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SUMMARY

Previous theoretical studies have shown that a poloidal potential variation of order ¢
(= r/R), which is likely to be produced during high power electron and ion cyclotron
wave heating (ECRH and IC.RH), can significantly enhance neoclassical transport in a
simple plasma model consisting of one ion species and electrons in the low collisionality
regime. The more realistic case of a plasma model with one or more impurity ion
species present, in which the effects of a poloidal potential variation are likely to be
more significant, has not been investigated previously. '

In this thesis, the effects of a poloidal electric field of order ¢ upon particle trans-
port a.nd current in a tokamak plasma with a signiﬁcant impurity content are studied
theoretically. A kinetic theory approach is used to obtain the neoclassicé.l transport
coefficients for a large aspect ratio (¢ < 1) tokamak in the low collisionality regime.

Calculations indicate that, in an impure plasma, a poloidal electric field can sig-

nificantly enhance (by a factor of ~ 3) ion diifusidn, while its effect on the electroh
transport is similar to that obtained in the previous studies for a simple plasma. The
magnitude of the ion transport enhancement is found to depend upon the impurity
content, impurity species, and the inlagnitude of the poloidal electric field.
Enhancement of the neoclassical conductivity is found to be similar to that ob-
tained in the previous studies; however, in the presence of a large impurity concen-

tration, results of the present work can sometimes differ from those in the pi'evicnls

studies by ~ 20%. A poloidal electric field causes a significant enhancement (a factor

of ~ 2) of the bootstrap current coefficients. However, the nature of density and

temperature profiles seem to be important in determining the change in the boot-
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stiap current. With parabolic profiles and carbon impurity, there is a decrease in
the bootstrap current in most cases. The bootstrap current increases only when the
potential on the outside is greater than that on the inside of the tokamak (as during
ICRH) and the density proﬁ.lé is more peaked than roughly the square root of the

temperature profile.
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CHAPTER 1

INTRODUCTION

Success of controlled fusion in a tokamak requires confining fuel jons, such as deu-
terium and tritium ions, under conditions which lead to substantial production of
thermonuclear power. This requires heating the plasma to temperatures in excess of
10 keV in order to achieve a significant fusion rate. Ohmic heating alone is probably
not sufficient to raise the temperature to the desired levels. Two additional methods
that are being actively pursued include neutral beam inj.ection heating {NBI) and
“radio-frequency” (RF) heating (included in this term are both radio-frequency and
microwave heating). Neutral beam heating has been used successfully, but its disad-
vantages include its size, complexity, and inefﬁciéncy at high energies in its present

form. RF-heating offers greater ﬂeﬁbility in depositing energy, decouples heating

- and fueling, and has the potential of being a continuous source of power. Two of the

several forms of wave heating methods that are being considered are the ion cyclotron
resonance heating (ICRH) and the electron cyclotron resonance heating (ECRH).

With the emergence of RF heat_ing as a domi.nant technique, it has become in-
creasingly important to undémtand the effect of wave heating on particle and energy
confinement. High power wave heating can significantly affect particle transport.
Study of transport, in addition to helping us uhderstand_ confinement, could lead to
novel methods of impurity control, fueling, and burn control.

One aspect of transport that has been studied well over the last few decades is the

collisional transport in the presence of the spatially varying magnetic field of a toka-

1

[Fi

i
i

T it P AR e e,



mak. This theory, known as neoclassical tré.nsport, was first developed. for a simple
plasma consisting of only one ion species and electrons (éee the review by Hinton and
Hazeltine [8]). Neoclassical transport is generally greater than the classical collisional
transport in a unifofm magnetic field. Connor [9] and Hirshman et al. [10] extended
the neoclassical transport formalismn to include the effect of impurities. It turns out
that the presence of an impurity, even in small amounts, greatly enhances plasma
transport.

The presence of an auxiliary heating mechanism can significantly influence neo-
classical transport. Cyclotron wave heating, for example, can cause an increase in the
trapping of the resonant particles (ions during ICRH and electrons during ECRH),
leading to a poloidally varying potential. The potential variation, 5(9), has been
shown to reach magnitudes of order ¢, i.e. e®(6)/T ~ (= r/R) during high power
wave heating [11]. Such a potential variation can also be caused by perpendicular
and parallel NBI [12]. | | |

A poloidally varying potential of order ¢ changes neoclassical transport signifi-
cantly. Chang [12] and Shurygin and Yushmanov [13] have studied the effect of a
poloidal electric field on neoclassical trénsport in a simple plasma. Chang concludes
that a poloidal electric field can cause a significant (a factor of 2 or more) enhance-
ment of the neoclassical transport coefficients. A similar conclusion has also been
reached by Shurygin and Yushmanov [13]. -. _

The purpose of the prese:nf work is to study the effect of a poloidal potential
variation of order € upon neoclassical transport in_a tokamak plasma with a significant
impurity content. We will be primarily concerned with calculation of the particle
transport and plasma current in the low collisionalﬁy, or banana, regime. In an
impure pl.asma, the presence of a poloidal electric ﬁeld affects the collisional coupling
between the main ions and the i_mpurii;y ions in addition to affecting the electron-

ion collisional coupling. The result of such a modification is an enhancement (or
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reduction) of the ion transport as well as plasma current. The thesis is organized as
follows.

In Chapter II, we first review briefly the wave heating theory. We then derive a
form of the drift-kinetic equation commonly employed in studying neoclassical trans-
port. We end the chapter with a brief consideration of collision operators a.nd.the
quasilinear theory. _

Chapter III is concerned mainly with a review of the theoretical literature on the
effect of wave heating on particle transport. We begin by studying the production of

electric fields during wave heating. We then examine the effect of a significant poloidal

electric field, likely to be produced during wave heating, on particle trapping. The

effect of a poloidal electric field on transport is then examined. Finally, we end the
chapter with a brief review of wave-induced transport. '

In Chapter IV, t.he experimental literature on the effect of wave héa.ting on trans-
port is reviewed. Our emphasis here is on the experimental literature containing
evidence of changes in electron and impurity transport during wave heating. We also
consider such relai;ed effects as change in the plasma potential and plasma rotation

that may have a bearing on particle transport.

We begin solving the drift-kinetic equation in Chapter V. The solution method-

ology closely parallels the analytical technique used by Connor [9] and Hirshman et
al. [14] in the absence of a significant poloidal electric field. The objective of this chap-
ter is to derive a closed set of equations for the so called restoring coefficients {14],
which now include the new effects of a poloidal potential variation. We end the chap-
ter by deriving an expression for the neoclassical factor f;q which containé-the effect
of the poloidal electric field. -

- In Chapter VI, the rgstoring _coefﬁcients derived in Chapter V are used to obtain
expressions for the diffusive electron and ion fluxes as well as the convective Ware

pinch effect, which now contain the effect of the poloidal electric field. Numerical
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results are presented at the end of the chapter showing the variation of the transport

coeﬂicienfs as a function of the magnitude of the potential variation, impurity content,
and impurity species.

In Chapter VII, we consider modifications to the plasma current due to the
poloidal electric field in an impure plasma. We obtain expressions for the neoclassical
conductivity and bootstrap current coeﬂiciehts. Numerical results are presented on
the variation of the translport coefficients with the potential variation as well as with
the impurity concentration. We conclude the chapter with a consideration of the
effect of density/temperature profiles on bootstrap current enhancement (reduction).

Finally;-in Chapter VIII, we give a brief summary of the important results obtained

in this work and a few suggestions for future work in this area.
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CHAPTER IT

BACKGROUND

The purpose of this chapter is to introduce some background material relevant to the
study of wave heating and transport in tokamak plasmas. We will be making use of
much of the material in this chapter in the subsequent chapters. We first intfoduce _
briefly the fundamentals of ion and électron cyclotron resonance heating (ICRH and
ECRH respectively). Much of the material on wave heating discussed here is based
on Refs. {15-30]. We then derive a form of the drift kinetic equation commonly
employed ili transport studies. We also discuss some of the collision operators used

for calculating the collisional transport in tokamaks. Finally, we present a brief

discussion of the quasilinear operator commonly employed in studying wave heating

of fusion plasmas.

‘2.1 ICRH and ECRH

2.1.1 General Theory

Radiofrequency wave heating transfers energy from a remote source to the plasma
by means of electromagnetic waves. It consists mainly of a rf-source, a transmission
line, and a launch structure to ‘ inject ' the wave into the plasma. As an example, an
ECRH system is schematically represented in Fig. 2.1. A list of sources, transmission

lines and launch structures are shown along with other rf-heating parameters in Table

- 2.1
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Figure 2.1: A Schematic Representation of RF-Heating (ECRH) System.
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Table 2.1: Characteristics of RF-Heating (ICRH and ECRH) Systems.

Nature Characteristic | Density Direction of | Energy Trans- | Launch Comments
(type) frequency (f) | limit incident source mission | Structure
energy | line

|ICRE | 50-150 MHz [na? > =T, ‘Tubes (Triode | Coaxial | Coils (ridged
(Fast with and tetrode) | Lines | wave guides
wave) ' may be possible)
Minority | f; w= From inside
Heating or outside

Il Second | 2; w = 20; From inside
harmonic or outside
heating :
ECRH > 50 GHz Gyrotrons Wave | Wave guide High power |

FEL(future) | guide | or Horn FEL under
development

O-mode | §. IIZ < Q7 From inside Good spatial

u heating . or outside deposition

control

X-mode | f. M2 <202 | From inside Poor spatial ||
heating deposition H
(w=1,) control
X-mode | 2f, NZ < 20? | From inside Good spatial
heating | : or outside deposition
{w=24,) control
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:_ r Once the wave is coupled to the plasnia, it is required to propagate to the localized s
Eﬁ absorption zone with negligible loss. The requirements of accessibility of the absorp- *
% tion zone, its location and the process of absorption are matters of plasma physics.

B RCHCRL R

Fundamental to the understa.nding of proﬁaga.tion and a.bsor_pl;ion are the dispersion

s
i

relations discussed briefly below.

Dispersion relations

Dispersion relations for a plasma determine the relation between thé propagation |
vector k and the frequency w for which waves propagate in the plasma. The first
step in developing the dispersion relations for a magnetized plasma is to derive an
'expression for the dielectric tensor K

We have the electric displacement D = ¢E + P, where P is the polarization_
vector, E is the electric field and ¢, is the vacuum dielectric constant. Assuming a
perturbation of the type ezpi(k.r — wt), the polasization current j = & = —iwP.

Hence D=E + Lj=«K-E,or
D=¢E+ =Y mav: = ¢K -E @)
k

Using the above relations in the Maxwell’s equations

JB
V'XE '- _‘_Bt—éiE oD
VxH = _|+-eo-5—t-=-§t-—

we get [23],
o "Nx(NxE)+K-E=0

where N = kc/w. Here, ¢ is the speed of light in vacuum. The above equation with

the expression for the dielectric tensor gives the dispersion relation.

When the wave propagates through the plasma to the absorption zone, if its phase

velocity vpn 3> Vs, where vy ; is the thermal velocity of species j, then the procedure




for developing the dispersion relation is simplified considerably. We can then neglect
the themia.l velocity of the pé;rticles and, in Eq. 2.1, v; is obtained using the Lorentz

equation (23], giving us the dispersion relation,
K Nt —[(K. - N{XK. + Ky) - KIINT + K| [(K. - N§)* - K] =0 (2.2)

where N, = K c/w; Ny = K)efw and

K = 1- Z_._ﬂ_i____

- = (w? - QF)
. n?
Ky = 1-3=
12

20,
K = -S—kF
X ;(uﬁz - Qi
where I13 = ne?/ecoms ; Qe = —exBo/my. Here, ny, my, e stand for the number

density, mass, and charge of species k, and By is the magnetic field. II; and 2, are
the plasma frequency and the cyclotroﬁ frequency respectively for the species k.
Normally, in rf-heating experiments, the N spectrum is determined by the an-
tenna and w is determined by the generator. Hence, Eq. 2.2 is an equation for N_.
Solutions N, =0 and N — oo characterize cold plasma cut-off and resonance re-
spectively. While the cold plasma model is satisfactory for predicting the propagation
characteristics and accessibility of the absorption zone, it breaks down close to a res-
.ona.nce._ Also, it fails to predict resonances due to finite temperature effects. This
is the case, for example, for ordinary wave heating with ECRH, for which the cold
plasma model predicts no resonance. To de.veldp the hot plasma dispersion relation,

vi in Eq. 2.1 is replaced by

<V >= f f / Vi flkdv;dv,dv,

An expression for the perturbed distribution function fy; is obtained from the lin-

earized Vlasov equation. The procedure and the results are rather cambersome and

will not be reproduced here. Detailed derivation of the hot plasma dielectric tensor

9




appears in Refs. [16,21,24]. Power absorbed per unit volume during wave heating is

given by

P.=;(j-E),‘=;(nq<v>E)k

where the overbar signifies time average. Using the warm plasma dielectric tensor

[16,21,24], this expression reduces to

iﬁou!

P=-"TE (K'-1)-E+E (K-1) § (2.3)

where » denotes complex corjugate and I is the unit dyad. Alternatively, power
absorbed may be obtained using a single particle picture [22] or the WKB theory
ma;y‘ be used to obtain the a.bsorptioﬁ coefficient as is commonly done in the case
of ECRH (17,25]. Power absorption in specific heating methods is discussed in the
following paragraphs.

2.1.2 ICRH

Heating the plasma in tokamaks near the ion cyclotron frequency may be done us-
ing the two-ion mode (minority heating and mode conversion), the second harmenic
scheme or with the Ion-Bernstein waves (IBW). The two ion mode and the second

harmonic schemes employ the fast Alféen wave. The slow Alfven wave is not suit-

able for heating tokamak plasmas because it does not propagate above the cyclotron |

frequency. (Fast and slow Alfven waves are low frequency {(w ~ ;) electromagnetic

waves. The fast wave has a larger phase velocity than the slow'wave). As typical
examples, we will consider two-ion (minority heating) and second .harmonic heating.
One or both of these schemes are being used in the present generation machines like
JET, ASDEX and TFTR.

The dispersion relation for hydromagnetic (fa.st' and slow) waves can be obtained

from Eq. 2.2 using the low frequency (| w |< Q.), high conductivity (| E, ||

E, |;| Ey | where E, is the electric field in the direction of staﬁc magnetic field)
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approximation. The resulting expression [22] is,

Al - A)

2 2
Ar+,a = A - N||,a + 4 — Nlia

(2.4)
where N, , and N, are Alfven refractive indices defined by

Bz
2 _ a2
NJ.,a - NJ. (Mnimicz)

2 2 B?
and A = Tﬁ’[-'!-?«'ﬂ? The electric field polarization is given by

E-TE,-iE, B N,

(2.5)

The condition for fast wave propagation is obtained [15,22] by setting ky , = 2%p/27R =

p/Rand k  , = 279/2a = mj / c;in Eq. 2.4. Here, k|, and k_ ., are the natural paira.l]el

a_nd perpendicular wave nunibuers, P, ¢ are integers, R and a are the majoi and mindr
radii of the tokamak. By setting p = 0 and ¢ = 1, we get the marginal condition for

propagatidn as

2502 -\ 2 ,
nat> 5 _51x 107 (E) (22
Lo, w w mg

Here, my is the mass of the hydrogen ion. This equation implies t_ha.i fast wave

propagation requires relatively large and dense devices, especially if w < Q;.

Minority Héating_ Scheme

Héating a single ion species plasma at the fundamental ion cyélotron frequency is
‘virtually impossible because the right handed component of the electric field, £, is
extremely small in magnitude. In fact, if we put Ny, ~ 0 and w = §; in Eq. 2.5,
we find E+ =~ 0. The inclusion of hot plasma effects gives a small but finite value
for E*. Presence of a second ion species even in concentrations as small as < 5%

improves the scenario dramatically. If we have a small percentage of hydrogen ions

11




in a predominantly deuterium plasma, we would find that E+/E~ = 1/3 for Ny, =0
by setting w = Qg in Eq. 2.5. This procedure neglects the contribution of hydro- CE

3
3 ' gen ions and hot plasma effects. An exact calculation should take these effects into ks

k. consideration [19,22).

Power absorbed by cyclotron damping may be computed. using Eq. 2.3 or using
the single particle approach as done by Stix [22]. The result of the second approach
is | :
niges(r)e?| E* 'R

<P>= m,-Q;r| sin § I _

(2.6)

where r, R and ¢ are defined in Fig. 21. < P > is the power absorbed per unit

volume at the location r. | E* | is obtained from Eq. 2.6 by putti'ng Q = Qi minority
of, more accurately, from the wave equation using the hot plasma dielectric tensor.
In addition to cyclotron daniping, power may be absorbed by the electrons moving
along the magnetic field lines via Landau and transit-time damping. Particles which -
absorb power by these collisionless processes satisfy the resonance condition w -
kv = 0. Detailed discussion of these phenomena appear in Refs. 16,21, 22, 24,
28). These damping mechanisms are active in a plasma with an electron distribution
function having a negative slope in the neighborhood of the wave phase velocity.
“In the case of Landau damping, the force on the particles is g&; for transit-time
damping, it is —aVB,, where & = 1/ 2(mvi /B) is the magnetic moment and B, is |
- the wave magnetic field. Both mecha.n_isms are active in fast wave damping, but the

two effects are coherent and cross terms have to be included. The power absorbed

~ can be computed wsing Eq. 2.3. It turns out that the transit-time terms cancel with
the cross-terms leaving only the Landau damping term [22]. The result is |

wB.N2 w 9 w \? | |
==L * |E - .
P 16\/"? k"ﬂgh,é] ¥ | “p ku‘!!;me (2 7)

where 3, = (2pgh,Te)/ B? and v}, , = 2T./m,, T, being the electron temperature.

12




Second Harmonic Heating

Second harmonic heating is a finite Larmor radius effect. Indeed, when w = 29,
the sign of E..V changes twice during one orbit. If the electric field is spatially
hbmogeneous, then the energy gained during one half of gyration is lost during the
other half. If the wave has a finite perpendicular wavelength, the cancellation is
.incom'plete and the particle gains energy. Power absorption during second haﬁnonic

heating is given by [26)],

Mires(r)ed] B* I°R (i}
m,'Q,-rl sind l ¢l

Here n, is to be obtained from the dispersion relation and E* is obtained from

< P>»= - (2.8)

the wave equation using the hot plasma dielect_ric tensor. If we use Eq. 2.5, we get
E* ~| E,|.

' 2.1.3 ECRH

Radiofrequency heating near the electron cyclotron frequency can be done by launch-
ing either an ordinary wave with the electric field parallel to the magnetic field (O-
mode heating) or an extraordinary wave with the electric field perpendicular to the
magnetic field (X-mode heating). One or both of these methods have been used suc-
cessfully to heat the plasma in several tokamaks l.{ke ISX-B, TFR, DOUBLET-III D,
and T-10 [31]. ECRH is considerably simpler than all other rf-heating methods in

all aspects except for the availability of high power millimeter wave sources. With

the anticipated development of free electron lasers or high power gyrotrons, it could
become a major heating method.

The cold plasma dispersion relations for the O- é.nd X-modes can be obtained from
Eq. 2.2. For ptopagation perpéndicular to the magnetic field, in the high frequency
limit (w > Q, > Q) we obtain, for the O-mode,

w? — 112

2

ki = (2.9)
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and, for the X-mode,
[(H2 w?)? — Q2u?)
cAw? — 117 - 7]

Power absorption during ECRH can be obtained from Eq. 2.3 or, alternatively, wave

K =

{(2.10)

damping can be calculated along the ray trajectories using the WKB theory.

Ordinary Wave Heating

An ordinary wave has its electric field parallel to the static magnetic field. From
Eq. 2.9, it is clear that the O-mode has ho resonance in the cold plasma limit. How-
ever, thé inclusion of hot ;ilasma._-effects introduces resohances at the cyclotron har-
monics. Physically, this-is because the Lorentz force on the electron due to its finite
| parallel velocity and the wave magnetic field can be split into two components; the
left circularly polarized and the right circularly polarized components. It is the right
“handed component of the force that accelerates the electrons.
From Eq. 2.9, the density 11m1t for the O-mode propa.ga.tlon can be obtained by

puttmg k., =0 (cut-off condltlon) as
M <Q? or n,< .eng;'irnl=

Furthermore, the wave can be launched from the outside of the tokamak. Power
absorption during O-mode heating has been calculated using Eq. 2.3 by Fidone et
al. [29). In the nonrelativistic limit, power absorbed per unit volume is

2
Epl/ X'ut;,, N" (2

P=
2\/— 2N||C N2+ "tjﬁg

(2.11)

where X = IIZ/w?. Power absorption increases for N, ~o0.
Alternatively, .the absorption coefficient along a ray trajectory can be calculated
[17,28,30] and the result is
Ao=1-Ty
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where Ay is the absorption coefficient and T is the transmission coefficient [30).
To = exp(—2770) (2.12)
where

_Rwa® 1-a3* T,
T 4c [1+NE(1-a?)]me?

and a = [13/u2.

Extraordinary Wave Heating

An extraordinary wave has its electric field perpendicular to the static magnetic field.

The electric field polarization calculated using the cold plasma theory is given by
E~ = E, —iE, = —iE, [u]
- K,

Asw = Q,, E- — 0. Hence, there is no electron heating unless we introduce warm

. plasma effects. Hot plasma theory predicts resonances at the cyclotron harmonics. |

' The density limit for X-wave heating can be obtained from Eq. 2.10 by putting

k. = 0. This gives

% < 202 or n, < 2¢B%*/m,

Hence, X-mode heating has a higher density limit than O-mode heating. However, X-

- mode heating at the fundamental frequency can be done only by lannching the wave

from the inside of the tokamak bebé.use the wave encounters a low density cut-off
before resonance if launched from the outside. On the othér hand, X-mode heating
at the second harmonic can be done by launching the wave from the outside. Power
absorption at the cyclotron fundamental has been calculated by Fidone et al. [29]. In

the nonrelativistic limit, the power absorption per unit volume is

Py = (ﬂ——) | E, ? (2.13)
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From this equation, it is clear that as Ny — 0, power absorption becomes negligible.

Power absorption can also be written down in terms of an absorption coefficient [30],
Ax1=1-Tx1 | (2.14)

where
Tx1 = exp(—=279xy)

RuN? T.
_ Wl o L 42)3/2 2_2( e)
fx1 = == (2~ o) (1 + o) —

For the X-mode second harmonic heating, absorption is given by [17)

Axa=1-Tx2 - (2.15)

. Txa = exp(—277x2)

_ Rwe? (3-20%\*(41-0?)?-1\""T.
MX2= 3 " 402 3 — 4o me?

2.2 Drift Kinetic Equation

Microscopic description of a thermonuclear plasma centers around the plasma kinetic

equation

df _
= =c() (2.16)

where the left hand side is the substantial derivative of the particle distribution_func—
tion along the particle trajectory and the right hand side is the collision operator.
The collision operator C(f) describes scattering of particles of the species under con-
sideration (test particles) due to collisions with particles of the same species as well
as other species (field partiv'%:les). Eq. 2.16 has the form of a conservation equation
in the phase space, and it can be derived from the Liouville equation for the many

particle distribution function [21,32].
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The plasma kinetic equation is quite cdmplicated and, hence, a simplified form
of the kinetic equation, known as the drift-kinetic equation (DKE) is commonly em-

ployed in collisional transport studies. The DKE may be thought of as an equation

for describing the motion of the guiding centers of the charged particles in the pres- |

ence of electromagnetic fields and collisional scattering. DKEs for many applications
have been derived by several authors [32,8,33,34]. We shall be pa{rticularly concerned
with a form of the dﬁft-kinetic equation relevant to tokamak transport applications.
In the following sections, we will derive the drift-kinetic equation. The derivation

follows arguments similar to those found in Refs. [8,33,34).

2.2.1 Basic Equations

We write the left hand side of Eq. 2.16 in terms of the time coordinate ¢, space
coordinates x, and the velocity space variables u, F, and £. Here p= (v3/2B) is the
magnetic moment per unit mass, £ = (v*/2 4 e®/m) is the energy of a particle per

unit mass, and £ is the gyrophase of the particle. Referring to Fig. 2.2,

v-é;
= —tap-d [ Y2
'3 an ( '6'3)

With this, Eq. 2.16 can be written as

avvr+ (% )+0‘?§( )+§£(“f)=cm (2.7)

We note here that an equation similar to 2.17 has been derived rigorously from the
Liouville equation t;y Balescu [32, Vol.1, chap. 2. Eq.' 2.17 forms the starting point
in our analysis. We now derive expressions for the time derivatives of x, E, and §.
The equation of motion for a charged particl‘e in an electromagnetic field is

= St = E+vxB) (2.18)

Referring to Fig. 2.2, we wnte the follomng useful expressions
v = (2uB)/*i, = (2uB)"*(8;cos — é3sin¢) (2.19)

17

S AR

RIS SN NI
tTonT. SRS I LD s

S W W

T S ";‘..__:::F\_"P




W,.u....._w.....a T e e o g S T L LI T T et e i ) . .

M <

i
«

tes

1mna

ding Center Coord

N
ui

1
r

18

Figure 2.2: G

i ST e e by ar LA e A T o i e = T = = 7 T —r—————r——.
T T T e e L T IR T A T - — T
T TR Y ke s R e e b g e e A : B TR P SL P TP i i




TR

YT R ot

o e

L)

P R Y I i b S DGR RETER

Exi

Also

p=nxfi, =écosf+ ézsiné

where # is the unit vector along the magnetic field line. With the help of these
identities, Eq. 2.18 can be written as

vy, iy

€ . . _ |
4 a = ;'R-E - Q'UJ_ﬂ (2.20)

where 2 = eB/m is the cyclotron frequency of the charged particle. (In this section,
the variables ¢ and m denote the charge and mass of the species J.) By taking the

- dot product of Eq. 2.20 with v, v, and 5, we obtain the following expressions for

the time derivatives of i, E, and & (see Appendix A for details)

where the electric field is given by E = -V& - -— A with A being the vector potentlal

Using the expressions 2.21-2.23, Eq. 2.17 can be rewritten as

%f +yf-Vf+ov (é;co8f—ésing)-Vf

+3f pdB vy o dh e o ]+ of (3@ @)]

u| Bat "B @t B 3E |m\a "V m
+¥ a e, +”"ﬁ-—-i,a-E]=C(f) (2.24)

05 @ v A mu

2.2.2 Ordering

Our next task is to introduce certain simplifying assumptions to obtain a set _of
ordering parameter.s which can then be used to obtain a hierarchy of eql_latidns from
Eq. 2.24. It turns out that it is simpler to solve the simplified équa.tions obtained
after ordering than it is to solve the original equation (Eq. 2.24).
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dE e (09 8A '
" m (E"""&T) | (223)
K Qo2 M, 9 e, |

5 = Wte Gl G- e (2.23)
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We note that the choice of the assumptions (or ordering parameters) depends upon
the problem we want to solve. In the present case, we are iliterested .in the solution
of the_kinetic_ equa_\tion for a tokamak plasma in the .presence of large poloidal electric
fields in the low collisionality regime. It should be pointed out that the neoclassical
transport theory depends crucially on the presence of drifts caused by the magnetic
field curvature (VB, curvature, and, in the present case, Eq x B drifts). Hence, the
version of the drift kinetic equation to be derived would have to explicitly involve
these drifts in addition to the collisional scattering phenomena. Qur ordering scheme
will indeed be influenced by these considerations. We will adopt most of the ordering
assumptions of the standard neoclassical theory [8]. We will relax these assumptions

only when the present Iproblem requires such changes to be made.

‘We begin by defining the scale length for changes in such macroscopic parameters

as pressure, temperature, etc. by

-1
I= (‘_72)
P
where p could be any macroscopic parameter. At this stage, we do not make any
assumption regarding the aspect ratio (i.e. R/r) of the device. Hence, [ is a fairly

general gradient scale length.

- We define the transit frequency as
W= = (2.25)

Defining the gyroradius as p = v4/Q = (mv,/eB), we have the basic ordering
assumption as _
Py o
d= Ty <1 _ - (2.26)

(It turns out that the more relevant parameter is 8y = (1/1)(mmvy /eBo) = {B/B,)b.
In a low 8 plasma, B =~ B, *» B,. Hence §, » 6. We shall adopt the stronger
constraint 8, < 1. We will, however, continue to use the symbol § to denote § as well

as 69.)
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We further assume that the macroscopic quantities like density, temperature, etc.

vary slowly. Specifically, we assume, consistent with Hinton and Hazeltine [8], that

8
5"~ O(8%w) _ (2.27)

Also, we assume the “drift ordering” (8], i.e.,

E
By,

~ O(8) (2.28)

which merely states that the drift velocities (including the bulk rotation velocity) are
small compared with the typical thermal velocity. This is expected to be the case for
an ohmically heated plasma as well as for a plasma héated by perpendicular NBI and
electromagnetic waves.

