

'31<* \ZiTj { L| l i# 2) Ti 

^31,* + (-^32,* ~ 2^1,*) 

+TM (7.31) 

Using the expressions 7.24, 7.25 for the bootstrap current coefficients, and not­

ing that in the absence of impurities the second term in 7.24 is negligible, we 

obtain 
ZiL\ 3 2 * 

'31.* 

ZjTe 

ZeTt 

La 
12.* 

Lee + 
D i * 

l i ,* 
C r M. T ee 

Numerical calculations yield D& cz 0 in the absence of impurities, Using the 

expressions for the diffusion coefficients Lf2.*
 anc^ ̂ 11,* fr°m Eq. 6.12, we obtain 

ZiLJM _ {f**f (*£-)} _ 

4i.# ~~ {ft*"?) " * * 

154 

file:///ZiTj


With this result, the Eq. 7.31 has the same form as the expression for the 

bootstrap current obtained by Chang [12] 

/ T \ n' T' 

Jue,* = Te(a3,gu)* I 1 + ^ V i ~ + T' lQ^9le)* + (0=3, 92e)*} = f 

+T^^{w)\y-¥i (7-32) 
where the subscript $ is used to indicate the value of the transport coefficient 

in the presence of a poloidal electric field. 

We now compare the transport coefficients (a3, <jie)* and y with the correspond­

ing quantities L%1A and y^ in Eq. 7.31. (Apparently, Chang has not calculated 

(ot3,92e)i in Ref. [12]). Onsager symmetry yields (a3,^ie)* = (QI,P3«)# [8] and 

•̂ 31.* = -̂ 13.* [14]. Hence, a comparison of (Q3, gu) and L\lA is equivalent to 

the comparison of the Ware pinch coefficients (ai,<fee) and Lf3.#. Our previous 

comparison of the Ware pinch enhancement factors in Section 6.3.3 yields a 

significant discrepancy (~ 20% at Xo = 4) between the two results. However, 

a comparison of the variational parameter y with the quantity ya (see Section 

6.3.1) yields very good agreement between the two quantities. 

2. Comparison with calculations by Hirshman et al.: Finally, we point out 

that for i(0) = 0, our calculations agree with the transport coefficients calcu­

lated using the analytical expressions obtained by Hirshman et al. [14,40] for a 

heavy impurity such as iron or tungsten. For lighter impurities, such as carbon 

or helium, the ion enhancement factors Fjn differ from those calculated using 

the expressions in Refs. [14,40] by less than 3% when the impurity content is low 

(Zeff < 1.5). For a lighter impurity like carbon the difference in F^ calculated 

using the two approaches can be as high as 20% for higher impurity concentra­

tions (Zeff ~ 3.0). This is to be expected as the expressions in Refs. [14,40] 

were obtained in the limit mz/rn,i > 1. Nevertheless, the analytic expressions in 

Refs. [14,40] provide a convenient means for calculating the bootstrap current 
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coefficients for most impurities and concentration if one could tolerate a dis­

crepancy of the order ~ 20% for low Z impurities at higher concentrations. We 

have reproduced the analytical expressions for the bootstrap current coefficients 

from Refs. [14,40] in Appendix C. 

Transport Enhancement of Bootstrap Current and Profile Effects 

The bootstrap current depends upon the transport coefficients L\n as well as the 

"driving forces" A\k and A2k- As the driving forces depend upon the density and 

temperature profiles, enhancement (or reduction) of bootstrap current is dependent 

on the enhancement (or reduction) of the transport coefficients as well as the electron 

and ion temperature/density profiles. In this section, we consider the profile effects as 

well as the enhancement of transport coefficients upon the magnitude of the bootstrap 

current. 

We begin by considering a situation where the temperature and density profiles 

can be approximated by 

Tj(r) = Tj0(l - p2r*> 

and 

nW = nj0(l - p2)a"> 

Here p = r/a where a is the minor radius. For simplicity, we assume Te ~ 7* ~ Tz. 

With this, 
1j = T' 2aT ( p \ 
T> T a [l-p2) 

and 

rij a {l-p2/ 

Here, the prime denotes derivative with respect to the radial coordinate r. We shall 

further assume that Ze// is constant in the core region of the plasma where the present 
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formalism is expected to be valid. This leads to 

1-2-- _?^!i ( P \ 
j n a \l-pf2) 

Hence, 

and 

A < 3th 2( p \ 
*n nk 2Tk a\l-p*J -aT - an 

With this, Eq. 7.23 for the bootstrap current can be written as 

2T p 
vnr..& "~ 

a 1 -p 2 aT£ (l-5^3i,* " £»,•) - a « E L k < (7.33) 
k k 

We recall that the subscript $ indicates the presence of a significant poloidal electric 

field. In the absence of poloidal electric field, we have 

2T p 

v L k k 

Subtracting Eq. 7.34 from Eq. 7.33, we obtain the change in the bootstrap current 

due to inclusion of the effects of a poloidal electric field as 

a T £ ( l . S £ j i - l J , ) - < * . E i (7.34) 

Jnc.$ "nc — 
IT p 

a 1-p2 

~an 22 (̂ 31,« ~ 3̂1J 

aT £ [1.5 (L3\* - Lk
n) - (Lk

3Z* - Lk
32)} 

(7.35) 

From the above equation, we can determine the relation between an and ay for the 

change in the bootstrap current to be positive. Setting Jnc# — Jnc > 0, we obtain 

the following condition for the change in the bootstrap current due to inclusion of 

a poloidal electric field to be positive (i.e. for the poloidal electric field to enhance, 

rather than reduce, the bootstrap current) 

£fc (^32.* — £32) ~ 1-5 Efe (£31.* — ^31J 

*" > T L* -V \ T 

L,k ^ 3 1 -^31,*; 

(7.36) 
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We note that the relationship between an and <*T depends upon the impurity species, 

concentration, and the sign and magnitude of the potential variation. As an example, 

we consider the case of carbon impurity with Zeff = 3.0. When $(0) = 0, we obtain 

Le
31 = 1.23 L31 --= 0.5 Lfj = 0.12 £ Lk

3l = 1.85 
k 

Le
32 = 2.68 L32 = 1.0 Lf2 = 0.15 £ L32 = 3-83 

k 

Here, note that L3n is actually L3n/Lo. For simplicity, we have suppressed the factor 

LQ. When $(9) ^ 0 and $in < $<«* (as during ICRH or NBI), we obtain the following 

enhancement factors. 

WhenX0 = l 

*3i = l-3 i^i = 0.72 F3\ = 1.73 EL3i.* = 2.20 
k 

Fi2= 1.2 ^ 2 = 0.73 F | = 1.04 EL32.* = 4 1 3 

k 

When X0 = 3 

i ^ = 1.77 F3\ = 0.98 tfg = 2.31 £ Xj1># = 2.96 
it 

F|2 = 1.51 ^ = 0.65 #g = 1.47 S X ^ = 4.95 
it 

When $(9) ^ 0 and $ in > ^ ^ (as during ECRH), we obtain the following enhance­

ment factors. 

