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Abstract — This paper combines the older neoclassical gyroviscous model for toroidal viscosity in the
plasma core, which is based on an axisymmetric magnetic field and obtains reasonable agreement with
experiment for toroidal rotation in the plasma core but not in edge plasma, with recent models for
neoclassical toroidal viscosity (NTV) based on nonaxisymmetric “perturbation” magnetic field components
present primarily in the edge plasma to obtain a composite toroidal viscosity model for toroidal velocity
calculations in the tokamak core and edge plasma. This combination is facilitated by the fact that the same
form of “drag frequency” representation of the viscous torque used in many of the new (NTV) torque
models arising from toroidally nonaxisymmetric perturbation magnetic fields that are present mostly in the
plasma edge can also be used to represent the old neoclassical toroidal viscous torques arising from
toroidally axisymmetric magnetic fields.

Keywords — toroidal viscosity, tokamak, rotation.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Recognition of both the importance of plasma
rotation to the stable magnetic confinement of plasmas
in tokamaks (e.g., Ref. 1) and of the complexity of the
damping of toroidal plasma rotation by nonaxisymmetric
magnetic fields (e.g., Refs. 2 through 5) has increased
significantly in recent years.

The older neoclassical viscosity theory (e.g., Refs. 6
through 10) was developed under the assumption that the
tokamak was magnetically axisymmetric, i.e., there was
no radial component nor toroidal asymmetry in the
magnetic field (or at least that any such nonaxisymmetry
was small and unimportant). A significant feature of
magnetic axisymmetry is that the leading order parallel
component of the neoclassical toroidal rotation viscous
damping term vanishes identically,7,11 leaving only the

gyroviscous and perpendicular viscous terms to
contribute to the damping of toroidal velocity.

It was estimated by one group7,8 that the leading order
surviving gyroviscosity was of the proper magnitude to
explain themeasured toroidal viscosity damping in tokamaks,
but two other groups9,10 ordered out the leading order gyro-
viscosity and retained only the neoclassical perpendicular
viscosity, with the result that their estimated toroidal rotation
was orders of magnitude larger than measured values. These
and similar estimates that neglected gyroviscosity led to the
widespread, but incorrect, opinion that axisymmetric neoclas-
sical viscosity theory greatly underpredicts toroidal momen-
tum damping in tokamaks.

When neoclassical gyroviscosity was retained in the
neoclassical viscosity theory, the axisymmetric neoclassi-
cal viscosity theory12–16 overpredicted measured toroidal
rotation by less than an order of magnitude in the core
region of tokamak plasmas, but agreement was much
poorer in the edge plasma. A more accurate summary of*E-mail: Weston.stacey@nre.gatech.edu
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the evidence is that (1) axisymmetric neoclassical perpen-
dicular viscosity has been estimated to greatly overpredict
measured toroidal rotation in tokamaks, but that (2) axi-
symmetric neoclassical gyroviscosity has been calculated
to overpredict measured toroidal rotation by �20% in the
core of tokamak plasmas, but with much poorer agree-
ment in the plasma edge.

However, the assumption of magnetic field axisym-
metry is not justified in the edge plasma, and a nonax-
isymmetric neoclassical fluid theory to represent
neoclassical viscous torques arising from nonaxisym-
metric magnetic fields in tokamaks (e.g., Refs. 2 through
5) has recently been developed. Many of the recently
developed neoclassical viscous torques due to nonaxi-
symmetric magnetic fields are likely to be most important
in the plasma edge—just where the gyroviscous neoclas-
sical torque due to axisymmetric magnetic fields has the
greatest difficulty matching experiments.

The neoclassical torques due to both axisymmetric
and nonaxisymmetric magnetic fields can be written in
the same “drag frequency” form, which facilitates the
representation of both in a composite neoclassical viscous
torque model for fluid rotation calculations. The purpose
of this paper is to describe and discuss a form for the
axisymmetric neoclassical gyroviscous torque that is
compatible with
the drag frequency form (e.g., in Refs. 3 and 4) used for
the nonaxisymmetric neoclassical viscous torques that
have been developed, enabling a combination of the two
which hopefully will be able to represent toroidal rotation
damping in both the tokamak core and edge.