The effect of ohmically induced electric field Ej is expected to be significant only
for the electrons due to their smaller mass. Hinton and Hazeltine [8] use an ordering
scheme (“maximal ordering”) according to which Ey ~ O(0s.)Erun where E,y, ~

MeUsh e Jet.. Here 7, is the electron-ion collision frequency given by [8],

T = 3 msv?h,e
¢ 167 Z%4n;In A

In the ion equation, it turns out that By ~ O(6},)E,., [8]. Hence, Ej is significant
only in the eleciron equation. We, however, retain Ey in the electron as well as ion
equation in order to keep the formﬁsm quite general, i.e. we a.sa'ume, for ordering
purposes, : |
Ey~0 ( %&) (2.29)
We assume initiaﬂy that v ~ v, ~ O(vy,) and the transit frequency w ~ O( v), where
v is the collision frequency. Later, when we specialize for the banana regime, we will
distinguish between the collision and transit frequencies. With the above choice

of assumptions and ordering parameters, we order the various terms in Eq 2.24 as

follows.
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we first note that the operator v- V ~ Qv /1) ~ O(w).
~ O(Fw)
~ Ow)
~ O(w)
6 (udB) 2
( 3 ) O(6w)
) ~ 0w
8 on
—_— (’U_”leh . _étﬁ) ~ o(§2w)

~ Ow)

Using the drift ordering assumption, i.e., (E/B) ~ O(dvy),

a (e

g (e d® 2

- Using our ordering assumption for £; = —(8A/8t) according to Eq. 2.29,

g fe OBA
(;V . —ét—) ~ 0(6w)

where we have used 1/7 = v ~ O(w).

Qa% ~ b(n)
8 (. dé
b_s 83°-d—:) ~ O(UJ)
gg (—?J'l_p%?) ~ Ow)
8 (e . .\
| C(f) ~ Ow)
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With this, we now expand the distribu_tion function f in terms of the basic ordering

pa.r@meter 6. |
f=h+h | . (2.30)

where f; ~ O(fof). Using the above expression in Eq. 2.24, we can obtain a.-hiera.rchy

of equationé by collecting terms of the same order. To facilitate ordering, we shall

divide all terms in Eq. 2.24 by Q.

Order §°

To the lowest order in §, i.e. 5, we have

8fo - |
Q— . =0 (2.31)
This immediately leads to the conclusion that fp is independent of the gyrophase.
Hence

fo # fo(€)

Order §

To the order 4, we have

v"ﬁ- Vfo+ U;(ézCOBg —éaSiIl{) . Vfg

8fo 'p. dB 9 dn e af
+3# [ —v, + E-v ] 6§Q C(fo) (2.32)

Bd B * d mB
where, in the substantial derivatives, we have retained only the convective part ac-

cording to our ordering scheme. We have also used the property that fo is gyrophase

- independent in obtaining the above equation.

Gyro-averaging Eq. 2.32, we have

v"n Vfo + ':f (3;) = C(fo) (2.33)

where F is the gyro-average of the quantity F defined by
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Also,

&~ "Ba B _
While gyro-averaging, quantities which do not explicitly depend upon the gyrophase
are treated as constants [35]. In the presence of a wave heating mechanism, some
quantities like E; may not be independent of the gyrophase thrdughout the plasma

volume. We, however, treat these quantities as gyrophase independent for the follow-

ing reasons.

¢ In many wave heating scenarios, pa.rticlés of only one species participate in
the energy absorption process. For instance, during ECRH .only eléctrons take
part in the energy absorption process, while during ICRH, ions are the main
participants. (We note that in some instances, electrons can also participate
via Landau damping and transit time magnetic pumping). Furthermore, in
many wave heating mechanisms, such as ICRH {minority heating), only a small

fraction of particles participate in wave heating.

¢ In most wave heating .scena.rios, the launched wave has ) # 0. This means that
only a fraction of the particles satisfying the resonance condition w — kywm = 0
participate in wave heating. Furthermore, i;he resonance zone where EJ_ may
not be zero is confined to a thin region across a vertical pla.ne.- Hence, for
the bulk of the particles over most of the plasma volume, E; = 0 is a good

assumption.
Carrying out the gyro-averaging process (see Appéndix A), we find that

=0

S

to the order 8. Hence, to the order 6, we have
uift - V fo = C{fo) (2.34)
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Mu]tiplying Eq. 2.34 by In f, and integrating over the velocity space, we have
f wh - Violn fody = / C(fo) In fod®v C (2.39)

Specializing for a tokamak, and using the Jacobian to transform to g, E, and £ coor-

dinates, we get

(B')f afol n fodudEd§ = 20 ( ;)% f (faln fo = fo)dpdEdE (2.36)

where ¢ is the sign of the parallel velocity (¢ = ). Transforming back to the velocity

coordinates, we have
B.V f Ui goln fo - fo)d = / In foC(fo)d* (2.37)
Carrying out the flux surface average, i.e., for a tokamak

| <F>= f:’ (2—‘:-) (1+ ecos8)ds

" and noting that < B-VF >= 0, we get

([mncimav) =0 (238)

Here we note that C{ fo) = C(fj0) = T+ C(fj0, [r0). If the collision operator C( f;o, fro)

satisfies the H-theorem, we know that [36],

/lnfgo(fg)tﬁt <0 . | (2.39)

Thus, in general, Eq. 2.38 can only be satisfied if
Jf Boln foC(fo)d% = 0

which in turn is satisfied if C(fo) = 0 [8,32). The solution of this equation is the

Maxwellian :
m \3/2 m?
nen(ar) oo (-5F) (240
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Using this equation in the zeroth order kinetic equation, Eq. 2.34, we have, for a

tokamak, o
wBs 8fo _ o
rB 00

Usihg the expression for fy, and noting that the energy of a particle is E* = (v?/2) +
(e®(8) /m), where ®(8) is the poloidally varying component of the potential, we obtain

10n _ ¢ 8%(6)
nd8 T 86
or i
n=<n>exp (— ?((f))) (2.41)

Here we assume the temperature to be a function of the flux surface only. Hence

fo=0 (507 " exp (-%) (249) |

where ng =< n >.

2.2.3 Drift-Kinetic Equation

"Letting f1 = /1 + f1, where J; is the gyrophase independent part of f; and f; is the |

gyrophase dependent part, and noting that fo is independent of y, Eq. 2.32 reduces

to
v (62c08€ — &38in8) - VS = _%.21
or
f=—Zlesing +&acos8)- Vo= —25-Vfo Y
Order §?

To the order §2, Eq. 2.24 can be written as

Y-V +v(ézco8 —&sin) -V +

8f (du\  8fo (dE\ 8F of (d€ _ |
o (@) 58 (7)o (3 -0)=ow  ew
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where the derivatives of the velocity space variables are given by Egs.

Using f = i + fi, we have

U vh +vJ_(€2COS£—€33.Ill£) Vf1+ 8f1 (dt)

Ou
+%§ (E) %?n+%?( )+v,,ﬁ-v72
Fo(escong — égsing) - V7 + 2 (““) c(h)
We note that '
dh _0h

_ afi 8f (d dfi af
a =tV VAT, (dt)*aE( )+3£( )

Dropping terms of the order &% and higher, we obtain

dfi_ o7, O () Oho . OF (d
@i (7)o (o)

or

ofi ofi (d o\ _dh _0hg
v-Vf t . (—)+ 35( Q)— pr 359.

- Using the above equatlon in Eq. 2.45,

ﬁ-na_fb,af“( ) a‘f29+'v||n VT

dt B¢ ¢

+v,{ézco8& — é38inf) - Vfl + aafl (—) C(f)

Gyro-averaging the above equation, and noting that

‘9f1 WE__U
[T

due to the single valuedness of the dlstnbution function, we have

ij " TRy
—dz--'— ?1'-'1@_- Tst—-a—é-+v"n-v._f;— C(fl)

~ where we have used the result % = 0 to the order 62. Now we turn to the evaluation

" of the first term in the above equation. From Eq. 2.43, we have

Fo Ui,
Hh= Q,1-'J_V'fo
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Denoting v, 5/ = Fand Vf, = h, we write the Eq. 2.47 as

ey BA 8o

m " Bt 0 +oyf-Vh= c(hy+ch) (2.48}

d -
—5(7-b) -~

~ Carrying out the gyro-average of the first term in the above equation (see Appendix A

for detai]s), we obtain
3f —_ —_—
(vp + 27"11) Vfo+ -—E"U“ 3E + oy fe - Vf1 C_(fl) + C{fQ) (2.49)
where v is the perpendicular guiding center drift velocity, given by

vp= EX 5 L ﬁ x [uVB +B(# - V)7] (2.50)

and ¥ is the parallel guiding center velocity, given by
LR ,
oy = 3=l (V x ) | (2.51)

As all the quantities in the collision operator except for f; are independeni; of the
gyrophase, C(f7) =0. Noting that # - Vfo = 0, we obtain the drift kinetic equation
. )

yh-Vi+vp -V + —Euvn =C(fi) (2.52)

Eq. 2.52 forms the basis of the neoclassical tra.nsport theory Before proceeding with
the solution of the drift kinetic equation, we shall examine a few collision operators

commonly employed in transport calculations.

2.3 Collision :Operators

We have so far not discussed the nature of the collision operator C(f) appearing in
the Eq. 2.16. The collision operator is usually the Fokker-Planck operator (FPO)
or a simplified version of it. Thus, we b'egin by discussing the FPO. We shall then

~discuss simplified versions of the FPO commonly employed in the transport theory.
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& 2.3.1 Fokker-Planck Collision Term !
: | | -k
B The Fokker Planck collision operator is a very general collision term sunitable for de-
5 scribing the evolution of the particle distribution function in a thermonuclear plasma.
. _
1. It can be used when small angle scatterings outnumber large angle scatterings.
If G(vg, Av)d®y, is the probability that a particle with an initial velocity vg gets
Q scattered by Av = vi ~ vg into a volume d*v, around vy in unit time, then the rate
of change of the distribution function f1(vy1) at vy,
(?%m) = —[particles lost] + [particles gained]
5 ¢ :
or,
! 8fi(v ' :
1 () = - [ hwastu, ave@n) + [ Aol aven (259
A £ .
Using Taylor expansion,

f1(Vo)G(Vo,AV) = filv1)G(v1, AV} + (v~ v ).-gg'h(vl)G(VhA")

2t — ), {16

2 f )Jai By — fi{v1)G(vy, AV) +

Putting this in Eq. 2.53,

(%)c = '_-_‘9- -fiv1) [(A)G(vs, Av)a(a0) +

;ai a?;, fi(v) f (Av;}(Av;)G(v1, Av)d*(Av)
18 0

__-[fl(vl) Avl) ]+ 26 8’0 [fl Vl)(A’U;)(A'UJ) ]

'

All the higher order terms have been omitted. Here, the Fokker-Planck coefficients
defined by
G, j (Av.)G(vl,Av)da(Av)

B0)(B%),, = [(Au)(Av)G(v1, Av)E*(Av)
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are called the dynamical friction coefficient and the velocity space diffusion tensor
respeciively. For a thermonuclear plasma, these coefficients can be calculated by
considering Coulomb collisions [21], leading to

2 B  Oha 1 8 . P |
(3t),,._z ["av.- By, T 2aviavj(f‘3viavj) Ta (2.54)

[

where f, is the test particle distribution function and T, = 471,022 InA/m?. Here
In A is the Coulomb logarithm [21]. The summation over a denotes summation over
all types of particles in the plasma. |
gel¥) = [LV) | V-V | av
ha(v) = 2 | _fal¥) 4

- Ha | v-v I
where u, = mym,/(m, + m,) and v’ is the field particle velocity. The plasma kinetic

- equation with the FPO is usually solved numerically. In many cases, simpler forms of

the equation are used to obtain analytical solutions. One such form used commonly

to describe collisions of electrons with ions or ions with heavier ions is the Lorentz
operator. It is obtained by approximating | v — v' | ~| v | in the formulas for g, and

he and by assuming m,/m, < 1. This gives [20],

(_‘g)c = );%2 [;;.U(V)-%{—: = Cpas(f) (2.55)
where |

. The above operator, also known as the pitch angle scattering .opera.tor, describes
the change in the perpendicular velocity of the particle while conserving the total
energy of the particle. | |

2.3.2 Other Collision Operators

The Fokker-Planck operator is quite complicated and, hence, in tokamak transport

theory, simpler collision operators are employed. These collision operators are either
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constructed using ad hoc procedures or derived rigorously from the FPO .. Perhaps the
simplest version of the FPO widely used in'_the transport theory is the Lorentz or the
pitch angle scattering operator. As discussed in the previous paragraphs, the pitch
angle operator provides an excellent approximation for electrdns (or lighter particles)
colliding with ions (or heavier particles). In terms of the magnetic moment variable,

the linearized version of the piich angle scattering operator is given by

Cislfits ) = Coas(fin) = vinss 55 ( )8f’1 - (2:56)
where p = v2 /2B is the magnetic moment per unit mass and q is the magnitude of
the parallel velocity (v = og with o = £1). In Eq. 2.56, the subscript j refers 1o the
* lighter species, and the collision ffequency vjy is defined later in this section.

The pitch angle scattering operator alone cannot be used for describing like par-
ticié-collisions or collisions between particles of similar masses. Early studies in the
" neoclassical transport theory (Rosenbluth et al. [37), Rutherford [38]) used ad hoc
procedures to construct collision operators for like particle collisions. The procedure

is to write the linearized collision operé.tqr as [37]

C{fin) = Cras(fin) + Ces(fin) + Cre(f1) (2.57)
where Cgs is the energy scattering part of the collision operator (describing the changé
in the energy), and Cpp is the field particle response. We have seen that Cp 45 contains
derivatives with respect to u. Cgs contains derivatives with respect to the total
energy w(= v*/2). In the neoclassical theory, change in v (pitch angle scattering) is
the dominant event. Hence, Rosenbluth et al. [37] assume 8f;1/8y > 8;1/8w,-and

hence, retain only the pitch angle scattering part. Thus the collision operator reduces

to _ . o
 Clfn) = Cras(fin) + Crelfin) | | (2.58) -
Here Crp(f;1) is modeled as
Ceplfn) = P22 (259)
th.y
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where f; is the equilibrium {Maxwellian) distribution function and v,; ; is the thermal

velocity of the species j (vn; = /(2T;/m;)). p is a velocity, to be determined to ' r

satisfy the momentum conservation, i.e.

| f C'(fn_)qd‘°‘v'= 0 : | (2.60)

Using Egs. 2.58 and 2.59 in 2.60, p is found to be [37)

_ 2 JPwiiafn - -
P= ‘hdeaijjqujo | (2.61)

_ Connor [9] modified the operator 2.58 to handle unlike particle collisions as -

Cis{firu1) = Cras(fir) + vir(2?) 31’,0 ;;::;’é‘;ﬂ (2.62)
h,j

where z? = (m;v?/2T;). If the collision frequencies v, are determined to satisfy the

constraint

m,/d 'UT'VkaJG = mkfd ‘v"Q_Vk;be
Ying Vihk

the operator 2.62 conserves momentum as well as number and eliergy
The ad hoc procedures used by Rosenbluth et al. (37], Rutherford [38], and Connor

[9], while intuitively appealing, suffer from many disadvantages.

1. The connection between the ad hoc procedures and the exact Fokker-Planck

operator is not apparent. This is because the ad hoc operators are not derived

rigorously from the exact Fokker-Planck opera.tor

2. The operators possess only a few c_:if the properties of the exact Fokker-Planck

operator. In most instances, the operators are made to satisfy one Or more
~ conservation laws by defining collision frequencies (see Connor [9]) or by defining
a velocity (see Rosenbluth et al. [37)).

To alleviate these problems, Hirshman et al. {39,14,40] derived an approximate colli- -

sion operator for transport theory applications from the exact Fokker-Planck operator.
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- coefficient ry; is defined as

The approximate collision operator has the form

2uy 7y S vnun(v)

2
thj

gale(n)-o(R)l ) ew

is the deflection frequency (characterizing pitch angle scattering [39,41}).

2750 me U U ' -
§ _ 4450 L —_
=2 (1+ m,) VG () / () (2.65)

is the slowing down frequency (characterizing dynamical friction due to the field
particles [39,41]). Here |

Clk(f.?l: fkl) = ;kcfjl + fJO + [ ’_/"‘] f: ' (2-63)

where

vip = dnmgete In A/[(27;)%°m Yy 2] {2.66)

where ¢; = Z,-e and e; = Ze are the charge on the species j and & réspéctiVer.

G(.'B) = ¢(I) = I¢l’($)

— (2.67)

is the Chandrasekhar function, where ¢(z) = (2/4/7) J5 exp(—12)dt is the error func-

tion. The pitch angle operator is defined as

L= %%(m’u)% e
Also, | |
| us(V)fjo = (3/47) [wifpd | (2.69)

whete dQ = 2zv~dy, = wZ,(Bdu/w)(vﬂv“[) [14,40). The momentum restoring

J maviiopfa d®v

» (2.70)

TR =
N myn;{vi}
where the integration operator {} is defined as
Fik = 9 ( Yy ) Fit fJo
(P} = 2 v R |
= Tk '
= (3\/_)/ alexp(- zz)F {z;)dz; - {(2.11)
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where F7¥(v) is an arbitrary function of the velocity v. We note that by setting
vﬂ = u;’; in Eq. 2.63, we recover operators similar to those given by Eqgs. 2.62 and
2.58. Collision frequencies defined by Connor [9] and Rosenbluth et al. [37] are similar
to V,‘i Thus, the Hirshman-Sigmar operator, in addition to its rigorous derivation,
can be looked upon as an extension of earlier collision operators to include the differ-
ence between the pitch angle scattering frequency and the slowing down frequency.
In many instances, the difference makes a significant contribufion to transport cal-
culations. In addition, the collision operator 2.63 possesses most of the desirable
properties of the exact Fokker-Planck operator, such as the conservation laws (pa.r-
ticle, momentum, and energy), self-adjointness, and the H-theorem [39,14,40]. We
shall be using the Hirshman-Sigmar operator (Eq. 2.63) in our calculations of the

neoclassical transport coefficients.

2.4 Quasilinear Theory

Quasilinear theory, originé.l]y deveioped to study weak plasma turbulence, is widely
employed in wave heating applications to describe the cql.lisionless evolution of the
distribution function. The theory separates the particle distribution f, the electric
field E and the magnet_ic field B into a space independent component fy, Eg, Bg and
a small, rapidly varying component fy, Ey,B;. The component f; is obtained using
the linearized Vlasov equation. The linearized solution | f1 is then used in a nonlinear
equation describing the time évolutidn of fo to determine fy. The basic idea behind
quasilinear theory is explained below for an electrostatic wave in an unmagnetized
plasma. Similar arguments hold for an electromagnetic wave in a magnetized plasma.

Collisionless evolution of the distribution function f, of a species a in an unmag-

netized plasma with an electrostatic disturbance is governed by the Vlasov equation,

8o , 0o, GagOfs _ |
5t Vo T By = (2.72)

34




and the Gauss’ law
VE=47)_ naga f fadv

Eq. 2.72 is solved using a perturbation approach.
f a = f al + f al
where f.q is the spatially averaged part

feo= 35 [ fulix =< fu>

. and f, is the rapidly ﬂuctuating part.

Bo=0 ; Eo=0; E=E; ;: < fu>=<E >=0

Under these conditions, an equation for the gvolution of fao is obtained by spatially

averaging Eq. 2.72, leading to

of a .
_gg_ﬂ =29, <Eifu> (2.73)

- An equation for f,; is obtained by putting f, = f.o + fa1 in Eq. 2.72 and using

Eq. 2.73

8 o a
(a + VV) fal = —‘;(_fl—aEl-vaaﬂ - i:VV'(Elfal- < Elfal >)

Linear solution to f, is obtained by neglecting the second order quantities Ej fa.

' Letting |
fealt) = G [ St ) - an
Ey(f) = 513 [ Extx, t)ak
where |

ok = Fo explik x) exp(-iuwt)
Ey = Ey exp{ik.x) exp{—iuwt)
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Using these forms, we find

f o BxVyfao
ak

alar . (2T9)

Eqs. 2.74 and 2.75, when used in Eq. 2.73, result in the following diffusion equé.tion

for fao

U _ v, Dy, fuolt) (2.76)

where

_ ( qc. / Er.E_x kk dk
V (kv - w) k2 (27
is the quasilinear diffusion coefficient.

For the electromagnetic case, we arrive at a similar equation with a more compli-

cated expression for Dy [24,42].

In wave heating applications, the equation for the evolution of fj is of the form

9 8 | )
_aft-o“ = VV'DV'VVfO '+ (_';Tu . . (2-7?)

where ( 2) is the collision operator The above equation describes the situation

~where particles are gaining energy from the wave (described by the quamhnea.r oper-

ator) as well as losing energy to other particles (described by the collision operator).
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CHAPTER 1III

PARTICLE TRANSPORT DURING WAVE
 HEATING - THEORY

In this chapter, we review the theoretical literature related to particle transport during |

wave heating. We begin by examining the production of electric fields during wave
heating in tokamaks. We then examine, in section 3.3, the effect of poloidal electric
fields on particle transport. Section 3.4 contains a summary and the conclusions of

our review.

3.1 Electric Fields during Cyclotron Wave Heating in
| | Tokamaks

Equipped with some of the tools of wave heating and transport theory, we are now in

a position to study some of the effects of wave heating. In Section 3.1.1, we study the

production of poloidal electric ﬁeids during wave heating. We then examine, heuris-
tically, in Section 3.1.2, the production of electric fields during the wave momentum
absorption process.

3.1.1 Poloidal Potential Variation During Wave Heating

Production of a significant poloi.dal potential variation during cyclotron wave heating

has been studied by Hsu et al. {11] and Chan et al. [43]. Much of the material
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Figure 3.1: Particle Trapping During Wave Heating
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Figure 3.2: Potential Asymmetry during Wave Heating
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presented in this section is based on Ref. [11].

Particle Trapping and Resonance Localization

Production of a significant poloidal electric field in tokamaks during cyclotron wave

heating is related to the phenomenon of particle trapping inherent in the tokamak
geometry. In a tokamak, the magnetic field varies as 1/R and, hence, is weaker on
the outside of the torus. It is this variation of the field that is responsible for particle

trapping. Referring to Fig. 3.1, conservation of energy gives,

(7).~ (%), o

where v* = v} +v}. Also, invariance of the magnetic moment gives

mvﬁ. )o = (m”i)t
2B, 2B,

o, =12 [1 - (-ﬁ-ﬁ) (%-)] (3.3)

As (B,/B,) > 1, for particles with sufficiently small v, , v can approach zero and

(3.2)

p=

Using Eqs. 3.1 and 3.2,

the particle can be reflected at . Indeed, in a tokamak with an inverse aspect ratio
€, a fraction of particles, ~ /¢, are trapped in the manner described above, and such
particles execute a ‘banana’ shaped orbit as shown in Fig. 3.1(a). Noting that for
particles reflected at t, (m? /2), = (mv?/2),,

(EJ;) = Eﬁ = sin ogc

‘ v Bg

Particle at o with (3’;9;)' > \/%_ are reflected at £. . is the loss cone angle shown in
Fig. 3.1(b). | |

Turning to cyclotron heaﬁing, we note that the very nature of cyclotron heating is

" to increase the perpendicular energy of the resonant particles. Assuming that reso-

-nance occurs along a vertical plane X-Y in Fig. 3.1(5.), Eq. 3.3 holds between points o

| 39
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and ¢. From Eq. 3.3, it is clear that everytime a particle crosses the resonance region

- with an increase in its perpendicular energy, vf‘,’,t grows smaller. Hence, marginally

untrapped particles before wave heating get trapped as vﬁt approaches zero. The
situation is depicted in Fig. 3.1(b), where an untrzipped particle is shown crossing
into the tr'a;pped region during ri-heating. Thus, during cyclotron heating the trapped
particle population of the resonant spe.cies increases, leading to an increased in-out
asymmetry in the electrostatic potential (see Fig. 3.2). |

In addition to particle tré.pping, rf-heating leads to-resona.nce localization i.e.,
banana tips (point ¢ in .Fig. 3.1) of trapped particles slowly move toward the resonance
layer. This follows easily from the conservation of energy. For a large aspect ratio
tokamak with B(8) =~ Byl — ecosf), we could write, referring to Fig. 3.1, |

Before wave heating,

T%'z"—" + BBo(1 — ecos8,) = TLBo(1 — €cosb,) (3.4)

During wave heating,

2
MU0

5+ B Bo(l — €cos ,) = 7 By(1 ~ € cos b)) (3.5)

.where'ﬁ; is the new position of the banana tip. Subtracting Eq. 3.5 from Eq. 3.4, we

have
L
cosf, —cosb, [
———————————————— :

.6
cosb, —cosd, [ (3.6)
Eq. 3.6 implies that as ¥ continues to rise, the banana tip moves closer 1o the reso-
nance location, i.e. 8, — §,.

Thus, during cyclotron wave heating, (i) there is an increase in the trapped particle

" population of the resonant species and (ii) the trapped particles experience resonance

localization. The combined effect of these two phenomena gives rise to a poloidal

asymmetry in the potential. The magnitude of the potential can be expected to rise

until the potential has sufficient strength to expel particles out of the magnetic well.
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* conservation considerations. Taking 8, = 7/2, Eq. 3.4 reads,

Here, (A%2)/ 7 is roughly the temperature anisotropy (7. — T))/T}. Rf-heating tries

This means that the potential asymmetry could be of the order of the magnetic well

depth, which is of the order ~ ¢(= r/R).

Poloidal Potential Variation

Before outlining the formal calculation of the poloidal potential variation, we could

get a quick estimate of the order of magnitude of the variation based on energy

mvlz!_o
2 =+ 4B = ﬁBu(l —ecosé,)

After resonant heating; taking potential $(6,) = ®(x/2) = (,

myf, » . .
5 R By = 7 Bo(1 — €cos8,) + e®(4,)
Using these equations,
| e®(4,) | (ﬁ‘ , )
— =L ~e| —cosb, — cosd
iz ‘ B ' ‘)

To maintain charge neutrality, if we demand 9, ~ 4,,

eB(8) _ ebB) _ AR
P = S = (/R ont) ()

to maintain temperature anisotropy while collisions try to destroy it. Hence, it is
conceivable that (AE/7) ~ O(v,5/v.) where v, is the effective rf-heating rate and v,

is the collision frequency. Hence

8@(6:) ~ (V,.f (3.7) |

T € T/c_) cos 8,

The formal evaluation of potential variation makes use of the drift-kinetic equation

8f Beyy 0 By 8
o Bl eE‘,vné—a% = QN +C(

where Q,; and C' are quasilinear and Coulomb collision operators and W = mv"'l’ 2+

7iB. The equation is linearized in a manner similar to the one used in deriving Eq. 2.52
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Here f1is of the order (v /wp) € 1 where wp is the bounce frequency. We are thus

restricting ourselves to the low collisionality regime. Bounce average of Eq. 3.8 gives
-1 afl] -1 0 -1 0
<qT > =< Quy(f) >+ <7 C(f) > - (39

where ¢ =| v) |. The angular brackets are defined by < z >= §z d6/ § d§. Subtract-
ing Eq. 3.9 from 3.8 gives

74® [%% - gg‘: gI{V] = Q.4(f")+ C(fo)" < g > (< g1 >

+<q'0(f)>) (3.10)

where o = / g and © = B,/B. This equation can be integrated over §, over the
velocity space and summed over o. This .eliminates the collision terms, which are
independent of the sign of vy. If we restrict ourselves to kj = 0, the quasilinear terms
are also independent of the direction of v and, hence, vanish. The procedure gives
an expression for the first order density perturhation in terms of the zeroth order

distribution function.

| - 5/ 2x Bagaw |
nl=ff1d%=za:ffe<ba£/ “mdz G

Charge neutrality gives, n; >~ n,, or
n?+n}=nl+nl (3.12)

Restricting attention on ECRH, the ion distribution function can be taken as a

Maxwellian to evaluate n? and n!. This yields n; = no(l — eé/T,—). In the weak

if limit, i.e. /v, = § < 1, f° in Eq. 3.11 can be assumed to be a Maxwellian to

evaluate ! to give n! = (e®/T.)ng. Eq. 3.12 thus reduces to

04ﬂ'BdﬁdW
| EQ[T T, ] =1- —ff T gm? (3.13)
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f? is obtained from Eq. 3.9. Equation 3.9 is solved by expanding | f° and % in the

small expansion parameter 4, i.e.

fP=f+65+

8 8 a
a‘t- (E-I-&gt-;-'-

To the lowest order,

o 088 -
1 “J0 i 1
<¢ > FL=<C(f)t >

This equation is satisfied by taking f? to be the Maxwellian

3/2 |
0 _ _m | 1. Wl
fo = nlt) [m*(tl)] P [ T(t,)]
To the next order, setting %{E [11], |

<g > % =< g IQu(fY) > + < g7 > (3.14)

The collision operator is taken to be the Lorentz operator -

Ay _ TMWeileps O -l g f0
< g Cf.> N 3ﬁ<qB aﬂ

where v,; = drnetln A/m? and Z.;; is the effective charge on the ions (Z,;; =
Y2.n;Z%/n.). Also, for ECRH, the rf-frequency vs = e2E?/2%?m.Q.eT.. The
quasilinear operator with the fundamental resonance at the plasma center reduces to

e? | B~ |2 @ByN
4nQoe[2m(W — BBy )]U2

where Lo = 8—8“7 + %Bg, Qp is the cyclotron frequency at the resonance layer and N

< qQ.(f°) >= 50 ﬁof 0

is the number of passages through the resonance region. Using the above operators,

Eq. 3. 14 reduces to

[" "W—T 3T fof <q“1>d—=
3;2 89
~ , -1, 957
[W] ﬁm(gB > aﬁ
pmmN By =1 y=1/2 40
+ [ (- o 8o e (3.15)
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Here, the prime denotes derivative with respect to t;. The details of obtaining this
equation can be found in Ref. [11]. =’ /n and T'/T can be obtained from Eq. 3.14
by multiplying the equation by 1 and W and integrating over the velocity spaée.
Using f* = f3 +68f0, the charge neutrality condition reduces, after performing the &
integra.tion, to
I T op
%%u, obtained from Eq. 3.15, can be used in Eq. 3.16 to determine the potential.
The integrals are evaluated by Hsu et al. [11] for the trapped particles and passing

particles separately to yield

7= T (3.17)
where
*_”_‘;1 ~ O(863/2)
and
e®y _
'-"T"—-U.Z‘SG . (318)

Here @, is the cos® component of the potential. &, and ®, are the trapped and
passing particle contributions to the potential. In Eq. 3.7, if we compute the average

value of .cos"& for trapped particles, we get < cosf, >~ 0.37. This would mean

8@(9;)

T ~ 0.37¢bd

from Eq. 3.7, which is quite close to the value Iin_ Eq. 3.18.