When XQ = 1 

7^ = 0.72 F i = 107 ^ = 0 . 4 7 £ ^ = 1.49 
Jb 

F3
e
2 = 0.76 F3'2 = 1.06 *£ = 0.27 £ L*^ = 3.16 

fc 

When X0 = 3 

f3
e! = 1.01 F3\ = 1.44 F3

Zj = 0.71 £ L*li# = 2.06 
k 
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F|2 = 0.70 F^2 = 1.32 F& = 0.39 £ L32.<* = 3-28 

k 

Using these values, we find that the following requirements must be satisfied in order 

to obtain an enhancement (J„c.$ — Jnc > 0) in the bootstrap current due to a poloidal 

electric field. 

(a)When $iw < $^1 

For X0 = 1, an > 0.64ar. 

For X0 = 3, an > 0.49ar. 

(b)When $in > $ 
out-

For X0 = 1, an < -0.36ar. 

For X0 = 3, a„ > 4.12ar. 

Figures 7.5 and 7.6 show the relation between a„ and ay, as a function of Xo, that 

is needed for an enhancement of the bootstrap current. Under conditions that prevail 

in most tokamaks, the presence of a poloidal electric field such that $*« > $out (as 

during ECRH) results in a reduction in the bootstrap current (Fig. 7.5). On the other 

hand, when $in < Q^i (as during ICRH of NBI), the bootstrap current increases if 

the density profile is more peaked than roughly the square root of the temperature 

profile, i.e., an > Q.baT (see Fig. 7.6). The behavior of an/aT depicted in Figs. 7.5 

and 7.6 follows from the behavior of the enhancement factors F}n as a function of Xo. 

We further note that varying Zeff from 2 to 4 has only a minor effect on the behavior 

of an/aT shown in Figs. 7.5 and 7.6. 

Finally, in the present study we have used the same profile exponents for electrons, 

ions, and impurities (i.e. anj = an and axj = ar)- It turns out that the conclusions 

drawn here are valid even when aUJ ^ an and a^j ^ ay, as the next example 

demonstrates. It appears that the relation between the temperature and density 

profiles is more significant than minor differences in the temperature/density profiles 

of different species. 
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Example 

Finally, we consider the example of a JET discharge with combined ICRH and NBI. 

The density and temperature profiles for a pellet fueled shot are shown in Fig. 7.7. 

The profiles in Fig. 7.7 and the following parameters are taken from Ref. [7]. In the 

present case, clearly ax > an-

Minor radius a=1.16 m, PJCRH ^ 12.5 MW, PNBi ^ 5.2 MW, R = 3 m, ne0 = 

6.47 x 1019 m~3, Teo = 11.8 keV, Ti0 = 8.9 keV. 

Consistent with the large aspect ratio approximation, we consider a point close to 

the center. Specifically, we take e == 0.04. This gives r = 0.12 m and p == 0.1. At this 

radius, all the relevant quantities can be estimated from Fig. 7.7. Assuming Tj = T'z, 

1 = ^ - 1 . 2 -

T' 
-f ~ -2.1 m"1 

T. 
i 

-± c- -0.27 m"1 

ne 

Assuming a constant Zeff in the core region of the plasma, 

^ = i=<^_0.27m-1 

Ui nz ne 

Furthermore, at this radius, Te ~ 10.5 keV, Ti ~ 8.4 keV, ne ~ 5.8 x 1019 m~3. 

Taking the effective charge to be Zeff = 3.0 in the presence of carbon impurity, we 

obtain 

rii = 3.5 x 1019 m~3; nz = 3.9 x 1018 m~3 

With these values, and with the transport coefficients for XQ = 0 and the transport 

enhancement factors for XQ ^ 0, we obtain 

When ${$) = 0, 

J%c = —26.25Lo 
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re 7.7: Temperature and Density Profiles for a Pellet Injected JET Shot [7] 
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The bootstrap current for XQ = 1 is 

Jnc* = — 24.8Lo 

and the bootstrap current for XQ = 3 is 

Jnci = •~22.8Lo 

Hence, in the present case, the bootstrap current decreases by a small amount. This 

is not surprising as in the present case an <C ay , and our previous analysis indicates 

a decrease in the bootstrap current for an < 0.49ay. 

7.4.3 Summary and Conclusion 

In this section, we summarize some of the important results on neoclassical conduc­

tivity and bootstrap current and diiscuss their significance. 

1. The results presented in this work on plasma conductivity indicate that de­

pending on the magnitude and sign of the poloidal potential variation, the 

neoclassical conductivity reduction factor can increase by as much as ~ 70% or 

decrease by ~ 35%. Also, in most cases, an increase in the impurity content 

results in a decrease in the magnitude of the neoclassical conductivity reduction. 

While the above conclusions are based on calculations performed in the large 

aspect ratio limit, we expect similar results in smaller aspect ratio devices. In a 

small aspect ratio device (v^ ~ O(l)), the neoclassical conductivity reduction, 

which is of the order v ^ is expected to be more significant. Hence, changes in 

the neoclassical conductivity reduction due to altered trapped particle fraction 

are also expected to be significant. 

We further note that plasma conductivity measurements play an important role 

in estimating the impurity content (Zeff) in tokamaks. Hence, it is imperative 
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that the plasma conductivity predictions be as accurate as possible during var­

ious heating scenarios such as ICRH, ECRH or NBI as well as with varying 

levels of impurities. We feel that calculation of conductivity in a multi-species 

plasma in the presence of a significant poloidal electric field is a significant step 

in that direction. 

2. In this work we have calculated the bootstrap current coefficients for a two 

ion species plasma in the presence of a significant poloidal electric field. The 

variation of the bootstrap current enhancement factors with the magnitude of 

the poloidal potential variation is qualitatively similar to that of the electron and 

ion diffusion enhancement factors. Our calculations indicate that depending on 

the magnitude and sign of the potential variation relative to the species under 

consideration, the transport coefficients may increase by a factor of ~ 2 or 

decrease by as much as ~ 40%. 

3. Enhancement of the bootstrap current coefficients depends upon the impurity 

content as well as the impurity species. It appears that the effect of varying 

the impurity content is more significant for the ion enhancement factors (F^n). 

For $*„ < $out, the ion enhancement factors decrease with an increase in the 

impurity content while for $in > $aut, the enhancement factors increase with 

the impurity content. 

4. The nature of the impurity species seems to affect the bootstrap enhancement 

factors F£n. At constant a = nzZ2/riiZf, heavier impurities seem to cause a 

reduction in F^n for $ m < $<«< and an increase in F£n for $in > $<„**. 