This paper is organized as follows. First, the drag
frequency representation of the gyroviscous torques of
neoclassical theory in plasmas confined in an
axisymmetric tokamak magnetic field B0 are pre-
sented, and the resulting toroidal rotation equations
for axisymmetric tokamaks are summarized in Sec.
II. Then, in Sec. III, following Refs. 3 and 4, we
assume that the nonaxisymmetric magnetic field can
be represented as a sum of small perturbations δBxx

plus an axisymmetric field B0, and that the individual
toroidal φ viscous torques δTxxφ ¼ R0nmν xx

viscVφ

resulting from each magnetic field nonaxisymmetry
(denoted xx) can be added to the gyroviscous torque
resulting from the axisymmetric magnetic field to
obtain a total neoclassical viscous stress for the tor-
oidal momentum balance equations which can then be
solved for the toroidal rotation velocities in both the
plasma core and edge. (A similar procedure could, in
principle, be followed for the poloidal rotation

velocity.) An example representation for δTxxφ ¼
R0nmν xx

viscVφ is discussed in Sec. III, and the results are
discussed in Sec. IV.

II. DRAG REPRESENTATION OF NEOCLASSICAL
GYROVISCOUS TORQUE IN AXISYMMETRIC TOKAMAKS

The toroidal (and poloidal) fluid rotation velocities
are determined largely by the toroidal (and poloidal)
components of the coupled momentum balance equations
for the plasma ion species (e.g., Ref. 17).

The major issue in developing a solution for the rotation
equations is the evaluation of the flux surface average (FSA)
of the toroidal components of the divergence of the viscous
torque tensors hRnφ � � � Πi. For a toroidally axisymmetric
tokamak, the Braginskii rate-of-strain tensor,6 extended to
toroidal flux surface geometry7 and arbitrary collisionality,8

ΠBrag ¼ Πkðη0Þ þ ΠΩðηΩÞ þ Π?ðη?Þ, where η0 � ηΩ �
η? are viscosity coefficients associated with flows parallel
to, gyrating about, and perpendicular to the magnetic field,
respectively. For toroidally axisymmetric magnetic fields7,11

hRnφ � � � Πki; 0, leaving the gyroviscous torque as the
leading order neoclassical torque, which may be
represented18 as a drag term with a drag frequency νΩφ:

Rnφ � � � ΠΩh i ¼ nmR0νΩφVφ;

νΩφ ;
1

2
ηΩ

r
R0

L�1
n þ L�1

T þ L�1
vφ

� �
� 4þ en c

j

� �eV s
φ j þ 1� eVc

φ j

� �en s
j

h i
; ð1Þ

where

L�1
X ; � 1

X
qX
qr

η Ω = nmT=eB

R0 = FSA value of the major radius

subscript j = major plasma ion species,

and where eXs; c are the sin θ; cos θ components in a low-order
Fourier expansion X ðr; θÞ ¼ X0ðrÞ½1þ Xc cos θþ Xs sin θ�
of ion density and toroidal velocity divided by ε ; r=R0;
and the quantities without the s or c subscript refer to FSA
values. The calculation of these poloidal asymmetries is
discussed in Refs. 15 and 16. (There has been some confusion
about gyroviscosity in the literature, and this is discussed in the
Appendix.)

The smaller perpendicular viscous torque term can be
represented18 as
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hRnφ � � � Π?i ’ nmR0ν?φVφ;

ν?φ ;
η?
nm

L�1
vφ

1

r
� L�1

η?

� �
� 1

Vφ

q2Vφ

qr2

� �
; ð2Þ

with η? ’ ðΩjτjÞηΩ � ηΩ, where Ωj ; ejB =mj is the
gyrofrequency and τj is the collision frequency. This
term remains small even when extended from this
original collisional form used by Braginskii to a
collision-less regime form.