We note that in the above a.rguments leading to Eqs. 3.7 and 3.18, we have used
8, ~ 6, or, equivalently, assumed quasineutrality. We have, thereby,_ treated resonance
localization to be weak. During high power rf-heating, resonance localization can be
strong, leading to the movement of the banana tips closer to the resonance layér
Under such conditions the magnitude of the potential asymmetry can be larger than
that given by Eq. 3. 18.
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Turning to ICRH, we could expect the procedure carried out above for ECRH
to remain the same. The main difference comes from the- collision operator, which,
for ions, includes the slowing down effect in addition to pitch angle scattering. This
may lead to a different numerical coefficient in Eq. 3.18. We note here that for large
aspect ratio tokamaks, we may be able to represent the collision term by the pitch
angle scattering operator even for ions. Also, if we assume the plasma to contain
a relatively large aniount of heavy impurities such that n;22/n; > 1, pitch angle
scattering between ions and impurities is likely to dominate and we can expect the
above calculations to hold good for ICRH. Finally, we note that a calculation of
poloidal variation in potential in the collisional regime carried out by Chan et al. [43]
yields a value for the potential much smaller than that obtained above.

Before considering the effect of poloidal electric field on transport, we would like

to estimate the magnitude of § in some experiments.

In the case of ECRH, we consider typical DOUBLET III parameters: rf-power

Py =1MW, frequency f = 60 GHz, T.~2keV, m~n,~2x10°m=3, R=

167 m, a=067m.
Considering resonance along the vertical chord throngh the center, the power
density on the resonant surface is P = P,,« /(21rR)(2a) = 71120 Watts /m?. Letting

ExB E?
P =|8|=| [ 2p.:c

we obtain By = 7318 Volts/m. Here, Eu is the amplitude of the wave which is

¥

assumed to be of the form E = Eqcoswit. Also, we have assumed the phase velocity
to be roughly equal to the phase velocity in vacuum (i.e. 'c);

The right circularly polarized component of the wave is

E_ =k pEy = (vac/c)E = 0.1 By = 732 Volts/m

* For a point at r = 0.1 m, we get,

= 738/s
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Ve~ Vi = 1/7; with

_ T2 _
= 16 € :
Tei = 1.09 x 10 -9 s (T, in keV)

Using this, v,; = 9730/s. Hence

b=vyfri~01<1

e

Here, we have assumed the injected power to be 1 MW. With an increase in the

injected power, we could expect almost a linear increase in v, 7 and a decrease in v,;,

i e A g e

due to increased temperature, leading to a larger value of 6. Indeed, for power levels

of the order ~ 10-20 Mw; we could expect & ~ O(1). Furthermore, the focussing

T Sl

effect likely to be present during cyclotron heating increases the power density, and
hence, the poloidal variation in potential can be expected to be higher.

r Turning to ICRH, we will consider the parameters relevant to PLT. We assume
minority heating at the fundamental frequency in a deuterium-hydrogen plasma. We
use np ~ Ny = 3x 109 m~* Tp =Ty =T, =1keV, f =25 MHz, R =
H 132 m, a=04m, Py =500kW.

We again consider resonance along the vertical chord passing through the center.
v,y =< P(r) > [nT where < P(r) > is the power absorbed per unit volume on a flux

surface at radius . Using Eq. 2.6, we obtain,

e’E?
fo - = -
mygQpeTy | sind |

Whang et al. [44] obtain a value for £, =~ 1700V olts /m for the typical PLT param-
eters. Using this and considering a point at r = 0.1 m, v,y = 23533/3.

The relevant collision frequency to be considered during ICRH depends to a large
extent on the ion slowing down process. For low to modera.te energy ions, ion-ion
collisions are important. For high energy tail ions, much of the slowing down is due
to the background electrons. Considering ion-ion collisions, v;; = 1/7; with

m 12

myg nin A,

7; = 6.60 x 1097 ( s {(ninm=3 T;in keV)
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For PLT,V,',‘ = 813/8 This giVBS-
¢ = V,ffi/ﬁ =20 >>1

In the present case, due to the strong rf-effect in comparison with the weak collisional
damping, we could expect a strong anisotropy in the resonant ion distribution function
and, hence, strong resonance localization. Thus, a significant contribution to the

potential asymmetry could be due to resonance localization.

3.1.2 Electric Fields during Wave Momentum Absorption

During plasma heating using neutral beam injection (NBI) or radio-frequency (RF)
waves, considerable momentum (mechanical or electromagnetic) is deposited in the
plasma. It has been pointed ont by Diichs [45] that during perpendicular NBI, the
absorption of momentum could lead to the creation of significant electric fields. Mi-
croscopically, the input neutral particle splits giving rise to an electric dipole. While

we expect similar electric fields during RF heating, the mechanism responsible for the

production of such fields, especially the microscopic mechanism, is not as transparent

as it is in the case of NBL During RF heating, the dipoles have to be created within
the pla.sma during the energy absorption process. Indireshkumar et al. [46) studied
the production of electric fields during the wave momentum absorption process using

a simple model. The material presented below is based on Ref. [46].

Microscopic Picture

We develop the microscopic model for the case of ICRH with ki = 0. Similar ar-
guments are expected to be valid for ECRH. During ICRH in a tokamak, resonance

occurs along a vertical chord. As an ion-electron pair ‘with coinciding guiding centers
crosses the resonance region, the ion picks uwp energy moving to a larger orbit. In the

present model, we assume that during such a process, the ion center of gyration is
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displaced from the electron guiding center in such a way that the resulting electric
field between the particles crossed with the equilibium magnetic field (i.e. E x B)

gives rise to field momentum in the same direction as that of the incident wave [see

Fig. 3.3]. The ion picks up energy everytime it crosses the resonance layer, but keeps |

losing energy to non-resonant ions, impurities, and electrons. Thus, absorption of RF
energy by the ions gives rise to electric dipoles in a manner similar to that produced
by an external electric field in a dielectric. With this picture in mind, we proceed to
calculate the electric field production rate.

If v, ;(¢) is the initial perpendicular velocity of a resonant jon and v L g(t+ At) is
its velocity at the end of an interval of time At ( Af could be taken as the time .for the
resonant particle to cross the resonance layer. We assume At < 7., the characteristic
collision time) then the separation between the guiding centers of the ion and the

electron (see Fig. 3.3) is,
m;
Ty=Tg—T = m(?&,f —v.;) (3.19)

Here m;, Z;e are the mass and charge of the ion, and B is the magnetic field. If n,,,

is the density of resonant ions, then the energy absorbed per unit volume in time At

is,
1 ,
P-At= am,v(vf_“ ;=02 e (3.20)
v, g—v ;<€ v,, we could write

1
P Al §m.-(v Lf = V03) 205 iTlpes

or
P. At |
(‘UJ-_J - ‘UJ_J') = m (321)
Using 3.21 in 3.19 and putting v, ; = vy; (ion thermal velocity), we get
z P atf (3.22)

= ZieBuy ;Nipe,
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Figure 3.3: Creation of Dipoles during RF-Heating
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Thus we have an electric dipole with a dipole moment = Z;ex, = (P-At)/{Bvy in,.,).

With this, we have the electric field produced in time At due to n,., dipoles as

P At

E,(t+At) = caBms

The electric field production rate is

P _ N
goBun,

E,

or, if one is willing to speculate on the lifetime of a dipole (say 7), then

P

E, = T
Y 7503‘%,5

where 7 is a factor which takes into account decreasing z, during 7.

During wave heating, the increase in the magnetic moment 7 is
m, :
Az = ﬁ(”i,f -7;)
Using Eq. 3.20, _
P At
Bn,.,
Hence, diamagnetic depression of the field '

AL =

AB ~ pAlin,.,r = Po;’T

where 4 is the magnetic permeability.

Macroscopic Argument

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

The macroscopic argument relies on conservation of momentum [45]. As the wave

energy is absorbed by the plasma., the wave -_momentum must appear as the field

mormentum.

If S and v, are the Poynting flux and the wave phase velocity respectively, the

momentum density, g = $/v2.
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Wave momentum absorbed per second = Wave momentum contained in a volume
Av, (A is the RF-beam area) = (S/v3).Avy = (SA)/v,.

This momentum must appear in the field, i.e.

d SA 1
ESO(E x B) = P (3.28)

where V,., is the volume of the resonance region (~ A.Az, Az being the resonance
zone thickness). _
Neg]ecting_ma.g'netic field depression and noting that close to the resonance zone

Uy = Ven s,y
1 SA P
T €oBUs Vies  £0BUm

¥

in agreement with Eq. 3.23.

Before we proéeed to estimate the electric field in a tokamak, we briefly discuss
below some factors which might cause a reduction in the electric field production rate
and some consequences of the electric field. |

(a) The actual electric field is expected to be smaller be.t._:a.use the background
plasma acts like a dielectric with a dielectric constant £ = (1 + ﬂ"ﬂ-ﬁ?ﬁ_)eo (> «).

This reduces the electric field production rate to

P
EB‘Um_I,'

(3.29)

ot
y—

Also, the electric field causes the background particles to driﬁ with a velocity [referring

to Fig. 3.3] VB B
X
e tpR e

(b) The dipoles move swiftly along the magnetic field lines to océupy a volume

(3.30)

laxger than V,.,. For central heating, assuming that particles on all flux surfaces are
resonating, the particles move quickly to occupy the entire plasma volume (this is a
reasonable assumption for 7y = 27Rq/vyy <« 7.). Here 7 is the safety factor and v is

the parallel velocity of the particle. The piéture might then look like that depicted
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Figure 3.4: Polarization of the Plasma during Wave Heating
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in Fig. 3.4. Hence, we should use the total plasma volume, V.., instead of V..,
in estimating the power density. Fig. 3.4 also suggests the possibility of significant
up-down potential variations. |

(c) Implicit in the above arguments is the assumption-of axisymmetry with regard
to RF sources. In an actual tokamak with a finite number of RF sources, this dearly
is not the case. Hence', the electric field is expected to be smaller than that éstimated

in the previous paragraphs.

Example

As an example, let us consider the data related to JET. Typical parameters during
ICRH with D(H) minority heating scheme are [47,48] :
R=3m, a=1.25m, b=1.7m, B=3 T, P,;=10 MW, Ty=5 keV, n; = 3. 10* m"3,

ky =0, Aky ~ 9 m~3. Here a and b are the minor and major axes of the elliptic cross

_ section.

These parameters give us v, &~ 108 in/s, the ion cyclotron frequency §2; ~ 3 - 10°
rad/s, Az = RAkyvaw: /S = 0..09 m. For central heating, assuming resonance across a
vertical cylindrica.l.shell passing through the center, Vm =~ A-Az = (2rR}(2b)(Az) =
5.8 m® : |

Using this to calculate the power density, E‘, = 6.5 x 101 Vm~1s-

In order to calculate the steady state electric field using Eq. 3.24, one 'nee_ds to estimate
the lifetime of a dipole. Here we give two estimates of the steady state electric field.

(a) We could get an estifuate of the smallest steady state electric field by using the
electron-ion collision time, 7.;, as the lifetime of a dipole. (One could perhaps argue
that 7.; is the timescale over which the correlation bét-ween the electron-ion pair is
destroyed.) Using | |

T2(keV)

) . -4
1r1,.-(1r1rr'3)-1111'\_2 107"

T.; = 1.09 x 10%¢.

and taking 7 = 0.5, Eq. 3.24 gives E, = 7.6 x 10° V/m.
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The diamagnetic depression of the field is AB = 1.7 x 107 T

Accounting for the background plasma response, if we use £ (¢ = 1260 in this case)
instead of £, we get E, =~ 6000 V/m. |

In responsé to the field, the background particles drift with a velocity of vy =
2000 m/s close to the resonance zone.

If we use Vioe ~ 125 m® instead of V,.,, we get an average electric field of E, =
280 V/m. |

(b) A second estimate of the field can be made by arguing that the field due .to the
dipoles persists until the fast ion is slowed down by collisions. Using ion-ion collision
time

1:(3) = (6.60e17). (m,, (m=.10A
and taking v=0.5, E, = 3.9 x 10® V/m

The diamagnetic depression AB = 0.009 T

If we use ¢ instead of &0, the electric field is reduced to £, = 3. 10° V/m.
Electric fields of this magnitude give rise to. large particle drifts, ve, ~ 1-10° m/s

close to the resonance zone.

3.2 Effect of Poloidal Potential Variation on Particle

~ Trapping

Before we consider the effect of poloidal electric field on transport, we wish to examine
the effect of potential variation on particle trapping. For {ime scales greater tha_n
1/v,s, the poloidal potential built up during wave heating acts on the background
particles causing a redistribution of trapped particles. This phenomenon has been
examined by Shurygin and Yushmanov [13] and Chang [12]. Following Chang {12],
we examine particle trapping when (i) e;®,, < e;Pous and (ii) e;Bin > €;®,u¢ where

®,, and &, are the potential on the high field and low field side of the tokamak
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respectively. Here e; = Z;¢ is the charge on the species j and Z; = ~1,1, Z for the

electron, ion, and impurity species respectively and e is the unit charge.

| 321 eB(8)/T ~O(e) and €, < B ous

: This situation obtains for ions during ICRH or electrons duﬁng ECRH. In the present
case, particle trapping can be separated into two categories. The first type, called
B-trapping, is the usual magnetic trapping on the low field side modified by the
electrostatic potential. The second type of trapping, called E-field trapping, occurs

on the inside of the torus and is due to the potential well,

B-trapping

Referring to the tokamak geometry in Fig. 3.1, we have, by conservation of energy,

CR(0) L GO) | e8(6)  1A(d)  HO) . e#(6)
E--——2 +—5-+ m =2 t5—+ - (3.31).
and _
2 2¢4
_ UJ.(a) _ U,L(e ) (3‘32)

k=280 = 2B(@)

Here ¢ and ' refer to different poloidal locations. For reflection at §' = x, vd(x) — 0.

Hence, the boundary of the trapped particle region is given by

vi(6) | vH(8)/2 + vf(8)/2 + ¢;/m;(%(0) — ¥(m))
2B() = B()

Taking B = By/1 + €cosd and ¢;®(0) = e;®,.cosd (ej®c > 0), the above equation
- yields _ .

57 < e(1+cos)(S? — ;| Xo) (3.33)
where § = ﬂ/v,,,,,_ and eXy = (edbc/if‘). Here, we nbte that Xo ~ O(1). At this st.age_,
we will not distingnish between the elclectron,' ion, and impurity temperatures. We
assume that T, ~ T} ~ T, = T, where the subscripts ¢, ¢, Z refer to electron, main

ion, and impurity ion -respectively. Defining the pitch angle variable A = uBy/E, |
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Eqgs. 3.31 and 3.32 can be used to determine the boundary of the trapped region on
the A — & space. The result is |

(1-e)SAS(1+9) [1 - %?%)] (3.34)

In deriving Eq. 3.34, we have set &(r) = 0.
E-trapping

For E-trapping, we expect particle reflection on the low field side of the tokamak. By
considering reflection at 6 = 0 and following similar steps as b.efore, we obtain the

boundary of the trapped region as
Sﬁ < €(1 — cos8){Z;1 X0 — 52) (3.35)
In the A - F space; the trapped region is

(1+f)[1-—-i-?%l]$)\51—e | (3.36)

- We note that the minimum energy a particle can have is Ey = ¢;@/m;. The trapped |

particle regions for B-trapping and E-trapping are shown in Fig. 3.5. The dotted
lines show the trapped particle region for $(8) = 0.

3.2.2 e®(0)/T ~ O(c) and €;®i, > €;B s

. This scenario holds good for ions during ECRH and electrons during ICRH. When
€;Pin > €jPoue, only B-trapping is present. Letting ¢;8(8) = —e;P.cos8 (¢;®, > 0)
and proceeding as before, we determine the boundaries of the trapped particle region
in the S — S1 space as
83 < e(1+ cos6)(S? + 21| Xo) (3.37)
In the A — E space, setting ¢;$(0) = 0, the trapped particle region is bounded by
(1—¢) [1 _ “iﬂ’ﬂ

JE]§A5(1+6) (3.38)-
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Fig. 3.6 shows the trapped particle region in the velocity (S — S_) space and A - F
space. |
From the previous arguments and from Figs. 3.5 and 3.6, we pote that the presence
of order ¢ poloidal potential variation leads to a redistribution of trapped pﬁrticleé.
Such a redistribution could affect the way the problem of particle transport is handled.
For instance, in a large aspect ratio tokamak, the collision operator is often taken as
the pitch angle scattering operator [§] even.a.mlong Iike species because of the smallness
of the trapped particle region. As can be seen from Figs. 3.5 and 3.6, in the presence
of a large poloidal potential variation, smallness of the trapped particle region is
destroyed in the low energy region. In such cases, it may not be accurate to model
the collision operator as pitch angle operator and the energy scattering may have to

be included.

3.3 Particle Transport During Wave Heating

High power rf-heating could lead to significant changes in particle tra.hsport. This has
been observed in many experiments {see Chapter IV) and several theoretical studies
indicate a modification of transport of the resonant species and non-resonant particles
during wave'heating. A majority of theoretical studies have concentrated on ICRH,
mainly because of its wide use in the current generation of fusion devices. For the
purpose of the present review, we cbuld put transport effects due to wiave heating
into two categories: (i) transport in the ‘background’ or non-resonant particles and
(ii) transport due to wave p:'a.rticie interactions. An effect of the former type is the
transport induced in the non-resonant species due to poloidal variation in the potential_
created during wave heating. Such a potential variation introduces an E x B drift
in addition to the already existing VB and curvature drifts. Also, in the banana

regime, there is a redistribution of trapped particles, as discussed in section 3.2,
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causing additional change in transport. We_discuss these effects in section 3.3.1. Rf-
heating causes banana orbits of the resonant particles to become wider, which could
eventually result in the loss of some particles due to interception by liiniters or other
protruding metallic structures. In addition, injection of waves with k; # 0 can add
an inward or outward component to the tail ion {or electron} flow. We review some

of these rf-driven transport mechanisms in section 3.3.2.

3.3.1 Effect of Poloidal Potential Variation on Transport

~.From now on, we will be particularly interested in a regime known as the “Banana

Regime” [8]. In this regime, the time taken by a particle to complete the trapped
orbit (75 = 1/wp ~ §R//evy, where g is the safety factor) is much smaller than
the effective collision time for the particle to be scattered out of the trapped orbit

Teps = 1/Vefs ~ €7 where 7 is the 90° scattering time), i.e.,
1f £f

LIS

V€ €T

or-
2Ry

< ¢3/2
Uih

where the coll_isi}oni frequency v = 1/7. Plasma ions and electrons in the core region
of a majority ofithe present and most of the future tokamaks are expected to be in
the banana regime. Also, light to moderately heavy impuritiee are expected to be ‘n
this regime. In adhition, the mechanism for the production of a significant poloidal
electric field d:_esq rf;bed in Section 3.1 is valid in tli_e banana regime.. Hence, we shall

restrict ourselves tb the study of transport in the banana regime.

We note in na.ésing that the effect of a poloidal potential variation of order ¢
on neo'clé.ssical tl;a,nsport in the collisional regime has been examined by Chang et
al. [49,50]. Similar studies for the plateau regimé have been conducted by Hazeltine
et al. [51,52]. These studies indicate that a poloidal electric field of the order ¢ has a
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significant effect upbn neoclassical transport.

Banana Regimé

The problem of transport in the collisionless banana regime in the presence of order

¢ poloidal potential variation has been studied by Chéng [12]. He reconstructed the
kinetic theory of Ref. [8] to include the contribution of zeroth order (in gyroradius)

poloidal electric field. Electron flux is obtained [12] for a large aspect ratio tokamak.
Ion flux could be obtained using ambipolarity which gives I'; = I'.. The problem
consists in solving the first order version of the drift kinetic equation (Eq. 2.52). For

electrons, Eq. 2.52 can be written as

V-V fa = (Che + Co)fa = ~Vae.-V oo — (¢/TYWE) fo (3.39)

where vge = —vy x V(vy/ Qe),- C! is the linearized collision operator. Here # = B/ B

“and the gradient is taken at constant E = v*/2+¢;®(r,8)/m and p = v3 /2B. v now,

includes the contribution of the poloidal electric field. The zeroth order-distribution
‘function, obtained from the zeroth order version of the drift kinetic equation, is a

Maxwellian ’
feo = A(m/2xT)*2 exp[—~(v*/2 + q2(6)/m))]

Eq. 3.39is transformed into an equivalent set of equations [12,8],

V- Vne = Clgne = ~0tnfun, n=1,2,3,4 (3.40)

which are obtained by putting'

2oy, : hodl
fa = 5o~ (/T f gj(BEu—

'l"U".f,e(B < E"B > /< B? >+ H,

32 <E||B -
< B>

where

.
H, = z GneAne-

n=1
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A= _2 + E_ﬁ .
le = _arpe Z.T. arpa

A= —InT, ; As.=By<EyB>[<B*>,

9

or
Age = ~(T/ 2T )

Here, u,y is the ion parallel flow and f,, is the Spitzer function [12, 8], fé" is the

integral along the poloidal projection of a field line. The parameter ; is related to

the ion parallel fiow by

- Further,

a, = V".V(‘U"‘}‘ﬂ) '
n=-hf|Qq| i 12=(E*/T-5/2)n,
Y= foefh i W= —~1/h| Q|

| where E* = 12/2 + €8(8),h =| Qup | /Qup = Boo/Bs and fic = fic/ fo. The particle

filux is written as

I'.= ( / d*yvge. VT f,> = i(al., One) Ane

n=1

where the variational solution to Eq. 3.40 is given by [12]

(@mgo) = { [ PormmCl) (4

Here g}, = vyY¥afeo + GS.. The superscript 0 denotes a zeroth order quantity in

¢ = r/R expansion. GU, is obtained by the constraint equation (8],
rdd L
[ 5 CHomtat Gl =0 (3.42)

We note that the transport coefficients, (@m, gse), can be written as

(ams gae) = [ osdam(1/m)CG)) (3.43)
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Substituting for (1/v;)C%(g2,) from the first order version of Eq. 3.40,

eI
i

(CmsGne) = ( f d3vvﬁ7mﬁ.V9L>

(2] @v1a(E* - uB - @ (6)/m)aV,)

TR T A S AT L

After integrating by parts,

(@m0 = (2 f E0n S (8" - w8k ) + (2 [ #0722

" The first term gives the usual neoclassical contribution without a significant poloidal

electric field, while the second term gives the contribution due to the potential i;

variation on the flux surface. Chang has ca.lculafed [12] the transport coefficients
(a1, 1), (@1, 92.), and (04, 93.). It is found that (@, g,.) and (@, g;.) experience al-
most a linear increase with increasing (6) for both &, < ®,,; (ICRH) and &;, > @0,"
(ECRH). The enhancement in (o4, g1) over its value when (6) = 0 isby a factor
of ~ 2 for @i < Bous a0d ~ 1.3 for ®is > Bous When e®(9) ~ €. For (a1, gz.), the
respective enhancement factors are about 2.5 and 1.8. For the Ware pinch coefficient,

(@1, g3.), the enhancement factor is given by the fit [12],

((11 1 93e)eifT~e
(al} gue)ei/‘rﬁvﬁ

= (14 1.25X,"2 &, < By (3.44)

-

1-0.59X0 + 0.39X3 — 0.048X8 &y > Boue

The value for Ware pinch coefficient

(@1, 93¢ ) et/ Tn0 = —1.46(1 + 0.67/Z;)(r/ Ro)"/*(n./ B0

Qualitatively, the Ware pinch coefficient experiences a mild increase for &;, < ®ou:.
For ®,, > ®,u, it decreases first up to Xp ~ 1 and then experiences a steady increase

for X, > 1. We note that_ the Ware pinch term can also change because of a decrease

in E caused by a drop in the resistivity during wave heating.

Finally, the presence of an impurity species is found not to affect the transport

coefficients calculated previously. This is becanse the inclusion of impurities results in
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~ the replacement of. Ve; With Z4ve; in the pitch angle operator used in the calculations
and this would result in a uniform change in the value of the electron transport co-
efficients independent of Xy values. Chang, however, does not calculate the impurity
or ion flux. | |

Shurygin and Yushmanov [13] have recently considered the effect of large poloidal
electric fields on ion transport in the banana regime. Their analysis differs from
that of Chang [12] in that they include the quasilinear operator in their calculations.
They point out that random changes in », could lead to diffusion of classical type,
D ~ p¥fv,,, where the ‘quasilinear collision’ rate v,; ~ D, /v} (Dy is defined in
section 2.4). They, however, argue that quasilinear collisions do not lead to diffusion
| of the neoclassical type for k| = 0 (we will discuss this later in this section). They
argue that the dominant effect on tfansport is due to the poloidal polarization of the
plasma. To see qualitatively how such polarization could affect transport, we note |
that in the presencé of a poloidal variation in the pdtential of the type €(8) = ®.cos¥,
the effective magnetic well depth is €ofr = €[l — e;®./T). The neoclassical diffusion
coefficient is D ~ \/E:ﬁbzu ~ m;:ﬂy Hence, the diffusion coefficient can
be larger or smaller than the neoclassical value depending on the sign of ¢; and &..
This qualitative picture is not entirely accurate because any decrease in the B-well
depth is somewhat compensated by the creation of an electrostatic potential well on
the inside of the tokamak. It is the the combined effects of B as well as E-wells that
lead to changes in transport. Calculations by Shurygin and Yushmanov [13] indicate
a decrease in the radial flux of ions during ICRH and a slight increase in neoclassical
transport of ions during ECRH. Also, an increase in trapped ion population during

ECRH leads the authors [13] to speculate on enhanced transport due to rippling.
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Fluid Theory

Finally, we discuss brieﬂy a fluid theory due to Stacey [53] which quaiitatively predicts

an impurity flux component proportiond] to Es. The fluid theory by Stacey [53] |

is a modification of the theory originally developed by Stacey and Sigmar [54, 55]
to compute the impurity transport in a strongly rotating plasma {toroidal velocity
V== vy ) resulting during strong NBI. The particle flux obtained in Refs. [54 55] can

be written as

I =<njv; > = <0, >ps + < ﬁjv,.j >ne + < N >
+ < N >p+ <Y S + < N D> (3.45)

Here, j=1,Z for the main jons and impurity ions respectively. In the above equa-
tion, the first two terms are the usual Pfirsch-Schliiter (PS) and neoclassical (NC)
components. The third, fourth, and fifth terms are the fluxes resulting from the
beam-particle momentum exchange (M), inertial effects (I) and radial electric field
(®'). These fluxes depend on the poloidal asymmetry in the particle density and,
hence, indirectly on the poloidal potential variation. The last term is the flux re-
sulting directly from the poloidal variation in the potential. In the limit of highly
collisional impurities (i.e. the impurity parallel viscosity 12z — 0), this term for the

impurities can be written as

_ 0 .
Fi =< Nzlz 2§ nszzV ol 2}3 ( ) (3.46)

" where n is the flux surface averaged impunty density, E? is the leading order radial

electric field and V% is the impurity-ion collision frequency. The potential variation
is assumed to be of the form |
&(r,0) = ¢°(r)[1 + ®°cosd + &*sind]
Bz is the normalized gyroviscosity [53] given by
Viz

. 120
= — ih =
Z Yz wi ez 2R2€ zB
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Here, Tz and ez are the impurity temperature and chafge respectively and © is a
quantity of the order unity for a strongly rotating (vy = vis) plasma. From Eq. 3.46,
it is clear that for E? < 0 (counter-injéction), ICRH (®° > 0) produces inward flux
(T'y < 0), while ECRH (®° < 0) induces outward impurity flux (I'y > 0). For strong
co-injection, which could result in E? > 0, ICRH produces an outward impurity flux,
while ECRH induces an inward impurity flux. In a non-rotating (v4 << vy) plasma
heated by ICRH or ECRH, the gy_roviscosity is expected to be small. Nevertheless,
Eq. 3.46 qualitatively predicts an inward impurity flux during ICRH and an outward
flux during ECRH if E?, which is negative during the ohmic phase, remains negative
during cyclotron heating. (This seems to be the case on most devices. See the
information on rotation velocities and potential variation during ECRH and ICRH in
Chapter IV.) | |

3.3.2 Transport Due to Wave Particle Interactions

Wave particle interactions can affect the transport of the resonant species as well as
the non-resonant species. We shall review a few important papers in this area. As
mentioned before, much of the interest has centered on ICRH. However, some of the
mechanisms described below apply to ECRH as well.