5. The magnitude of the bootstrap current is influenced as much by the enhance­

ment of the transport coefficients as by the nature of the density profile relative 

to the temperature profile. We have calculated an increase in the bootstrap 

current when $in < $<,„* (e.g. ICRH or NBI) if the density profiles are more 
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peaked than roughly the square root of the temperature profiles in a deuterium 

plasma with carbon impurity. It is found that the bootstrap current generally 

decreases when $*„ > $«™* (e.g. ECRH). 

6. Finally, we note that in many of the present devices as well as future devices 

increasing importance is being given to bootstrap current. In designing many of 

the future devices a significant fraction of the current is assumed to be gradient 

driven. In these situations, an accurate prediction of the bootstrap current in 

auxiliary heated, multispecies plasma is of great importance. It is felt that the 

present formalism is a significant step in this direction. 
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CHAPTER VIII 

SUMMARY AND RECOMMENDATIONS 

\ / 
\ 

8.1 Summary 

In this thesis, we have extended the investigation of the effect of a poloidal electro­

static potential variation of order e on the neoclassical particle transport and current 

in a tokamak plasma to the realistic case of a multiple ion species plasma. The final 

result of the present work is the calculation of the effect of the poloidal electric field 

on the ion diffusion coefficients, neoclassical conductivity, and bootstrap current. 

We have solved the drift kinetic equation using the low collisionality ordering for 

a large aspect ratio (e < 1) tokamak. Both of these assumptions imply that the 

present theory is applicable to the core region of the plasma. The low collisionality 

assumption somewhat restricts the present theory to low to moderate Z impurities. 

Perhaps the more restrictive assumption is that the fraction of trapped particles is 

assumed to be small, i.e. ft < 1. While this assumption is not too restrictive in 

treating low Z impurities or small values of potential variation (XQ ~ 1 — 2), it 

breaks down for larger Z impurities or for large values of the potential variation. In 

these scenarios, most of the impurity ions are trapped in the electrostatic potential 

well and ft ~ 1. Hence, the present formalism is appropriate for treating the case of 

low Z impurities such as carbon, berrylium, or helium. 

We find that the main ion diffusion coefficients increase during both ECRH ($in > 

Qovt) and ICRH ($in < $out) for most values of the potential variation (X0 = 
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e$(9)/Te), implying an increase in the inward diffusion of impurities. Only when 

the poloidal potential variation is small, i.e. X(\ < 1, do the main ion diffusion co­

efficients decrease slightly (~ 10%) during ICRH, implying a small reduction in the 

inward impurity diffusion (Vz — -Zi/Z I\). It seems unlikely that any significant 

reduction in the inward impurity diffusion can be achieved with either ECRH or 

ICRH. 

This result is important in interpreting the experimental results on impurity trans­

port. Although it is generally believed that the neoclassical particle transport is small 

in comparison with anomalous transport processes, recent results from JET [84,85] 

seem to indicate that the particle transport in the core region of the plasma is close 

to the values predicted by the neoclassical theory. Furthermore, one can expect the 

neoclassical effects to be significant in such improved confinement regimes as H-mode 

and VH-mode [87]. It is expected that modifications of the neoclassical particle trans­

port coefficients of the type examined in this work are significant in such regimes or 

regions of the plasma where the particle transport is close to the neoclassical levels. 

It is found that in the presence of a poloidal potential variation of order e, the 

neoclassical conductivity reduction factor (a^c) decreases by ~ 35% or increases 

by ~ 70% depending on the magnitude and sign of the potential variation. It also 

appears that the presence of impurities results in a decrease in the neoclassical con­

ductivity reduction factor for most values of the poloidal potential variation. Such 

variations in the ohmic conductivity can have significant implications to any simula­

tion of experimental results using a neoclassical conductivity model. 

We further find that the presence of a poloidal electric field causes a significant 

change in the bootstrap current coefficients. The bootstrap current coefficients can 

increase by a factor of ~ 2 or decrease by ~ 40% depending on the magnitude and 

sign of the potential variation. The change in the bootstrap current, however, seems 

to depend on the enhancement (reduction) of the bootstrap current coefficients as 
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well as the nature of the temperature and density profiles relative to each other. We 

have calculated the change in the bootstrap current due to inclusion of the effects of 

a poloidal electric field in the presence of carbon impurity. The results indicate an 

increase in the bootstrap current during ICRH or NBI ($*w < $aut) if the density 

profiles are more peaked than roughly the square root of the temperature profiles and 

a decrease in the bootstrap current, generally, during ECRH ($»n > <&out)- Increasing 

importance is being given to bootstrap current in the present as well as future devices. 

In designing many of the future devices, a significant fraction of the current is assumed 

to be gradient driven. It is important to include the effect of a poloidal electric field 

in estimating the contribution of the bootstrap current to total current during strong 

wave heating or NBI. 

8.2 Suggestions for Future Work 

Finally, to complete the picture of the effects of a poloidal electric field on neoclassical 

transport in a large aspect ratio tokamak, a few additional calculations need to be 

carried out. 

• In the present work, we have calculated the particle transport and bootstrap 

current coefficients for a specific impurity (carbon). In order to facilitate the 

use of the results of this work, it is desirable to provide analytical fits which 

enable calculation of the transport coefficients as a function of the magnitude 

and sign of the poloidal potential variation, impurity concentration, impurity 

charge and mass. 

• As pointed out in the previous section, the present formalism is valid when the 

fraction of trapped particles is small. Extension of this formalism to include 

the case when most impurity ions are trapped greatly extends the limits of this 

theory. 
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• Calculation of energy transport in the presence of a poloidal electric field in a 

multispecies plasma. 

r 
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APPENDIX A 

A. l Expressions for d/i/dt, dE/dt, and d£/dt 

We have the equation of motion given by 

dv i dvii e _ ^ ' 

Tr + i r = m E - f i ^ ^ « 
Taking the dot product of Eq. A.l with v±, we have 

Noting that vj. • p = 0, dividing throughout by B, and adding and subtracting 

(v2
±/2)d/dt(l/B), we obtain 

d/z __ _^,d£ _t / j , v rfn e 
eft '" 5d f B ±' dt mB ' ± 

Taking the dot product of Eq. A.l with v, we get 

dv e _ ^ 
v*:?7 = ^ E ' v ~ n ' f ; ^ , v 

ttt 771 

Noting that /? • v = 0 and (v2/2) = E - (e$/ra), we write the above equation as 

dE_ _ e_( 
dt m\ d t

+ E v 

e (d$ _ ^ __ 
= — — + v • V$ - v V$ - v 

m \ at 
or 

d£ e (d$ dA 
dt=m(-di-y-8t) ( A 2 ) 

Finally, taking the dot product of Eq. A.l with p, we have 
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Observing that p • h = 0 and p • hL = 0, 

A dnx e A V|| A dn 
at m^j. v± dt 

We evaluate the left hand side of the above equation as follows. 