The toroidal component of the FSA of the inertial
torque also has the form18:

Rnφ � �nm V � �ð ÞV� 	 ’ 1

2

Vrj

R0
ε 1þ encj þ eVc

φ j

� �
� 2R0L

�1
Vφ j

n o�

� ε
Vθj

R0

eVs
φ j 1þ encj þ eVc

θj

� �
� eVs

θj 1þ eVc
φ j

� �
� eVc

φ jensjn o�
� R0njmjVφ j ; R0nmνinVφ ; ð3Þ

where νin is an inertial momentum transport frequency.
(A similar term probably exists for the poloidal component
of the inertial force, but we have not investigated this.)

As discussed in Sec. III, the representations of the
FSA of the toroidal components of the new
nonaxisymmetric nax viscosity torque tensor also
have the form3,4 hRnφ � � � Πxx

naxi ’ nmR0ν nax
naxφ

Vφ.

Using Eqs. (2) and (3), including a nonaxisymmetry
contribution to be defined3,4 and including also the
charge-exchange νcx and ionization νion momentum
exchange terms, we obtain a composite momentum
exchange frequency νd ¼ ðνΩφ þ νnaxφÞ þ νin þ νion þ νcx
in terms of which the steady-state toroidal momentum
balance equation for each ion species can be written in
the form

njmj νjk þ νdj

 �

Vφ j � njmjνjkVφk ¼ njejEφ þ ejBθΓrj þMφ j

ð4Þ

to obtain a coupled set of n equations for the FSA toroidal
velocities, where n is the number of ion species/charge
states, which can be solved for the toroidal rotation
velocities of the main and impurity ions. The above equa-
tions are coupled to the equations for poloidal velocities
and the poloidal (sin and cos) asymmetries in density,
velocity, and electrostatic potential which can be reduced
analytically to 3n coupled equations (e.g., Refs. 15
and 16).

A Lorentz-type representation has been used for the
collisional friction between the main ions j and the one or

more impurity ions/charge states k′ (e.g., so νjk ;
P
k 02k

νjk 0

and νjkVφk ;
P
k 02k

νjk 0Vφk 0 are understood when more than

one impurity charge state is being treated). The quantities
E; B; Γr and M represent electric field, magnetic field,
radial ion particle flux, and momentum input, respectively.

Several years ago we demonstrated12,13 that
Braginski’s gyroviscous torque6 (when extended to
toroidal flux surface geometry7 and arbitrary
collisionality8) predicts the same order of magnitude tor-
oidal rotation damping as observed in many tokamaks.
Subsequent calculations15,16 overpredicted measured tor-
oidal velocities in DIII-D by less than an order of magni-
tude when a low-order Fourier expansion of the poloidal
momentum balance and a simple circular flux surface
model were used to calculate the poloidal asymmetries
in Eq. (1). When the more accurate Miller model
geometry19 was used to calculate the poloidal
asymmetries,16 the gyroviscous model overpredicted
measured toroidal velocities in the core of two DIII-D
shots by only 10% to 20%, but there were much larger
overpredictions in the edge, suggesting the need for
an additional momentum dissipation mechanism
[perhaps neoclassical toroidal viscosity (NTV)] in the
edge. Another possible cause of the greater disagreement
in the edge is the failure to date to take into account the
effect of ion orbit loss,20 which is large in the plasma
edge, in the rotation calculations.