Whang and Morales [44] argue that during ion cyclotron wave heating, the toroidal
canonical angular momenfum, P, = mRuy, +:. eRA,, experiences negligible change
in comparison with the magnetic moment, . Hence, when one allows for discrete
changes in p at each localized resonance, keeping P, constant, the minor radius of
the drift orbit changes by [44]

acosd |y
2v1+ acosd

Ar = S(Au/) (3.47)

where a = (2¢By)/(mufy), vy is the parallel velocity at resonance and § = +1(-1)

for co- (counter-) flowing ions. The change Ar is illustrated in Fig. 3.7. Discrete
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changes in the minor radius by Ar leads Whang and Morales to conclude that rf-
heating leads to a diffusion coefficient of the ﬁype D ~< (Ar)? > /2t where t is
roughly the transit (or bounce) time for passing (or trapped) particles and < >
represents airerage over the phase between the particle velocity and the wave electric
field. This diffusion mechanism has been contested by Shurygin and Yushmanov [13].
They argue that during cyclotron heating, only the perpendicular velocity increases
and the parallel velocity does not change (this is true only for k; = 0). Hence,
by conservation of toroidal canonical angular momentum, the particle has to pass
through the same fixed resonance points (see Fig. 3.7). This would mean that only
the type of the orbit changes, i.e., passing particles get trapped or trapped particles
experience resonance localization (see Section 3.1.1) and an increase in the banana
width, but there is no diffusion.

While the mechanism described above m.ay not lead to diffusion, successive dis-
placements Ar in the equatorial plane could result in a loss of the resonant particles
if the collision frequency is low, i.e., v, > (Ar/(a — r4))w; where a and ry are the
minor radius and the initial drift orbit radius respectively. Chan et al. [56] point out

that loss of trapped orbits in the above manner could result in significant changes in

the impurity transport. It is well known that in a tokamak, counter-streaming (with

respect to the plasma current) jons execute'large.l‘. banana orbits as depicted in Fig.
3.8. During ICRH, thé trapped parti_cle orbits become wider, leading to the loss of
some particles. From Fig. 3.8, it is clear that significantly more éounter'-streaming
ions will be lost, resulting in an asymmetric confined ion distribution function which
carries a net canonical angular momentum. Chan et al. [56] argue that the confined
jons impart their momentum to the impurities via collisions causing them to drift
inward. They solve the drift-kinetic equation with a driving term which includes col-

lisions between impurities and heated minority ions to obtain an expression for the
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impurity flux of the form

nz3/Flzecosh
Tza l00

<3 >= ~(mgZa/maZ) [(d8]25) ¢ (348)

where the subscript (superscript) Z and o refer to impurities and heated ions respec-
tively and 9, = v, ;(j = @, Z). The integral G = | dav'(vhﬁg/v'a) /n, is evaluated
using the heated ion distribution function f{ obtained by Stix [22] and subtracting

the particles in the loss region (see Fig. 3.8). It is found that < I'z > is always

- negative, independent of the direction of plasma current with respect to the toroidal

magnetic field, By. As can be seen from Eq. 3.48, the impurity fiux is proportional
to the impurity charge. The ﬂux is found to decrease with increase in the plasma
current and density. Calculations [56] for PLT parameters indicate that for moderate
densities (~ 2 x 101%m~?), the impurity pinch velocity < V; >=< T'z > /nz can be
an order of magnitude larger than the neoclassical pinch. |

Chen et al. [57] have examined the transport of energetic trapped ions during
ICRH when k) # 0. They use quasilinear equations as well as a single particle model
to derive the particle fluxes. For simplicity, we consider their single particle a.pprodch.
The results obtained agree with those obtained using the quasilinear approach. Dur-

ing cyclotron wave heating, for small kv /w, wave damping primarily affects v,

which changes the banana width but not the radial location of the banana tip. How- |

ever, for k; # 0, there are small changes in v(~ v4) which cause the banana tip to
move radially. Conservation of toroidal angular momentum could be used to relate
the radial displacement, é7, of the banana tip to the change in parallel velocity, dyy,
by |

br = —6uy/Q (3.49)

Change in v can be expressed in terms of change in the particle energy AW as it

crosses the resonance zone. Following Kennel and Englemann [42], the change in the

energy of a resonant particle, AW = mé (v%)/2. The gain in the pafallel component of
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energy, AW) = mé(v{)/2 = mvybvj. The energy lost by the wave is AW = nhw /2,
where n is the number of quanta of energy lost to the particle and A is the Planck’s
constant. Similarly, AW} = (nh/27)kjv,. Hence AW;/AW = kyvy/w or

kll‘s(”ﬁ) knAW
mw

(3.50)

Using this in Eq. 3.49
' kAW

br = - mwils

(3.51)

Chen et al. [57] have obtained the result 3.50 using a calculation involving the rate
of change of P;. If 75 is the time required for a particle to move from one banana tip

to another, then the banana tips move radially at a velocity

N <ér> 2k, <W >
nRf = (78/2) - mwlleTs

(3.52)

The factor 2. appears because the particle passes through the resonance layer twice
in time 7p. For the fundamental resonance at w = Q in the k)7 /w << 1 limit, using
the result for < §W >=~< §W > computed by Stix [22], Chen et al. [57] compute

the convective particle flux

T,.= N<or> _ —(B/B,)

’%
271 on R N, P (3.53)

Rr]smﬂz(l

res
where N is the number of particles crossing the resonance region per second = 2 x
27R| Bs/B | fd®vf | vj | and N,‘,,.,, is the dénsity of trapped particles in the resonance
zone. We note that for symmetric ky = k4 spectrum, I', . = 0. Hence the convectivé
flux is important only when kj spectrum is highly &ymmetric. Moreover, convective
flux is inward or outward depending on whether k4 is +ve or -ve with respect to
the plasma current. In addition to the convective flux, the authors [57] also find a
diffusive flux with a diffusion coefficient

< (6r) > — < ér >? 2kIWL < W, >

D,y = 2(15/2) T mA0: 7 (3.54)
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Comparing Eq. 3.52 with 3.54 and noting that Vi susiwe ~ D¢/, the diffusive flux is
smaller than the convective flux when kgsp < 1. Similarly, a compal.ri'son of I, . with
the neoclassical flux by Chen et.al. [57] indicates that for strong asymmetry in the
wave spectrum, i.e. k4R 2 10 — 20, the rf-driven transport could be comparable to or
higher than the neoclassical flux depending on the energy of the ions. The authors [57],

however, conclude that in most of the present experiments, the above mechanism does

- not play a significant role apparently because of a lack of strong asymmetry in the

‘wave spectrum. It is, nevertheless, conceivable that antennas which launch waves

preferentially may be used to improve the particle confinement or remove impurities
and helium ash.

The formalism used in Ref. [57 ]I does not contain the effect of collisions. Moreover,
it concentrates mainly on the trapped particles while neglecting the contribution

of the passing particles. In a recent paper, Chiu et al. [58] have generalized the

- above formalism to include collisions as well as passing particle contributions. They

specialize for the case of ion heating using fast waves/ion Bernstein waves and take
into account collisions between the main jons (self collision frequenéy v,} and between
the main ions and t_he impurity ions (collision frequency 11). When collisions are
momentum consewing, i.e. v, 2» 11, they obtain a result similar to Eq. 3.53. The
result, however, includes the contribution of passing particles. It has the total particle
density ng instead of the trapped particle density N.,. At the other limit, when
v, € vq, they obta.m a contnbutlon to the total ion flux which could be an order of
magnitude larger than the flux given by Eq. 3.53.

Chang et al. [59] have recently studied neoclassncal transport of ICRH- hea.ted lngh

energy tail ions for the case when ky = 0. They have solved the drift-kinetic equation

with a quasilinear term in addition to the collision term. The mechanism for tail

ion transport as formulated by Chang et al. can be explained easily using a single

particle model.
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In the absence of a toroidal force, conservation of canonical angular momentum
gives

eRA4 + mRv, = const.

or

mRv,
€

Y- = const. (3.55)

where the poloidal flux function ¢ = —RA,. For the tré.pped particles, information
about net radial motion can be obtained by taking the time derivative of Eq. 3.55.

dy _ 8¢ d(n,R)
pri 8t+ v.Vy = (m/e)——= (3.56)
Integrating over trapped particle orbits and noting that vy = 0 at the banana tips,
_ /oY
<v.V¢ >= < B )

where < > denotes the average over a banana orbit. Using Maxwell’s equations and

V4 = RByfiy, it can be shown that ¢ = RE,, and
<v.V¢ >=— < RE, > (3.57)

which is the usual Ware pinch effect. As the banana particles suffer Coulomb collisions
and rf-scattering, the above result will be modified. For ky = 0, rf-scattering does not
contribute to the toroidal momentum. Coulomb collisions, however, add a frictional

force which modifies Eq. 3.56 to yield,

W_ oy = (mfe)

d(vsR) | FoR
i~ ot

di €

(3.58)

where F, is the toroidal friction. The above equation gives, after carrying out the

same steps as before,

__ | FyR
<V.VY >=— <§> + (T) (3.59)

If the < FyR > term does not vanish, we have a new pinch (or inverse pinch) term

in addition to the Ware pinch.' Physically, two mechanisms are responsible for <

F4R ># 0 [59],
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(i) Difference in the path lengths between the banana tips due to the magnetic

shear gives a contribution

m|y|ds 8

< e R

~—(4R) \ (3.60)

where the friction force has been put in the form Fy =~ (m | v | /7,). Here, we assume
that ion-glectron slowing down collisions are responsible for friction. Also, 4 is the
banana width and 7 is the safety factor.

(ii) As 7, ox T2/3/n,, the gradients in 7, and n, give rise to an imbalance in the
friction force,

<F¢Z>"_‘-'m|v"|(—

16n, 3 0T,
7, \n. or 2_31;5'—) (3.61)
The combined effect of the two phenomena would be to 'giire us
mly] 1n,_ 3 0T,
<V > pomy —-L_RA, ( T or —(dR) + Pl (3.62)
From a fluid perspective, the pan_;icle flux is
[, =<nuVy>= —% <RW¢(F-V.P+ enEy) > (3.63)

In the standard neoclassical theory, the main contribution to the particle flux is due to

the friction F and the toroidal electric field E4. Due to the fact that the lowest order
distribution function is a Maxwellian, the oif-ldia.gonal elements in the stress tensor are
of second order, making the second term in Eq. 3.63 small compared to other terms.
During ICRH, the lowest order distribution function departs significantly from the
Maxwellian, giving rise to a Jower order contribution to the second term. It should be
noted that from Eq. 3.62 the radial pinch velocity v, is of the order ~ (v /Qer)As/ 7.

Hence, particle transport due to the above mechanism is quite small, the maximum

rate being of the order of one banana width in one slowing down time. Also, we note -

that the direction of the pinch term is inward due to the density gradient term and

outward due to other terms.
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Core [60] has studied the problem of resonant ion diffusion during ICRH with
k) # 0 using a guiding center version of the Fokker-Planck equation which includes,
in addition to the Coulomb an-d quasilinear collision operators, a term representing
diffusion in the configuration space. He uses a diffusion coefficient very similar to the
one given by Eq. 3.54. His analysis shows that for high power heating over long time
scales, theré is a pump-out of resonant ions from the region. of resonant 'intefaction
into regions where damping is weak. Also, there is a degradation in the heating

efficiency and thermonuclear reactivity.

3.4 Summary and Conclusion

In this chapter, we have surveyed the effects of cyclotron resonance wave heating

" on particle transport in tokamaks. We find that high power wave heating leads to

the build up of an order ¢ polcidal potential variation, €(8), in the low collisionality

‘regimes. It was found that such a vatiation in the potential could cause a redistri-

bution of non-resonantltrapped particles in the banana regime. A modification of
trapped particle population aloﬁg with the E x B drift due to the poloidal electric
field prqduces significant changes in neoclassical transport. In a two species plasma
(main ions and electrons), there is found to be an increése in the electron diffusion
coefficient for both ICRH and ECRH, while, for ICRH, the Ware pinch coefticient
shows a modest increase. For ECRH, it decreases first up to e®(8)/T ~ ¢ and then
increases for e‘b’(ﬂ) /T > ¢. The effect of the presence of an impurity species on ion or

impurity transport has not been studied.

The problem of transport of high energy tail ions created during ICRH has received '

much attention. During wave heating, the trapped particle population increases and,
in addition, the trapped particles exlz;érience a widening of their orbit. Loss of some

of these high energy (significantly more counter-streaming) ions by interception with
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limiters or other structures results in a confined ion pop'ulatién carrying a net canon-
ical angular momentum. These ions.impa.rt their momentum to the impurity ions
causing them to drift inward. The inward drift, however, decreases rapidly with in-
creasing density and plasma current. Furthermore, the highly non-Maxwellian nature
of the tail ions is found to give rise to a convective flux of tail ions. The magnitude
of the flux is small compared with the neoclassical flux. |

The above mechanisms operate even when ky = 0. For wave heating with &) #
0, trapped particles experience .d_iﬂ'usive as well as convective inotions. While the
diffusive motion is present for symmetric as well as as’ymmetrié k) spectrum, the
convective flux is present only for an asymmetric kj spectrum. The convective flux
is found to be larger than the diffusive flux, but smaller than the neocléssicél flux
for the conditions in the present experiments. The magnitude of the convective flux

is found to increase when collisions between different species (for example, ions and

- impurities) dominate.

Thus, in conclusion, there is considerable theoretical evidence for signiﬁcaxit changes
in the particle transport during cyclotron (ICRH and ECRH) heating. ECRH and
ICRH cause an order ¢ poloidal variation in the plasma potential. Such a variation in

the potential is found to produce almost a linear increase in the neoclassical transport

~ coeficients. Other mechanisms due to wave particle interactions induce changes in

the non-resonant particle transport yvhich are small in compai'ison with the neoclas-
sical values. The present neoclassical formalisms, however, do not include the effect
of impurities in calculating the particle transport in the presence of large poloidal
electric fields. The presence of even a small amount of impurities can cause a signif-
icant increase in the main ion transport over the values for a plasma with only one
jon species and electrons. As the present devices find a large impurity content during
wave heating, it is imperative that the neoclassical theory should be reconsidered in

the presence of impurities and large poloidal electric fields.
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CHAPTER IV

WAVE HEATING AND TRANSPORT -
EXPERIMENTS

The purpose of this chapter i3 to review some experimental observations related to

particle transport during wave heating.

4.1 ECRH

4.1.1 Changes in Electron Density

In most small and medium sized tokamaks, ECRH is accompanied by a decrease in
the electron density [31]. Results from ISX-B, TEXT and JFT-2 show this tendency
[1,61,62]. Typical data from ISX-B during ECRH (P,; ~ 80 kW) is shown in Fig.
4.1. On T-10 (P,; < 2 M W), electron density profile broadening as well as a loss of
particles has been observed [63]. The increase in T, and consequent fall in the loop
voltage results in reduced.neocla.ssica.l pinch. This effect, however, is not sufficient

to explain: the magnitude of the drop in the electron density [31]. A recent study on

'TEXT [64], with ECRH power up to 200 kW, indicates an increase in the electron

diffusion coefficient in the outer regidns of the plasma, while it remains constant in
the interior. On DOUBLET I1I, which is a large device, no change in the electron
density has been observed for F,; < 0.7 MW [65].

Finally, we briefly mention a study on electron transport during ECRH on the
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IMS stellerator [66]. Central heating with ECRH (P,; ~ 2 kW) on the IMS steller-
ator produces electron density profiles which are hollow compared to the fairly flat

profiles resulting during edge heating. Computer simulations using an ‘anomalous’

pinch velocity in addition to the diffusion term in the transport equation give good

agreement with the measured density profiles. Furtheriuo_re, it is found that the
poloidal electric fields are greater for the hollow profiles than for the flat profiles. The
authors [66] indicate that the convective term is most likely a result of the increased

poloidal electric field.

4.1.2 Impurity Transport

There have not been many studies of impurity transport during ECRH in tokamaks.

This probably is due to the relatively low increase in the radiated power during ECRH.
There are, however, two recent studies which deal with the problem of impurity
transport during ECRH in considerable detail. These studies have been conducted
on TFR and TEXT. |

In TFR, .the behavior of intrinsic impurities has been investigated in great detail
[2]. Transport simulations have been carried out with a computer code using two
transport parameters {(a diffusion coefficient, D and an inward convective velocity, V)
and using the_experimentally determined n, and Tg profiles.

For high density plasmas (n.(0) ~ 3.5 x 10'® m~2) with a large iron concentration
(npe(0) > 5 x 10'® m~3), transport simulations with D = 0.4 m%/sand V = 6 m/s
give agreement with the experimentally determined impurity radiance for both the
ohmic and ECRH (P,; ~ 520 kW) heated plasmas (see Figs. 4.2 and 4.3). Thus, there
seems to be no change in the transport properties during the high density discharges.
Also,_ during these experiments, electron density changes were relatively small.

For the low density discharges (n.(0) ~ 2 x 10'® m~3) with an iron concentration

similar to that mentioned above, the transport coefficients vary significantly. For
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Density vs Time for 80-kW microwave pulse of 16-ms duration. Data from ISX-B [1].

homp- et
i3
> 3 8
ot |
i

el

1%

' -
500! rom  1oren W raw are
| ™ 1 ¢ gy
30| 5"3-\4-“/-‘\/\._“ 8ol v
io io }

KLY . i
amk 123N

s

o W 20 00um| 0 10 200 X0 i

T
|
:
{2
g 8¢

(1]
Q

14 1]
[ ]

Fu

"
/

L

i3

Figure 4.2: Experimental radiances of six iron lines for high density D-He iron dom-
inated (ID) discharges (‘fond’ refers to background radiation). The central T, and
Pgc are also shown. Data from TFR [2].

77

L] R O T U, O O T Y Y



P,; = 520 kW, the transport coefficients had to be increased from D = 0.6 m%/s and
V =6 m/s during the ohmic phase to D = 1.8 m?/s and V = 18 m/s during ECRH
to give agreement with the experiments (see Fig. 4.4). The increase in the transport

parameters is well above the uncertainty in their determination. The combined effect

of increase in D and V is found to be a reduction in the impurity confinement time.

Furthermore, during the low density discharges a strong pump-ont in the electron
density and an increase in the trapped electron population has been observed {2].

Transport simulations similar to the ones described above have been carried out
for low density, low iron (n.(0) ~ 1.25 x 10%6 m=3) discharges. The results again show
an increase by a factor of 3 of the impurity transport coefficients during ECRH.

In the TEXT tokamak, the transport of both intrinsic as well as injected impurities
has been investigated [3]. Titarium was the major intrinsic impurity in TEXT. During
ECRH (FP,; ~ 200 kW), the titanium concentration in the plasma increases. There
is also an increase in the titaniom source by ~52% {3]. In order to better understand
transport, scandium, an element similar to titanium, was injected by the laser ablation
technique. This allowed a precise control over the impurity source. Transport studies
with scandium reveal that the decay time for the scandium charge states that peak

at /R > 0.7 decreases during ECRH (Fig. 4.5). Furthermore, concentration of the

- central charge states of scandium decreases during ECRH. These resulté may indicate

an outward impurity flux for /R > 0.7 which could oppose the increase in the

impurity source. However, the decay times for the charge states that peak at r/R <

0.5 remains relatively uncha.ng_ed during ECRH, indicating insignificant transport
changes at the core of the plasma. As in the case of TFR, numerical simulations
have been carried out using two transport parameters ( diffusion coefficient, D and
convective velocity, V). Reasonable agreement with the data presented in Fig. 4.5 is
obtained by increasing D from 1.0 m?/s du.ring the ohmic phase to 1..5 m2/s during

ECRH while keéping V fixed at 10 m/s. Thus, for power levels up to 200 kW,
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‘there seems to be a significant change in the diffusion coefficient for radial locations

r/R>0.7.

4.1.3 Other Effects Related to Transport

In addition to the transport effects described above, ECRH induces changes in other
plasma parameters which may directly or indirectly contribute to the observed trans-
port eﬂ'ecté.

One such effect is an increased trapping of the resonant species during ECRH. As

described in Ref. [11] and in Chapter III, cjclotron heating increases the perpehdicula.i
energy of the resonant particles, leading to.increased trapping. Such an effect has
been observed on TOSCA, T-10 and TFR [67,31,2). This effect is seen as a local
peak (towé,rd the_ outside of the toms) in the soft X-ray profile.
- ECRH causes an increase in the plasma potentia.l.. Plasma potential measurements
made on TEXT [68] using a heavy ion beam probe indicate that the potential incréases
(becomes less negative) during ECRH. The magnitude of the change is ~20%. At
the center, the potential changes from ~-800 to -620 volts.

Another effect, which may be related to the potential changes, is the change in the
plasma rotation velocity. Rotation measurement on DOUBLET III [69] indicates that
the rotation velocity drops from 25200 m/s (co-rota.tion) during the ohmic phase to

10-15200 m/s during ECRH (P,; < 1 MW ) for the effectively heated discharges with

- the electron temperature increasing from 0.8 keV to 1.2 keV during wave heating.
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4.2 ICRH

4.2.1 Effect on Electron Density

In most tokamaks, the electron density rises with the application of ICRH. This has
been observed on PLT, TFR, TEXTOR, JET and JIPP T-IIU [70-73,4]. Fig. 4.6

. shows the density evolution during ICRH on the JIPP T-IIU tokamak [4]. The density

b s

increase in Fig. 4.6 is mainly due to enhanced recycling due to ICRH and it scales
almost linearly with the rf power. On TEXTOR (P,; ~ 1 MW), the increase in
density is attributed partly to a profile broadening effect and partly to an increase in
the central electron density during ICRH [72]. Studies on JET {74, 75] indicate that
there is no change in the electron transport coefficients (i.e., diffusion coefficient, D
and convective velocity, V) during ICRH. Thus, it appears that any change in the
electron density during wave heating is due mainly to an increase in the electron

source and not due to changes in the transport coefficients. In ASDEX, which is a

tokamak with a divertor, no change in the electron density has been observed during

ICRH [76].

 4.2.2 Impurity Transport

In most devices, application of ICRH results in a higher impurity content. The
change in the impurity content can be due td a change in the impurity source and/or
due to a change in the impurity transport coefficients. It seems certain that ICRH
always results in an increase in the impurity soui‘ce. The mechanisms responsible for
impurity generation are not completely understood. It is believed that erosion and

sputtering of the wall {e.g. by the fast ions produced during ICRH) and a release of

the antenna screening material (due probably to the impact of ions accelerated by

the high rf fields) may be plé.ying a major rol;e. There seems to be a relation between

the heating efficiency and the impurity release. Poorly heated plasmas have a higher
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Figure 4.6: Typical Discharge on JIPP T-IIU with Pgr = 2 MW. W, and W.(0) are

the total stored energy and stored energy density of electrons respectively. Data from
JIPP T-11U [4].
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impurity content. _ _

Impact of high power ICRH on the impurity transport coefficients has been studied
in a few tokamaks. In a study on JET, diffusion coefficients for nickel have been calcu-
lated {77] for ohmically heated plasmas. A diffusioﬁ coefficient, D ~ 1 m?/s, assumed
to be constant across the plasma, and a convective velocity, V = —2Dr /a?, give good
agreement between the experimentally determined nickel (Ni XXVI) intensity and
the computer simulation. The authors [77] indicate that the diffusion coefficient (and
hence the convective velocity) increases during ICRH. They, however, do not present
any quantitative results. |

An investigation of impurity transport from the vacuum vessel wall to the core of
the plasma has been carried out on ASDEX [5]. In some experiments, titanium was
injected into the plasma by the laser blow-off technique and the time .evolutio_n of the

titanium line; Ti XX, in the core of the plasma was recorded for ohmic, neutral beam
heated, and ICRH heated plasmas. Fig. 4.7 shows the result of such an experiment [5].
The decay time fof titaninm is of the order of the confinement time for titanium in
the core of the plasma. From Fig. 4.7, it is clear that the confinement time for
titanium is smaller for ICRH heated plasm#s than for ohmic plasmas. However,

for comparable powers, ICRH resuits in better titanium confinement than NBI {co-

~ injection). Diffusion coefficients have been calculated for the above shots via computer

simulation. For ohmic, NBI and ICRH heated plasmas, D is respectively 0.5, 1.0 and
0.9I m/s. Thus, there isa clear increase in the impurity diffusion coefficient during
ICRH in comparison with the ohmic values. There seems to be a slight decrease in the
diffusion coefficient for ICRH in comparison with NBI (co-injection) for comparable
power levels (P ~ 1.2 MW). In an earlier paper, Steinmetz et al. [76) have indicated
that the imprOvemeqt in the particle confinement time during ICRH wifh respect to
NBI discharges may be due to an enhancement of the inward drift rather than due

to a reduction in the diffusion coefficient. It appezirs that the computer simulations
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mentioned above do not take this effect into consideta.ﬁon.

Impurity transport studies have also been conducted on TEXTOR [6]. For ICRH
powers up to 1 MW, there is a noticeable increase in the concentration of light im-
purities such as oxygen and carbon. The impurity content scales ljnea.ﬂy with the rf

power. A typical example of light impurity behavior during ICRH is shown in Fig.

4.8 [6]. After ICRH is turned off, oxygen emission drops to a lower value. The time

constant for the decay is of the order of the impurity confinement time (~ 75 mil-
liseconds). As the increase in O VI brightness during ICRH is much more than could
be explained by the changed plasma conditions (for e.g., increased T.), the authors 6]
conclude that there was an influx of impurity during ICRH. They, however, do not

present any data on the transport coefficients.

4.2.3 Other Effects Related to Transport

As in the case of ECRH, iCRH induéa changes in several plasma parameters that
may be directly or indirectly related to transport.

ICRH produces significant changes in the plasma rotation. Central rotation veloc-
ity during ohmic heating has been measured on JET using MHD diagnostics [78,79].
The velocity is typically 2 — 2.5 x 10* m/s counter to the plasma current. When
ICRH is turned on, the plasma 'velocity increases in the counter direction.

Rotation velocities during ohmic heating and ICRH have not been measured on
TFTR. However, velocity measurements made during balanced NBI (total beam
power ~4.7 MW; 1 beam co-; 1 beam ctr-injection) show that the plasma is r'd-
tating in the counter direction at ~ 2.5 x 10* m/s [80]. With the application of 2
MW of ICRH, the central rotation velocity increases in the diréction counter to the
plasma current to ~ 5 x 10* m/s. This is in agreement with the measurement made
on JET. Another point of interest is that the rotation velocity during NBI for co- and

counter-injection decreases when ICRH is turned on [80]. Similar results have been
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obtained on JET [78].

Finally, there is some evidence for resonance localization, discussed in Chapter 3,
from PLT {81].

4.3 Summary and Coneclusion

There is considerable evidence that cyclotron heating (ECRH and ICRH) induces
significant changes in the particle sburce rates as well as the particle transport coef-
ficients. These effects for ECRH and ICRH are briefly summarized below.

In most devices, ECRH leads to a decrease in the electron density. ECRH also
increases the particle source rate, but the increase is apparently not serious at the
present power levels. There is good evidence from TFR and TEXT (2, 3] that the
impurity transport coefficients ihcrease during ECRH. The increase in the transport
coefficients sometimes (as in the iron dominated plasmas in TFR) leads to an outward
flow of impurities. The changes in the impurity transport coefficients are sﬁbsta.ntia.l
for low density discharges, while they appear to be s:ﬁa.ll for high density discharges
at the present ECRH power levels, which are quite small in most devices.

In plasmas heatéd by ICRH, the situation is more complicated. In most devices,
ICRH causes a rise in the electron density and impurity concentration. In all cases,
ICRH greatly enhances the particle source rate. In most devices, the nse in the

electron and impurity densities has been attributed to a rise in the particle source

rate. Evidence from JET (74, 75] indicates that the electron transport coefficients

experience only small changes during ICRH. There is, however, evidence from JET
and ASDEX [77,5] that the impurity transport coefficients increa.ée during ICRH. It
seems likely that at least for the impurities, the increase in their concentra.ti.on can
be attributed to an increase in both the source rate and the transport coefficients.

In conclusion, it appears that cyclotron wave heating induces significant changes
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in the particle transport coefficients as well as the particle sources. However, the

mechanisms for these changes have not been clearly established. With improved

bt Y ik b inga b Do e SR

l-':
diagnostics, it may be possible to identify the mechanisms causing changes in the f
transport coefficients. Also, development of better theoretical models which include "

the impurity effects should make it easier to interpret the experimental results.
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CHAPTER V

TRANSPORT IN THE BANANA REGIME

In this chapter, we shall solve the dnft kinetic equation derived in Section 2.2 in the
banana regime for a large aspect ratio (R/r = 1/¢ 3> 1) tokamak. The solution will
be obtained for a multispecies pia:;ma in the presence of an order ¢ poloidal variation
in the potential. We use an analytic procedure similar to that used by Connor [9] and
Hirshman et al. [14]. We will reduce the drift kinetic equation to a set of algebraic
equations for the so called “restoring coefficients” [14). The restoring coefficients will

be used in the subsequent chapters to obtain expressions for the particle transport

and parallel current.

5.1 Low collisionality Ordering
The drift kinetic equation, detived in Section 2.2, forms the basis of our calculations.
For a species j, the drift kinetic equation is written as

. ; e; af; =\
Wh- Vi + ¥, Voo + LB R = C(f) 5.1)

For the drift velocity, we use the small 3 result obtained in Appendix A.

vpi=-—yhxV (ﬂl')
ARy

Noting that V f;o has only a radial component, we find

vpi - VJ; =1‘i§iﬂi£’_(_"ﬂ)ﬁm~;’ﬁﬂi(ﬂ)3_@
Dit VT B r88\B/ 8r ¢ r 89 \B/ or
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where we have set B, ~ B due to the fact that By/By < 1 in a small 2 device [8].