sin rl 
P • —7T == (e3 cos £ + e2 sin £) • —(e2 cos £ - e3 sin f) 

at at 
' rff . * ^62 2/- - ^ 3 . 2 

= - 5 + € 3 - * - c o ; 4 - e 2 - i r s i n ^ 
de2 * de3 

+ sin £ cos £e2 • — — sin £ cos £e3 • - r -
at at 

Noting that 

and 

we have 

„ de2 d (e2 - e2\ n . de3 
ft"ir = sl-2~J=0=e3'"S" 

* de3 d „- „ de2 . de2 
e 2 d T = * ( e 2 e 3 ) - e 3 i r = - e 3-*-

dt dt dt 

Hence, 
df de2 ^ V|| . dn c 
— = ft + <;3 • -TT + - V -IT - ——P • E (A.3) 
at at v_i at mv± 

A.2 Gyro-averaging Procedure 

A.2.1 Calculation of d/x/dt 

In Section 2.2.2, we encountered the gyro-averaging procedure. Here we explicitly 

evaluate the gyroaverage of du/di. We will make use of the assumption that quantities 

that do not explicitly depend upon the gyrophase are constant. With this 

da ii dB v\\ dh e „ .,- A. 
— = - — ^v, 1- E • v, (A.4) 
dt B dt B L dt mB L v ' 
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As mentioned in Section 2.2.2, retaining only the convective part of the substcintial 

derivatives, we get 

| = _ | V . V B - ^ x . V B - | v J . . ( v . V ) f t + - ^ E . v x (A.5) 

where 

~vl{h' VB = — ^ [ n - VB 
B B 

Due to the presence of cosf and sinf in hL. 

-^v±h±VB = 0 

Writing v = v\\h + i/±n±, and noting that h±_ = 0, 

- ^ • ( v - V J f t = - ^ - ( f t x - V ) n = - ^ M I : Vn 

Using hj_ = e2 cos £ - £3 sin £, 

_ n v ± . ( v . V ) f t = - ^ ( « A + «3«.): Vn = - ^ ( 1 - hh) : Vn 

where we have used the identity I = fth 4- e2e2 4- £363. Carrying out the vector 

operations on the right hand side, the above equation can be written as 

2 

- | v x • (v • V)n = - ^ [ V • n - n • (n • V)n] ( A 6 ) 

We know that 

h x V x h = --V(n -fi)-(h- V)n = - (n • V)n 

and 

h- (ft- V)n = — h• h x V x h — 0 

Using these, Eq. A.6 reduces to 

| 7 ± . ( v . V ) f t = - a ^ V . f t (A.7) 
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We have 

V B = V (Bn) = BV • h + h • VB = 0 

Using this identity in Eq. A.7, we obtain 

- ^ . i v . V ) n = ^n-VB=Vfn-VB (A.8) 

Also 

Hence, 
i-Ev- = i E v i = 0 ( A- 9> 

fli i? .D 
(A.10) 

A.2.2 Calculation of dfi/dt 

In Section 2.2.2, we found the gyrophase dependent part of the first order distribution 

function to be 

/i = - - Q " / ° , V / O = - P - h 

Using this expression, we explicitly evaluate the gyrophase average of dfi/dt. 

dfi d (^ . dp dh _ • N 

_ = __ ( p . h ) = _ _ . h - _ . , (A.11) 

Noting that h is independent of the gyrophase, and expanding dh/dt, we obtain 

dfi dp „ dh -r- —r- -— =—• 
IT = -Tt-*-P--Q;-P-(vvV)*-P-(^-V)k 

_ dh dfi _ dh.dE _ dh d£ 

-p^(dl)-pdE(li)-pTi('dl) 

Using the fact that h is independent of the gyrophase and the magnetic moment, and 

p — 0, we have 

- # h -=-7 :=r - dh.dii. _ dh,d£. n .. • 

/r- w = /r- (v„ • v)h = p. -(±) = p. -(£ = o (A.12) 
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And 

Noting that 

we have 

p K • v)h = t>-(ftj. • V ) h 

= ^ : Vh 

= ! X l 3 ) • V X h 

= 2UK-
V x V/o = 0 

3 (e 
dE\m 

v • £)~°<*"> 

-7— = - — • h + terms of order 6 
at at 

dp _ d (h x v±\ 
~di ~ ~dt \~Q / 

(A. 13) 

(A. 14) 

(A.15) 

P'%(™)~°(*2»)~°{**) (A.16) 

Dropping this term, we obtain the following equation 

(A.17) 

d / 1 \ 1 . dvx , 1 dh . . 

= nx^Jt{n) + Qnxnr + QTtx^ (A18) 

The first term in the above equation is 

Dropping the term dB/dt and writing v = V_L + vn, we get 

A = -^n x A±(ft± • V)B = ~^p(n± • V)B (A..20) 

Expanding n^ and /3 in terms of guiding center coordinates, and gyro-averaging, 

A = ^(e3 x e2) x VB == ~^h x V£ (A.21) 
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The second term in Eq. A. 18, upon using the equation of motion, becomes 

_ 1 A d\± 1A (e „ rfv||V /*oo\ 
B=nn*-dr = nnx(mE-nv±p-ti) (A22) 

Noting that h x /? = n x h = 0, we obtain 

n x E i/ii „ dn 
i? = — -Jfn x — 

£ ft A 
Expanding dh/dt and dropping terms of order > 62, we obtain, after gyro-averaging 

x E 1 
B Q 

B Q " " * <A23> 

^ = ^ - K* x Wfi • V)"l (A-24) 

The third term in Eq. A. 18 is 

^ 1 dn v± „ dn , . v 
C - 5 * X T A — f f " i X ¥ (A-25) 

Writing n± = p x n, we write the above equation as 

n v±„ dh dh vL dn 
c = ~ a"n(p ' Tt] ~ Tt(p •n) = -Hn(p' ¥} (A'26) 

Expanding the substantia]! derivative of n and carrying out steps similar to those 

leading to Eq. A. 13, 

C = ~n[ez • (e2 • V)h - e2 . (e3 • V)n] = - | p [ n • (V x n)] (A.27) 

Combining Eqs. A.21, A.24, and A.27, Eq. A. 18 can be written as 

f = -nr" sx [ / i V B + " » ( " •v)"'_ S"[" •(v x ft)1 (A-28) 
Using a notation similar to that used by Hinton and Hazeltine [8], 

- ^ = Vz> + V i (A.29) 

where 

and 

v* = ~ + £ x [nVB + if (ft • V)n] (A.30) 

u2 

*|| = 2fl[MV x ft)] (A.31) 
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Drift for a small 0 tokamak 

We have for equilibrium, 

J x B = Vp 

Using the Ampere's law, 

(V x B) x B = fAsVp 

Expanding the left hand side using B = Bn, and dividing throughout by B2, we get 

i* m ^B n^JB) ^Vp 

where we have used V(n • h) = 0. Taking the cross product of the above equation 

with n, 
A W A YTVA nxVB hxVp nx(n-V)n=—-—+ ^ 

We note that the terms on the right hand side are of the order l/l and j3/l respectively. 