III. REPRESENTATION OF NONAXISYMMETRIC MAGNETIC
FIELD EFFECTS ON TOROIDAL ROTATION
CALCULATIONS FOR TOKAMAKS

The magnetic flux surfaces in real tokamaks are not
axisymmetric for a variety of reasons, e.g., the discrete
toroidal field coils, field errors due to manufacturing
shortcomings, the intentional introduction of
nonaxisymmetry by resonant magnetic perturbation
coils for edge-localized mode control and other coils,
magnetohydrodynamic instability production of currents
in the plasma, etc. Reference 5 provides an excellent
general discussion of magnetic field nonaxisymmetries
and their effects upon toroidal plasma confinement, and
Ref. 3 discusses the neoclassical plasma viscosity theory
which represents the toroidal viscous torques associated
with various nonaxisymmetric magnetic fields in
the form of a drag frequency representation of the
neoclassical toroidal viscous torque:

hRnφ � � � Πxx
naxi ’ nmR0ν

xx
naxφVφ ;
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with the nonaxisymmetric toroidal viscous damping
frequency given by

νxxnaxφ ¼ μxxnaxφðδBxx=B0Þ2 ;

where δBxx r; θð Þ is the nonaxisymmetric magnetic field
deviation of type xx from the symmetric magnetic field
B0 and the μxxnaxφ are tabulated as μk in Table 1 of Ref. 3

for various types, xx, of field nonaxisymmetries. For
example, the toroidal field ripples δBrip r; θð Þ, which are
present in all tokamaks, produce FSA neoclassical toroi-
dal viscous torques

hRnφ � � � Πrip
naxφi ’ nm R0νripnaxφVφ ,

where

ν rip
naxφ; j ¼ μ rip

naxφðδBrip=B0Þ2

¼ Bθ=B0ð Þ2ðδBrip=B0Þ3=2 Vthj=R0


 �2
=νjj ; ð5Þ

and where Vthj is the thermal velocity and νjj is the
self-collision frequency.

It is not our purpose to summarize the many different
types of magnetic field asymmetries that have been
worked out and reviewed in Ref. 3 and, in greater detail,
in Ref. 4. Rather, we are making the point that these
toroidal magnetic field nonaxisymmetries can be
represented as additive FSA toroidal viscous torques

hRnφ � � � Π xx
naxi ’ nmR0ν xx

naxφVφ

in the toroidal momentum balance [i.e., νxxnaxφ ¼
μxxnaxφðδBxx=B0Þ2 can be included in the νdj term just

above Eq. (4)].
It stands to reason that a similar representation of

the FSA of the neoclassical poloidal viscous force

hnθ � � � Πxx
naxi ¼ nmνxxnaxθVθ ,

which arises in the poloidal rotation equations, can be
developed along the same lines as discussed in Refs. 3
and 4. (This has not been done to our knowledge.)

IV. DISCUSSION

The rationale for the composite axisymmetric and non-
axisymmetric neoclassical viscous torque model put forward
in this paper for plasma rotation calculations is based on three
observations: (1) the old neoclassical gyroviscous torque
model does reasonably well in predicting measured toroidal

rotation velocities within the core plasma but not in the
plasma edge15,16; (2) the new neoclassical viscous torque
effects due to nonaxisymmetric magnetic fields3,4 (e.g., tor-
oidal field ripples, control coil fields, field errors, fields due
instabilities) should be most important in the edge plasma
where the old neoclassical gyroviscous torques due to axi-
symmetric magnetic fields provide viscous damping that dis-
agrees the most with experimental rotation15,16; and (3) the
newly developed nonaxisymmetric neoclassical viscosity
theory2–4 uses the same drag frequency representation of the
toroidal viscous torque

hRnφ � � � Πxx
naxi ’ nmR0ν

xx
naxφVφ ;

arising from different three-dimensional magnetic field
nonaxisymmetries xx as is used to represent the
axisymmetric neoclassical toroidal gyroviscous torque in
the old axisymmetric neoclassical gyroviscosity theory
for magnetically axisymmetric tokamaks.15,16 Thus, a
combination of the nonaxisymmetric viscous effects,3,4

such as would be most important in the edge, with the
axisymmetric gyrovisous effects15,16 which should be
most important in the core, would seem to be imperative
in order to properly model experiments which depend on
core and edge effects.