Hence, Eq. 5.1 can be written, after using the Maxwellian form for f;o, as

Bg lale f_nigﬁ %‘-
BT o8 + e rBO( ) ar T (“Q)Euf:n = C(f5)

where 0q = vy with ¢ = & and ¢ = |vy|. Dropping the bar over f;; and writing [9]

1=

e’ BO 87‘ +g.'l' . (5'2)

~ we obtain

Byl (_mj(GQ) %) 4 9985895

“UBrog\ ;B or )t B 09 |
m, q 0 3f:0 = _ &_ )
+28 2 (5) 32 = 0l + Foa)Busn (5.3)

Using By = B$/(1+ €cosf) and By = B}/(1+ ecosb), By/B = B3/B® = ©. Making

use of this expression, the drift kinetic equation reduces to

“6%% = Clf) + o0 6.4)

We now make use of the fact that, in the banana regime, the typical time taken by

a particle to complete the banana orbit (73 = 1/wg) is much less than the effective

collision time for the particle to scatter out of the trapped orbit (7esr = 1/v4yg), i€,
%f <1

where v,y and wp are defined in Section 3.3.1. Expanding g; in terms of the small

parameter v.zrfwp [9), ie., 95 = 9 + g} +--- where g}/g? = O(vess/wa), we obtain,

after using our ordering assumptions for C(fi1) and E,

8¢}
i 0 (5.5)
To the first order in vz;/wp,
0q 09} e;
S O0% =CUn)+ ﬁ(UQ)Ellfjo (5.6)
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Using the Hirshman-Sigmar collision operator, Eq. 2.63, we write

090089 < pw 8, 8fn 2uyTsj V5§
o8 = LUnpp WG, LTl
mev) . €;v
+Z[ RN AR ’;( )fjo-+ ,}; LE, £i0
Substituting for f;; using Eq 5.2,
‘7_‘?23_9} _ 3t oD og 8 8_9}3 2("'9)”&: S
. a0 ZEJB ar Jk(a‘I)"'EVDBap MQ)ap +Ek: vtha fJCI
0’ u €0 :
PICETAR S A 51

We now divide the velocity space into three regions: (i) the untrapped particle region,
(i) the trapped particle region, and (iii) a thin layer between regions (i) and (ii) in
which the particles are marginally trapped (untrapped). .Here, we will be chiefly
concerned with the solution of Eq. 5.7 in the untrapped and trapped particle regions.
We do not perform a detailed analysis of the boundary layer {see Appendix B for a
discussion of the boundary layer). However, we use the behavior of the drift kinetic
equation in the boundary layer o match the solution of Eq. 5.7 at the interface
between the trapped and untrapped regions.

5.1.1 Untrapped Particle Region

For untrapped particles, we multiply Eq. 5.7 by 1/2x(0q) and integrate between 0

and 27¥.
Qij Bg: =0= mj 3f10 2 f'f_ do
r2x a0 e; Or 21r By
6 1 2= 2fJ0 (__ x
Ton (21 0 dﬂVDB) 8u+v,,m¥ 211'./(; ThYie d9)

+fio (—_[J [vf - Vﬂﬁ# 49) + %E"f,-g (5.8)

= Y v, and E° = (1/27) joz'.E“ df. We note that due

to the presence of a-sngmﬁca.nt poloidal variation in the potential, the collision fre-

D _ D
Here, vy = Y4V,

quéncies and the velocity integrals u;1(v) and rg; depend upon the poloidal angle. '
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This is due to the poloidal angle dependence of the velocity v, which is given by
v? = 2|E* —e®(6)/m]. We can divide the untrapped particle region into (i) untrapped
 particles forming a part of the boundary layer (marginally untrapped particles) and
(ii) well untrapped particles. in the present aha.lysis, we will not carry out a detailed
boundary layer analysis. We consider only the untrapped particles with a large kinetic
energy in comparison with their potential energy. Hence, we treat the velocity 1o be
independent of poloidal angle for these particles. It should be noted that Chang [12]
also treats the kinetic energy as constant in his analysis. With this, Eq. 5.8 can be
written as
PEu(2) Y < -l Uer
= frolvf - Vf]i%g-z - %E"fs‘o

where
1 2x 1 2n
<z>—§fo hzdﬂ_ﬂfo {1+ ecos @)z df

for a large aspect ratio tokamak. Integrating the above equation with respect to

and insisting that ng /Bp remain finite at u = 0, we obtain

o9} _ B® [ m; 8fo m:f:ﬂ
W - ——<‘U||> eng or T}sz<rk‘?
< > . .
+(1- ) < s E“f—o (59)
f Ly

We note that for the passing (or untraipped) particles, the direction of the parallel

velocity is the same when the particle traverses the flux surface. Hence, from Eq. 5.9,

o0, | 090 |
Tt =0 (5.10)

where the subséripts + and — refer to the sign of the parallel velocity.
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5.1.2 Trapped Particles

Turning our attention to trapped pa,rtiéles, we divide Eq. 5.7 by oq and integrate it
with respect to 8 between 8, and 6 (the turning points for the trapped orbit). This
Jeads to

O var_ gy _ ™0 | ’”’f’ 2 /"’ po 39,
~[9j(02) — gj (1)) = Py y-d ,u de v

3{:;2; ( /: raivs, da) + fio ( [ [P - 5]”’1(”) da)
—f;o f a8 Ey

Writing the above equation for each value of o, ie., fore = 4+ and ¢ = ~, and

subtracting the second equation from the first, we get

?"[9}+(92) - 9}+(91) - 9}- (92) + g}_(ﬁ; ) =

8 o g\ og? |
( dé vP ) + gt ([ da_ufﬁ)—ai— (5.11)

where g‘,-’+ and gj_ are the solutions when the parallel velocity is vy = +|vy| and
vy = —|{uy| respectively. In obtaining the above equation, we have used the fact that
the collision frequencies and the velocity integrals 4;1(v) and ry; do not depend on
the sign of the parallel velocity.

We now note the important fact that the distribution function g; must be contin-

uous at the turning points of the trapped orbit, i.e.,

9j+(92) = g;_(62); 9:‘+(91) = gj-(61) '

Hence, gf = g"__ due to the fact that grj is independent of the polo:dal angle (Eq. 5.5).
Using this in Eq. 5.11, we get

N PFIL -

Bg, _ K
En w(jezdovP g

ol

(5.12)
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where K is a constant to be determined by the boundary condition for the trapped

region.

Boundary Condition for the Trapped Region

We determine the constant K by examining the behavior of the solution to the drift

kinetic equation in the boundary layer [33,82]. In the boundary layer, the low colli-

~ sionality expansion is invalid {see Appendix B). Hence, we consider the unexpanded

version of the drift kinetic equation (Eq. 5.4) in the boundary layer. Dividing Eq 5.4
by oq, and integrating this equation across the boundary layer centered around uy

with thickhess Ap, we have
_fUT f"deeg’ = %‘f%’:’}fdp( %dﬂ).
+ [t ], 050 (4F)
B L (i
+ti0 [ ([ 07 - 1252 )
—f:o f du f dé Ey

where &, and 8 are defined in Fig. 5.1. The integration limits UT and T refer to the
untrapped and trapped regions respectively. Writing the above equation for ¢ = +
and o = — separately, and subtracting the second equation (for ¢ = —) from the

first, we obtain

e /T ' .
?LTL"H(&) —9;:(81) — 9;-(82) + 9;-(8)] =
j 3}_
ftf:‘_d” A doﬂ ( B)ah /mfo’ " gp (5.13)

where the subscripts + and — refer to the sign of the parallel velocity. Again, we have

used the fact that the collision frequencies and the velocity integrals u,-l(v) and ry; do
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not depend on the sign of the parallel velocity. For mafginally untrapped particles,
9i+(02) = .9j+(91)§ 9;-(62) = 9;-(61)

For marginally trapped particles, continuity a-t the turning points implies,
9i+(02) = g;_(82); 9;+(61) = 9;-(61)

Hence, the left hand side of Eq. 5.13 = O for all particles. This gives us

6 qvP\ [{8g;. 3g-+) dg;_ dg;.-
iV |{%%) _ (9% 9%-) _ (Y%= =
#ofﬁ @ (B)[( u )‘1‘ (BF‘ UT+ O /1 Su / yr °

Outside the boundary layer, using the expénsion g; = g? + g}- + - - - and retaining only

the lowest order terms, we have, for the untrapped region,

(@g) +(?;9:;-.) =(§£¢) _(E) — 0
ou /yr O Jyp ou /yg Ou Jyr

Here, we have used Eq. 5.10 in the untrapped region. Expanding g, in the trapped
particle region, and noting that g (82) = ¢7_(6;) = ¢}(82) and ¢ is independent of

8, we have
93 QV‘D ago
2 A =
““[fal 4 (3)] ou
or
o9} _
ou

Hence, the constant X = 0, and we have

-5 (S P s T <>

<uy> |&;0,
ag? oS : )
_5% ={ 4 (1 _ ;i,) Seal)> £, 4 S EOLY for passing particles  {5.14)
f] T i

0 - for trapped particles

5.2 Solution of Drift Kinetic Equation

- Using Eq 5.1, we get

Ofix _ _ ™ 8fndu  Og;
Ou e;By Or Ou  Ou
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Using vy = = £+/2 (E uB - e@)” 2 to obtain the derivative of 'u" and reta.lmng only
the zeroth order term grJ , we get, after using Eq. 5 14

8fn _ myB18fn B [ my 8fia m’f’"2<r
du e; Bgvy 8r <y > |¢;BY Or TVD 4 >

+ (1 - V‘D) < u,:}(v) SUNY) 2 o+ & Eof:o]
f;

_ my (B 9fe [l __1

where

D
€]

B, = B° [m,f,u Yo<ry>uh+ (1

D
Ty

) < u,;('v) >f, ej. E“I‘-’g—]

;
5.2.1 Calculation of < u;1(v) > and rkj

Calculation of < u;(v) >

Using the definition of u;1(v) from Eq. 2.69, we obtain, after integrating by parts in
K,
ij
fioun(v) = —'W / dp p— = fjl

where we have required that f;; remain ﬁmte at 4 = 0 and f;; — O faster than

¢ — oo. Using the expression for 8f;;/0u derived in the previous section, we get

__y3B m; (B°) 8fn L&
fjﬂujl(”)— ;41””0 [ (BO) 3:‘ ['v" <7 >l <y >l

Adding and subtracting 5 /vy from the integrand, and defining 8 = 3; + -—1( )%’9,

the above equation can be written as

f:oﬂn(”) = - —'Wﬁ/ fp [" ~ 2 > ] Z vaﬁx/duﬂ-—

We note that Bisnot a function of u. Multiplying the above equation by Vi, / P =

1/2% and flux surface a.veragmg, we obtain

fio < ujl(‘") > ( ﬁ"‘"‘] [ <) >]>

12
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=1 + II (5.16)

The second term in the above equation can be integrated easily to obtain, after

neglecting the dependence of the velocity v on & (see Section 5.1.1),

- f <ﬂ:1(v) _, 2¢i ofi0

Noting that 3 is independent of the polcuda.l angle, we can write the first term in
Eq. 5.16 as '

_ 3B i 1
I = —<E4m __J'f ‘U_"-<'U||>]>ﬁ

~ful (vm)

Evaluation of the coefficient f.s depends upon a knowledge of the trapped-untrapped

(5.17)

particle distribution. In the standard neoclassical theory, i.e., when &(6) ~ 0, the
trapped-untrapped boundary is independent of the particle energy, and for a large
aspect ratio tokamak, fip = f; = 1.46./¢ [37,8,9,14,32]. In the presence of a poloidal
potential variation of the order ¢, as discussed in Section 3.2, particle traﬁping isa
function of the particle energy. Hence, the coeflicient f,4 is a function of the particle
energy. We will evaluate the factor fi in the presence of poloidal potential variations |
for a large aspect ratio tokamak in Section 5.3. Using Eq. 5.17, Eq. 5.16 can be

written as
< un(v) > [V (L~ fe) + v fia ;f m; i 8fje
4 vP “¢;BY fo OF
. €; K0 vi < Ty >
421 ) |25 + S RS2
mjvf g vy

Using a notation similar to that used by Hirshman et al. [14], we write 1 - fis = fo

and v§ f4 + v? fra = vjg. Here, the subscript ® denotes the presence of significant
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poloidal electric fields. With this, the above equation can be written as

Co u,-l(v) p-2 - -'f m; 2 alllf,o
x? e BI T Br v
€; EO D'Sj. < Tij >] .
+2(1 — L e 5.18
( fa) [ J""J'l? Zk: Vig ( )

This equation diﬁ'ers from a simﬂar expression for < u;;(v) > derived by .Hirshman
et al. [14, Eq. 14] in that the quantities fig, f¢ and vj9, which contain the effect of
the poloidal electric field, are now energy dependent. In the absence of a significant
poloidai electric field, the above expression reduces to Eq. 14 in Ref. [14].

Calculation of Restoring Coefficients

The momentum restoring coefficient is defined as [Eq. 2.70]

{ mvigwyfudiv
min{vi}

Calculation of ry; is similar to the calculation of u;;{v). Transforming the velocity

T'gj =

variables to w, i, and integrating by parts with respect to z, we obtain

8fur

o (5.19)

= f dwd,twb =

where

21"3 mk
”J{ k} m; ;

In deriving Eq. 5.19, we have used the same boundary conditions used for deriving

C=-

u;1{v). Using the expression 2.42 for fio, and noting that 1*/2 =E —e < & >/T —
e®(6)/T, |

Bfw _ o a<®> < > mkE']
or ~ [nm S f"“T Te
where the prime denotes derivative w1th respect to r. Using the same notation as

(5.20)

Hirshman et. al. [14], we define the “driving forces™ as

_me 30, T, |
it Azk—T&; A3—E°. | (5.21)

e AR




'Using these de'ﬁniti'ons and Eq. 5.15 for 8fy /04, and making use of the result 5.18,

we can write < ry; > as (see Appendjx B for details)
> = - erd’ o
<Ts> = LRy (ekB") (¢4 (A‘“ i)+ 0 (550} 4
| 1 T: VR e d’
+{V i} (ekBU) [{ Vee f&} (Am+ Tt)
Vi (TwBTY
+{-Vu ( T )fc('} A2k]
"k ”u
+ A —1 = } < T > 5.22
{VS} { fﬂ} Z {V‘.J} { VM fd r]k ( )

In the above expression, the effect of the poloidal electric field is contained in f4 (=

1 - fs), ae, and E*(= v*/2 + e®(8)/m). The most significant effect is contained
in the neoclassical 'factor' fie (= ! — f.e). As we shall see in the next section, the
factor fis contains the effect of modiﬁcatiqn of the boundary between the trapped
and untrapped regions in the velocity space due to the poloidal electric field. When
$(8) = 0, the above expression reduces to Eq. (26) in Ref. [14]. Noting that v4s =

chVf + ft‘ful?:
favi =1- fuvf
Vid Vre
Using this result and summing the Eq. 5.22 over j [9], we obtain, after changing the

dummy index I to j, the following useful expression

. € Eo T, VSVD erd’

M
s.,,D E* V‘D
+{% (m; )fzw}A:n - m—:“a{iﬁw}
> {V*’ f«»} <t >  (523)
r _

We will find this equation helpful in determining the particle fluxes.
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5.3 Calculation of f;s

The .factor fia defined by Eq. 5.17 plays an important role in the neoclassical theory.
The factor fis is closely related to the fraction of irapped particles. In the absence
of poloidal potential variation, the factor has been computed for a large aspect ratio
tokamak by Rosenbluth et al. [37] and more recently by Balescu [32]. The value of
fee in the absence of a poloidal electric field is approximately 1.46./¢ (37,32]. In
the presence of poloidal asymmetries in the potentia.l; the trapped particle distribu;
tion changes and, as discussed in Section 3.2, the boundary between the trapped-
untrapped regions is a function of the particle energy. We will calculate the value

of fis for the case of a large aspect ratio tokamak using a method employed by
Chang [12]. From Eq. 5.17,

e (£ [ L))

Defining £ = |»|/v and X' = uB/w, we obtain,

e = 27 =5 _
- 2@ (1) 2 @) (e - <))

where the first integral is over the trapped particle region and the second integral is

over the untrapped particle region. Here, due to the large aspect ratio assumption,
we have used B =~ B% We now observe that due to the large aspect ratio assumption,
and due to our neglect of the boundary layer,

1

Y, |

£ < s 5~
Furthermore, referring to Figs. 3.5 and 3.6, A .. ~ 1 ~ ¢ over most of the velocity

space. Hence the second integral makes a contribution of the order (1 — €)20(¢) ~

O(¢). Hence, to the lowest order in ¢, we write

=5 () ([ 45 400
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Expressing A" in terms of £, we obtain

fu =3 (3) o (-2 [0~ ae)

We now examine the integration limits.

When ¢e;$;, < €;$,0::

For B-trappi'ng, using Eq. 3.33, we obtain,

A —¢€) [1 + «Z; IXBT(I + cosﬂ)] SN <A +6)=Anas
or, in terms of the variable £,
11/2
Eorit = VE(1 + cos§)V/? [1 ~ L‘Z;J%S_T_] >€>0 (5.24)
r

For E-‘u‘apping, using Eq. 3.35,

€|Z |XOT

‘—(1+)[ —i(1 cosﬁ')]s)\'s(l+e)=,\m

>¢£>0 (5.25)

1/2
e [15IXT
_fmt_ - v/€(1 - cos0) [__m,-w 1

When ¢;®;,, > €; @ :

In this case, we have only B-trapping. From Eq. 3.37, we get

Amin = {1 —¢) [1 "i‘X“T(H osa)] SAS(1+6) = Amas
5 W
or ' 12
Eoris = \/E(l + cos §)/2 [1 + %I‘ 2§20 (5.26)
_ ' j :

From Eqgs. 5.25 and 5.26, we can determine the lower limit on :cf = m;w/T by setting

Eorir = 1. This gives,
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For ej¢§ﬂ < qu:’wt,

g2 8l c086)|Z;]Xo _ 22, (5.27)

%= 1+¢(1~cosf)

_FOI 83'@{“ > e,-@m,

(1 + cosb)| Z;| X =, (5.28)

V

22
7= 1=¢(1+cosb)

Using Eqs. 5.24, 5.25, and 5.26, we obtain

=S (§) ([0 = 3o 1)

Using Eqs. 5.27 and 5.28, the maximum value of f,¢ is found to be 1. Hence, fig < 1.

For z; > Z; .»it, we can simplify the above equation by retaining only the first term.

In this case, |
foo = g < Eorir > +O(¥?)

Here, we have used ¥°, 0% = 2. In the present work, the factor f,¢ appears in the

velocity integrals of the type {} (Eq. 2.71). As will be shown in the next chapter (see

Section 6.3), the contribution to the integral from the low velocity region is negligible

for a large aspect ratio tokamak. Hence, the above expression for f,¢ is adequate for

our purposes. Using the results 5.24, 5.25, and 5.26, we have for €;®;, < €;®,u,

. /2

. 3 1/2 12,1 XoT !

feo = —\/E((l—cosf’) )1__’"_:“"’_
1/2

= f‘ |z 'X“T (5.29)
Similarly, for e;8;, > ;% pu:,

3. sy [y, 1ZilXeT )

fa =~ 2\/2((14‘0039) > 1+ —
|7 1/2 _
_ f,‘l +|Z:lﬁT - (5.30)
i )

Here, we have used the fact that < (1 — cos6)¥/2 >=< (1 + c0s8)¥/% >. In either

case, we note that f.e > /e, This justifies our neglect of the the untrapped particle
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contribution, which is of the order ¢. We observe that when $(0) ~0,ie Xox0, we
have fis = fi = 3/2 < (1 £ cos8)/2 > /e = 1.35,/¢. This value is somewhat smaller
than the value (1.46,/¢) quoted before. The main effect of the poloidal electric field
is contained in the term |1 % |Z;|X,T/m;w|'/?, and hence, for the present work, the

above expressions for f,4 are adequate.
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CHAPTER VI

PARTICLE TRANSPORT

In the brevioils chapter, we derived a linear system of equations for the momentum
restoring coefficients r;x. In this chapter, we will derive expressions for the particle
fluxes in terms of the restoring croeﬂiciém';s' for a large aspect ratio tokamak. The
results of calculations for a three species plasma (electron, ion, and an impurity

species) will be presented at the end of the chapter.

6.1 Expression for Particle Flux

The radial particle flux is defined as

= <fd3v fj.‘Udr.j> : - (6.1).

where v4, ; is the radial component of the drift for the species j. Using the definition of
the flux surface average and the radial component of the drift velocity (see Appendix

A), we can write

_ 2xBdwdpm; ﬂ LA (v“)
i 211'./ fz T lwl e r a8 Ji

where we have expressed the velocity integral in terms of the variables w and .
Integrating by parts in 4 and using the drift kinetic equation (Eq. 5.1) to express

8f;/00 in terms of the collision term and the parallel electric field, we obtain
o Rjk njoEO
Lie = (zk: Z Bo) H (6:2)
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where
Rj, = fd v mvyC(fin, fkl)

Here, we have used the large aspect ratio assumptlon in flux surface averaging over

the second integral. Using momentum conservation and quasineutrality in Eq. 6.2,

~ we find that the particle fluxes are ambipolar, i.e.

Mak.mg use of the Hirshman-Sigmar co]hswn operator (Eq 2.63),
2yr
3 L7ki 5
R fd U MY [ viLfin + vQMJ virio

+B - ]"’Il'“ﬁ('”) f; ]

Using the definitions of 7, u;1{v), and changing the integration variables to w and

4, the integrations can be carried out to yleld
Rjx = —mum{vi; Jrin + fﬁjnj{vfk}rkj
Using the momentum conservation relation, m;n;{vf,} = muni{vi;}, we get
Rju = —myn{vjyirse — rg) | (6.4)

Hence,

Tje = <Z mn{v5i}rs - "k:']) _ n,-ofo
) k e; By By
Again, using the large aspect ratio approximation, and retaining only the lowest order
terms in ¢, the first term can be simplified to yield
m;nelr? N E°
Tije = Zﬂi}k i > — < Taj D] — n’”f
y 6B By

Interéha.hgingj and k in Eq. 5.23, and using the resulting expression for the restoring

(6.5)

coefficients in the above equation, we obtain

_mynjoT; e; % vivP vPvi (m;E*
e = T | (ar S T} D2 (B}

. vPus, . D
__m,n:lo {fw } < T > __njoﬁla {_waV } (6.6)
e; By Vie By | vie
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- coefficients by considering the driving terms individually [14].

where the restoring coefficients are given by Eq. 5.22. We note here that the procedure
used for obtaining the above expression for the particle flux in the presence of a

poloidal electric field is similar to that used by Connor [9] and Hirshman et al. [14].

The above expression for the particle flux differs from the corresponding expression
[Eq. (30a)] in Ref. [14] in that fe4 is energy dependent and E* = v?/2 + e®(8)/m.
When &(6) = 0, the above expression reduces to Eq. (30a) in Ref. [14].

6.2 Calculation of Transport Coeflicients

Equation 6.6 reveals that the particle fluxes depend upon the known “driving forces”
Ayj, Az, Az, the radial electric field @', and the momentum restoring coefficients
< 1 >. We shall shortly show that the radial electric field does not contribute to
the particle ﬂuxes Hence, our task is to solve for the restoring coefficients in terms of

the driving forces Aj;, A2; and Az. The restoring coefficients are given by (Eq. 5.22)

1 (T, a®) [ s (mE\Y,
< ks > o= {Vf,] (6530) [{V],‘j]' (A1k+ Tk )+ {ij( Tk )}Azk]
| 1 T Vv } ( _‘1‘1) { VEvE (B’ } ]
{”k:} (e,,B“) [{ re fo il A+ T + _ ( A )fcq» A
kpy—e {H e AT 6.7
o S{Vk%}{v“f“* P2 U 12 < (6

Egs. 6.7 constitute a linear system of equations for the restoring coefficients with

A, Az, A3, and &' as the driving terms. Hence, we can determine the restoring

6.2.1 Response to the Radial Electric Field

Setting Aix = Az = Az = 0 in Eq. 6.7, we obtain

_<*.--.,,->+(I> {Vk,}Z{

| 2
Ll Hfd} [( i > +—-5]
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As the restoring coefficients < ry; >, < ry > are all determined by the driving force i

&'/ B3, which is independent of any particular species, the only solutibn to thé above

e T

system of equations is

!

< Tkj =l ™ = ———— . &
By I
Using this in the expression for the particle fluxes, Eq. 6.5, we immediately see that

the radial electric field does not contribute to the particle flux, i.e.,

¥ I;{®)=0

6.2.2 Particle Flux due to the Gradient Terms

We now set & = Az = 0 in Eq. 6.7 and calculate the response to A;; and Ag,. Using

{ij Vf,ys+ !VngQ} {ufuﬂf“}

the expression

Vg Vig Vs
Eq. 6.7 can be written as

Sys. DVS
V‘Db‘ m. E*
+A2k{fﬂ» ; (T)}]
. VPuE
| o {f“’ y } <> (68)

¥ Here, we note that for a large aspect ratio tokamak, fg = 1 — fig 3> fiq Over most of

: .
d: the velocity space. This fact and the form of the Eq. 6.8 suggest that the restoring

coeficients can be expanded in f,g as

<r>=Vo+fio <t >1+- ' (6.9)

where, to the zeroth order in f,, the restoring coefficients of all the species equal
a common rotation velocity Vg. Such an expansion has been used by Hirshman et
al. [14] to solve for the particle fluxes. As discussed in Ref. [14], the validity of such

an expansion depends upon two conditions.

108




R

e

1) Collisional coupling among passing particles of the various species should be

sufficiently strong to establish a common flow. This condition is usually met in a : 4
‘device even with a small impurity concentration. _ o i?

2) The trapped particle fraction is sufficiently small. As observed in Section 5.3, i
the _qu#ntity fip is proportionai to the fraction of trapped particles. In a large aspect |

ratio tokamak {¢ < 1), when &(8) ~ 0, this condition is satisfied. In this case,
fie = fi ~ O(e). In the presence of a poloidal electric field, we may obtain one of

the two scenarios outlined below.

T T A ok el Uy R e et 23 bt b Sy g PN e S

1. When X =~ 1, for electrons, ions, and lighter impurities the following discussion
is valid. '

—

~ In the presence of a significant poloidal electric field, we have found that the

boundary between the trapped-untrapped particle regions is a function of the
particle energy (see Section 3.2).. Referring to Figs. 3.5 and .3.6, we find that
for the low energy particles, the extent of the trapped particle region in the
A direction is not small. Analytically, this difficulty manifests in the velocity
dependence of the quantity fes, which is velocity independent when #(6) = 0.
As a result, velocity integrals of the type {fie F(v)} .# Je{F(v)} where F(v)
is an arbitrary function of velocity. Actually {f,.e F(v)} > f{F(v)}, especially
for large values of the poloidal electric field (ie. Xp > 1). However, we note
from Figs. 3.5 and 3.6 that the extent of the region with increased trapping
is small in the E direction for a large aspect ratio tokamak. Furthermore, the

contribution of the low velocity region with enhanced trapping to the velocity

integrals of the type {f.F(v)} is small (see Section 6.3). We, therefore, assume

;; that {faF(v)} ~ O(f.). Specifically, we assume that the enhancement of
,|§c" velocity integrals of the type {f.sF(v)} over similar integrals when $(8) = 0 is
: !  only by a factor less than an order of magnitude.

iy | 109




g

2. When X, ~ 1, for a heavy impurity (Z; = Z » 1), the quantity |1 *

ZXoT/mzw|'? can be quite large and f,a can approach unity for moderate

values of \/&. Physically, this means that most of the impurity particles are
trapped in the electrostatic potential well. If this situation obta.ins., the expan-

sion 6.9 is not valid.

From now on, we concentrate on those situations where fig < 1. With this, we nse

the expansion 6.9 in the expression for particle fluxes to obtain

_m;n;el; [Al.‘l' {f“’psyp} + Ay {fmyjys (m%’E') }] _
j

elB} i
-z.’;{f { f";i i } % - | (6.10)
Here, we have retained only the lowest order {in f.p) restoring coefficient Vi to obtain
If; the particle fluxes to the ordér fie- Using' the ambipolarity condition to obtain the
: common toroidal rota.tion velocity Vg, we get
£ g [ { M52} + a0 {295 (o))

Ve =~

T min; {j,,f:’i:_f.} (6.11)

Using ihis expression in Eq. 6.10, we obtain the following expression for the diffusive

\ particle fluxes.