If we assume, as done by Hinton and Hazeltine [8], that (3 = 2\MsP/B2 ~ 0(6) < 1, 

then the second term is much less than the first term. Hence, 

. ,„ _ , . hxVB _.rrx hxVB 
fix {ft- V)n = — - — + G{6) ~ — 

B B 
Using this, the drift vD can be written as 

h x V$ n _ „ v2 n x VB 
vD = 7;— + ~ x //V5 -f 

£ Q " ft # 

or 

Vz? = -t/„n x V Q' |) (A.32) 

where the gradient is taken at constant E = v2/2 -f e$/ra = Vn/2 + fiB + e$/ra. 
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APPENDIX B 

B . l Boundary Layer Formalism 

In Chapter V, we used the low collisionality, or the banana regime, ordering in solving 

the drift kinetic equation. In the banana regime, veffTB < 1- We expect this ordering 

to hold in the far trapped and far untrapped regions. We should, however, note 

that in the narrow layer between the trapped and untrapped particles ("boundary 

layer") comprising marginally trapped and marginally untrapped particles, ê//T& it 

1 because TB —• oo. Particles in this layer are highly susceptible to collisions. The 

break down in the banana regime ordering manifests in the discontinuity in dgfj/dn 

at the interface between the trapped-untrapped regions [Eq. 5.14]. 

Hinton and Rosenbluth Analysis 

Hinton and Rosenbluth [88] have solved the drift kinetic equation for the electron-ion 

problem in the absence of poloidal electric fields. Without going through the details 

of their calculations, we may write the resulting distribution function as 

G\ = Go + Gi -+• Gc 

where G0 = g? is the conventional banana regime solution, Gt is the solution confined 

to the boundary layer, and Gc is the correction to the conventional solution due to 

proper matching of the solution at the boundary layer. 

Hinton et al. [88] have calculated the transport coefficients using a variational 

approach. Here, we consider the diffusion coefficient to study the effect of the bound­

ary layer on the conventional solutions obtained without using the boundary layer 
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analysis. The diffusion coefficient in the presence of the boundary layer is given by [88] 

Lu * L°u(l - 0) (B.l) 

where the boundary layer correction 0 is given by 

0 = O.9i/Ji2ln 

Here, vte = ^e/(u;fee
3/2) < 1, where ve, ujie are the electron collision frequency and 

electron transit frequency respectively. 

Conclusion 

We may draw two conclusions from Eq. B.l. 

1. The boundary layer seems to result in a decrease in the transport coefficients. 

2. The magnitude of the correction decreases with decreasing collisionality. For 

example, for v0e = 0.1, 0 ~ 0.19 and for i/me = 0.01, 0 ~ 0.16. 

Hence, it appears that the boundary layer correction is significant for plasmas with 

higher collisionality. As most of the current major devices and future devices are 

expected to be in the low collisionality regime, we can expect the boundary layer 

correction to the transport coefficients to be small. 

We also note that the analysis of Hinton et al. [88] is quite complex and makes use 

of many simplifying assumptions. In addition, the analysis uses a simple Lorentz gas 

model. Balescu [32] has pointed out that, in view of the uncertainties in modeling, it 

seems unlikely that a detailed analysis of the boundary layer yields results significantly 

better than the results obtained using simple interpolation formulas between the 

banana and plateau limits. Hence, we shall ignore the corrections due to the presence 

of the boundary layer. 

0.62 

i / 1 / 2 
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B.2 Calculation of Restoring Coefficients 

The momentum restoring coefficients are given by Eq. 5.19, 

dfki 
dwdfJLl/yfjL-

d/i 
(B.2) 

where 
2-KB mk ^ 

*i W*} m* 
Using Eq. 5.15 for dfk\jd\.i and making use of the result 5.18, we can write rkj as 

n tA A s ™k (B\dfko (1 4 1 ^ 

J k3<v\\> [ Tk Y i/w rfc i/, 
*2. 

^w 

= **; + **; 

Using 

where 

we have 

dfi JbO 

dr 
= / *0 ĴVfc 2 r J + T A T* J / f c0 

A _ . _ ^*o , ek < $ > 
Nk Tin, Tk 

r1 
rkj c fdwd, ̂ f^ (±) P - ̂ 1 f 1 - i t - M 

fdwd, WuP. (i) l^E^} (L - OL-1-) +C 
_1,1 , _1,2 TV. + Ti kj kj 

1,1 We can write rkj as 

# = C iV* 
i _ 3Tfcj m* /B_\ tdwfidfjLfuiU^ ( _ v^\ 
V 2T~k\ ek \B9)J v„ ^ "*#/ 

[iVit 2 7* J ek \BeJJ { v** ) Jk° 

[/J.d/j,( - 1 

(B.3) 
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Using the definition of C and carrying out the integration, we get, after flux surface 

averaging, 

/ i . i \ _ mknk 1 / Tk \\N'k 3T'k] [ s vs
kj4\ 

\ kj ' m^ \ufh} \ekBj) [N~k 2Tk\ \ * „» j 

mknk 1 / Tk \ TV; _ 3l£] {f 4A\ 
™i*i {if*} \ekB°J [N~k 2 Tk\ \7t* i/M j 

In obtaining the above equation, we have made use of the definition of ft$ given by 

Eq. 5.17. Also, we have used the fact that in the large aspect ratio limit, 

exp 
ek*(9) \ ek*(B) , 

and we have retained only 0(e°) terms in carrying out the velocity integrals. A similar 

analysis gives 

/ 1 2 \ =
 mkTlk 1 ( Tk \T'k 

V*/ mjniivfj \ekB«) Tk 

and 

/ -2\_. miik i l^i^Af} 
<r,k> mk l^w J. 

< rkj > = 

Adding the results < r\j >, < rl
kf >, and < rkj >, and using the momentum 

conservation relation rnjTij{ifk} = m*n*{i/^}, we get the desired result 

TO&JM^'W^H 

um^w^y^m^v 
T—ST ^ 3 —fc* } + T-cT 2_, 1 /<* f < r ^ > 

Mj}mk [VM J H J T I " * * J 
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APPENDIX C 

C.l Expression for Parallel Velocity Difference 

In Chapter VII, we used n-1 parallel velocity differences to calculate the bootstrap 

current. Here, we derive the equation for the velocity difference [Eq. 7.12] used in 

Chapter VII to calculate the bootstrap current. Using Eq. 7.2 for the parallel velocity 

difference, we easily obtain, 

<Uj > — < Uk> 
. €j < $ > 

"UiJiK • v m *i ̂ i 

From Eq. 6.4, we have 

< Rjk >= -mjnj{vfk}[< Tjk > - < rkj >] (C.2) 

Adding and subtracting (< Uj > - < uk >) from the right hand side of the above 

equation, and using the definition of the restoring coefficients < rj4. >, < rkj > from 