Both the old axisymmetric gyroviscous model and the
new nonaxisymmetric viscosity models have met with
enough success in predicting rotation features observed in
the core and edge, respectively, of experiments to encourage
their combination into a composite toroidal viscosity such as
is outlined in this paper. However, as in all theories, a number
of ad hoc mathematical approximations and physical argu-
ments have been made (most importantly that11

Br ¼ 0; q=qφ ¼ 0) to arrive at this drag frequency represen-
tation of the viscous stress, and the rigorous representation of
the viscous torque for magnetically nonaxisymmetric toka-
maks could be considerably more complex.11 Nevertheless,
we believe that it is important to merge the magnetically
nonaxisymmetric neoclassical theory of Refs. 3 and 4 with
the magnetically axisymmetric neoclassical theory of Refs.
15 and 16 and to test the combined theory against experi-
mental rotation measurements.

APPENDIX

GYROVISCOSITY

There has been some confusion in the literature
about the retention and importance of gyroviscosity in
the representation of the viscous torque in neoclassical
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rotation theory. Braginskii6 developed his fluid
rotation theory, which included gyroviscosity
associated with gyromotion about field lines,17 from
a moments approximation to drift kinetic theory under
the implicit assumption of strong fluid rotation
velocity Vj j 	 Vth. Shortly thereafter, Mikhailovskii
and Tsypin21 (M-T) introduced a similar fluid rotation
theory, but developed from a multimoment approximation
of the Boltzmann transport equation. The M-T approach
also took into account the contribution to the viscosity
contribution of the heat flux as well as the momentum
flux, which is significant when Vj j � Vth but not in the
strong rotation case when Vj j 	 Vth, which is the case of
interest in present tokamaks and in the present paper.
Claassen et al.22 demonstrated that the M-T–type
corrections strongly affected the Braginskii predictions for
ohmic plasmas with Vj j � Vth, but observed that “as
toroidal velocities are often observed to be of the order
of the sound speed, the scaling relations underlying the
theory (of their paper) may have to be modified.” Catto
and Simakov23 (C-S) followed this line of investigation
and confirmed that the magnitude of the gyroviscosity
depended on the magnitude of the up-down asymmetries
[the sine components with superscript s in Eq. (1)], which
they estimated to be small but acknowledged “up-down
asymmetry can increase the momentum relaxation rate,
perhaps making it competitive with anomalous relaxation”
by which they meant the measured rotation relaxation.
Thus, it would appear that Braginskii focused on the
strong rotation Vj j 	 Vth situation, while M-T, Classen
et al., and C-S were focused on the weak rotation situation
Vj j � Vth. This distinction is not clear in the discussion of
the matter in the literature nor in the minds of many
researchers in the field.

In summary, those authors who evaluated
gyroviscous momentum damping in the weak rotation
ordering Vj j � Vth (Refs. 21, 22, and 23) found
momentum damping consistent with that seen in ohmic
plasmas without external momentum sources (in which
they were interested), while those authors who evaluated
gyroviscous momentum damping in the strong rotation
ordering Vj j 	 Vth (Refs. 12 through 16) found a
momentum damping consistent with that seen in strongly
rotating plasmas with external moment sources (in which
they were interested).

A second source of confusion was the absence of gyro-
viscosity in two contemporary derivations9,10 of
neoclassical rotation theory which actually found
gyroviscosity but neglected it relative to the perpendicular
viscosity based on a faulty gyroradius ordering argument

that neglected terms OðδηΩÞ relative to terms Oðη?Þ as
being of higher order in the gyroradius ordering parameter
δ ; rlarmor=r ’ 10�2, even though δηΩ � η? because
ηΩ ’ 104η?. This “gyroradius ordering argument” neglect
of gyroviscosity is found even in more recent derivations of
neoclassical rotation theory, e.g., Ref. 24. We found12–16 by
direct numerical evaluation that Eq. (1) is the FSA of the
largest neoclassical torque for a magnetically axisymmetric
tokamak and that the resulting gyroviscous momentum
confinement times are comparable with measured momen-
tum damping rates in the core of a large number of strongly
rotating tokamak discharges,12–16 but not in the plasma
edge.
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