;0(441 A) = Z Ly g Aak (6.12)

kn=1,2
where

vPuf
P mtnt{fw L~ }

Lii,‘l' = - Dys LJ"
2 m:n:{fu e }
{ftQ vie (m'rj Z}
Lln = D5 L11i
()
) vl
Z;T, mk"k{fﬂ'};—‘}
ie = 73 551 | Lie

k.i:'— I'Dlls
P\ Zymun {ft@",;“ }
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and

Ljg = m;n;T; { f vy }

e?By’ Vie |
From the a.bov_e equations, it is easy to see that

o (fm
Hence, in order to satisfy ambipolarity, I'z ~ —(e;)/(ez)';. Thus ion and impurity
diffusion occur at a comparable rate at the beginning of the disch#rge. Over a longer
time scale, the ion and impurity densii:jr and temperature profiles adjust to make the
ion and impurity fluxes comparable to the electron flux. When this condition (known

as the “stationary state” [9]) obtains, ambipolarity gives
Fep = Zlip + 2128

Using the expression for the particle flux [Eq. 6.12] in the above expression, we find

that the stationary state is reached when

T; [n; - 3)2"; _ Tz [ng ( | 3)7}
Z ;;+(y..p_—§ ?:]——Z_ ;Z_-'- UZG—E T—Z (613)

where

(6.14)

6.2.3 Particle Flux due to the Parallel Electric Field

The effect of the parallel electric field is expected to be significant only for the electrons

due to their smaller mass. We shall, therefore, calculate dnly the electron flux due

to the parallel electric field. Perpendicular transport of electrons due to the parallel

electric field is also known as the Ware pinch effect [83]. We have discussed this
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For electrons, using Eq. 6.16, we write

R T T I U T SO T TSSOSO

effect in Section 3.3.2. The solution method used here is similar to the one used by

Connor [9]. Setting Ay = Az = @' =0 in Eq. 6.7, we obtain

< Ty >= 2 Aa{u,f‘;} {ijfe‘l} Z{ {Vbuk]fc@}<ftk>

Noting that fe = 1 —~ fis, to the lowest order in f,, we have

<y >=— {:f} { } Z {vlf, {Vf’u"’} <t > (6.15)

Again, as discussed before, we have used the assumption {fieF(v)} ~ O(f,) in ob-
taining the above equation. An examination of the order of magnitude of the first

term on the right hand side of Eq. 6.15 indicates that

fjiia.o[m‘y“’] o( > 1
7n¢

< Tij > Meles
Similarly
Srs Ol >
Hence -
KT DB >, <Trpj > _ (6.16)

Retaining only the driving term Aj; in Eq. 6.6, the expression for the particle flux can
be written as |

. D8 b
T;e(A3) = —MZ{M} <m> _TjoAs {f““’i }
k .

e By Vie BY | vie

Toa(As) = MeTen {fed» . ,e} <r.> _RepAs {f:éVf}

Bg Ve Bg Veg:
Using Eq. 6.15, we obtain < r., > as
< Tpp D= =gt 2 1e8 5 (6.17)
| \ )
Using this, the electron flux can be written as
_ feavPus
reQ(AS) = __neOA3 {fg@lff} { “"ci }{"c“} (618)
B || ves | {(re - v5)}
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6.3 Results and Discussion

Before we present the results on transport coefficients, we wish to make an additional

simplification which greatly facilitates the calculations. In the absence of a poloidal

 electric field, vy =vi + fi()f — ;). Fora lai'ge aspect ratio tokamak (f, < 1), we

can set ¥; = ¥§ 1o the lowest order in £, [14]. In the presence of a poloidal electric
field, vjp = v7 + fua(vP —17). Noting that fie = f,|1%|Z;|Xo/22]/2, we observe that
in the low energy region where r = v/vy, <€ 1, f,3 can be quite large, approaching 1
(see Section 5.3). Hence, we have to examine the consequences of f,§ =~ 1 in the low
energy region on the velocity integra.ls appearing in the transport coefﬁcients.

We begin by observing that most of the velo.city integrals appearing in the trans-
port coefficients are of the type {fieF(v)/vja} where F(v) is an arbitrary function

of velocity. We specifically consider F(v) = »Pv?. The conclusions drawn below are

- expected to be valid for other formns of F(v) appearing in the transport coefficients.

We have
| {wa(v-)} _ vivP fia
»
vf [1+ e (% - 1))
8 00 y.D
37 s, z} exp(~z}) : {': dz;  (6.19)
Terit 1 + fﬂ! (_vjf, —_ 1) -

In the _absence of a poloidal electrig: field, z; ¢ = 0, and the lower limit in the above
integral is zero. In the presence of a poloidal electric field, for large values of z;, Le.
z; > 1, fie — f, and we can set vjg = v§. We, therefore, examine only the region
of the velocity space where f,5 > 1. We have, in this region, z; ~ O f,‘/jfol_z,-l) <1

for f, — 0. Setting fie = 1, the integrand in the above equation reduces to
Integrand =~ z} exp(—z2)vj

In this region, £; ~ O(Ljcn) < 1, and 17 scales as ~ 1/z3 for elecirons and ~ 1/z;

for ions as well as impurities. Hence, the value of the integrand is < x; exp(—2%) < 1,
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leading to negligible contribution from this region of the velocity space. Hence, the
contribution to the velocity integral from the 'region where fip ~ 1 is small for a large |
aspect ratio tokamak. We, thérefo-re, set vjg = vf in the transport coefficients. With
this, the expressions for'the rotation velocity, diffusion coefficients, and the Ware

pinch effect can be written as

5 25 [t (1P} + s ffwe? (5]

Ve — 6.20
* E) myn; {ftQVD} (6.20)
F,Q(AhAz Z Llu sAnk (6.21)
kin=12 :
where _
i _ [ Zigimum {fsQVI } Lie
1”_ - Timumi { favi }
e - G2
g o 4T (mlfed) )
ue = ZiT; \imm{ S, wiP} i
Lik {f“l}f (_@:)}L
122 {farP} i
and |
Lye = ’:,goi"u,wv} (6:22)
_ nods [f frer? {'&L:?i} {%_} _Je |
Ta(A3) = - BY { G }"‘ {%(Vf -er)} = LizeA (6.23)

For $(8) = 0, fie = f. and the diffusion coefficients L3f reduce to the form given by
Hirshman et al. [14, Eq. 36]. For () =0 énd-vfk = v}, the Ware pinch coefficient
reduces to the expression for Ware pinch derived by Connor [9, Eq. 38].

- We note that some of the velocity integrals in the above expressions involve E* =

w + e®(0)/m. As the effect of a poloidal electric field is significant only in the low
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velocity region, and as the cont.ribiltion of the low velocity region to the velocity
integrals of the form {F(v)} is small, we use E* ~ w in evaluating the velocity
integrals.

In the following éections, we disciss the electron and ion diffusion coeflicients,
electron Ware pinch, and the plasma rotation velocity in the presence of a poloidal

electric ﬁe_ld. Impurity transport can be obtained using the ambipolarity condition

R Z;
Pz = El".@

| The velocity integrals appearing in the transport coefficients (see Egs. 6.20, 6.21,

and 6.23) hre ana.lytica.lly intractz;bie. Hence, consistent with the approach used by

Chang [12], we present numerical results for the transport coefficients.

6.3.1 Electron Transport

In the presence of significant impurity concentration, electron transport' is much
smaller than ion transport until the “stationary state” (9] is reached when the ion
and impurity profiles adjust to make the ion and impurity fluxes comparable 1o the
electron flux [Eq. 6.13]. | |

To facilitate compaﬁson of our results with previdus results, we write the diffusive

electron_ flux as
- ee T; k! n; [ ee ce ( 5)] T;
Let = e (1 + T‘ Z.) ne + L3t e + Liie { Vet 2T,

+ ¥

e« (L \(pe NNT | pee (T (m_m
+L11'Q (Z,Te) (yd 2) T; +Lie (Z.Te) (ﬂ»‘ ne)
2 [Tl (. _ ﬁ) T

TZLIL,Q [Zi [ﬂ, + (y"b 9 I’,]

_Tanz o, 3\ Tz |
2 [+ - D]

This equation is obtained by rearranging the terms in Eq. 6.21 and by neglecting
some terms of the order ~ (/m./m,. Setting vjs = v, we obtain y;s from Eq. 6.14
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A brief list of symbols relevant for the results in Chapter VI

B0, Dour Potential on the inside {(at # = 7) and outside (at ¢ = 0) of the
' tokamak respectively
®, ' Amplitude of the poloidal asymmetry in the potential
X eP./eT, is the magnitude of the poloidal potential variation.
X = 0 in the standard neoclassical theory
Ze}'f Zj.-r‘c n}'z;'z/ne
Ll,, o Lt Diffusive transport coefficients in the presence (subscript ®) and

absence of a significant poloidal potential variation respectively
(n = 112; j’k = e,i,Z)

_ Fit Ll,, s/ L3 is the transport enhancement factor

i

i fea Neoclassical factor (Egs. 5.29-5.30)

Yio {fav) (miE* [T})}/{ feevP} where E* is the total energy of the
‘ _ particle

i _

F3y ' Li3 4/Ly; is the Ware pinch enhancement factor. L3, 4 and Lf;
are the Ware pinch coefficients in the presence and absence of the
poloidal electric field respectively

g Fi. R} ¢/ RY is the enhancement of thé rotation coefficients. Here,

, RE ‘e and R} are the rotation coefficients in the presence and ab-
sence of a sngmﬁcant poloidal electric field respectively (see Eq.
6.30)
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yie = {f:QVJ? (mf;ﬂ )} (6 25)
| ' 3 |
We now define the transport enhance_inent factors as
Fit =28 (6.26)

L.
whefe n = 1,2 (refer to Eq. 6.21). Here, L{f‘, and L{ﬁ are the transport coefficients
with and without a poloidal electric field respectively. L{,’i is obtained by using
fie = fiin Egs. 6.21.

The electron transport enhancement factors Fif (k = e, Z) and the quantities y;¢
(7 = e,1,2) as functions of the magnitude of the poloidal potential variation X, are
shown in Fig. 6.1. Deuterium is the main ion and the impurity species considered is

carbon. We also set T, ~ T; ~ Tz. We note that the topology of the curves seems

to be related to the nature of the factor f,¢, which is proportional to the trapped

particle fra.ction (see Section 5.3). As discussed in Section 3.2, when ¢®;, > ¢®., B-
trapping is enhanced by the potential variation. Behavior of the enhancement factors
P_‘fl“ seemus to reflect this. For ¢®,, < ¢®,.., the sitnation is somewhat complicated.
For the low energy 'particles, there is a reduction in B-trapping, which, howéver, is
somewhat compen_s#ted by the presence of E-trapped particles. It is not clear whether
the total trapped particle fraction increases or decreases, especially when X; is small.
It appears that for small values of X, there can be a decrease in the trapped particle
fraction which is reflected in the behavior of enhancement factors for small X,. It also
appears that for large values of X, there can be an increase in the trapped particle

fraction. The quantity y;¢ is related to plasma rotation. We discuss plasma rotation

in Section 6.3.4.
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,.;z Fig. .6.2 shows the variation of electron enhancement factors Fyy, Fff and the quan- ]
% tities y.e, ¢ with Z.s; in the presence of carbon impurity,. Variation Qf i and ?
@ yre With Z,;; is generally weak, with the increase in FY§ being < 10% when Z,;/
% varies from 1.2 to 3.8. These results seem to confirm the conclusion reached by
ﬂ - Chang [12] that the presence of an impurity does not affect the electron enhancement
fé» factors. However, as we shall see later in connectio_n with Ware pinch enhancel_nent

and neoclassical conductivity reduction, the presence of an impurity species can have
a significant effect upon some of the enhancement factors.

Contrary to the behavior of Ff¢, the factor F¢Z decreases as Z,;; increases. How-

ever, due to the smallness of the transport coefficient L$? in comparison with L5,
the impact of the transport enhancement factor FiZ upon electron tré.nsport is small.

The behavior of FZ is similar to that of the ion enhancement factor Ffi, which we

will discuss later in Section 6.3.2.

R grarivot B ETICINT T

Comparison with Previous Results

Our main purpose here is to compare our results on electron flux in the absence of

impurities with the results obtained by Chang [12] for a two species plasma in the

& presence of a poloidal electric field. We will also comment on the nature of our results
m in relation to those obtained by Connor [9] for a three species plasma in the absence
¥ of a poloidal electric field.

Y _ | |

5 - 1. Comparison with Chang’s Results: Referring to Eq. 6.24, we note that in

the absence of impurities, Li{¢ = 0, n,/n, = n;/n;, and the last two terms in
Eq. 6.24 vanish. The resulting expression is similar to the expression for the
diffusive electron flux in a two species plasma obtained by Chang [12] using a

~variational approach. The expression for the electron flux in Ref. {12] can be

! e e
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written as
r. = (al,melFM( TTé ) e ¥ [0 P + (o1, 02) i ]%
(al 91.)F, {e’ ( ZT%) ( - g) % _ | (6.27) :

Here (ay,g:.) and (o, g2.) are the transport coefficients in the absence of a
poloidal electric field [8]. F{? and Fi2 are the transport enhancement factors

in the presence of a poloidal electric field and y is the variational parameter {12].

To facilitate comparison with the results obtained by Chang [12], we define a

transport coefficient L{3,, 4 a8

5
5me = Li5a (weo - 3)

and the corresponding enhancement factor as

Fg = Liine | (6.28)
12m = Leg : *
12m

A comparison of the transport enhancement factors F“’ and F(‘" reported in

Ref. [12] with the corresponding quantities Fif and Ff5, calculated in this

| thesis (Eqs. 6.26 and 6.28) indicates a significant discrepancy. The discrepancy

is about 15% at Xp = 4 and Ff, F, are smaller than FiY, F). The
difference is smaller for lower values of Xg, being about 5% at Xy = 1. Qur
calculation of the enhancement factors F(e’ and Fj; {2) using the expressions in
Ref. [12] yields a much closer agreement between Fff, Fg5,. and F, Fi3,
the difference being less than ~ 2% at X, = 4. Furthermore, a comparison of
the variational parameter y with the corresponding quantity ;¢ in Eq. 6.24

indicates very good agreemeni between the quantities.

. Relation to Connor’s Results: While our principal interest in this work is

the calculation of transport coefficients in the presence of a poloidal electric

field, it is of some interest to cOmpére_ our results when $(8) ~ 0 with those
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obtained by Connor [9) using the heavy impurity assumption (mz 3> m;). We
note that our results are obtained in the presence of an impurity species of

arbitrary mass.

Connor’s results [9] on electron transport are valid after the stationary state |

is reached. When this condition obtains, as a consequence of Eq. 6.13, the
last term in Eq. 6.24 vanishes and we obtain an expression for the diffusive
electron flux which is similar in form to that obtained by Connor [9, Eq. (51)].
Agreement betweeﬁ L35 and g, (L and y.4 when &(6) = 0) calculated in this
work and those obtained by Connor (9] is exact. However, due to the large
impurity mass assumption, Connor’s results for y; differ from those calculated
in this work significantly as the impurity mass decreases. For example, when
a=nz2%/n,Z} = 1, the discrepé.ncy between our results and Connor’s results
for y; increases from 5% to 30% as the impurity is varied from tuﬁgsten (mz »
m;) to carbon. We discuss this point further in connection with ion transport.
Finally, we note that our expression [Eq. 6.24] for the electron flux is valid even

before the stationary state is reached.

6.3.2 Ion Transport

We now consider ion diffusion coefficients. Again, to facilitate comparison with pre-

vious results, we express the main ion flux as

N 3 )’F Tz __(g_ )&
¢ = 116 Z. 2 - Vie T, ZT. 2 Yze T,

mene{f:w} 1 n; (3 T;]
( Ve | 77

2 _
Tz nz .
AL

As expected, in the absence of impurities, the above equation reduces to Eq. 6.24 with
(ZT/Ti) LYy ¢ = (1/Z:)Li; ¢ to satisfy ambipolarity. In the presence of impﬁﬁties

_:k.-,h mknk{fub‘g Y12 [ne \2
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as the one obtained by Connor [9, Eq. (48)]. The transport enhancement factor Fjj
and the quantities yp, ¥z¢ as a function of X; are shown in Fig. 6.1. The behavior
of ion enhancement factors is qualitatively similar to that of electron enhancement
factors. _Howe#er, the ion enhancement factors depend upon the impurity content as

well as the type of the impurity species.

Effect of Impurity Content on Ion ’Ira.nsport. Enhancement

The dependence of the ion transport enhancement factor Fj} upon impurity. concen-
tration as shown in Fig. 6.2. In the presence of a poloidal electric field of the order ¢,
i.e. e®(8)/T ~ O(e), due to their larger.cha.rge, the fraction of iﬁpuﬁty ions trapped
in the electrostatic potential well is greéter than that of the main ions. This causes

a reduction in the collisional coupling between the main ions and the impurity ions,

resulting in a drop in the ion transport coefficients. This effect is more pronounced

for smaller values of Z.;; due to the increasingly important role being played by
the impurity species in determining the ion transport. We note that the electron

enhancement factor F{Z also exhibits a behavior similar to that of F}i.

Effect of Impurity Species on lon Transport

In considering the effect of impurity species on ion transport, we are primarily in-

terested in the effect of impurity charge and mass upon ion transport at constant

a=nzZ%/n,Z}. As discussed in Section 6.2.2, the fraction of impurity ions trapped
in the electrostatic potentia.l well increases wifh Z. This causes a reduction in the
collisional coupling between the impurity ions and main ions, resulting in a téduction
in the ion transj)ort. This effect, which is due to the impurity charge, is somewhat
offset by the impni'ity Mass. Aﬁ increase in the impurity mass leads to an increase

in ion transport and it a.ppears that, at least for small to moderate Z impurities,
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Table 6.1: Effect of Impurity Species on Ion Transport (X = 1)

Impurity | Z | mz/m, Fﬁ-

| ' P, < @mﬂ ®;, >_?£s_t_
Helium 2] 2 1.098 1.777 |
Carbon 6 6 1.342 2.065
Iron 26 28 1.454 2.249
Tungsten | 60 92 1.427 2.201

the transport enhancement due to the impurity' mass is more important than the
transport reduction due to the im_pur_ity charge.

Table. 6.1 shows the transport enhancement factor Fi in the presence of different
impurity species for @ = 1 and Xy = 1. F}} increases as the impurity mass increases,
reaching a maximum for iron. For tungsten, the enhancement factor is smaller than
that for iron, apparently indicating the transport reducing effect of impurity charge.
We note that the charge state indicated in Table 6.1 corresponds to an electron
temperature of ~ 10 keV. We also note that a heavy impurity like tungsten may
not be in the banana regime under conditions that prevail in most tokamaks. The
comparison presented in Table 6.1 is intended to demonstrate the opposing effects of
impurity charge and mass on ion transport enhancement.

Finally, we note that in the absence of a poloidal electric field the quantities
L s, is, and yz ¢ depend upon the impurity mass. Qur calculations indicate that
the discrepancy between our results and those obtained by Connor [9), using the
heavy impurity assumption, can be quite large when the impurity mass is small. For
example, when the impurity strength parameter o = 1, the discrepancy in L¥,, 5, and
yz can be ~ 90%, 30%, and 20% respectively for carbon impurity. The differences
decrease as the impurity mass increases. However, even for tﬁngsten, the discrepancy

in LY, is ~ 30% when a = 1.
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6.3.3 Ware Pinch Effect
We define the Ware pinch enhancement factor as

[
e _ Y139
Fy=—+;

13

Fig. 6.3 shows the variation of the Ware pinch enhancement factor as a function

~ of Xo. The Ware pinch enhancement factor is topologically similar to the diffusion

enhancement factors. However, the enhancement is much weaker than that of the
diffusion coefficients.

Variation of Fj5 with Zeff is shown in Fig. 6.4. The Ware pinch enhancement
factor generally decreases with imcreasirig Zess. However, when &;, > &, and
for Xo < 1, it remains constant or might even increase slightly. Referring to Eq.
6.23, the effect of electron-electron collisions is contained primarily in the second
term. It appears that the presence of impurities generally leads to a reduction in the
contribution of the electron-electron collisions relative to the first term, leading to
a decrease in the Ware Pinch enhancement factor. The behavior of the Ware pinch
enhancement factor with increasing Z.;; is similar to the behavior of the neoclassical

conductivity reduction factor. We discuss this in Section 7.4.1.

Comparison with Previous Results

We now compare our result for the Ware pinch enha.ncemenf factor (Fy;) vfith the
result (F{;?) obtained by Chang [12] in the absence of impurities. Fig. 6.5 compares
the result of the present work with the result obtained by Chang. We have used the
analytical fit in Ref. [12] to reproduce Chang’s results. The analytical fit for the Ware

Pinch enhancement factor is
F{9 =1-059X, + 0.39X2 — 0.048X3

As with the electron diffusion coefficients, we find that our results differ from those

obtained by Chang by ~ 20% for Xo = 4 and the enhancement factors calculated
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here are smaller than those in Ref. [12].
Finally, when #(8) = 0, our results for the Ware pinch are identical to those
obtained by Hirshman et al. [14]. Also, if we set 5, = v} and v.6 = v7 in Eq. 6.18,

we obtain results identical to those obtained by Connor (9].

6.3.4 Plasma Rotation Velocity

While deriving the expressions for the diffusive fluxes, we obtained an expression
for the common plasma toroidal rotation velocity, Vo (Eq. 6.20). Neglecting the

contribution of electrons, we write the rotation velocity for a three species plasma as

Ve= Y RisAu (6.30)
kn=12
where
RY. = _(mkﬂka) {fie'}
1# erBy | T; myni{fiav?}

k mane i {f‘*"f (Eﬂ&)}
. - -(22)

eeB] | ;mini{fuer}}
As in the case of transport coefficients, we define the rotation enhancement factors as

k
Ru&

Ff, = Rt

(6.31)

Fig. 6.6 shows the variation of rotation enhancement factors with Xo. We observe that

for constant gradients, the rotation velocity decreases for most values of X;. With

‘increasing Xy, most of the rotation enhancement factors asymptotically approach a

constant value. It appears that the drop in the rotation enhancement factors is a
result of reductidn in the collisional coupling between the main ions and impurity
ions caused by enhanced trapping due to the poloidal electric field.

Fig. 6.7 shows the variation of rotation enhancement factors with Z.;;. The
behavior of the enhancement factors is analogous to the behavior of the ion transport

enhancement factor FJi. As with ion transport, the drop in the rotation velocity is
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caused by increased trapping of the impurity ions due to their larger Z. This results
in reduced collisional coupling between the main ions and impurity ions, leading to a
reduction in the common flow velocity. The presence of an impurity species of larger
Z has a similar effect upon the rotation velocity. |

For an electron-ion plasma, Shurygin and Yushmanov [13] have calculated the
radial electric field enhancement factor in the presence of a poloidal electric field.
Their calculations indicate that the radial electric field, which is propoi‘tibna.l to the
rotation velocity, shows a behavior similar to that displayed by the enhancement
factors Fj,. Furthermore, the variational parameter y, calculated by Chang {12],
and the quantity y;¢ [Eq. 6.25] show a behavior similar to that of R} .

6.3.5 Summary and- Conclusion

In this section, we summarize the important results, discuss their significance, and
comment upon some of the experimental observations related to transport during

wave heating.

Summary of Theoretical Results:

1. The results [jresented in this chapter indicate tl_lat the electron and ion diffusion

coefficients, and the electron Ware pinch exhibit qualitatively similar behavior
in the presence of a significant poloidal potential variation. The transport co-
efficients increase monotonically for €;®,;, > €;®ou. For €;®;, < €;Pou;, the
transport coefficients decrease slightly for smaller values of Xp (Xo ~ 1) and

increase wheh Xo becomes larger {(Xp > 1).

2. The presence of an impurity species does not seem to cause a significant change
in the enhancement of the electron diffusive fluxes. The change is typically <
8%. The change in the electron Ware pinch enhancement can be more significant

(~ 16%) at larger values of the poloidal electric field (Xo ~ 3).
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3. We find that the main jon diffusion coefficients increase by a factor up to 2

9 during both ECRH (®/,, > ®,u:) and ICRH (2. < ®ue) for most values of the

potential variation (Xo = e#(6)/T¢), implying an increase in both the outward
g diffusion of main ions and the inward diffusion cﬁ' impurities. Only when the
5 - poloidal potential variation is small, ie. Xo < 1, do the main ion diffusion
coefficients decrease slightly {~ 10%) during ICRH, which implies only a smé.ll'
reduction in the inward impurity diﬁusion Tz =-2,/Z i‘i). It seems.unlikely
that any significant reduction inl the inward impurity diffusion can be achieved
with either ECRH or ICRH. |

4. Enhancement of the ion diffusive flux is affected by both the impurity content
and impurity species. An increase in the impurity content generally leads to a
decrease in the ion enhancement factors. In é.ddition, ion enhancement factors
seem to depend on the impurity mass as well as charge. For low to moderate
Z impurities, the mass effect seems to dominate, causing an increase in the

transport enhancement factors.

5. The presence of a poloidal electric field seems to cause a significant (> 50%)
reduction in the common rotation velocity for an impure plasma, if the density
and temperature profiles do not change with the application of poloidal electric
field.

Relation to Experimental Results

¥ We now make a few remarks about the experimental results related to particle trans-

. port and examine the significance of the present results to experiments.

1. As discussed in Chapter IV, the experimental results on transport processes do

not present a very clear picture. There seems to be some evidence for inward

impurity flow during ICRH. ECRH could cause a slight red'ﬁction in the inward
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impurity diffusion. However, the evidence is much weaker for ECRH. The re-
sults obtained in this chapter indicate otherwise. As discussed above, ECRH
can lead to enhanced outward ion flux and inward impurity flux. For ICRH,

depending on the value of Xy, there can be a small reduction or an increase

in the ion (impurity) flow. We, however, note that most of the experimental -

evidence for particle transport is indirect and subject to various interpretations.

Furthermore, it is likely that any change in the impurity concentration during

both ECRH and ICRH is due to changes in the particle source rates as well as
transport. A direct comparison of the results presented here with experimental
data will only be meaningful when well defined experiments dedicated to the

study of the effects of ECRH/ICRH on transport are available.

. It is generally thought that neoclassical transport is small in comparison with

other anomalous processes causing transport in a tokainak. However, recent
analysis of JET results by Giannella et al. [84], Pasini et al. [85] indicates that
the impurity and electron diffusion coefficients are close to the neoclassical levels
in the core region of the plasma (r/a < 0.4). Fussmann et al. [86) have analyzed
the ASDEX data. They report good agreement for impurity transport between
experimental measurements and simulations based on neoclassical predictions

for pellet fueled and counter NBI shots.

Transport enhancements of the type discussed in this work are likely to be

important in such regimes where the transport coefficients are of the same order

of magnitude as those predicted by the neoclassical theory.

. Our calculations indicate that the rotation velocity drops during both ECRH

and ICRH for most values of X;. As discussed in Chapter IV, on JET duting the
ohmic phase and on TFTR during balanced neutral beam injection, the central

rotation velocity increases in the counter direction when ICRH is turned on.
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This seems to contradict the results obtained in this chapter. We, however,
note that in these experiments, the presence of ICRH also leads to a steep
temperature gradient close to thé center. Hence, even with reduced rotation
coefficients, increased rotation could be predicted if the temperature gradient
sharply increases. A dedicated analysis would be required to draw conclusions

about the predicted net effect.

There have been few éxperimental measurements of rotation velocity during
ECRH. The results from D-III tokamak seem to indicate that for some shots
the rotation velocity decreases even with increased temperature gradients. This
seems to agree with the results obtained in this work. However, the data on
rotation are limitéd and, therefore, any comparison with experimental measure-

ments is only tentative.
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CHAPTER VII

PLASMA CURRENT

In this chapter, we discuss the effect of a poloidal potential variation of order ¢ upon

the plasma current. First, we derive the expressions for the neoclassical conductivity
and bootstrap current for a large aspect ratio tokamak. We then evaluate the neo-
classical conductivity for a plasma with an arbitrary number of species. Finally, the
bootstrap current coefficients are evaluated for a three species {electron, ion, and an

impurity species) plasma.

7.1 Expression for Plasma Current

The general expression for the flux surface averaged plasma current is

J = Zejn,- <Uuj > | (7.1)
5 : :

where the parallel velocity of the species j is given by
1
U; = -—'/dSUO'Qf,‘]

Here, o is the sign of the parallel velocity and ¢ is the magnitude of the parallel
velocity. The procedure for calculating < #; > is similar to that used for calculating
< uj3{v) > and ry; [Section 5.2.1]. Expressing the velocity integral in terms of w and

", we obta.m, after integrating by parts in u,

;= —-—Z27rBafdwfdup o0
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Using Eq. 5.15 to express 8f;1/8u and carrying out the steps similar to those in

Section 5.2.1, we obtain

T f B I
<= -E{ffoB"} T {f;oB"}

where 8 and 3, have been defined in Section 5.2 and the operator {} is defined by

- Eq. 2.71. Using the expression 5.18 for < .u,-l(v) > in # and B, we can write

o forS (T, \ fio } { fav } ¢;As { fis }]
. = - Lokt B 0 B W5 1) . g 252
<= [{ Via (8133) fio * ; e | STH7 i m; Vio

vi T; \ fio v e;Aa
+31=2 -1 ’)—«’—}+Z:{—’— <1y >+ 7.2
| {(Vn ) (3133 fio T Ve v m; v,., )

f;o [ €; < 3> (ij') l
20 = Ay + + Ay
.ij 1j T.; 27

By setting Ay; = Ay; = Az = 0, we find that < u; >= — < & >' /BY, which is

where

the common plasma rotation velocity and, hence, does not contribute to the parallel

current.

7.2 Parallel Conductivity

We now compute the component of the parallel current due to the parallel ohmic

electric field. Setting A;; = Ay; =< @ >'=_ 0 in Eq. 7.2, we note that the electron
parallel velocity is much larger than the jon and impurity parallel velocities. In fact,
< e > [ < u; >~ O M} Hence, we consider 6nly the electron contribution.
Furthermore, as discussed in Section 6.2.3, < 7. >»< i >, < 77 > (see Eq. 6.16).