Eq. 6.7, we can write, after a few steps of algebra, 

< Rjk > = -mjnjiuf,} [(< Uj>-< uk >) + (DF) i7ft - [DF)tT& 

ftA2k 

+ £ [A{J < rh > -A% < r,k >] 

-ft £ [A#,i < r,j > -A%! < r,k > (C.3) 
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where (DF)P is a combination of the "driving forces" Aipy A2p, and < $ >', given by 

(DF), Vvk) / . MP + 

{^} 
and 

_ {/ '«^("f)} Iff /m.g-W/^l 1. 
" {fMdd.) 7"* /, IY'* \T, ) v+) {.£> 

(C.4) 

^P9 — 

7r$ — 

XT)3] 

Jt 

pq 

(C.5) 

(C.6) 

(C.7) 

Using the relations 7.2 and 5.22 for the parallel velocity and restoring coefficients, 

we can relate the restoring coefficients to the parallel velocity with the following 

expression 

<r,m>==<tt,>+(£>F),7S + Af -^ j J^2 i7T l 

+ 5 > 2 * < rm > -ft £ A S M < %i > (C8) 
n n 

Using Eq. 6.6 for the particle fluxes (with ^3 = 0), we can express (DF)i as 

felB°\ r» V<*^} < r*' > 

( D n "w(w) + / ' ? {**?} 
Specializing for a large aspect ratio tokamak (/* < 1), we note that the first term 

on the right hand side is of the order ft in the driving forces An and A21, while the 

second term is of the order ft. Retaining only the term of the order /«, 

fetBS\ r» (DF), <* 
\m,n,J If**"?-?) 

(C.9) 

183 



Here, we treat /e* ~ O(ft) as discussed in Section 6.2.2. Using Eq. C.8 in Eq. C.3, 

we can write the parallel friction as 

<Rjk> = -mjnj{rfk}[(<uj>-<uk>) + (u%j-u%j) 

+ E [A£[< m > +4,*] - *£[< m > +<*]] 

+ E E [ ^ ^ - ^ ^ n V i <rn , > 
/ » 

- A E N«.it< «i > +<*! - A-*.i[< «' > +<•*]] 

~ / t L L [Af*A**,i — AJ4An4fl -f A|4tlAm4 - A /$ j A ^ 4 < r«j > 
/ « 

+(/«)2 E E N*,iAg.4 -A»,iA-*,i] < *•-! >] (c io) 
/ n 

where 

-* " > ̂ ) isfe* + (&) ' ' ^ (C U) W L . - ^ B 

mpnp; \J**VTVV \ 
l Vp4 -» 

Using ^p$ ~ &£ (see Section 6.3) in the above equation, and noting that Af| = A{? < 

1, the above equation can be written, by retaining only terms of the order ft and 

/ i A « as 

<Rjk> = -rrijnj{u%}[(<u}; > - < «* >) + (t*Jfc># - tij^) 

+ E [*?*[(< «i> -<%>) + <*] 

- A f [(< m > - < « * > ) + <« ] ] ] (C.12) 

As £rAJ* = 0, we have subtracted terms of the form £/A{fe < Uj > and 

Y,i AfJ < a* > from the right hand side of Eq. CIO to obtain the above equation. 

From Eq. 6.2, we note that the the diffusive particle fluxes are related to the 

parallel friction by the relation 

MJ)ri# = - E < ^ > 
k 

Using Eq. C.12 for < Rjk > in the above equation, and using the definition of Af9, 
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we obtain the expression for the parallel velocity difference as 

^m in>p/ f c(< Uj > - < uk >) = ri*(e>Bj)+ < Rj0^ > (C.13) 
Jb 

where vfk and < RJO# > are given by Eqs. 7.13 and 7.14 respectively. 

C.2 B o o t s t r a p Current Coeff icients 

Using Eqs. 7.21 and 7.22 for the parallel velocity differences in Eq. 7.12 for the 

current, the expression for bootstrap current can be written as [14] 

Jnc* = ^ TkL3m^Amk (C14) 
fc;m=l,2 

where 

C 
LZl,t - ^0-^T [Ce/,*^!!,* + Cf/,«I'11^J (C.15) 

ib 

^32,* = LQ— \Cei#L\2# + &ii:tL\2j + Dki (C.16) 

Here, £i£.* are the diffusion coefficients [see Section 6.3] and 

T - f n° 

n _ m eZi B$ 
^ei — ne ft P%j> 

Before we give the expressions for Ce/,*? ft/,*, and £>_,$, we define the following useful 

quantities 

^ = (ZreBl\ / , T % 

* V mpnP / {ft*"j? 

H* = I?* (iriSf) ft 

KriiZiJ vb
el 
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Ce = K + P 

Ci = zfK 

"ie 

*>ST 

Cj = ^Ct 

Using these quantities, we define the following expressions 

<*. = (lg)-X>JM 
cU = EK»W* 

Jb 

M g # = WJ'*C?J' 

fl&* = ^ * i / * J 

<?,-# = CWU+MHJ 

Dj$ = Cj(P"jQ — Cj#) 

•̂ fei,* = CjMljA 
T?jk _ r* pjk 

rkj.i — ^lrkj& 

Cj$ = Cj* + 2^ -Ejfc.* 

Mi 

With these definitions, we can express the coefficients in Eqs. C.15 and C.16 as 

Dit = />* + £ / # , 
Mi 

•*• • •*• \ ^ / J A 

Cei,* = (Ce* H 5~) 
Z/ 

/» - rr- ^C/*^ 
t-'i/,* ~ I*-'!* -y—) 

Finally, we present below the bootstrap current coefficients for a three species plasma 

as given by Hirshman et al. [14,40] for a large aspect ratio tokamak. 

Le
31 = Lo[l + tfi(Ze//)] (C17) 
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^t-^31 — 

ZL31 

re — 

^t-^32 = 

^•^32 

io [ [ l + w „ ) ] i , + ( j ? - - M ) ( i+* l ( a M ; 

•^31 "" ^ 1 ^ 3 1 

Io[2.5 + ^2(Ze / /)] 

+ 1$T^ [[1 + W „ ) ] - ( ^ - M ) [1 + *l(a)] 

= 1.33io& [[1 + KtiZ.,,)] - (~ - Hd) [1 + tf,(a)]' 

where 

6 

6 

tfi(s) 

# 2 ( 3 ) 

Ejfcmjfcnjfcl̂ f} 

= 1 -6 
0.68 / l + O.lar1^ 

x Vl + 0.13x-V 
0.71 / ! + 0.025a; \ 

x U + 0.059aJ 

and a = nzZ/riiZ? 

187 



BIBLIOGRAPHY 

[1] R. M. Gilgenbach, M. E. Read, K. E. Hackett, F. Lucey, B.Hui, et al., Phys. 
Rev. Lett. 44, 647 (1980). 

TFR Group/FOM ECRH Team, Nucl. Fusion 28, 1995 (1988). 

W. L. Rowan, M. E. Austin, J. Y. Chen, P. E. Phillips, B. Richards., et al., 30th 
Annual DPP-APS Meeting (Hollywood, Florida 1988). Paper 6T11. 

Y. Ogama, K. Masai, T. Watari, R. Akiyama, R. Ando et al., Nucl. Fusion 29, 
1873 (1989). 

5] J. Roth and G. Janeschitz, Nucl. Fusion 29, 915 (1989). 

61 J. Castracane, Y. Demers, and H. H. Mai, Plasma Phys. and Contr.Fus. 29, 759 
(1987). 

B. Balet, J. G. Cordey, and P. M. Stubberfield, Plasma Phys. Contr. Fusion 34, 
3 (1992). 

81 F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976). 

9] J. W. Connor, Plasma Phys. 15, 765 (1973). 

[10] S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981). 

[11] J. Y. Hsu, V. S. Chan, R. W. Harvey, R. Prater, and S. K. Wong, Phys. Rev. 
Lett. 53, 564 (1984). 

[12] C. S. Chang, Phys. Fluids 26, 2140 (1983). 

[13] R. V. Shurygin and P. N. Yushmanov, Sov. J. Plasma. Phys. 12,306(1986). 

[14] S. P. Hirshman, D. J. Sigmar, and J. F. Clarke, Phys. Fluids 19, 656 (1976). 

[15] M. Porkolab, in "Fusion" (Ed. E.Teller). Vol. 1, Part B, 151 (1981). 

[16] T. H. Stix, "Theory of Plasma Waves", McGrawhill, New York, 1962. 

[17] W. M. Manheimer, in "Infrared and Millimeter Waves",Vol. 2 (Ed. K. J. Button). 
Academic Press, New York (1979). pages 299-352. 

188 



[18] J. Wesson, "Tokamaks", Clarendon Press, Oxford (1987); Chapter 5, Sections 
5.6-5.10. 

[19] J. Adam, Plasma Phys. and Contr. Fus. 29, 443 (1987). 

[20] W. M. Stacey, Jr.," Fusion", John Wiley and Sons, New York (1984); Also 
"Fusion Plasma Analysis", John Wiley and Sons, New York (1981). 

[21] N. A. Krall and A. W. Trivelpiece, "Principles of Plasma Physics", San Francisco 
Press, Inc., San Francisco (1986). 

[22] T. H. Stix, Nucl. Fusion 15, 737 (1975). 

[23] K. Miyamoto, "Plasma Physics for Nuclear Fusion", The MIT Press, Cambridge, 
Massachusetts (1976). 

[24] D. G. Swanson,"Plasma Waves", Academic Press, Inc., San Diego (1989). 

[25] T. M. Antonsen, Jr. and W. M. Mannheimer, Phys. Fluids 21, 2295 (1978). 

[26] M. Bambilla, Max-Planck Institute Report, IPP 5/20 (1988). 

[27] K. Steinmetz, in Applications of Radio-Frequency Power to Plasmas (Proc. 7th 
Topical Conf., Kissimmee, Florida). AIP (1987). Page 211. 

[28] F. F. Chen,"Plasma Physics and Controlled Fusion", Plenum Press, New York 
(1984). 

[29] I. Fidone, G. Granata, G. Ramponi, and R. L. Meyer, Phys. Fluids 21, 645 
(1978). 

[30] O. Eldridge, W. Namkung, and A. C. England, "Electron Cyclotron Heating in 
Tokamaks", Oak Ridge National Lab. Report, ORNL/TM-6052 (1978). 

[31] A. C. Riviere, in Applications of Radio-Frequency Power to Plasmas (Proc. 7th 
Topical Conf.,Kissimmee, Florida). AIP (1987), Page 1. 

[32] R. Balescu, Transport Processes in Plasmas, (Elsevier Science Publishers. B. V., 
Amsterdam, 1988). 

[33] E. A. Frieman, Phys. Fluids 13, 490 (1970). 

[34] R. D. Hazeltine, Plasma Phys. 15, 77 (1973). 

[35] A. Baiios, Jr., Plasma Phys. 1, 305 (1967). 

[36] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform 
Gases, 2nd ed. (Cambridge University Press, London, 1952). 

189 



[37] M. N. Rosenbluth, R. D. Hazeltine, and F. L. Hinton, Phys. Fluids 15, 116 
(1972). 

[38] P. H. Rutherford, Phys. Fluids 13, 482 (1970). 

[39] S. P. Hirshman and D. J. Sigmar, Phys. Fluids 19, 1532 (1976). 

[40] S. P. Hirshman and D. J. Sigmar, Phys. Fluids 20, 418 (1977). 

[41] Lyman Spitzer, Jr., Phys of Fully Ionized Gases, 2nd ed. (Interscience, New York, 
1962). 

[42] C. F. Kennel and F. Englemann, Phys. Fluids 9, 2377 (1966). 

[43] V. S. Chan and S. K. Wong, Phys. Fluids 30, 830 (1987). 

[44] K. W. Whang and G. J. Morales, Nucl. Fusion 23, 481 (1983). 

[45] D. F. Diichs, Z. Naturforsch 42 a, 1193 (1987). 

[46] K. Indireshkumar and W. M. Stacey, Jr., Bull. Am. Phys. Soc. 35, 1987 (1990). 
Paper 3S17. 

[47] V. P. Bhatnagar, J. G. Cordey, J. Jacquinot, and D. F. H. Start, Plasma Phys. 
Contr. Fusion 31, 333 (1989). 

[48] JET Team, Plasma Phys. Contr. Fusion 30, 1467 (1988). 

[49] C. S. Chang and R. D. Hazeltine, Nucl. Fusion 20, 1397 (1976). 

[50] C. S. Chang and R. D. Hazeltine, Phys. Fluids 25, 536 (1982). 

[51] R. D. Hazeltine and A. A. Ware, Phys. Fluids 19, 1163 (1976). 

[52] R. D. Hazeltine, A. A. Waxe, t>. J. Sigmar, S. P. Hirshman, J. E. McCune, et 
al., in Plasma Physics and Controlled Nuclear Fusion Research (International 
Atomic Energy Agency, Vienna, 1975), Vol. I, p589. 

[53] W. M. Stacey, Jr., "The Effect of Poloidal Electric Fields on Impurity Asymme­
tries and Transport in Tokamaks", Georgia Tech Report, GTFR-63 (1986). 

[54] W. M. Stacey, Jr. and D.J.Sigmar, Phys. Fluids 27, 2078 (1984). 

[55] W. M. Stacey, Jr., A. W. Bailey, D. J. Sigmar, and K. C. Shaing, Nucl. Fusion 
25, 463 (1985). 

[56] V. S. Chan, S. C. Chiu, and S. K. Wong, Nucl. Fusion 25, 697 (1985). 

[57] L. Chen, J. Vaclavik, and G. W. Hammett, Nucl. Fusion 28, 389 (1988). 