Hence, we can write

s ' (.5
o [{8) e ] (] e
Veg Me | Ved Vep M. LVt

To the order fis, < T.. > is determined from Eq. 6.7 as

—eds { 4 _
c:s P (7.4)
e} - {re22})] |
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Using Eq. 7.4 in 7.3, the parallel ohmic current can be written as

n,_,e A3 fcq, {fcﬁ Yok
/= ) [{ Veg } [{ V‘s % }]J (75)

LT )

In the absence of a significant poloidal electnc field, the above expression reduces to

the expression (38a) in Ref. [40]. The above equation is valid for an arbitrary number

of species.

7.3 Bootstrap Current

We now compute the parallel currents due to the perpendicular gradients 4;; and Ay;.
We begin by éxplfessing Eq. 7.1 for the current in terms of the vélocity differences.
Rewriting 7.1 as

= -—anek(< e > — < Up >)+anek < U, >
& k

and using quasineﬁtrality, T ke = 0, we obtain
= - anek(< Uy > — < Ug >) (7.6)
k _

Thus, to calculate the bootstrap current in a n-species plasma, we have to calculate
the n-1 parallel velocity differences in the ptese:ice of the driving terms A;; and Aj;.
We will follow the procedure used by Hirshmé.n et al. [14] for calculating the velocity
differences. Using the expressions for the restoring coefficients [Eq. 6.7, the parailel

velocity [Eq. 7.2), and the particle flux in the absence of A3 [Eq. 6.6], we obtain,

correct to first order in fp, the following expression for the parallel friction [see
~ Appendix C for details]

< Rp> = -mni{vi} [ (<> — <w >)+ (uhe ~ Ul p)
+ 2 [A{"[(< w > — <y >)+ uf g
"'"A‘J[(< ﬂj‘ > < ﬂk >) + uu. Q]]] (7.7]
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Upg s = (::fni) {;:f,f;} %+ (egg) feVEy Asp (7.8)
and |
a = g [{emE -] | 79)
il {fﬂi;e«g”} s - 7l (%) qu:}{,lfq
{e(B)%)]  aw
ar = ({58} e (3] o

~ The above expression for < Rji > is accurate to the order AJ® (Af? < 1). Consistent

with our approach in Section 6.3, we have used Vpp = Vf in deriving the above
expressions. We note that the quantities u), o, 75, and 7% have a form similar to
those of ud,, 729, and 7§ defined by Eqs. (51a), (5ic), and (51d) in Ref. [14]). The
expression for A}? is identical to that given by Eq. (51b) in Ref. [14]. The difference
between uJg,75¢, and 71§ and the corresponding quantities in Ref. [14] is due to
the energy dependence of the quantity fig when $(6) # 0. Setting $(8) = 0 causes
the differences to vanish.

An important point concerns the quantity 7,{1 As pointed out by Hirshman et
al. {14), in the absence of a poloidal potential variation, Yi§ = 759 # 0 when v, # v5.
In other words, the component 6f the parallel friction proportional to %7 is driven
by the difference in the slowing down and pitch angle diffusion frequencies. Setting
vs = P causes this component of the friction- to vanish. In the presence of a poloidal
potential variation, setting v, = v,ﬂ does not cause 4% to vanish. In this case, the
component of the parallel fri_ction proportional to 7h¢ is driven by the difference
between 5, and v}, as well as the energy dependence of the neoclassical fActo_r fre.

Using the expression 7.7 for the parallel friction in Eq. 6.2 for the particle flux and |
retaining only the gradient terms, we obtain. the following equétion for the parallel
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velocity differences [see Appendix C for details]

S ominpi(< vy > — < w >) =Tie(e; B+ < Rjo e > (7.12)
k

where ;
75 = {vf} { } + Z{VS 1A} (7.13)

and
s "S | k0
< Rjoe >= myn; E [{V } { } Ui e [{Vsk}‘“gn Z‘:{ka}Ai up el (7.14)

Here, ka is identical to the quantity #%° and < Rjo e > is similar in its form to R,
in Ref. [14). Eq. 7.12 provides an expression for the (n-1) parallel velocity differences
that can be used in the equation 7.6 to obtain the bootstrap current. We will explicitly

evaluate the bootstrap current coeflicients for a 3-species plasma in Section 7.4.2.

7.4 Results and Discussion

We now present the results on parallel condﬁctivity and bootstrap current in a mﬁlti-
species tokamak. For simplicity, we consider a large aspect ratio tokamak and make
use of the approximation v;j¢ ~ v in our calculations [see the discussion in Section
6.3]. The results on parallel conductivity are valid for a plasma with an arbitrary
number of ion species. Due to algebraic complexity, we limit our consideration of

bootstrap current to a two-ion species plasma.

7.4.1 Neoclassical Conductivity

Writing the expression 7.5 for the parallel ohmic current as -
J=o0sE) L (7.15)

where

[{V‘s; - { e
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A brief list of symbols relevant for the results in Chapter

VII. (See page 116 in Chapter VI for additional symbols.)

Xo

Zesy
Lgn.,'l? Li’km

F3.

INCE: ONC

e® /€T, is the magnitude of the poloidal potential variation. &,
is the amplitnde of the poloidal potential variation. Xo =~ 0 in
the standard neoclassical theory

TjgeN23/Me

Bootstrap current coefficients in the presence (subscript ) and
absence of a significant poloidal potential variation respectively

L%, o/ L%, is the transport enhancement factor

Neoclassical conductivity reduction factor in the presence (sub-
script @) and absence of a poloidal electric field respectively

onc.e/onc is the enhancement (or reduction) of the neoclassical '

conductivity reduction factor
Bootstrap (neoclassical) current in the presence (subscript ) and

absence of a poloidal electric field respectively

Density and temperature profile exponents defined by
ni(r) = njo(1 — p*)™; Ti(r) = Tjo(L - P°)°"

where p = r/R.
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For a large aspect ratio tokamak, we can write o4 as

- 0 =0cL — fiOnce (7.17)

where o¢y, the conductivity in a plasma with a uniform magnetic field, is given by

n,ez[ 1 {%‘?}2

T,

Jcr =

and oxc ¢, the neoclassical conductivity reduction factor, is given by

nee’ {ftin} 42 {2} { i) + {_%}2{ =) (7.19)
fime (VEF {vgsssui —v-s“!} . {V""(vsc-vs -}2 A7T.

Here the expression for oxce is accurate to the order fig. When &(8) = 0, the

INCE =

expression 7.15 for the parallel current reduces to Eq. 49 in Ref. [14]. Also, when
vf, = v and $(6) = 0, the expression 7.15 reduces to Eq. (46) in Ref. [9].
In the standard neoclassical theory [®(9) = 0], on¢ is only a function of Z,;;. In

the present case, due to the energy dependence of the boundary between the trapped- -

untrapped regions {see Section 3.2, onc.¢ is a function of the poloidal electric field.
Consistent with our apprbach in the previous chapter, we define the enhancement

factor for the neoclassical conductivity reduction as

ONCE
oNec

Fa = (7.20)

Fz is a function of Z.;; and, hence, is independent of the number of jon species. Fig.
7.1 shows the variation of F33 with the mag'nitude of the poloidal potential variation,
Xo. The behavior of Fa; is similar to that of the Ware pinch enhancemeiit factor Fia.
When &, < ®,,. (as during ICRH or NBI), B-trapping of the electrons is enhanced by
the potential variation. The monotonic increase in Fy3 seems to reflect the increase in
trapping. As discussed in Section 6.3.1, the situation is somewhat complicated when
®;, > ¥,,. For the low energy particles there is a reduction in B-trapping, ivhidl

is to some extent compensated by the'présence of E-trapped particles. It appears
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that for smaller values of X, the decrease in B-trapping is the dominant effect, while
for larger values of Xy, increased E-trapping more than compensates for the decrease
B-trapping. The behavior of F33 for ®,, > ®,.: seems to reflect this change in the

trapped electron contribution.

Effect of Impurity Concentration

Fig.l 7.2 shows the variation of the enhancement factor Fa3 with Z.;4. For &, > $ou
with X > 1 and for &;, < ®,.., the enha.ncexhént factor Fy; decreases, signifying a
decrease in the neoclassical conductivity reduction factor. However, for ®,, > ®,.;
and Xo ~ 1, F3; increases with Z,;;.

Before we attempt an explanation of the behavior of F33 with an increase in the
impurity content, we note that the neoclassical conductivity reduction factor oyc ¢
has three terms (see Eq. 7.19). The first term in Eq. 7.19 contains primarily the
effect of electron collisions with main ions and impurity ions, while the other two terms
depend mainly on electron-electron collisions. As pointed out by Hirshman et al. [10],
an increase in the impurity content causes a decrease in the neoclassical conductivity
reduction by increasing the electron-ion collisions as well as by decreasing the effect
of .electron-electron collisions. The former effect results in a decrease in the first term
in Eq. 7.19, while the latter effect cauaes.a. reduction in the last two terms in Eq.
7.19. |

The bresence of a poldida.l electric field affects oxyc o primarily by affecting the
fraction of trapped particlés. When ¢, > ¥, and X, ~.1, the trapped electron
fraction decreases in the region of the velocity space where v ~ v,,. [We note that
the m:ijor contribution to velocity integrals of the type {F(v)} comes from the region
where v ~ O(v;s).] Hence, the conductivity reducing effect of impurity ions is weaker,
giving rise to a slight ilicrease in Fy; with Z.¢4. In all other cases, th.e fraction of

trapped electrons in the region of the velocity space where v ~ v, increases, and
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hence the conductivity reducing effect of impurity ions is stronger. This results in a
decrease in F3; with Z.;;. We note that the behavior of Ware pinch enhancement
factor Ff; as a function of Z,;; is similar to that of F: 33. Hence, the present discussion

applies to the behavior of Fy; as well.

Comparison With Previous Results

Comparison of the results obtained in this work with those obtained by Chang [12]
in the absence of impurities indicates a ~ 20% discrepancy between the two results
at Xp ~ 4. As with the Ware pinch enhancement factor, the values obtained in
the present work are smaller than those obtained by Chang. It appears that the
discrepancy decreases as Xo becomes smaller. We note in passing that in Ref. 2]
the analytical fit for the neoclassical conductivity reduction factor (a3, gs.) for the
case ®;, > ¥, does not seem to reproduce the curve shown in Fig. 12 [12]. Our
comparison here is with the curve in Fig. 12 in Ref. [12].

Finally, we note that Chang [12] conclﬁdes that the presence of an impurity species
in modest amounts (nzZ << n.) does not alter the trangsport enhancement factors
calculated for an electron-ion plasma. As can be seen from Fig. 7.2, thls clearly is
not the case. While the effect of impurities on electron diffusion is insignificant, the
effect is significant for the Ware pinch and conductivity reduction factor, especially
at Xo > 1. As can be seen from Fi_.g. 7.2, even for Z.; close to 1, the change in
the enhancement factor Fj; seems to be aigmﬁcant. It appears that the cause of the
- discrepancy can be found in the way Chang treats the electron collision term. The
electron collision term C; can be written as C, = C,. + C + C.;. H one neglects
electron-electron collisions, as Chang seems to do, then C, = CeitCor = (V249 =
Z.;v3L, where L is the Lotentz operator and Zos = Tz, 1;27/n,. In this case, the
effect of including an impurity species is equivalent to replacing vZ by Z.;;/2 in the

expressions for enhancem'ent factors for a pristine plasma. Z.;; cancels leaving the
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enhancement factors unaltered. In the present work, the results on diffusion as well
as Ware pinch and conductivity were obtained in the presence of electron-electron
collision terms. In this case, C, o (Vee + Zoyy¥3)L and Z.zy does not cancel when we

compute the enhancement factors.

7.4.2 Bootstrap Current

The bootstrap current is obtained using Eq. 7.6 and the expression for the parallel
velocity difference, Eq. 7.12. As the solution of the simultaneous equations [Eqgs.
7.12) is complicated for a general multispecies plasma, we illustrate the bootstrap

current calculations for a two ion species plasma. Unlike Ref. {14], our calculations

- are valid for a.'plasma with an impurity species of arbitrary mass.

Using Eq. 7.12, we obtain the following expressions for the velocity differences for

a two ion species plasma

‘ _<R,.;>[ 1 '<Ru>193, <Re>1

SUe > = <U>= MNTS, 1 v m;n;vh o5 mumps b (7:21)
< 1 < S 8 S,

<y > = < up = R > Rie >3 0y < Rig>10g (7.22)

MNISG T mmPE DS 0S  mingg oS
where ' )
< RjQ >= I‘J‘Q(Z,'EBg)-f‘ < Rjn,ﬁ >
and
oy P,
) |
Using the above expressions for the velocity differences and the expression 7.12 for

the current, we can write the gradient driven current as [14]

nce = z TkLgm s Amk _ (7.23)
bEm=12 i

where the expressions for the bootstrap current coefficients are of the form

Ly = LoZ2[Cuelthe+Curell ) (7.24)
T,
Ceg' - e ~ N »
Lo = Lo [Caeliie+ Cuelfis+Die] (7.25)
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where L}} , are the diffusion coefticients [see Eq. 6.12] and

quencies and they are given in Appendix C. Our calculations indicate that

éef.i ( ml
-_— — . 7.26
Cire V me] (7.26)

From the expressions 7.24 and 7.25 for bootstrap current coefficients and the expres-

sions for the diffusion coefficients L{'{r., in Eq. 6.12, it is easy to see that
Liye — Zt'L;m =2 Lfm (7.27)

As mentioned in Ref. [14], this is a consequence of a.mbipolaritjr of the particle fluxes.
Before proceeding with a discussion of the resulté, we wish to illustrate the re-
lationship between the bootstrap current and the cross field diffusive particle ﬂm;es.
 Using the expressions for the particle finx [Eq. 6.12| in Eq. 7.23, we can write the

bootstrap current as
Juce = LyCo [éeml" e+ Cirelia + 3 Dio Az (7.28)
k.

For simplicity, we consider the case of zero teuiperature -gradients, i.e.', Ay = 0.
In this case, the last term in Eq. 7.28 vanishes. In the absence of a significant
impurity concentration, I'.¢ ~ Ii¢ and, as a consequence of Eq. 7.26, the second
term in Eq. 7.28 negligible. In the presence of a significant impurity concentration,
a similar situation obtains after the stationary state (I'.¢ ~ I'i¢) is reached. Before

" the stationary state is reached,
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and the second term in Eq. 7.28 is comparable to the first term. Thus, in the -
preséncé of impurities enhancement of the ion flux due to a poloida.l electric field will
have a significant effect on the bootstrap current. We note here that an analysis of
the relation between the particle fluxes and the bootstrap current similar to the one
givér_l here has been carried out by Connor [9] in the absence of a poloidal electric
field. |

Finally, we write the expression fbr the bootstrap current in a form which facili-
tates comparison with Chang‘s [12] results in the absence of impurities.

T;
Joct = TL;,“( TZ) +T[L31.,+(L3“—-L3,..)]

T; ZuLazvg 3\T,
e (i) (G- 3) T o mobe (B3

£ mn

(.Z:,:it‘.) Lsu (:,) +35 : (i}:}) Lsu- ( ) +TzL% 4 (;é) \
ATalhe - 3150 (1) )
We note that, of the six transport _coeﬂicients L, (n = 1,2;k = e,i,Z), only five
are independent. The coefficient LZ, is dependent on the transport coefficients L§;
and Lj, (see Eq 7.27). Furthermore, the co.efﬁcient.L;,zz is generally small. Hence, |
we will prifnarily. concentrate on the behavior of four transport coefficients, Lt (n=
1,2,k = ¢,1).
We now present the results of our calculations of the effect of a poloidal electric

ﬁeld upon the bootstrap current coefficients. We consider a two ion species plasma in

- which the impurity is carbon. We will later comment on the effect of impurity species

on the bootstrap current coefficients.

Effect of Poloidal Electric Field

_ We define the bootstrap current enhancement factor as

k
F& - Lam,Q
3m =

IE (7.30)
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where L%, are the transport coefficients in the absence of a poloidal electric field.

Pl iy

Variation of the bootstrap current enhancement factors Fi, as a function of the

poloidal electric field is shown in Fig. 7.3. The magnitude of the transport coefficients
when &(§) = 0 are also shown on Fig. 7.3. Due to Onsager symmetry [14], L§, =
Lis, and hence, the variation of £, with X, is identical to that of the Ware pinch

e e R A LT S

rsar

enhancement factor, Ff;. As can be seen from Fig. 7.3, enhancement of the bootstrap

f © current coefﬁcienta over their magnitude for ®(8) = 0 is at the most by a factor of 2.
Furthermore, it is clear from Fig. 7.3 that electron and ion enhancement factors (Fy,
U and F},) behave differently for for ®,, 3 D, Hence, the effect of a poloidal electric
: field upon the bootstrap current cannot be deduced easily from the behavior of the
._ r ' individual enhancement factors. We will evaluate the effect of the enhancement of
bootstrap current coefficients and tempe_rature/dénsity profiles upon the magnitude
: of the bootstrap current later in this chapter.

Effect of Impurity concentration

: Fig. 7.4 shows the variation of the bootstrap current enhancement factors F§;, F§,, F§;,
f and Fj, as a function of the impurity concentration (Z.ss) for Xy = 1. Due to On-

: sager symmetry, the variation of F3 is identical to that of F;. As with the diffusion

coefficients, the variation of the bootstrap enhancement factors with Z.;; is more

pronounced for smaller values of Z,.s; due to the increasingly important role being
played by the impurity species in this range of Z.;;. As Z.s; increases, the transport

enhancement factors asymptdtica.lly reach a constant value. The presence of an impu-

rity species increases collisional coupling among the species, resulting in a decrease in
| L%, aswell as LY;. The pi'esence of a poloidal electric field in an impure plasma affects
the bootstrap current primarily by increasing (or decreasing) the trapped ion and im-
purity fraction, and hence the collisional coupling between them. We recall here that

the bootstrap current is primarily a trapped particle effect. When @, < ®ou, for
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moderate values of X; (X, <. 4), the trapped ion population decreases, resulting in

" a decrease in F},. For &, > ®,., the opposite effect occurs, i.e., the trapped ion

fraction increases, causing an increase in Fj;.

Effect of Impurity Species.

Comparison of the bootstrap current enhancement factors in the presence of different

- impurity species is meaningful for smaller impurity concentrations as. the tolerable

level of impurity content drops sharply for heavier impurities. The behavior of the
electron enhancement factors Fj3, is not significantly affected by the impurity species.
As the impurity enhancement factors FZ, are small in comparison with other en-

hancement factors, we will consider only the bebavior of ion enhancement factors

Table 7.1 shows the variation in F}; for & = 1 at X = 1. The behavior of F},
is similar to that of Fj§,. ‘An explanation of the behavior of F§ in the presence of
different impurity species is complicated by the fact that Fj; is a function of Z,4y,
Z, and mz in this case. Even when « is held constant, Z.;; varies from 1.33 for
helium to 1.97 for tungsten. From Table 7.1, it appears that F3, generally decreases
for #;, < ®,. and increases for ¥, > Pone When we change the impurity spéci%
from helium to tungsten (equivalent to changing Z.;, Z, and mz). This behavior
is similar io that of F§, when Z.;; is changed with a fixed impurity species (see the
previoﬁs discussion on the effect of Z.;; on F};). However, in the present case, the
impurity éharge and mass also change. An increase in Z leads to enhanced trapping
of the impurity ions in the electrostatic potential well. This causes a reduction in
the ion-impurity collisional coupling, which can enhance F3,. This seems to be the
case for &., < ®ous When the impurity species changes from iron to tungsten. Here,
it appears that the transport reducing effect of Z.s; is being offset by' the transport

enhancihg effect of increased Z.
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Table 7.1: Effect of Impurity Species on Bootstrap Current Enhancement Factor
(X, = 1.0) |
Impurity | Z | mz/m; Zeff- F;l_ _ l
] [ ®ie < P | Bin > @M
Helium | 2 | 2 | 1.33 1.08 077
Carbon 6 6 1.71 0.79 0.89
Iron 26 28 1.92 0.67 1.09
| Tungsten [ 60| 92 [1.97] 0.67 1.18 |

Comparison with Previous Results

We now compare our results on the bootstrap current with the results obtained by
Chang [12] in the absence of impurities and with those of Hirshman et al. {14] obtained

in the presence of impurities for the case of negligible poloidal electric field.

1. Comparison with Chang’s Results: Referring 1o Eq. 7.29, in the absence

a:

g g i A R T gt A S T WY g B A e ST P g A
T e T AT TR ARG R I TR R R R 1

of impurities, L% 4 = L% 4 = 0, n,/n; = n,/n,, and the last five terms vanish.

H

i The resulting equation has the following form

:f‘ £ q-: n; e e 5 -4 T;

E Jnet = Tel3ye (1 7 Z‘) T 7. [Lau +{L3ze — §La1.w)] T

Ea edig € e

3 T \(Zlne 3N\T :

a e $ __ 2 i

tTeLae (Z,T,,.) ( Ie 2) T RS
Using the expressions 7.24, 7.25 for the bootstrap. current coefficients, and not-
p ing that in the absence of impuﬁties the second term in 7.24 is negligible, we
: obtain

g

Zilye  ZiT,
?;1!.) zeTi -Lﬁ,o C"eI,QLﬁ,Q

Lie Die }
" Numerical calculations yield £g =~ 0 in the absence of impurities. Using the
expressions for the diffusion coefficients L$} 4 and L5 5 from Eq. 6.12, we obtain

Zilye _ {fev? (%)}

; = = Yie
f1.e _ {f stp } "
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- With this resuit, the Eq. V.31 has the same form as the expression for the

bootstrap current obtained by Chang [12]

f

| T, \ n, T,
Juct = T3 g1c)e (1 + T Zi) n + T, a3, 91e)e + (a3, g2c)8) T

+Tas, 00 () [y - 3] 2  aa)

where the subscript ® is used to in_dicate the value of the transport coeﬂici_e_nt

" in the presence of a poloidal electric field.

We now compare the transport coefficients (a3, g1, )¢ and y with the correspohd-
ing quantities L%, ¢ and ¢p in Eq. 7.31. (Apparehtly, Chang has not calculated
(a3, 92¢)e in Ref. [12]). Onsager symmetry yields (a3, g1.)a = (a1, 93.)e [8] and
L5 4 = Lis ¢ [14]. Hence, a comparison of (a3, g1) and L%, ¢ is equivalent to
the comparison of the W;Lre pinch coefficients (a;, g3.) and L{ 4. Our prévious
comparison of the Ware pinch enhancement factors in Section 6.3.3 yields a
significant discrepancy (~ 20% at Xy = 4) between the two results. However,
a.'compa.rison of the variational parameter y with the quantity s (see Section

6.3.1) yields very good agreement between the two quantities.

. Comparison with calculations by Hirshman et al.: Finally, we point out |

that for $(8) = 0, our calculations agree with the transport coefficients calcu-
lated using the analytical expressions obtained by Hirshman et al. [14,40] for a
heavy impurity such as iron or tungsten. For lighter iinpurities, such as carbon

or helium, the ion enhancement factors Fj, differ from those calculated using

~ the expressions in Refs. [14,40] by less than 3% when the impurity content is low

(Zesr < 1.5). For a lighter impurity like carbon the difference in F}, calculated

‘using the two approaches can be as high as 20% for higher impurity concentra-

tions (Z,7; = 3.0). This is to be expected as the expressions in Refs. [14, 40]
were obtained in the limit mz/m; > 1. Nevertheless, the analytic expressions in

Refs. [14,40] provide a convenient means for calculating the bootstrap current
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coefficients for most impurities and concentration if one could tolerate a dis-
. crepancy of the order ~ 20% for low Z impurities at higher concentrations. We
“have reproduced the analytical expressions for the bootstrap current coefficients

from Refs. [14,49] in Appendix C.

Transport Enhancement of Bootstrap Current and Profile Effects

The bootstrap current depehds upon the transport coefficients L5 as well as the
“driving forces” A and Az. As the driving forces depend upon the density .and
tempéra.ture profiles, enhancement {or reduction) of bootstrap current is dependent
on the enhancement (or reduction) of the transport coefficients as well as the electron
and ion temperature/density profiles. In this section, we consider the profile effects as
well as the enhancement of transport coefficients upon the magnitude of the bootstrap
curfent.

We begin by considering a situation where the temperature and density profiles
can be approximatéd by

Ti(r) = Tio(1 — p%)°™

and
ny(r) = njo(1 - p*)™
Here p = r/a where a is the minor radius. For simplicity, we assume T, ~ T; ~ T%.

With this,

and
R 20 p
n,- - a 1 - p2

Here, the prime denotes derivative with respect to the radial coordinate r. We shall

further assume that Z, s is constant in the core region of the plasma where the present -
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formalism is expected to be valid. This leads to

M

moom_ 2 b

ng  n a \l-pg?
<2 (2 el
A=t o = (1 p2) PR

A2k=%:"— —';2; (l_ppz) laz)

With this, Eq. 7.23 for the bootstrap current can be written as

Hence,

~ and

2T
Jrct = pg [aT Z 1 5L31 e L5 Q) - auZLal o] (7.33)

We recall that the subscript @ indicates the presence of a significant poloidal electric
field. In the absence of poloidal electric field, we have

oT < |
o= Tl for 3 (1528, - 18) - o T2 (1.39)

- Subtracting Eq. 7.34 from Eq. 7.33, we obtain the change in the bootstrap current
due to inclusion of the effects of a polaidal electric field as |

Jgg = = 2T1fp2 ¢1TZ[15(L31Q"L ) ( gz,@—L§2)]
— Zk: (Lgl.,w - Lgl)] | (7.35)

From the above equation, we can determine the relation between a, and ar for the
ché.nge in the bootstrap current to be positive. Setting Ju.o — Jue 2 0, we obtain
the following condition for the change in the bootstrap current due to inclusion of
a poloidal electric field to be positive (i.e. for the poloidal electric field to enhance,
rather than reduce, the bootstrap current) |
S P (ng._o — L) - 155, (Lgl,ﬁ - L) or

7.36
P (5'51 - L'a‘z,ﬁ) (7:36)

n
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P We note that the relatibnship between a, and ar depends upon the impurity species, | ‘
i, | concentration, and the sign and magnitude of the potential variation. -As an example,
- we consider the case of carbon impurity with Z.z; = 3.0. When #(6) = 0, we obtain
L5 =123 Ly =05 L%=012 Y L% =185
i k
b3
& .
b L, =268 Liy=10 L% =015 > L% =3.83
o 3
&“ | Here, note that L%, is actually L%,/Lo. For simplicity, we have suppressed the factor
Lo. When &(6) # 0 and ®;, < ®.., (as during ICRH or NBI), we obtain the following
; enhancement factors.
When Xo = 1
: . | |
F=13 Fiy=072 FZ=173 Y Lhe=220
3 | k
Fi=12 FL=073 F5=104 Y L4,=413
3 3
When X, = 3
Fp=177 Fi=098 FZ=231 Y L% ,=29
3 ' k
Fp=151 FL =065 FZ=147 Y Lig=4.95
_ x
When &(6) # 0 and &, > .., (as during ECRH), we obtain the following enhance-
ment factors. |
When Xo =1 |

Fg =072 Fhi=107 FZ=047 Y L%4=149
: k

Fp=076 Fh=106 FZ=027 Y L%,=3.16
_ k
When X, =3

Fi=101 Fh=144 FZ=071 Y L} ,=206
. k
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FH=070 FL=132 FE=03¢ > Ly ,=328
k

Using these values, we find that the following requirements must be satisfied in order
to obtain an enhancement (J,.¢ — Juc > 0) in the bootstrap current due to a poloidal
electric field.

(a)When ®;, < P,

For Xy =1, a, > 0.64ay.
For Xo = 3, &, > 0.49ar.
(b)When ®;,, > ®oue:
For Xy =1, a, < ~0.36ar.

For Xy = 3, a, > 4.12a7.

Figures 7.5 and 7.6 show the relation between a, and ar, as a function of Xo, that
is needed for an enhancement of the bootstrap current. Under conditions that prevail
in most tokamaks, the presence of a poloidal electric field such that &, > &, (as
during ECRH) results in a reduction in the bootstrap current (Fig. 75) On the other
hand, when &;, < ¥, (as during JCRH of NBI), the bootétra.p current increases if

the density j)roﬁle is more peaked than roughly the square root of the temperature

profile, i.e., a, > 0.5a7 (see Fig. 7.6). The behavior of a,/ar depicted in Figs. 7.5

" and 7.6 follows from the behavior of the enhancement factors F3, as a function of Xj.