190 



[58] S. C. Chiu and V. S. Chan, Nucl. Fusion 29, 1907 (1989). 

C. S. Chang, G. W. Hammett, and R. J. Goldston, "Neoclassical Transport 
of Energetic Minority Tail Ions generated by Ion-Cyclotron Resonance Heating 
in Tokamak Geometry", Princeton Plasma Physics Lab. Report, PPPL-2662 
(1990). 

W. G. F. Core, Nucl. Fusion 29, 1101 (1989). 

B. Richards, G. Cima, R. L. Hickok, K. W. Gentle, W. L. Rowan et al., 30th 
Annual DPP-APS Meeting (Hollywood, Florida, 1988). Paper 6T10. 

R. J. LaHaye, C. P. Moeller, A. Funahashi, T. Yamamoto, K. Hoshino et al., 
Nucl. Fusion 21, 1425 (1981). 

V. V. Alikaev, A. A. Bagdasarov, E. L. Berezovsky, A. B. Berlizov, G. A. Bo-
brovskij, et al., Plasma Phys. and Contr .Nuclear Fus. Res.(IAEA Kyoto). A-II-4 
(1986). 

K. W. Gentle, B. Richards, D. L. Brower, M. E. Austin, G. Cima et al., in Contr. 
Fusion and Plasma Heating (Proc. 16th Euro. Conf., Venice, 1989). Vol. 13 B, 
Part 1, European Physical Society (1989). 

R. Prater, S. Ejima, R. W. Harvey, R. J. James, K. Matsuda et al., 14th Euro. 
Conf. on Contr. Fus. and Plasma Phys., Madrid (1987). Europhys. Conf. Ab­
stracts 11D, III-885. 

J. N. Talmadge, C. A. Storlie, D. T. Anderson, F. S. B. Anderson, R. P. Doerner 
et al., Nucl. Fusion 29, 1806 (1989). 

D. C. Robinson, M. W. Alcock, N. R. Ainsworth, B. Lloyd, and A. W. Morris, 
Proc. 3rd Joint Int. Syrap. on Heating in Toroidal Plasmas, Grenoble, 2 647 
(1982). 

R. L. Hickok, P. M. Schoch, X. Z. Yong, D. C. Singh, B. Richards et al., 30th 
Annual DPP-APS Meeting ( Hollywood, Florida, 1988). Paper 6T13. 

Project Staff, "DOUBLET III Annual Report", GA Technologies Report, GA-
A18468,UC-20(1986). 

D. Q. Hwang, G. Grotz, and J. C. Hosea, J. Vac. Sci. Technol. 20, 1273 (1983). 

TFR Group, Proc. 1st Joint Int.Symp.on Heating in Toroidal Plasmas, Grenoble, 
2,207(1978). 

[72] R. R. Weynants, V. P. Bhatnagar, T. Delvigne, P. Descomps, F.Durodie et al., 
AIP Conference Proc, No. 129, p 40-43 (1985). 

191 



[73] P. Nielsen, A. Gadd, C. Gowers, K. Hirsch, H. Salzman et al., 29th Annual 
DPP-APS Meeting (San Diego, California, 1987). Paper 5V14. 

[74] A. Gondhalekar, A. Cheetham, S. A. Cohen, W. Houlberg, T. T. C. Jones et.al., 
29th Annual DPP-APS Meeting (San Diego, California, 1987). Paper 5V9. 

[75] A. Cheetham, J. P. Christiansen, S. Conti, A. Gondhalekar, F. Hendriks et al., 
in Contr. Fus. and Plasma Heating, (Proc. 13th Euro. Conf., Schliersee, 1986). 
Vol. 10 C, Part I, European Physical Society (1986). 

[76] K. Steinmetz, H. Niedermeyer, J. M. Noterdaeme, F. Wesner, and F. Wagner, 
"Heating and Confinement in the Ion Cyclotron Range of Frequencies on the 
Divertor Tokamak ASDEX", Max Planck Institute Report, IPP HI/130 (1988). 

[77] K. Behringer, A. Boileau, F. Bombarda, W. B. Denn, W. Engelhardt et al., in 
Plasma Phys. and Contr. Nuclear Fusion Res. (IAEA, Kyoto). A-IV-1 (1986). 

[78] D. Stork, A. Boileau, F. Bombarda, D. J. Campbell, C. Challis et al., 14th 
Euro. Conf. on Contr. Fus. and Plasma Phys., Madrid (1987). Europhysics Conf. 
Abstracts 11D, 1-306. 

[79] N. C. Hawkes, M. Van Hellermann, A. Boileau, L. Horton, E. Kallne et al., 15th 
Euro. Conf. on Contr. Fus. and Plasma Phys., Dubrovnik (1988), Europhysics 
Conf. Abstracts 12B, III-1061. 

[80] K. P. Jaehnig, R. J. Fonck, R. B. Howell, and R.J.Knize, 30th Annual DPP-APS 
Meeting (Hollywood, Florida, 1988). Paper 8T1. 

[81] R. Kaita, R. J. Goldston, P. Beiersdorfer, D. L. Herndon, J. Hosea et al., Nucl. 
Fusion 23, 1089 (1983). 

[82] P. H. Rutherford, Phys. Fluids 13, 482 (1970). 

[83] A. A. Ware, Phys. Rev. Lett. 25, 916 (1970). 

[84] R. Giannella, N. C. Hawkes, L. Lauro Taroni, M. Mattioli, J. O'Rourke, and D. 
Pasini, Plasma Phys. Contr. Fusion 34, 687 (1992). 

[85] D. Pasini, R. Giannella, L. Lauro Taroni, M. Mattioli, B. Denne-Hinnov, et al., 
Plasma Phys. Contr. Fusion 34, 677 (1992). 

[86] G. Fussmann, A. R. Field, A. Kallenbach, K. Krieger, K. -H. Steuer, and the 
ASDEX -Team, Max Planck Institute Report, IPP III/180 (1991). 

[87] C. M. Greenfield, K. H. Burrell, J. C. Deboo, R. J. Groebner, G. L. Jackson, et 
al., Bull. Am. Phys. Soc. 36, 2475 (1991). 

[88] F. L. Hinton and M. N. Rosenbluth, Phys. Fluids 16, 836 (1973). 

192 



VITA 

K. Indireshkumar was born in Hassan, India on January 12, 1960. After obtaining 

his bachelor's and master's degrees in mechanical engineering from the Bangalore 

University and the Indian Institute of Science, India respectively, he entered the 

Georgia Institute of Technology to pursue his doctoral studies. After spending a 

year in the Mechanical Engineering Program at Georgia Tech, he joined the Fusion 

Research Center and began working with Prof. W. M. Stacey, Jr. as his thesis 

advisor. In 1987, he spent two months as a summer student trainee at the Princeton 

Plasma Physics Laboratory and he obtained another master's degree in mechanical 

engineering from Georgia Tech in 1991. 

193 