We further note that varying Z.; from 2 to 4.has dnly a minor effect on the behavior
of a, /ar shown in Fiés. 7.5 and 7.6. |
Finally,. in the present study we have used the same profile exponents .for electrons,
ions, and impurities (i.e. a,; = ¢, and af,- = ar). It tums out that the conclusions -
drawn here are valid even when a,; ';.e o, and ar; # ar, as the next example
demonstrates. It appears that the relation between the temperaturé and density
profiles is more significant than minor differences in the temperature/density profiles

of different species.
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Example

Finally, we consider the example of 2 JET discharge with combined ICRH and NBL

v The density and temperature profiles for a pellet fueled shot are shown in Fig. 7. 7.
f The profiles in Fig. 7.7 and the following parameters are taken from Ref. [7]. In the
i“ present case, clearly ar > a,,. |

:J  Minor radius a=1.16 m, Pican ~ 12.5 MW, Pyps ~ 52 MW, R =13 m, ng =
 6.47x 10 m~3, T = 11.8 keV, Tio = 8.9 keV/. |

Consistent with the large aspect ratio approximation, we consider a point close to
} the center. Specifically, we take € = 0.04. This gives r = (.12 m and p=0.1. At this
1 radius, all the relevant quantities can be estimated from Flg 7.7. Assuming T, = T3,
: T’- = —’1}? ~ —12m1

s ¥4

Lé ~ ~2.1m™}

. Tl

r: Assuming a constant Z,;s in the core region of the plasma,

2 Pi~£"3=—;~-0.27m"1

s 1 nz L

;‘ Furthermore, at this radivs, T, =~ 10.5 keV, T; ~ 8.4 keV, n, =~ 5.8 x 1019 m~3,
1 Taking the effective charge to be Z.;¢ = 3.0 in the presence of carbon impurity, we

obtain

n;,=35x 109m™3 ny;=39x108m3

~ With these values, and with the transport coefficients for Xy = 0 and the transport
enhancement factors for Xo # 0, we obtain

When $(9) = 0,

Juc_ = _26.251:!0

162




Te, Ti (keV)
n, {(x10'*m?)

Figure 7.7: Temperature and Density Profiles for a Pellet Injected JET Shot [7]
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The bootstrap current for Xo =1 is

JMQ = —24.8L0

and the bootstrap current for Xo =3 is
Jncﬂ@ - '—22-8L0

Hence, in the present case, the bootstrap current decreases by a small amount. This
is not surprising as in the present case a,, & @y , and our previous analysis indicates

a decrease in the bootstrap current for ¢, < 0.49ar.

7.4.3 Summary and Conclusion

In this section, we summarize some of the important results on neoclassical conduc-

tivity and bootstrap current and discuss their significance.

1. The results presented in this work on plasma conductivity indicate that de-
pending on the magnitude and sign of the poloidal potential variation, the
neoclassical conductivity reduction factor can increase by as much as ~ 70% or
decrease by ~ 35%. Also, in most cases, an increase in the impurity content

results in a decrease in the magnitude of the neoclassical conductivity reduction.

While the above conclusions are based on calculations performed in the large
aspect ratio limit, we expect similar results in smaller aspect ratio devices. In a
small aspect ratio device (v€ ~ O(1)), the neoclassical conductivity reduction,
which is of the order /¢, is expected to be more significant. Hence, changes in
the neoclassical conductivity reduction due to altered trapped particle fraction

are also expected to be significant.

We further note that plasma conductivity measurements play an important role

in estimating the impurity content (Z.s;) in tokamaks. Hence, it is imperative
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that the plasma conductivity predictions be as accurate as possible during var-
ious heating scenarios such as ICRH, ECRH or NBI as well as with varying
levels of impurities. We feel that calculation of conductivity in a multi-species
plasma in the preéence. of a significant poloidal electric field is a significant step

in that direction.

2. In this work we have calculated the bootstrap cument coefficients for a two
ion species plasma in the presence of a significant poloidal electric field. The
variation of the bootstrap current enhancement factors with the magnitude of
the poloidal potential variation is qualitatively similar to that of the electron and
jon diffusion enhancement factors. Our calculations indicate that depending on
the magnitude 'and sign of the potential variation relative to the species under
consideration, the transport coefficients may increase by a factor of ~ 2 or

decrease by as much as ~ 40%.

3. Enhancement of the bootsirap current coefficients depends upon the impurity
content as well as the impurity species. It appears that the effect of varying
the impurity content is more significant for the jon enhancement factors (F3,).
For ®;, < ®,.:, the ion enhancement factors decrease with an increase in the

impurity content while for &, > ®.., the enhancement factors increase with

the impurity content.

4. The nature of the impurity species seems to affect the bootstra.p' enhancement
factors Fi,. At constant @ = nzZ?/n;Z}, heavier impurities seem to cause a

reduction in F§, for ®;, < @, and an increase in Fj, for ®;, > ®,u.

5. The magnitude of the bootstrap current is influenced as much by the enhance-
ment of the transport coefficients as by the nature of the density profile relative
to the temperature profile. We have calculated an increase in the bootstrap

current when ®;, < ®,. (e.g. ICRH or NBI) if the density profiles are more
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peaked than roughly the square root of the temperature profiles in a deuterium
plasma with carbon impurity. It is found that the bootstrap current generally
decreases when @, > ®, {¢.g. ECRH).

. Finally, we note that in many of the present devices as well as future devices

increasing importance is being given to bootstrap current. In designing many of

the future devices a significant fraction of the current is assumed to be gradient
driven. In these situations, an accurate prediction of the bootstrap current in

auxiliary heated, multispecies plasma is of great importance. It is felt that the

present formalism is a signiﬁéant step in this direction.
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CHAPTER VIII

SUMMARY AND RECOMMENDATIONS

!
é.l Summary

In this thesis, we have extended the investigation of the eﬁ‘eﬁt of a poloidal electro-
static potential variation of order ¢ on the neoclassical particle transport and current
in a tokamak plasma to the realistic case of a multiple ion species plasma.' The final
result of the present work is the calculation of the effect of the poloidal electric field
on the ion diffusion coeflicients, neoclassical conductivity, and bootstrap current.

We have solved the drift kinetic equation using the low collisionality ordering for
a large aspect ratio (¢ « 1) tokamak. Both of these assumptions imply that the
present theory is applicable to the core region of the plasma. The low collisionality
assumption somewhat restricts the present theory to low to moderate Z impurities.
Perhaps the more restrictive assumption is that the fraction of trapped patticles is
assumed to be small, ie. fi € 1. While this assumption is not too restrictive in
treating low Z impurities or small values of potentia.l. variation (Xp ~ 1- 2), it
breaks down for largef Z impurities or for large values of the potential variation. In
these scenarios, most of the impurity ions are trapped in the electrostatic potential
well and f; ~ 1. Hence, the presént formalism is appropriate for treating the case of
low Z impurities such as carbon, berrylium, or helium. |

We find that the main ion diffusion coefficients increase during both ECRH (®;,, >
®..) and ICRH (®;, < ®,.) for most values of the potential variation (X, =
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e®(8)/Te), implying an increase in the inward diffusion of impurities. Only when

the poloidal potential variation is small, i.e. Xy < 1, do the main ion diffusion co-
efficients decrease slight.ly (~ 10%) during ICRH, implying a small reduction in the
inward impurity diffusion (T'z ~ —Z;/Z T;). It seems unlikely that any significant
reduction in the inward impurity diffusion can be achieved with either ECRH or
ICRH. | |

This result is important in interpreting the experimental results on impurity trans-
port. Although it is generally believed that the neoclassical particle transport is small |
in comparison with anomalous transport processes, recent results from JET [84,.85]
seem to indicate that the particle transﬁort in the core region of the plasma is close
to the values predicted by the neoclassical theory. Furthermore, bne can exp.ect the
neoclassical effects to be significant in such improved confinement regimes as H-mode
and VH-mode [87]. It is expected that modifications of the neoclassical particle trans-
port coefficients of the type examined in this work are significant in such regimes or -
regions of the ﬁlasma.where the particle transport is close to the neoclassical levels.

It is found that in the presence of a poloidal potential variation of order ¢, the
neoclassical conductivity reduction factor (cxc) decreases by ~ 35% or increases
by ~ 70% depending on the magnitudé and sign of the potential variation. It also
appears that the presence of impurities results in a decrease in the neoclassical con-
ductivity reduction factor for most values of the poloidal potential variation. Such
variations in the ohmic conductivity can have significant implications to any simula-
tion of experimental results using a neoclassical conductivity model. | -

We further find that the presence of a poloidal electric field causes a signiﬁc_ant
change in the bootstrap current coeflicients. The bootstrap current coeﬂicienté ca.n
increase by a factor of ~ 2 or decrease by ~ 40% depending on the magnitude and
sign of the potential variation. The change in the bootstrap current, however, seems

to depénd on the enhancement (reduction) of the bootstrap current coefficients as
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well as the nature of the temperature and density profiles relative to each other. We
have calculated the change in the bootstirap cuttent due to inclusion of the effects of
a poloidal electric field in the presence of catbon impurity. The results indicate an
increase in the bootstrap current during ICRH or NBI (®;, < ®,.) if the density
profiles are more peaked than roughly the square root of the temperature profiles and
a decrease in _the bootstrap current, generally, during ECRH (®;, > ®,.:). Increasing

importance is being given to boctstrap current in the present as well as future devices.

In designing many of the future devices, a significant fraction of the current is assumed

to be gradient driven. It is important to include the effect of a poloidal electric field

in estimating the contribution of the bootstrap current 1o total current during strong

wave heating or NBL.

8.2 Suggestions for Future Work

Finally, to complete the picture of the effects of a poloidal electric field on neoclassical

transport in a large aspect ratio tokamak, a few additional calculations need to be

carried out.

¢ In the present work, we have calculated the particle transport and bootstrap
current coefficients for a specific impurity (carbon). In order to facilitate the
use of the results of this work, it is desirable to provide analytical fits which
enable calculation of the transport coefficients as a function of the magnitude |
and sign of the poloidal potential variation, impurity concentration, impurity

charge and mass.

e As pointed out in the previous section, the present formalism is valid when the
fraction of trapped particles is small. Extension of this formalism to include

the case when most impurity ions are trapped greatly extends the limits of this

theory.

169




¢ Calculation of energy transport in the presence of a poloidal electric field in a

multispecies plasma.
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APPENDIX A

: | A.1 Expressions for du/dt, dE/.dt, and d¢/dt

;11 We have the equation of motion given by |

; % + % —E Qu,p (A.1)
r Té,king the dot product of Eq. A.1 with v, we have

v, - %+ d;t"-;n—vJ_ E.. Qv vy - p

Noting that v, - p = 0, dividing throughout by B, and adding and subtracting
(v2 /2)d/dt(1/B), we obtain |

o A DA T

dp gdB ) dn

: @="5a B & nEt

* Taking the dot product of Eq. A.1 with v, we get

ﬁ.T E!_Y. = —E— Y - 0.

; T mE v=-Qu.p-v |

'; Noting that g - v =0 and (v2/2) = E — (e®/m), we write the above equation as
dE. e (d®

@ om (Et- oE v)

i 0% OA
o = -—]=— V‘D ——
* m(&+v vV‘I\ v- &:)
dE % 8A

Finally, taking the dot product of Eq. A.1 with 3, we have

d
PYAS(

YRR AR PE~Qu p-p
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Observing that p- A =0and p- 7, =0,

5. 0 _ € L g o Mg, 9
dt muv, v di

We evaluate the left hand side of the above equation as follows.

. g
d—:ti = (é3cos§+_égsin§)-a(ézcosf—é3sin§)
K, der o . 4B g
dt+e3 7t cos“ € — & 7 sin® ¢
) . - dég . n ﬁa
+sin{cosééy - ry —sin{ coséés - r
Noting that
, dé; _d (&-& _ 5  Ués
2 t_dt( 2 0=t
and
- dé!! d a oA - dé " dég
2 g = g8t by =—he g
- we have |
. df ¢ . dé
PR Y
Hence,

%=Q+1§3-——+—ﬁ-—-———9'E (A3)

A.2 Gyro-averaging Procedure

A.2.1 Calculation of du/dt

In Section 2.2.2, we encountered the gyro-averaging procedure. Here we explicitly
evaluate the gyroaverage of du/di. We will make use of the assumption that quantities
that do not explicitly depend upon the gyrophase are constant. With this

du ndB vy din e r
dt- Bdt EVJ_' +m E'VJ_ (A.4)
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As mentioned in Section 2.2.2, retaining only the convective part of the substantial

derivatives, we get

dy . € :
T=" v"n VB—-B—tJ_nJ_ VB-——EV (v-V)+ ;@E-n (A.5).
 where

[P S e
.Bvun VB = Bvun VB

Due to the presence of cos¢ and sinf in 7, ,

—§mfu -VB = 0

Writilig v = yyfi + v, fi1, and noting that fi, =0,

T, oy X . W2 — .
——élv_L (v-V)ft = - "B*ﬁJ_ (nL-V)n=-—“B—'LﬁLnJ_:Vn

Using i, = é;c08& — €3sin¢,

o - wed ., . v .
-Equ_-(v_-V)ﬁ= - gBJ'(egeg+e3éa):Vn= o L(I fifk) : Vi

where we have used the identity I = #ift + éé; + €36;3. Carrying out the vector

operations on the right hand side, the above equation can be written as

- v V)n-—v" TU A=A (A V)] (A.6)

We know that

V(ﬁ.ﬁ)—(ﬁ-V)ﬁ=_(ﬁ.v)ﬁ B

B

and
fi-(R-Viiz=-R-AxVxa=0

Using these, Eq. A.6 feduces to

TP gy -
—gvL (v - V) = 2BV ft _ (A.7)
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We have
V-B=V-(BA)=BV-#+7-VB=0

Using this identity in Eq. A.7, we obtam

_ Wk . op M, |
B L-(v- V== 252 VB = B VB - (A8)
Also
L Ev,=—E-vI=0 (A.9)
mB - AT mB T _ '
Hence, .
au _ ik, Uk
— 57 VB+ - VB =0 (A.10)

A.2.2 Calculation of df;/dt

In Section 2.2.2, we found the gyrophase dependent part of the first order distribution

function to be

- v
h=-5pVo=-7h

Using this expression, we explicitly evaluate the gyrophase average of d fr/dt.

E?f P d.o
B =g w =g -

& (A-11)

Noting that h is independent of the gyrophé.se, and expanding dh/dt, we obtain

EE .dph_ oh

= = ——ﬁ-(v".V)h—ﬁ-(vJ_-V)h
7 5D -7 53 -7 )

Using the fact that h is independent of the gyrophase and the magnetic moment, and

7= 0, we have

PRI % €

Prgg=p(v-V)h= 6 g 8£(dt
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And :
A
¥ p '
F v Vb = %ﬁ . V)b
; R ;
?2 : .
“ = ﬁz—(egxeg)-Vxh
oY,
;E = mn-Vfon-O_ (A.14)
E Noting that
g 8 e OA
i -
we have
: dE

5 — (dT‘) ~ O(8%0) ~ O(8°) (A.16)

Dropping this term, we obtain the following equation | |
df1 dap 3
r —Et— - b + terms of order | (A.17)
dF _ dfAaxv,
d ~ dt\ Q

= ﬁva_%(hl-)+-l—ﬁx£Yi+-]1§Exv_L (A.18)

Q dt Qdt
The first term in the above equation is

——d 71y Axv,1dB | |
A""”*d"t(ﬁ)‘ @ Bdi (A.19)

ol LT e g

Dropping the term 8B/8t and writing v = v + v, we get

’Ui - - _ Ui Y7 < 3¥5] | |
A= “ﬁn xR (RL-V)B= —ﬁp(n"- -V)B (A.20)

mrgpei e
iy

Expanding #, and j in terms of guiding center coordinates, and gyro-averaging,

ey
e

P

A= %(e3 x &) X VB == —gﬁ xVB (A.21)
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The second term in Eq. A.18, upon using the equation of motion, becomes

'_1 dVJ__l,, € R dV"
B= Qﬁ X - =gt x (mE Quyp 7 (A.22)
Noting that # x § = # x 1 = 0, we obtain
_axE y. di
= B ﬁ-n X &? (A.23) |

Expanding d#/dt and dropping terms of order > 62, we dbtain, after gyro-averaging

axE 1. . N
B=—F——ghx [vf(# - V)i (A.24)
The third term in Eq. A.18 is
_1dn _w, _adn
C—ﬁa?xv,,_——-ﬁ—m_x-a (A..25)

Writing #t, = p x #, we write the above equation as

v, @dh, da . v . di

Expanding the substantial derivative of 7 and catrying out steps similar to those
leading to Eq. A.13,

e o i 9, L
= -ﬁn[e;,, (& V)~ & (&3 V)] = —-ﬁn[ﬁ -(V x #)] {(A.27)

Combining Eqs. A.21, A.24, and A.27, Eq. A.18 can be written as

a7  Ex# A RO PR
;ﬂ—%—%x[av3+vi*.,’(n-v')nl—ﬁn[n-(vxﬁ)] (A

Using a notation similar to that used by Hinton and Hazeltine [8],

a5 ,
- i =Vp+ ’b“n - (ﬂ.29)
where
vo= B2t R VB + B V)R] (A.30)
B Q _
and _
Y] 'Ui - ~
B = ﬁ[ﬂr. AV x #i)] (A.31)
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Drift for a small 7 tokamak

We have for equilibrium,

IxB=Vp
Using the Ampere’s law, ‘
| (V xB) x B = 14Vp
Expanding the left hand side using B = B#, and dividing throughout by B2, we get

. VB a(f-VB) _ tVp
(R-V) B + 5 =5

‘where we have used V(- ) = 0. Taking the cross product of the above equation

- with 7,

fi x VB + it x Vp
B
B TE
‘We note that the terms on the right hand side are of the order 1/1 and 3/1 respectively.

Ax (R V)as=

If we assume, as done by Hinton and Hazeltine (8], that § = 2uep/B? ~ O(8) < 1,

then the second term is much less than the first term. Hence,

AXVE @ v x VB
VD B + Q x uVEB + 0 B
or .
vp =~y x V (=0 . A
p=-yixV{g . (A.32)

where the gradient is taken at constant £ = v*/2 + e®/m = vf/2 + 1B + e®/m.
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i . APPENDIX B

B.1 Boundary Layer Formalism

In Chapter V, we used the low collisionality, or the banana regime, ordering in solving

the drift kinetic equation. In the banana regime, v,;;7p € 1. We expect this ordering

to hold in the far trapped and far untrapped regions. We should, however, note
that in the narrow layer between the trapped and untrapped particles (“boundary
layer”) comprising marginally trapped and marginally untrapped particles, v,4575 ¥«
N | 1 because 75 — 0. Particles in this layer are highly susceptible to collisions. The-
break down in the banana regime ordering manifests in the discontinuity in 8g¢ /8;:

at the interface between the trapped-untrapped regiohs [Eq. 5.14].

;] - Hinton and Rosenbluth Analysis

| Hinton and Rosenbluth [88] have solved the drift kinetic equation for the electron-ion-

# problem in the absence of poloidal electric fields. Without going through the details
[ _ of their calculations, we may write the resulting distribution function as

f Gy = Go + G+ G,

" where Gy = g;’ is the conventional banana regime solution, G; is the solution confined

to the'bounda.ry layer, and G, is the correction to the conventional solution due to
i ptopet matching of the solution at the boundary la.}er. | '

Hinton et al. (8] have calculated the transport coefficients using a variational
approach. Here, we consider the diffusion coefficient to study the effect of the bound-
ary layer on the conventional solutions obtained without using the boundary layer
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analysis. The diffusion coefficient in the presence of the boundary layer is given by [88)
Ly = L{(1 - B) ; (B.1)
where the boundary layer correction 3 is given by
0.62| -
= 0.0/42In [__]
g e

Here, v, = v./(wiee¥?) < 1, where ., w,, ate the electron collision frequency and

electron transit frequency respectively.

Conclusion

We may draw two conclusions from Eq. B.1.
1. The boundary layer seems to result in a decrease in the transport coefficients.

2. The magnitude of the correction decreases with decreasing collisionality. For

example, for v,, = 0.1, # =~ 0.19 and for v,, = 0.01, 8 ~ 0.16.

Hence, it appears that the boundary layei' correction is sigliiﬁca.nt for plasmas with
higher collisionality. As most of the current major devices and future devices are
expected to be in the low collisionality regime, we can expect the boundary layer
correction to the transport coeflicients to be small. |

We also note that the analysis of Hinton et al. [88] is quite complex and makes use
of many simplifying assumptions. In addition, the analysis uses a simple Lorentz gas
model. Balescu [32] has pointed out that, in view of the uncertainties in modeling, it
seems unlikely that a detailed analysis of the boundary layer yields resnlts significantly
better than the results obtained t}sing simple interpolation formulas between the
banana and plateau limits. Hence, we shall ignore the corrections due to the presence

of the boundary layer.
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B.2 Calculation of Restoring Coeflicients

The momentum restoring coefficients are given by Eq. 5.19,

‘ 8fu : '
=C f dwdpvgp—— 7 {B.2)
where

| R ™ 4
Using Eq. 5.15 for 8f:/81 and making use of the result 5.18, we can write 7 as

6)‘;,0 _—i_!i 1
C/dwd,u Vk’p (Ba) or (ﬂ" Vg < O >)

C=-

Tkj -

_ .3I ﬂ-B Mafio < Vig <t > ek’ In
Cf dwdy V"-' <y>| Tk z,: Vi ¥ Ty vee
= 1+
Using |
O _ . (N 3T\ T ()
or = e (N,, %) YR\ ) e (B2)
where
Ne _mo  @a<®>
N - ET) T
we have |
| BN[N, 3T1/{1 v 1
i |k _ S22kt - k-
| W = c/dwd"‘ ”*I”f““ (Bo) Ni 2Ta] ("u e < Y >)
B ’.f" vi 1
+O/dwdﬂ Vb,#fko (Bo) [ Tk ( - p—k;z ) >)

= i +ng
We can write r,,, as

a1 _ ofMe_ 3% ﬁ(ﬁ)/‘i““’dﬂ_ﬁﬂ"’fx |- Y
Thi N. 2T, ) Vi

N, 3T,]m ( vevi\ |
+C Ny 2T, BO)/( Vig fuadw
1 1
j“dﬂ(gﬁ <y >)
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- Eq. 5.17. Also, we have used the fact t'ha.t in the large aspect ratio limit,

T R

RS

Using the definition of C and carrying out the integration, we get, after flux surface

averaging,

R H G *’,Ls,'}:_;'.;—‘;?l-'.l‘-—'- o

ay _ _Mune 1 T N, 3T s wvivi

m;n; {v;:} \exBy Vie

mkn;. 1 Tk NL 3T JVS
] Jea

mMin; {VS} exrBy Nk 2Tg- s

In obtaining the above equation, we have made use of the definition of fie giveh by

exp [ erd( 9)] [ ek@ 9) ]

and we have retained only O(¢?) terms in carrying out the velocity integrals. A similar

analysis gives
1.2 _ mengy 1 Tg. T
() = “myn; Vi (ekB,)
. VigVi \ (T E" VgV \ (muE”
{(a-320) (50 b+ e (5) 5D
and |

0,8
=ty ) <o 452 ()

Adding the results < r},,l >, < rif >, and < 7% >, and using the momentum

conservation relation min;i{vii} = mena{vg; ), we get the desired reeult

< > = .{u:} (e B") [{v,,,} (Au + —T‘E) + {ufj (m;f‘ )} Agk]
gy () [{ e ro) (o )+ (55 (7))
1 ¢

T “‘“{ﬁfﬂ}*‘@-Z{""’ fa} <>
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APPENDIX C

C.1 Expression for Parallel Velocity Difference

In Chapter VII, we used n-1 parallel velocity differences to calculate the bootstrap
current. Here, we derive the equation for the velocity difference {Eq. 7.12] used in
Chapter VII to calculate the bootstrap current. Using Eq. 7.2 for the parallel velocity

difference, we easily obtain,

T;
U > =<y > = —

8
—E{f‘;"_’“}u, > (C.1)
'.
From Eq. 6.4, we have '
< Rjk >= —-m,'nj{vfk}k Tik > — < Tj >] . (02)

Adding and subtracting (< u; > — < u; >) from the right hand side of the above
equation, and using the definition of the restoring coefficients < r;, >, < ri; > from
Eq. 6.7, we can write, after a few steps of algebra,
<BRp> = -mm{ufi}[(<u > - < ue >)+ (DF);7d4 — (DF Wk
i [ T o Ta |
+7re ( o ;33) JeAoj - T (-—-—ek Bg) JeAzn

+Y [Aﬁf <1y > —-Af <ra >]
l . -

—fi E [A{;,l <Ty > “Ag; < T >]] (C3)
N _
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where (DF), is a combination of the “driving forces” Aj,, Ay, and < @ >', given by

vy (mE\ |
T, ep < B> {f“’"f,f ( T }
(DF)’ - - (E:g—g) f; A]p + 2 T A2_p

» {re2}
and |
A = gl g - iz =
a - E ) () E)
oceePE e
w- SR 0 e
s = 7 [{) gy - {rik e

Using the relations 7.2 and 5.22 for the parallel velocity and restoring coefficients,

we can relate the restoring coefficients to the parallel velocity with the following

expression
im T} I
< T >=< 1 > +(DF)vos + fr (——"3) Axryre
e]Ba
+Y AR <ru> —£i Y AR <ra> (C.8)
Using Eq. 6.6 for the particle fluxes (with A; = 0), we can express (DF); as
. vIDvs"- '
(DF) _ EfBg PM +fz:{flﬁ P }(rkl>
T \mim {fuvlsvl"} y . {fﬂf_lf_}
o Fevia Ve

Specializing for a large aspect ratio tokamak (£, < 1), we note that the first term
on the right hand side is of the order f; in the driving forces Ay and Ay, while the

second term is of the order f?. Retaining only the term of the order f,,

. {eBs I'ig ' | ,
(DFJI - (m;n;) {fwillsvlp} . ((,'9)
via
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Here, we treat fup ~ O(f:) as discussed in Section 6.2.2. Using Eq. C.8 in Eq. C.3,

we can write the parallel friction as

<Bp> = —-mn i< w > - <u>) + (ulhg — ude)

+; [Af:[< > +u',’,- ol - ARl< > +“:u]]
+ ; > [A{:AEQ - a'l' 1] < Tw >
=fi Z [A{:,l[< U > +u?j,§] - Agl<w > +“'z]k,@]]
| _-—f:Z L [afiads: - aliak, + Al,Al - AR A% <ru>

+(f)) ZZ[AIQI nd,1 Ann an]<7’nl>] - {(C.10)

where

o (&B) filpw 1, | .
qu'e’ - (m np) {fiol' v }ﬁ epBg ft?ﬁAz)’ (C’ll)

Using 1,8 = v; (see Section 6.3) in the above equation, and noting that A?§ = AP <
1, the above equa.ﬁon can be written, by retaining only terms of the order f; and

f lqu: as

<Rp> = —mni{v) [(< u > — < up >)+ (upe —udja)
+ E [Afﬂ(( Uy > — < Uy >) + u',]j‘,]
. f "

AP [(cwm> - <u >)+ u?k',]]] (C.12)

As Y AP = 0, we have sﬁbtra.ctéd terms of the form ¥,;A}* < «; > and
P} Afj < up > from thé right hand side of Eq. C.10 to obtain the above gqu'ation.
From Eq. 6.2, we note that the the diffusive patticie fluxes are related to the
- parallel friction by the relation

(815'2)]?," = —Z < Rjk >
k
Using Eq. C.12 for < R;; > in the above equation, and using the definition of APY,
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we obtain the expression for the parallel velocity difference as
Z m,-njﬁfk(< U > = < Up >) = ij(eng)+ < Rju_j P (013)
&

where 75, and < Rjo ¢ > are given by Eqs. 7.13 and 7.14 respectively.

C.2 Bootstrap Current Coeflicients

Using Eqs. 7.21 and 7.22 for the parallel velocity differences in Eq. 7.12 for the

current, the expression for bootstrap current can be written as [14]

g = Y. Til3, eAmr ' (C.14)
Em=1.2 .
where
L5y = LoZ8 [Cuelity+ Cield C.15
e = 0Tk[ elplnie T Lire 11,¢] (C.15)
Cei [ € A i 3
Lie = Lo [Cearalise + CiraLllsy + Dial (C.16)

Here, Li} , ate the diffusion coefficients [see Section 6.3) and

Before we give the expressions for ée;‘g, Cﬁ'.vm, and D 9, we define the following useful

quantities

_ ZpeBg) fg‘fﬁ
% = \Tony ) Thev?]

f]
_ (M2 ) T _
K (n,Z. ﬁf} 1
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]
4
:
o} )
p
Cr
)
3
: Cfc' =
H ,
| Ch =
‘ Mﬁ,-",. =
) ,
] ik
] e =
5
: " Cis =
Dis =
1 ik —
: Eiisa =
4
Fljs =
z, G =
i
1
L
() Djs
E
Cers
: Cirs
H
'; Ly = Lo[l+ Ki(Zs))

Using these quantities, we define the following expressions

S HY
NitgY

C;i(Clg + Mfi-)
Ci(Pllg — Cs)
CiMifs
C;Pifs

9
Cie +_ Ejis
Pary
_ .
= Djg+ ) Fil,
gt

= (é,_,,,-;-%-?-)

as given by Hirshman et al. {14, 40} for a large aspect ratio tokamak.
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With these definitions, we can express the coefficients in Egs. C.15 and C.16 as

Finally, we present below the bootstrap current coefficients for a three species plasma

(C.17)
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Zly = Lo+ KalZopplle+

ZL?J = Lgl_ZiL;l

L;z = Lo[2.5+K2(Z¢”)]

i a
Gl = L [(1+a

{“’}

- e ke)e]  ca

(C.19)
(C.20)

_mZ ) (2.5 + Kx(a))

+2e [{1+K1 @)~ (55 = %2) 0+ st 21

ZL% = 1.33L; [[l + K1(Zess)] - (

where

and o = nzZ/n;22.

m;

1+a
o
l+a

- "—n-z-) 1+ Ka@)]]  (C22

ni{ViD}

Zemgna{vP}

1-¢
_ 068

1+0.1z71
1+0.13z"1

x
0.71 (1 + 0.025:2:)
T \1+0.059z
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